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Scale dependence of the quark masses and mixings: Leading order
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We consider the renormalization group equatiORSE) for the couplings of the standard model and its
extensions. Using the hierarchy of the quark masses and of the Cabibbo-Kobayashi-MeéSKatyamatrix
our argument is that a consistent approximation for the RGE should be based on the pamm&@gi
~0.22. We consider the RGE in the approximation where we neglect all the relative terms of the-artler
and higher. Within this approximation we find the exact solution of the evolution equations of the quark
Yukawa couplings and of the vacuum expectation value of the Higgs field. Then we derive the evolution of the
observables: quark masses, CKM matrix, Jarlskog invariant, Wolfenstein parameters of the CKM matrix and
the unitarity triangle. We show that the angles of the unitarity triangle remain constant. This property may
restrict the possibility of new symmetries or textures at the grand unification scale.
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I. INTRODUCTION Ref.[14] we systematically investigated the influence of the
hierarchical structure of the QYC on the evolution of the
The solutions of the renormalization group equationsCKM matrix by constructing the exact solution of the one
(RGE) determine the dependence of the physical parameteteop RGE compatible with the observed hierarchy The most
of the theory on the renormalization po[rit-11]. The set of  important result that we derived is that the CKM matrix evo-
these parameters for a given energy defines the theory thatlistion depends only on one universal function of energy
equivalent to the one with the initial parameters. This propwhich is a suitable integral that depends on the méstain-
erty was used in the standard model in the search of thgard model(SM), minimal supersymmetric standard model
theory that is equivalent to the low energy standard model\1Ssm) and double Higgs modéDHM)]. We showed that
This led to the hypothesis of grand unification when it wasihe eyolution of the ratios of the eigenvaluesassesof the
observed that 3 gauge coupling constants of the standar anddownQYC, Y, /Y, andYg ¢/Y,, depend on the same

model converge o one value at the energg0'* GeV, and  iversal function as the CKM matrix. The eigenvalues of
to the reduction of the number of the parameters of the stan[—he QYC, Y, andY, depend linearly 0;1 the corresponding
dard model. Further reduction of the number of the param: .. o N, . d !
eters is possible in the sector of the Cabibbo—Kobayashi'—nmal. values and their rat'.d{“/YC. is constant while the
Maskawa(CKM) matrix [12,13 by looking for the textures functional dgpendence .fc)ft is n.o.nlmear. The other remark-
or new symmetries. The CKM matrix appears in the standar@P!€ result is that the diagonalizing matrices of tpequark
model as a result of the transition from the quark gauge'ukewa couplings are energy independent in the leading
eigenstates to the quark mass eigenstates upon the diagon@ider. This means that the transformationy,) r
ization of the quark mass matrices. The quark mass matrices’ (Uu)L r(#u)L g, Will diagonalize the matrix of theup
appear after the spontaneous symmetry breaking from thiguark Yukawa couplings and it will stay diagonal upon the
quark-Higgs Yukawa couplings. For this reason we considefénormalization group evolution, and the evolution of the
the RGE for the quark-Higgs Yukawa couplings from which CKM matrix will be determined only from the evolution of

we obtain the evolution of the quark masses and the CkMhe downquarks Yukawa couplings. This fact may simplify

matrix. the model building based on the symmetries of the quark
In a recent papefl4] we began the analysis of the solu- Yukawa couplings. _ _
tions of the one and two-loop evolution equatidobtained To achieve our present goal to obtain the precise results

in a general quantum field theorfor the coupling constants, for the running of the parameters of the standard model and

the quark Yukawa coupling®QYC) and the CKM matrix. In  its extensions we will use the hierarchy and approximation
scheme based on the parameter|V, | ~0.22 and establish

accordingly the consistent procedure for the solution of the
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Our aim is to systematically investigate the running of theHereg; are the gauge coupling constanyg,andyy are the
observables of the currently available models up to the ordematrices of the Yukawa couplings ang, is the Higgs quar-
\° which we plan to do in two steps. In the first step wetic coupling.
consider the RGEs up to the orde? and use the fact that The mathematical structure of the RGEs is the following:
these equations can be analytically solved. In the second step
we apply the modified perturbation calculus to obtain the dg; 1 {

At (47)2

evolution of the parameters with the precisioh The meth- B(gi”(g?)
ods and scope of each step are very wide apart so we will
divide our analysis into two papers. In the present paper we
establish the framework of our analysis, present exact solu-
tions of the RGEs for the Yukawa couplings, vacuum expec- (4m)?
tation values and other observables and also show a graphi-
cal representation of the analytical results. In the dy,.q
forthcoming paper, using these results, we will develop theT=
modified perturbation calculus which will be the basis of the
derivation of the corrections up to the ordet to the ana-
lytical results from the first paper. +

The organization of the paper is the following. Section Il (4m)?
is devoted to the discussion of the hierarchy of the couplings (2b)
and the observables in the RGEs and the introduction of the
approximation scheme that we apply to the solution. In Sec.
Il we discuss RGEs for the Yukawa couplings and the d_v_ - [B(l)(gi quI ydyg)

v , ,

B Yyl Yoy + - ] g (2a)

BEGE Yyl Yayd A+ ]yu,d

vacuum expectation values in thé order and present the dt  (4m)2

analytical solutions. The behavior of the universal energy

functionh(t) and of all the other functions that participate in 2)) 2 t t

the evolution of the physical parameters of the SM and its + (477)2'3v (Gic:YuYuYdYa hu) - (20
extensions is presented graphically from the mass soale

the Planck mass. In Sec. IV, with the exact solutions of the 0 1

one loop RGE equations previously obtained, we solve, con- “*H _ [ (le)(gﬁ ,YUYZ 'ydyg)

sidering a new approach, the equations for the other observ- dt  (44)2
ables (all the CKM matrix elements, the masses, unitarity

triangle, the Jarlskog invariadtand the Wolfentstein param- 1
eters\, A, p, 77), we present their explicit analytical evolu- + (4)2
tion which was not published before. Subsequently we rep-

resent graphically the RGE flow of these observables. In Se(fn Egs.(2) t=In(E/) is the energy scale parametgris the

V we draw the conclusions. Our new approach confirms theFenormalization pointy is the the vacuum expectation value

earlier results and also enables us to obtain the new onegc Higgs field 3™ denote then-loop B functions for the
such as the differential equations for the diagonalizing MaxGEs which are'homogenous polynomials of the indicated
trices of the down sector in terms of which the CKM matrix

clements are obtained variables a_nd 'Fhe dots indicatfa th_e omitted three and more

' loops contribution. The approximation scheme for the RGEs
consists in the approximation of the terms inside the braces
Il. APPROXIMATION SCHEME on the right hand side of the equations keeping only the

In the approximate calculations the overall consistency id€™MS of a given relative order. _
very important. This means that the terms that are smaller, F'0M E@s.(2) and(1) one can see that the leading terms
than those neglected should not be kept. The order of madf the one loop contribution are of the order 1, because
nitude (expressed in powers af) of the components of the

ﬁi?(gﬁ.yuyﬂ,ydyE.AHH-~]- (2d)

RGEs is AR, .. )~1 &)
gimo.%)\, ggmo_42~2)\, and for the two loop contribution
0151 Vil BOGE )~ @
(4m)? (4m)?
Mo ? 5
YdYa™ ™ ~1.13°, (1) From Egs.(3) and (4) we thus see that in the one loop ap-

proximation we should neglect all the terms of the orsér

and higher. From the hierarchy given in Eg) it follows
=6.3x10 3~2.7\%, \y~0.44~2)\. that the one loop approximatiqn isTequivaIent tp neglecting

the two loop term and also puttingy,=0 on the right-hand

(4m)?
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side of Eqs(2) relativeto the terms of the lower order. Such dy,

equations, as it turns out, can be analytically solved. U
The next order term is of the ordar*. Such a term is dt  (4m)?

present only in the two loop contribution and it does not ©)

introduce important qualitative modification to the running

of the observables and it will be discussed together with Eq. dyq 1 d d. .+, 4 t 4

(2d) and the\® contribution in a forthcoming paper. RGEs gt w[alm"'a2yuyu+a3Tr(yuyu)]yd+O()‘ ),

for the ordern* and higher form a system of coupled non- (10)

linear equations which are difficult to solve analytically, so

for their analysis one has to use other methods. where

[@5(t)+ aldyyi+ aliTr(yyh) Iy, + O,

Ill. ONE LOOP EQUATIONS AND SOLUTIONS " 5 ) ., 3b

FOR THE GAUGE COUPLING PARAMETERS, THE a1(1) =~ (C101+ €203+ C303), @p=—, a3=3,
YUKAWA COUPLINGS AND THE HIGGS
VACUUM EXPECTATION VALUE ; - TR

In this section we discuss thene loop RGEs for the ay(t)=—(C191 T €205+ C303), ax=—, az=3a,
gauge, Yukawa couplings and the vacuum expectation val-
ues. This means that the precision of all the expressions is u@®,b,c) are equal to (1,%51), (0,1,1/3), (0,2,2/3);
to the orden 3. We indicate this fact in the final form of the (c1,C>,C3) are equal to (17/20,9/4,8), (17/20,9/4,8),

equation for each observable. The structure of the one-loofl3/15,3,16/3) and dj,c;,c;) are equal to (1/4,9/4,8),

RGE for the gauge coupling parametejsis (1/4,9/14,8), (7/15,3,16/3) in the SM, DHM and MSSM, re-
spectively.
dg; 1 3 4 The transformation from the quark gauge states to the
a wbigi +O(\Y). (5  physical states requires the diagonalization of the Yukawa
coupling matricesy,, andyy with the biunitary transforma-
tions

Here the coefficientsk;,b,,b;) are equal (41/16;19/6,
=7), (21/5~3,—-7) and (33/5,1;3) for the SM, DHM
and MSSM, respectively. The solution to this equation is
derived directly,

diad(Yy(ay » Yes) » Yi)) = (Uuay) LYu(ay (U u(d));z (11

where U, 4), r are the corresponding unitary diagonalizing
2b,(g%)%(t—to) —1/2 matrices and(q(d) ,YC(S)_andYt(b) are the _eigenvalues of the
gi(H)=g° ] K Sl 9°=gi(t,). (6) Yukawa coupling matriceg,q) [15]. As it is well known,
' ' (4m)°? ’ o the diagonalizing matrices generate the flavor mixing in the
charged current described by the CKM matrix
The one-loop RGE for the Yukawa couplings 4 is A
V=(U)L U]

dyu,d _

44 1 (1)
dt

(472" 0

Yu,a+ONY). (7)  The same biunitary diagonalization transformation also per-
mits the exact solution of Eq9) which arises from the fact
that the diagonalizing matrices)(;), r for the one loop Eq.
?5) do not depend on enerd{4]. It then follows thaty,(t)
from Eq. (9) has the following representation:

The ﬁﬁlc), has a hierarchical structure based on the paramet
\ and has the following forfn(with lepton dependence sup-
pressei

) . — tyu Uty — di
B ol (1) + ab(yuyD) AO=UI O, V(O =dag¥o Ye ),

+abTr(yyh) + ol (yayh) + akTr(yqyD),
3T+ aalyaya) + asTr(yaya) The whole dependence arnn Eq. (12) is contained only
i=u.d ) in the diagonal matrix'(t). The diagonal elements &f'(t)
T satisfy the system of differential equations that follows from

Its structure allows the systematical solution of the RGE withEd- ),
\ as the expansion coefficient. The approximate form of the

equations for the quark Yukawa couplings, neglecting all the dYyc _ u U2 4

terms ofA* and higher, is the following: dt (47)2{a1(t)+a3Y‘}Y“'°+O()\ ), (133
Notice that the form of the functiog!!} is compatible with Eq. dvi {2¥(0) + (a+ ad) YZY + O(\%).

(2b), i.e. it is the homogeneous polynomial of order 1 of the indi- dt (477)2

cated variables. (13b
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Equation(13b) decouples from Eq(139 and can be solved k=3 gz(t ) cp/by
_ klto
S

independently of the other equations. When the solution for r’(t)=ex;{ 2 ft ad(r)dr
(4m)? )t

Y,(t) is known then Eqgs(13@ become linear and can also gi(t)
be solved and eventually the solution of E(E3) is (22)
Yo (1) =Y, o(to) Whag(t) (149 The approximated one-loop RGE for the Higgs vacuum
e e me expectation valu¢vEV) v, 4 is the following:
Y(t) = Y(to) Vr (D) hf:““e')(t): (14b) dvy 4 , .
dty = z[alu'd(t)+agu’dTr(yuyI)]Uu,d+O()\4):
where the functions(t) andh,,(t) are (4m) 03
2 t k=3 gz(t ) Ck/bk
r(t)=exr{—f aU(T)dTl = k170 whereu,, is the VEV for theup quarks and4 for the down
(4m)? )t k=1 | ga(t) quarks? Note that for the SMv,=v,=v4. The functions
(19 &fui(t) and the coefficients;’ are equal
hm(t) =ex LftYf( ndr (1) = €1y )97+ Cou )93 (24)
(4m)? )1
bo=—3, ati=-3, ay?=0, 25
1 1/2(al+ ad) @3 @3 @3 (25
- 2(a+ at) . : and the constantsc{, q),C5u.q) are equal to {9/20,
_ #(Y?)ZJ r(r)dr —9/4), (—9/20,~9/4) and (- 3/20~ 3/4) for the SM, DHM
(4m)? to and MSSM, respectively.
(16) To solve Eq(23) for the VEV we divide both sides of the
equation by the corresponding VEV and obtain after the in-
It is worth mentioning that the function(t)=[h,(t)]*2 ap-  tegration

pears in the evolution of the matrix and moreover this is

A tdo 1 t
the only dependence drof the V matrix. f 20— 2] [@}49(t) + a9 Tr(y,y!) Jdt.
The next step is the determination, from Efj0), of the toVud  (4m)%Jto

running of thedown quark Yukawa couplings. The substitu- (26)
tion The left-hand side of Eq26) is equal to lfiv, 4(t)/vyq(to)]
=(U.) Wit 1 and on the right hand side we have the sum of two integrals.
Ya(H)=(Uu) WD) (17 The first integral can be explicitly integrated using E6).
transforms Eq(10) into the following equation: and we introduce the functiorf (t),
aw_ 1 {ad(t)+ ad[ YU (1) 2+ 3T YU(1) AW I’ (t)=ex LJ'ta”u,d(T)dT
dt (471_)2 1 2 3 d Uy.d (477_)2 t 1
(18)
k=2 gz(t ) Ck(u.d)/Pk
with the matrix{aS(t) + a3 YU(t) ]2+ aSTI YY(t)]%} being -TI k2 0 27)
diagonal. k=1 gi(t)
This allows us to solve Eq18) explicitly and the solution
for W(t) reads and the second integral is calculated using @®)
d Vu,d Vu,d
—Iy! 12093+ . . o2 t [e 2% t
WOZIOT (0 2(0- Wt 49 (43 )2Jt Tr(yy,)dr= (43 )th Yi(r)dr= az"Inhy(t).
a a
whereZ(t) is the diagonal matrix ° ° (28)
Z(t)=diag1,1h(t)). (20 The final form of the VEV is thus equal to
Now, with the help of Eq(17) one gets the explicit one loop SPud o
running of the Yukawa couplinggy(t) vud(t) =vua(to) Vo (Dh 3 (1), vyg=vyalto).
(29
d
Yo(H)=r" (Oh3(OU){ZOWU0ya,  Ya=Yal(to),
(21)
We consider only the case where & v4/v,~1. Large values
where of tanB require other treatment and will be considered elsewhere.
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FIG. 1. The scale dependence of the ratigg/r (my), r'(t)/r'(my), r"(t)/r"(m,) andhg(t)/hy(my).

The solutions of the renormalization group equations for the
gauge coupling constants, ), for the quark Yukawa cou-
plings Egs.(14), (21) and(43) and for the vacuum expecta-
tion values Eq(29) form the complete set of the evolution
functions from which one can obtain the renormalization
group flow of all observables related to quarkp:anddown
guark masses and the CKM matrix. In the next sections we
will analyze these observables but let us notice here that the
evolution is described by the following functions of energy:

(0,0 (0,17, (0, hm(1),h(D). (30

-

The dependence of the observables on these functions will bE
discussed in the next sections. Here in Figs. 1 and 2 we shov=
the functional dependence of the functions in E8Q) for =
three model$SM, DHM and MSSM to be able to see what =
is their influence on the observables and how they depend ol
the model. Notice that in all the figures we choose as the
renormalization point the mass of the top quank
=174.3 GeV[16]. In such a way the functions in E¢30)

and observables are independent of the quark mass thres|
olds. The extensive discussion of the thresholds effects is
given in Ref.[4].

—
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FIG. 3. The scale dependence of the ratigét)/m;(m,) for the up anddown quarks.
IV. EVOLUTION OF THE OBSERVABLES couplings andv; is the vacuum expectation value of the

. o . Higgs field. For the theories with one Higgs doub(&M)
The solution of the renormalization group equations pre- . . .

; ) . there is one Higgs vacuum expectation value and for two
sented in Sec. Il allows the analysis of the evolution of all

the observables related with the Yukawa couplings and theHIggS doubletdDHM, MSSM) there is one VEV for theip
arks and another for trelown quarks.

Higgs vacuum expectation values, i.e. the quark masses and'
the Cabibbo-Kobayashi-Maskawa matrix. The results of this
section have been obtained from the explicit solutions from
the previous section. Their validity and precision are there- The evolution of the eigenvalue¥ (,Y.,Y,) for the up
fore the same, i.e. the terms of the ordérand higher have quarks is given in Eqg14) and the evolution of the VEV's
been neglected. We start with the analysis of the quarks given in Eq.(29). Using Eq.(31) we thus obtain
masses presenting first the analytical results and then show-

1. Up quark masses

ing the corresponding graphs. The same type of the analysis vy(t) vy(to) "
will also be applied to the CKM matrix. M) = = Wi = = 2Vt RO Oy (1)
A. Quark masses _ u
=m{(to) F (D1} (Dhy (1), (32)

The quark masses after the spontaneous symmetry break-

ing are equal to .
g d and the poweK{' is equal

mi:EYi (31) Koc=ast ag”, Ki'= a5+ a3+ ag“. (33
whereY; are the eigenvalues of the corresponding Yukawdn Figs. 3a) and 3b) we show the running of the ratios of
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the up quark massem;(t)/m;(tg) i=
SM, DHM and MSSM.

2. Down quark masses

The evolution of the eigenvalues of thdown quark

u,c,t for three models

PHYSICAL REVIEW 66, 116007 (2002

Yukawa couplings is more complicated because the diago-

nalizing matrices are also running. If we write the mairjx
in the form

ya=(UD)TYIUR), (34)
then Eq.(10) becomes

dLUDTYIURT
dt (4

7 {af(t)+ adyy+ a§Tr(ywy)}
X[(UDHTYdUD], (35)

which after some simple manipulations becomes

du)’ . dvd d( R>
d d d
g Yt gty (U’
1 d d Tyd
= (477)2(UL){Q1( +afyuy,+ aSTryy ) HUDTY
1 d
“a )ZM””Y, (36)
o
M=V ad(t) + adY2+ adTr(Y2)}V, (37

dY'd' 1 2 2 2 4
W:MT{O({F afZY |Vt|| +a’3Y }Y +O(NY).
(40)
Usmg the hierarchical properties of thematrix
ViglP~N8 V20 [Vl2=1, (4D)

we obtain the following equations for the eigenvalues of the

downquarks Yukawa couplings:

dYes 1 ,
dt  (am)? {a1+a3Y YastONY),
%= ( 4;2{a5’+<a§+a2)vf}vb+m4>. (42
The solution of Eqs(42) reads
Yao(D) = Yas(to FTON(D),
Yo = Yu(to) V(D) h(%2 1), 43

where the functiorr’(t) is given in Eq.(22). These results
complement previous results shown in Sec. Ill. Now, Egs.
(43) together with the VEV evolution Eq29) give the evo-
lution of thedownquark masses

valt O)Yd(to)\/r "(Ory (Hhy) ()

Ud(t) d

md(t)=
(t) 2

Yi(t)=

where the matribM v is introduced for notational simplicity.

The matricesu{[d(U%)"/dt] and [d(U%)/dt](US)" are =md(t,) r/(t)rgd(t)hr'f]i(t) (44)
anti-Hermitian(this follows from unitarity so their diagonal
elements are purely imaginary. The diagonal elements of th@here the power& are equal to
matrix Y4 are purely real and the matriM® is Hermitian,
so after taking the real part of the diagonal elements of Eq. Kg,s: ad+ ay, Ki=ad+ad+ ayd. (45)

(36) we obtain
Equations(44) give the analytical form of thelown quark
1 voud mass evolution. The evolution of the ratios of tdewn
”_(477)2('\/' Y5ii - (38) quark masses for three models SM, DHM, and MSSM is
. shown in Fig. 8c) and Fig. 3d).

dvd
dt

The matrix M*");; has the simple form in our approxima-
tion, B. Cabibbo-Kobayashi-Maskawa matrix

The other set of observables is related with the CKM
matrix. These observables include the absolute values of the
matrix elements of the CKM matrix, Jarlskog’s parameler
[17], Wolfenstein parameters, A, p, 7 [18,19 and the
angles of the unitarity trianglg21,22,.

The evolution of the CKM matrix is simpler than that for
masses because the CKM matrix depends only on the left
diagonalizing matrices of the biunitary transformations for
the Yukawa couplings and as was shown in Ré#] the
evolution of CKM matrix depends only on one function of
the energyn(t). This fact implies that there exist correlations
Finally we obtain the following equations for the eigenvaluesbhetween the evolution of the various elements of the CKM
of the downquark Yukawa couplings: matrix.

(M) =[VTal(OV+VTaY2V+ VT alTr(Y2) V],
={al(t) + a3YZ} 8+ a3Y2V[Vj+ O(\).
(39

The last step in the derivation of ER9) follows from the
approximation based on the hierarchy

(Y9 12~N"Ye, (YN,

116007-7
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In the following we shall first find the evolution equations (Y9)2— (Y9)2
of the absolute values of the CKM matrix elements and af- E———=—sgri — )+ O\, (51)
terwards analyze thé parameter and the unitarity triangle. (Y7 +(YP)

1. Evolution of the absolute values of the CKM matrix V where sgn(—j)=+1 forisj.

Next we know that theip quark diagonalizing matrixJ}’

Our starting point is E36). We take now the imaginary does not depend on the energy. Using the definition of the

part of the diagonal elements and the full off-diagonal ele- T sy idyt )
ments of Eq(36), and using the form of the matri®® in ~ CKM matrix V=U_(U)" we obtain
Eq. (39) we obtain

d(UEﬂ) (dw‘é)
d
<(UL) dt ”+ dt

LY duph?
V' = UhUh o= )

dudhT
dt

(52

<U%>*)_=o (46)
. Now from Egs.(50), (51) and (52) the following equations

and are obtained:

dudh? d(Ug)

A2
((UE o )de+yid( o (Ug)T) sgrii—j)azYiViVy. (83
ij

. dV) 1
VT_ -

- dt i (4m)?
ij
opc g Equation(53) is valid only fori#j but from the property
aYe Vi Vy Yy, i#]. (47 that the matrix ¥TdV/dt) is antiunitary and its diagonal
elements are purely imaginary, we obtain equations for the
absolute value of the elements of the CKM matrix,

 (4m)?

The hermitian conjugate of E¢47) reads

1 d|Veyl? .
d(udt d(u®) cdl” a2 |2 54
Yid (UE) at at (ng))r “Y]-O| |\‘/w|2 dt (471_)2“2 t1Vial®, (5439
1] ij
1 avevogns L 1 d[Vyl? 4o .
:—(4W)2a2YtYivtivu, i#]. (48) T =—(47T)2a2Yt(1_|th| ), (54b)
td
Now multiplying Eq. (47) by Y{ and Eq.(48) by Y{ and 1 dVy2 2
summing these equations, we obtain after some simple ma- = a AL [Vipl %, (540
nipulations the differential equation for the evolution of the Vbl (4)
right diagonalizing matrix of the down sector R
1 d|Vcb|2:_ NCIAE: (540)
R - L) .
dt i (YR (Y])? at J;

'(49) and from the unitarity of the CKM matrix we obtain the
evolution of the remaining CKM matrix elements.

Equation(49) gives the relation between the evolution of the ~ To solve Egs(54) let us notice the following relation:
left and right diagonalizing matrices and it is the key relation

that permits the derivation of the evolution of the left diago- 2 4, 1dm
nalizing matrix of thedownquark Yukawa couplings. Insert- (477)2 axYi _ﬁ dt
ing Eq.(49) in Eq. (47) we obtain the evolution equation for
the UY matrix

(59

Whereh(t)E[hm(t)]“g andh,(t) is the function introduced
in Eq. (16). Using relation(55) we obtain from Eq(54b)

<Y?>2—<Yf‘>2( dd(UE)*)
(YH2+(yH2\ Th dt ] s

o h2+(1—h?)|Vo|?’
aQYVEVy, i) (50) (568

[Vig()]?= where Vi =V;;(to).

 (4m)?
From Egs.(549 and (54b) we obtain
We will now convert Eq.(50) into equations for the CKM

matrix elements. To this end we first notice that within our A h2 \“/gd|2
approximation (neglecting all terms of the ordex* and Vea(D]?=— PNTETE (56b)
highen h?+(1—h*)[Vy|
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Using the relation & |V,p|2= V|2 +|Vcp| 2 We derive from
Egs. (540 and(54d) the following resulg

V(1) |2= (560

1+(h?2—1)|V9|2

and this result yields with the help of Eq&40 and (540d
the evolution of thdV,,(t)|? and |V y(t)|%:

. 9,2
V() Pm— (560)
Vo= e e
. Vo, |2
Vep(t)P=— . (56¢
¢ 1+ (h2—1)|V9,|2

PHYSICAL REVIEW 66, 116007 (2002

2. Jarlskog invariant

Jarlskog parametet is defined a$17]
I=T[VyoVes Vi Vg = ViV Vi Vig =3(D), (57)
and it is nonvanishing if the CKM matrix is non-CP invari-

ant.
Let us now consider the following expression:

dinD d IN(VyaVip Vi Vi)
dt dt
! d\7 +
vud dt v vtb

Now using Eq.(53) and the property that the matrix

The remaining elements of the CKM matrix are obtainedV'(dV/dt) is anti-Hermitian(and has imaginary diagonal

from the unitarity relation

V()2 Vgl (56
Y T R4 (1—h?) |00 2
. . Vo2V |2
Vo (1)]2= V024 (h2—1)| — U 7t
| us( )l | usl ( ) 1+(h2_1)|V?b|2
IV (569
h?+(1—h?)|VS?]’
- - Vo2V I?
Vo()[2= V0 2+ (h2— 1) — <L 17t
[Ves(D)[2=[Ved*+( )1+(h2—1)|v?b|2
V2l 2Vl
T2 202! (56h)
h2+ (1—h2)|VY|
- N IVEI2(1— VS 1%
Vi (V)|2=|Vo2—(h?—1)| —————=
| ts( )l | '[S| ( ) 1+(h2_1)|v?b|2
B IVoI2(1— Vo2 (560
h?+(1—h?)|VS?]

Equations(56) represent the RG evolution of the CKM ma-

trix. The absolute values of the CKM matrix elements do not
depend on the parametrization of the CKM matrix. Notice

that in agreement with Theorem 1 in REf4] the evolution
of the CKM matrix depends only on one functidrft) of
energy. It is for this reason that we consid€t) as a uni-
versal function of energy.

3Note that the equation for the evolution b}tb|2 given in Ref.
[14], Eq. (39d) has a missindi? in the numerator.

elements we obtain

dinD - - N
at 2aY (V| = Vil ~ = 2a9Y{| V|2,
(59
and thus the Jarlskog invariant fulfills the equation
dinJ . 2.
T=—2ath2|th|2=—¥W|th|2 (60)
which gives using Eq(560
I X I ! (61
n—=lIn =
Jo T [1+(h?=1) Vg
or
J J
0 0 (62)

J= = ~—
|1+ (h2=1)|VE|? h?
The evolution of the Jarlskog invariant is given in Fig. 4.

3. The Wolfenstein parameters

Equations(56) can be written in an approximate form
using the hierarchy of the CKM matrix, given by the Wolfen-
stein parametrizatiofil8,19

1—;\2 A AN3(p—in)
V= -\ 1- 1y AN? '
2
AN3(1—p—in) —AN? 1
o A2\ A2
p=p(1—7), n= 71(1—7)- (63)
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t=In(E/m,)

FIG. 4. The scale dependence of the rat{@)/J(m,) for the
Jarlskog invariant.

Now neglecting all the terms of the relative ordet and
higher, we obtain

1- |\A/ud|2% 1- |\A/8d|2v |\A/us|2% |\78$|21

v 2 |\’\/8b|2 v 2 /0 12
|Vub| ~ h2 , |Vcd| %|Vcd| ,
- 02, 107 A
1—|VCS|2%1—|VSS|2+ h2 |V2b|21 Vel ?~ h2
(64)
. Val® o o IV - 1-|Vg/?
Vigl 2~ 2 Vi~ e 1—|th|2”T-

From Egs.(64) immediately follows the simple evolution of

the Wolfenstein parameters

A
A(t)=

h(t)’ ©9

and \,p,n areinvariant.

PHYSICAL REVIEW D 66, 116007 (2002

and then by rescaling it in such a way that the lengths of the
sides of the resulting triangle are equal

Van

Vcb

R—l)\21 R 1 6
b™ _7)\ ? t)\ ’ * (7)

From Egs.(64) and(65) it immediately follows thaiR, and
R; are invariant upon the evolution which implies that the
unitarity triangle is also invariant. Thus the complex phases

of the CKM matrix element¥,4 andV,,;, (angles andy)
are also invariant up to the ordgf.

V. CONCLUSIONS

In this paper we analyzed the solutions of the RGE for the
quark Yukawa couplings, for the Higgs VEV’s and also the
evolution of all the observables that follow from them. The
results depend on the model dependent functions given in
Eq. (30). The most interesting is the universal functioft)
because only on this function depends the evolution of the
CKM matrix, Eq.(56) or Eq.(64). The running of the abso-
lute values of the CKM matrix elements and the invariance
of the unitarity triangle angles implies that the evolution of
the CKM matrix is remarkably simple

~ ~ V
0 0 b
0 0 0 Vud Vud Tu
Vud Vud Vub \‘/0
Y ( Y v Y b
Ve Vos Voo | —| Veu VI TC (68)
/0 (/0 70
th Vts th \‘/0 \70
td ts \"/O
h h ®

We observegsee Fig. 2 that the functiorh(t) is decreasing
for the SM and increasing for the DHM and MSSM. This
results in a qualitatively different evolution of the matrix
elements and the observables related to the CKM matrix for
the SM in comparison to the DHM and MSSM. An important
result is the dependence on it of the Jarlskog invariant which
is shown in Fig. 4. We thus see that tiP violation is
enhanced with increasing energy in the SM while it de-
creases for the DHM and MSSM.

The evolution of the unitarity triangle is also very impor-

Notice that the dependence of the CKM matrix and Wolfen-tant. We have shown that the angles of the unitarity triangle
stein parameters on the renormalization scheme is given ifemain constant upon the evolution. The invariance of the

Ref. [20].

angles of the unitarity triangle is very significant because it

means that at the grand unification scale the angles are the
same as at the low energy so if there is a symmetry at the
grand unification scale then it has to predict the low energy
angles of the unitarity triangle. This strongly constrains the
possible symmetries or textures at the grand unification
scale.

4. The unitarity triangle

The unitarity trianglg 21,27 is obtained from the scalar

product of the first column of th& matrix by the complex
conjugate of the third
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