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Scale dependence of the quark masses and mixings: Leading order
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We consider the renormalization group equations~RGE! for the couplings of the standard model and its
extensions. Using the hierarchy of the quark masses and of the Cabibbo-Kobayashi-Maskawa~CKM! matrix

our argument is that a consistent approximation for the RGE should be based on the parameterl5uV̂usu
'0.22. We consider the RGE in the approximation where we neglect all the relative terms of the order;l4

and higher. Within this approximation we find the exact solution of the evolution equations of the quark
Yukawa couplings and of the vacuum expectation value of the Higgs field. Then we derive the evolution of the
observables: quark masses, CKM matrix, Jarlskog invariant, Wolfenstein parameters of the CKM matrix and
the unitarity triangle. We show that the angles of the unitarity triangle remain constant. This property may
restrict the possibility of new symmetries or textures at the grand unification scale.

DOI: 10.1103/PhysRevD.66.116007 PACS number~s!: 11.10.Hi, 12.15.Ff, 12.15.Hh
n
te

a
p
th

de
a
da

ta
m

sh

a
g
o
ic
t

de
ch
KM

u-

,

he
he
e

ost
o-
gy

el

e
of
g

-

ing

he
he
f
y
ark

ults
and
ion

the
ent

be
of

e

ne
,

I. INTRODUCTION

The solutions of the renormalization group equatio
~RGE! determine the dependence of the physical parame
of the theory on the renormalization point@1–11#. The set of
these parameters for a given energy defines the theory th
equivalent to the one with the initial parameters. This pro
erty was used in the standard model in the search of
theory that is equivalent to the low energy standard mo
This led to the hypothesis of grand unification when it w
observed that 3 gauge coupling constants of the stan
model converge to one value at the energy;1014 GeV, and
to the reduction of the number of the parameters of the s
dard model. Further reduction of the number of the para
eters is possible in the sector of the Cabibbo-Kobaya
Maskawa~CKM! matrix @12,13# by looking for the textures
or new symmetries. The CKM matrix appears in the stand
model as a result of the transition from the quark gau
eigenstates to the quark mass eigenstates upon the diag
ization of the quark mass matrices. The quark mass matr
appear after the spontaneous symmetry breaking from
quark-Higgs Yukawa couplings. For this reason we consi
the RGE for the quark-Higgs Yukawa couplings from whi
we obtain the evolution of the quark masses and the C
matrix.

In a recent paper@14# we began the analysis of the sol
tions of the one and two-loop evolution equations~obtained
in a general quantum field theory! for the coupling constants
the quark Yukawa couplings~QYC! and the CKM matrix. In
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Mexico.
0556-2821/2002/66~11!/116007~11!/$20.00 66 1160
s
rs

t is
-
e
l.

s
rd

n-
-
i-

rd
e
nal-
es
he
r

Ref. @14# we systematically investigated the influence of t
hierarchical structure of the QYC on the evolution of t
CKM matrix by constructing the exact solution of the on
loop RGE compatible with the observed hierarchy The m
important result that we derived is that the CKM matrix ev
lution depends only on one universal function of ener
which is a suitable integral that depends on the model@stan-
dard model~SM!, minimal supersymmetric standard mod
~MSSM! and double Higgs model~DHM!#. We showed that
the evolution of the ratios of the eigenvalues~masses! of the
up anddownQYC, Yu,c /Yt andYd,s /Yb depend on the sam
universal function as the CKM matrix. The eigenvalues
the QYC, Yu and Yc depend linearly on the correspondin
initial values and their ratioYu /Yc is constant while the
functional dependence forYt is nonlinear. The other remark
able result is that the diagonalizing matrices of theup quark
Yukawa couplings are energy independent in the lead
order. This means that the transformation (cu)L,R

→(Uu)L,R(cu)L,R , will diagonalize the matrix of theup
quark Yukawa couplings and it will stay diagonal upon t
renormalization group evolution, and the evolution of t
CKM matrix will be determined only from the evolution o
the down quarks Yukawa couplings. This fact may simplif
the model building based on the symmetries of the qu
Yukawa couplings.

To achieve our present goal to obtain the precise res
for the running of the parameters of the standard model
its extensions we will use the hierarchy and approximat
scheme based on the parameterl5uV̂usu'0.22 and establish
accordingly the consistent procedure for the solution of
RGEs. We show that a one loop approximation is equival
to neglecting in RGEs the terms of therelativeorderl4 and
higher. This means that the terms of this type should also
neglected, if present, in the one loop RGEs. The inclusion
the terms of the relative orderl4 and l5 requires the two
loop part of the RGEs and for the terms of the orderl8 one
has to include the three loop terms.
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Our aim is to systematically investigate the running of t
observables of the currently available models up to the o
l5 which we plan to do in two steps. In the first step w
consider the RGEs up to the orderl3 and use the fact tha
these equations can be analytically solved. In the second
we apply the modified perturbation calculus to obtain
evolution of the parameters with the precisionl5. The meth-
ods and scope of each step are very wide apart so we
divide our analysis into two papers. In the present paper
establish the framework of our analysis, present exact s
tions of the RGEs for the Yukawa couplings, vacuum exp
tation values and other observables and also show a gra
cal representation of the analytical results. In t
forthcoming paper, using these results, we will develop
modified perturbation calculus which will be the basis of t
derivation of the corrections up to the orderl5 to the ana-
lytical results from the first paper.

The organization of the paper is the following. Section
is devoted to the discussion of the hierarchy of the coupli
and the observables in the RGEs and the introduction of
approximation scheme that we apply to the solution. In S
III we discuss RGEs for the Yukawa couplings and t
vacuum expectation values in thel3 order and present th
analytical solutions. The behavior of the universal ene
functionh(t) and of all the other functions that participate
the evolution of the physical parameters of the SM and
extensions is presented graphically from the mass scalemt to
the Planck mass. In Sec. IV, with the exact solutions of
one loop RGE equations previously obtained, we solve, c
sidering a new approach, the equations for the other obs
ables ~all the CKM matrix elements, the masses, unitar
triangle, the Jarlskog invariantJ and the Wolfentstein param
etersl, A, r, h), we present their explicit analytical evolu
tion which was not published before. Subsequently we r
resent graphically the RGE flow of these observables. In S
V we draw the conclusions. Our new approach confirms
earlier results and also enables us to obtain the new o
such as the differential equations for the diagonalizing m
trices of the down sector in terms of which the CKM matr
elements are obtained.

II. APPROXIMATION SCHEME

In the approximate calculations the overall consistenc
very important. This means that the terms that are sma
than those neglected should not be kept. The order of m
nitude ~expressed in powers ofl) of the components of the
RGEs is

g1
2'0.2;l, g2

2'0.42;2l,

g3
2'1.5;1, yuyu

†;1,

ydyd
†;S mb

mt
D 2

'1.13l5, ~1!

1

~4p!2
56.331023'2.7l4, lH'0.44;2l.
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Heregi are the gauge coupling constants,yu andyd are the
matrices of the Yukawa couplings andlH is the Higgs quar-
tic coupling.

The mathematical structure of the RGEs is the followin

dgi

dt
5

1

~4p!2 H bgi

(1)~gi
2!

1
1

~4p!2
bgi

(2)~gk
2 ,yuyu

† ,ydyd
†!1•••J gi ~2a!

dyu,d

dt
5

1

~4p!2 H bu,d
(1)~gk

2 ,yuyu
† ,ydyd

†!

1
1

~4p!2
bu,d

(2)~gk
2 ,yuyu

† ,ydyd
† ,lH!1•••J yu,d

~2b!

dv
dt

5
1

~4p!2 H bv
(1)~gk

2 ,yuyu
† ,ydyd

†!

1
1

~4p!2
bv

(2)~gk
2 ,yuyu

† ,ydyd
† ,lH!1•••J ~2c!

dlH

dt
5

1

~4p!2 H blH

(1)~gk
2 ,yuyu

† ,ydyd
†!

1
1

~4p!2
blH

(2)~gk
2 ,yuyu

† ,ydyd
† ,lH!1•••J . ~2d!

In Eqs.~2! t[ ln(E/m) is the energy scale parameter,m is the
renormalization point,v is the the vacuum expectation valu
of the Higgs field,b (n) denote then-loop b functions for the
RGEs which are homogenous polynomials of the indica
variables and the dots indicate the omitted three and m
loops contribution. The approximation scheme for the RG
consists in the approximation of the terms inside the bra
on the right hand side of the equations keeping only
terms of a given relative order.

From Eqs.~2! and ~1! one can see that the leading term
of the one loop contribution are of the order 1, because

b (1)~gk
2 , . . . !;1 ~3!

and for the two loop contribution

1

~4p!2
b (2)~gk

2 , . . . !;
1

~4p!2
;l4. ~4!

From Eqs.~3! and ~4! we thus see that in the one loop a
proximation we should neglect all the terms of the orderl4

and higher. From the hierarchy given in Eq.~1! it follows
that the one loop approximation is equivalent to neglect
the two loop term and also puttingydyd

†50 on the right-hand
7-2
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SCALE DEPENDENCE OF THE QUARK MASSES AND . . . PHYSICAL REVIEW D66, 116007 ~2002!
side of Eqs.~2! relative to the terms of the lower order. Suc
equations, as it turns out, can be analytically solved.

The next order term is of the orderl4. Such a term is
present only in the two loop contribution and it does n
introduce important qualitative modification to the runni
of the observables and it will be discussed together with
~2d! and thel5 contribution in a forthcoming paper. RGE
for the orderl4 and higher form a system of coupled no
linear equations which are difficult to solve analytically,
for their analysis one has to use other methods.

III. ONE LOOP EQUATIONS AND SOLUTIONS
FOR THE GAUGE COUPLING PARAMETERS, THE

YUKAWA COUPLINGS AND THE HIGGS
VACUUM EXPECTATION VALUE

In this section we discuss theone loop RGEs for the
gauge, Yukawa couplings and the vacuum expectation
ues. This means that the precision of all the expressions i
to the orderl3. We indicate this fact in the final form of th
equation for each observable. The structure of the one-l
RGE for the gauge coupling parametersgk is

dgi

dt
5

1

~4p!2
bigi

31O~l4!. ~5!

Here the coefficients (b1 ,b2 ,b3) are equal (41/10,219/6,
27), (21/5,23,27) and (33/5,1,23) for the SM, DHM
and MSSM, respectively. The solution to this equation
derived directly,

gi~ t !5gi
0S 12

2bi~gi
0!2~ t2t0!

~4p!2 D 21/2

, gi
0[gi~ t0!. ~6!

The one-loop RGE for the Yukawa couplingsyu,d is

dyu,d

dt
5F 1

~4p!2
bu,d

(1)Gyu,d1O~l4!. ~7!

The bu,d
(1) has a hierarchical structure based on the param

l and has the following form1 ~with lepton dependence sup
pressed!:

b i
(1)5a1

i ~ t !1a2
i ~yuyu

†!

1a3
i Tr~yuyu

†!1a4
i ~ydyd

†!1a5
i Tr~ydyd

†!,

i 5u,d. ~8!

Its structure allows the systematical solution of the RGE w
l as the expansion coefficient. The approximate form of
equations for the quark Yukawa couplings, neglecting all
terms ofl4 and higher, is the following:

1Notice that the form of the functionbu,d
(1) is compatible with Eq.

~2b!, i.e. it is the homogeneous polynomial of order 1 of the in
cated variables.
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dyu

dt
5

1

~4p!2
@a1

u~ t !1a2
uyuyu

†1a3
uTr~yuyu

†!#yu1O~l4!,

~9!

dyd

dt
5

1

~4p!2
@a1

d~ t !1a2
dyuyu

†1a3
dTr~yuyu

†!#yd1O~l4!,

~10!

where

a1
u~ t !52~c1g1

21c2g2
21c3g3

2!, a2
u5

3b

2
, a3

u53,

a1
d~ t !52~c18g1

21c28g2
21c38g3

2!, a2
d5

3c

2
, a3

d53a,

(a,b,c) are equal to (1,1,21), (0,1,1/3), (0,2,2/3);
(c1 ,c2 ,c3) are equal to (17/20,9/4,8), (17/20,9/4,8
(13/15,3,16/3) and (c18 ,c28 ,c38) are equal to (1/4,9/4,8)
(1/4,9/4,8), (7/15,3,16/3) in the SM, DHM and MSSM, r
spectively.

The transformation from the quark gauge states to
physical states requires the diagonalization of the Yuka
coupling matricesyu and yd with the biunitary transforma-
tions

diag~Yu(d) ,Yc(s) ,Yt(b)!5~Uu(d)!Lyu(d)~Uu(d)!R
† ~11!

where (Uu,d)L,R are the corresponding unitary diagonalizin
matrices andYu(d) ,Yc(s) andYt(b) are the eigenvalues of th
Yukawa coupling matricesyu(d) @15#. As it is well known,
the diagonalizing matrices generate the flavor mixing in
charged current described by the CKM matrix

V̂5~Uu!L~Ud!L
† .

The same biunitary diagonalization transformation also p
mits the exact solution of Eq.~9! which arises from the fac
that the diagonalizing matrices (Uu)L,R for the one loop Eq.
~9! do not depend on energy@14#. It then follows thatyu(t)
from Eq. ~9! has the following representation:

yu~ t !5~Uu!L
†Yu~ t !~Uu!R , Yu~ t !5diag~Yu ,Yc ,Yt!.

~12!

The whole dependence ont in Eq. ~12! is contained only
in the diagonal matrixYu(t). The diagonal elements ofYu(t)
satisfy the system of differential equations that follows fro
Eq. ~9!,

dYu,c

dt
5

1

~4p!2
$a1

u~ t !1a3
uYt

2%Yu,c1O~l4!, ~13a!

dYt

dt
5

1

~4p!2
$a1

u~ t !1~a2
u1a3

u!Yt
2%Yt1O~l4!.

~13b!
7-3
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Equation~13b! decouples from Eq.~13a! and can be solved
independently of the other equations. When the solution
Yt(t) is known then Eqs.~13a! become linear and can als
be solved and eventually the solution of Eqs.~13! is

Yu,c~ t !5Yu,c~ t0!Ar ~ t !hm

a3
u

~ t ! , ~14a!

Yt~ t !5Yt~ t0!Ar ~ t ! h
m

(a2
u
1a3

u)
~ t !, ~14b!

where the functionsr (t) andhm(t) are

r ~ t !5expF 2

~4p!2Et0

t

a1
u~t!dtG5)

k51

k53 Fgk
2~ t0!

gk
2~ t !

G ck /bk

,

~15!

hm~ t !5expS 1

~4p!2Et0

t

Yt
2~t!dt D

5S 1

12
2~a2

u1a3
u!

~4p!2
~Yt

0!2E
t0

t

r ~t!dtD 1/2(a2
u
1a3

u)

.

~16!

It is worth mentioning that the functionh(t)[@hm(t)#a2
d

ap-
pears in the evolution of theV̂ matrix and moreover this is
the only dependence ont of the V̂ matrix.

The next step is the determination, from Eq.~10!, of the
running of thedownquark Yukawa couplings. The substitu
tion

yd~ t !5~Uu!L
†W~ t ! ~17!

transforms Eq.~10! into the following equation:

dW

dt
5

1

~4p!2
$a1

d~ t !1a2
d@Yu~ t !#21a3

dTr@Yu~ t !#2%W,

~18!

with the matrix $a1
d(t)1a2

d@Yu(t)#21a3
dTr@Yu(t)#2% being

diagonal.
This allows us to solve Eq.~18! explicitly and the solution

for W(t) reads

W~ t !5@r 8~ t !#1/2h
m

a3
d

~ t !•Z~ t !•W~ t0! ~19!

whereZ(t) is the diagonal matrix

Z~ t !5diag„1,1,h~ t !…. ~20!

Now, with the help of Eq.~17! one gets the explicit one loo
running of the Yukawa couplingsyd(t)

yd~ t !5Ar 8~ t !hm

a3
d

~ t !~Uu!L
†Z~ t !~Uu!Lyd

0 , yd
0[yd~ t0!,

~21!

where
11600
r r 8~ t !5expF 2

~4p!2Et0

t

a1
d~t!dtG5)

k51

k53 Fgk
2~ t0!

gk
2~ t !

G ck8/bk

.

~22!

The approximated one-loop RGE for the Higgs vacuu
expectation value~VEV! vu,d is the following:

dvu,d

dt
5

1

~4p!2
@a1

vu,d~ t !1a3
vu,dTr~yuyu

†!#vu,d1O~l4!,

~23!

wherevu is the VEV for theup quarks andvd for the down
quarks.2 Note that for the SMvo5vu5vd . The functions
a1

vu,d(t) and the coefficientsa3
v i are equal

a1
vu,d~ t !5c1(u,d)9 g1

21c2(u,d)9 g2
2 ~24!

a3
vo523, a3

vu523, a3
vd50, ~25!

and the constants (c1(u,d)9 ,c2(u,d)9 ) are equal to (29/20,
29/4), (29/20,29/4) and (23/20,23/4) for the SM, DHM
and MSSM, respectively.

To solve Eq.~23! for the VEV we divide both sides of the
equation by the corresponding VEV and obtain after the
tegration

E
t0

t dvu,d

vu,d
5

1

~4p!2Et0

t

@a1
vu,d~ t !1a3

vu,dTr~yuyu
†!#dt.

~26!

The left-hand side of Eq.~26! is equal to ln@vu,d(t)/vu,d(t0)#
and on the right hand side we have the sum of two integr
The first integral can be explicitly integrated using Eq.~6!
and we introduce the functionr vu,d

9 (t),

r vu,d
9 ~ t !5expF 2

~4p!2Et0

t

a1
vu,d~t!dtG

5)
k51

k52 Fgk
2~ t0!

gk
2~ t !

G ck(u,d)9 /bk

~27!

and the second integral is calculated using Eq.~16!

a3
vu,d

~4p!2Et0

t

Tr~yuyu
†!dt5

a3
vu,d

~4p!2Et0

t

Yt
2~t!dt5a3

vu,dln hm~ t !.

~28!

The final form of the VEV is thus equal to

vu,d~ t !5vu,d~ t0!Ar vu,d
9 ~ t !h

m

a
3
vu,d

~ t !, vu,d
0 5vu,d~ t0!.

~29!

2We consider only the case where tanb5vd /vu;1. Large values
of tanb require other treatment and will be considered elsewhe
7-4
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FIG. 1. The scale dependence of the ratiosr (t)/r (mt), r 8(t)/r 8(mt), r 9(t)/r 9(mt) andhm(t)/hm(mt).
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The solutions of the renormalization group equations for
gauge coupling constants, Eq.~6!, for the quark Yukawa cou-
plings Eqs.~14!, ~21! and ~43! and for the vacuum expecta
tion values Eq.~29! form the complete set of the evolutio
functions from which one can obtain the renormalizati
group flow of all observables related to quarks:up anddown
quark masses and the CKM matrix. In the next sections
will analyze these observables but let us notice here that
evolution is described by the following functions of energ

r ~ t !,r 8~ t !,r vu,d
9 ~ t !,hm~ t !,h~ t !. ~30!

The dependence of the observables on these functions w
discussed in the next sections. Here in Figs. 1 and 2 we s
the functional dependence of the functions in Eq.~30! for
three models~SM, DHM and MSSM! to be able to see wha
is their influence on the observables and how they depen
the model. Notice that in all the figures we choose as
renormalization point the mass of the top quarkmt
5174.3 GeV@16#. In such a way the functions in Eq.~30!
and observables are independent of the quark mass th
olds. The extensive discussion of the thresholds effect
given in Ref.@4#.
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FIG. 2. The scale dependence of the ratioh(t)/h(mt).
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FIG. 3. The scale dependence of the ratiosmi(t)/mi(mt) for the up anddownquarks.
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IV. EVOLUTION OF THE OBSERVABLES

The solution of the renormalization group equations p
sented in Sec. III allows the analysis of the evolution of
the observables related with the Yukawa couplings and
Higgs vacuum expectation values, i.e. the quark masses
the Cabibbo-Kobayashi-Maskawa matrix. The results of t
section have been obtained from the explicit solutions fr
the previous section. Their validity and precision are the
fore the same, i.e. the terms of the orderl4 and higher have
been neglected. We start with the analysis of the qu
masses presenting first the analytical results and then sh
ing the corresponding graphs. The same type of the ana
will also be applied to the CKM matrix.

A. Quark masses

The quark masses after the spontaneous symmetry br
ing are equal to

mi5
v i

A2
Yi ~31!

whereYi are the eigenvalues of the corresponding Yuka
11600
-
l
e
nd

is

-

rk
w-
sis

ak-

a

couplings andv i is the vacuum expectation value of th
Higgs field. For the theories with one Higgs doublet~SM!
there is one Higgs vacuum expectation value and for t
Higgs doublets~DHM, MSSM! there is one VEV for theup
quarks and another for thedownquarks.

1. Up quark masses

The evolution of the eigenvalues (Yu ,Yc ,Yt) for the up
quarks is given in Eqs.~14! and the evolution of the VEV’s
is given in Eq.~29!. Using Eq.~31! we thus obtain

mi
u~ t !5

vu~ t !

A2
Yi

u~ t !5
vu~ t0!

A2
Yi

u~ t0!Ar ~ t !r vu
9 ~ t !hm

Ki
u

~ t !

5mi
u~ t0!Ar ~ t !r vu

9 ~ t !hm

Ki
u

~ t !, ~32!

and the powerKi
u is equal

Ku,c
u 5a3

u1a3
vu , Kt

u5a2
u1a3

u1a3
vu . ~33!

In Figs. 3~a! and 3~b! we show the running of the ratios o
7-6
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SCALE DEPENDENCE OF THE QUARK MASSES AND . . . PHYSICAL REVIEW D66, 116007 ~2002!
the up quark massesmi(t)/mi(t0) i 5u,c,t for three models
SM, DHM and MSSM.

2. Down quark masses

The evolution of the eigenvalues of thedown quark
Yukawa couplings is more complicated because the dia
nalizing matrices are also running. If we write the matrixyd
in the form

yd5~UL
d!†Yd~UR

d !, ~34!

then Eq.~10! becomes

d@~UL
d!†Yd~UR

d !#

dt
5

1

~4p!2
$a1

d~ t !1a2
dyuyu

†1a3
dTr~yuyu

†!%

3@~UL
d!†Yd~UR

d !#, ~35!

which after some simple manipulations becomes

UL
d

d~UL
d!†

dt
Yd1

dYd

dt
1Yd

d~UR
d !

dt
~UR

d !†

5
1

~4p!2
~UL

d!$a1
d~ t !1a2

dyuyu
†1a3

dTr~yuyu
†!%~UL

d!†Yd

[
1

~4p!2
M vvYd, ~36!

M vv[V̂†$a1
d~ t !1a2

dYu
21a3

dTr~Yu
2!%V̂, ~37!

where the matrixM vv is introduced for notational simplicity
The matricesUL

d@d(UL
d)†/dt# and @d(UR

d)/dt#(UR
d)† are

anti-Hermitian~this follows from unitarity! so their diagonal
elements are purely imaginary. The diagonal elements of
matrix Yd are purely real and the matrixM vv is Hermitian,
so after taking the real part of the diagonal elements of
~36! we obtain

S dYd

dt D
i i

5
1

~4p!2
~M vvYd! i i . ~38!

The matrix (M vv) i j has the simple form in our approxima
tion,

~M vv! i j 5@V̂†a1
d~ t !V̂1V̂†a2

dYu
2V̂1V̂†a3

dTr~Yu
2!V̂# i j

5$a1
d~ t !1a3

dYt
2%d i j 1a2

dYt
2V̂it

† V̂t j1O~l4!.

~39!

The last step in the derivation of Eq.~39! follows from the
approximation based on the hierarchy

~Yu!11;l7Yt , ~Yu!22;l3.5Yt .

Finally we obtain the following equations for the eigenvalu
of the downquark Yukawa couplings:
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dYii
d

dt
5

1

~4p!2
$a1

d1a2
dYt

2uV̂ti u21a3
dYt

2%Yii
d 1O~l4!.

~40!

Using the hierarchical properties of theV̂ matrix

uV̂tdu2;l6, uV̂tsu2;l4, uV̂tbu251, ~41!

we obtain the following equations for the eigenvalues of
downquarks Yukawa couplings:

dYd,s

dt
5

1

~4p!2
$a1

d1a3
dYt

2%Yd,s1O~l4!,

dYb

dt
5

1

~4p!2
$a1

d1~a3
d1a2

d!Yt
2%Yb1O~l4!. ~42!

The solution of Eqs.~42! reads

Yd,s~ t !5Yd,s~ t0!Ar 8~ t !hm

a3
d

~ t !,

Yb~ t !5Yb~ t0!Ar 8~ t ! h
m

(a2
d
1a3

d)
~ t !, ~43!

where the functionr 8(t) is given in Eq.~22!. These results
complement previous results shown in Sec. III. Now, E
~43! together with the VEV evolution Eq.~29! give the evo-
lution of thedownquark masses

mi
d~ t !5

vd~ t !

A2
Yi

d~ t !5
vd~ t0!

A2
Yi

d~ t0!Ar 8~ t !r vd
9 ~ t !hm

Ki
d

~ t !

5mi
d~ t0!Ar 8~ t !r vd

9 ~ t !hm

Ki
d

~ t ! ~44!

where the powersKi
d are equal to

Kd,s
d 5a3

d1a3
vd , Kb

d5a2
d1a3

d1a3
vd . ~45!

Equations~44! give the analytical form of thedown quark
mass evolution. The evolution of the ratios of thedown
quark masses for three models SM, DHM, and MSSM
shown in Fig. 3~c! and Fig. 3~d!.

B. Cabibbo-Kobayashi-Maskawa matrix

The other set of observables is related with the CK
matrix. These observables include the absolute values o
matrix elements of the CKM matrix, Jarlskog’s parameteJ
@17#, Wolfenstein parametersl, A, r, h @18,19# and the
angles of the unitarity triangle@21,22#.

The evolution of the CKM matrix is simpler than that fo
masses because the CKM matrix depends only on the
diagonalizing matrices of the biunitary transformations
the Yukawa couplings and as was shown in Ref.@14# the
evolution of CKM matrix depends only on one function
the energyh(t). This fact implies that there exist correlation
between the evolution of the various elements of the CK
matrix.
7-7



s
a
.

le

m
he

he
on
o
-
r

u

the

l
the

e
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In the following we shall first find the evolution equation
of the absolute values of the CKM matrix elements and
terwards analyze theJ parameter and the unitarity triangle

1. Evolution of the absolute values of the CKM matrix Vˆ

Our starting point is Eq.~36!. We take now the imaginary
part of the diagonal elements and the full off-diagonal e
ments of Eq.~36!, and using the form of the matrixM vv in
Eq. ~39! we obtain

S ~UL
d!

d~UL
d!†

dt D
i i

1S d~UR
d !

dt
~UR

d !†D
i i

50 ~46!

and

S ~UL
d!

d~UL
d!†

dt D
i j

Yj
d1Yi

dS d~UR
d !

dt
~UR

d !†D
i j

5
1

~4p!2
a2

dYt
2V̂ti* V̂t jYj

d , iÞ j . ~47!

The hermitian conjugate of Eq.~47! reads

Yi
dS ~UL

d!
d~UL

d!†

dt D
i j

1S d~UR
d !

dt
~UR

d !†D
i j

Yj
d

52
1

~4p!2
a2

dYt
2Yi

dV̂ti* V̂t j , iÞ j . ~48!

Now multiplying Eq. ~47! by Yi
d and Eq.~48! by Yj

d and
summing these equations, we obtain after some simple
nipulations the differential equation for the evolution of t
right diagonalizing matrix of the down sector

S d~UR
d !

dt
~UR

d !†D
i j

52
2Yi

dYj
d

~Yj
d!21~Yi

d!2 S ~UL
d!

d~UL
d!†

dt D
i j

.

~49!

Equation~49! gives the relation between the evolution of t
left and right diagonalizing matrices and it is the key relati
that permits the derivation of the evolution of the left diag
nalizing matrix of thedownquark Yukawa couplings. Insert
ing Eq.~49! in Eq. ~47! we obtain the evolution equation fo
the UL

d matrix

~Yj
d!22~Yi

d!2

~Yj
d!21~Yi

d!2 S UL
d

d~UL
d!†

dt D
i j

5
1

~4p!2
a2

dYt
2V̂ti* V̂t j , iÞ j . ~50!

We will now convert Eq.~50! into equations for the CKM
matrix elements. To this end we first notice that within o
approximation ~neglecting all terms of the orderl4 and
higher!
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~Yj
d!22~Yi

d!2

~Yj
d!21~Yi

d!2
52sgn~ i 2 j !1O~l4!, ~51!

where sgn(i 2 j )571 for i" j .
Next we know that theup quark diagonalizing matrixUL

u

does not depend on the energy. Using the definition of
CKM matrix V̂5UL

u(UL
d)† we obtain

V̂†
dV̂

dt
5~UL

d!~UL
u!†UL

u
d~UL

d!†

dt
5~UL

d!
d~UL

d!†

dt
. ~52!

Now from Eqs.~50!, ~51! and ~52! the following equations
are obtained:

S V̂†
dV̂

dt
D

i j

52
1

~4p!2
sgn~ i 2 j !a2

dYt
2V̂ti* V̂t j . ~53!

Equation~53! is valid only for iÞ j but from the property
that the matrix (V̂†dV̂/dt) is antiunitary and its diagona
elements are purely imaginary, we obtain equations for
absolute value of the elements of the CKM matrix,

1

uV̂cdu2
duV̂cdu2

dt
5

2

~4p!2
a2

dYt
2uV̂tdu2, ~54a!

1

uV̂tdu2

duV̂tdu2

dt
52

2

~4p!2
a2

dYt
2~12uV̂tdu2!, ~54b!

1

uV̂ubu2

duV̂ubu2

dt
52

2

~4p!2
a2

dYt
2uV̂tbu2, ~54c!

1

uV̂cbu2

duV̂cbu2

dt
52

2

~4p!2
a2

dYt
2uV̂tbu2, ~54d!

and from the unitarity of the CKM matrix we obtain th
evolution of the remaining CKM matrix elements.

To solve Eqs.~54! let us notice the following relation:

2

~4p!2
a2

dYt
25

1

h2

dh2

dt
, ~55!

whereh(t)[@hm(t)#a2
d

andhm(t) is the function introduced
in Eq. ~16!. Using relation~55! we obtain from Eq.~54b!

uV̂td~ t !u25
uV̂td

0 u2

h21~12h2!uV̂td
0 u2

, where V̂i j
0 [V̂i j ~ t0!.

~56a!

From Eqs.~54a! and ~54b! we obtain

uV̂cd~ t !u25
h2uV̂cd

0 u2

h21~12h2!uV̂td
0 u2

. ~56b!
7-8
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Using the relation 12uV̂tbu25uV̂ubu21uV̂cbu2 we derive from
Eqs.~54c! and ~54d! the following result:3

uV̂tb~ t !u25
h2uV̂tb

0 u2

11~h221!uV̂tb
0 u2

~56c!

and this result yields with the help of Eqs.~54c! and ~54d!
the evolution of theuV̂ub(t)u2 and uV̂cb(t)u2:

uV̂ub~ t !u25
uV̂ub

0 u2

11~h221!uV̂tb
0 u2

, ~56d!

uV̂cb~ t !u25
uV̂cb

0 u2

11~h221!uV̂tb
0 u2

. ~56e!

The remaining elements of the CKM matrix are obtain
from the unitarity relation

uV̂ud~ t !u25
h2uV̂ud

0 u2

h21~12h2!uV̂td
0 u2

, ~56f!

uV̂us~ t !u25uV̂us
0 u21~h221!F uV̂ub

0 u2uV̂tb
0 u2

11~h221!uV̂tb
0 u2

2
uV̂ud

0 u2uV̂td
0 u2

h21~12h2!uV̂td
0 u2G , ~56g!

uV̂cs~ t !u25uV̂cs
0 u21~h221!F uV̂cb

0 u2uV̂tb
0 u2

11~h221!uV̂tb
0 u2

2
uV̂cd

0 u2uV̂td
0 u2

h21~12h2!uV̂td
0 u2G , ~56h!

uV̂ts~ t !u25uV̂ts
0 u22~h221!F uV̂tb

0 u2~12uV̂tb
0 u2!

11~h221!uV̂tb
0 u2

2
uV̂td

0 u2~12uV̂td
0 u2!

h21~12h2!uV̂td
0 u2G . ~56i!

Equations~56! represent the RG evolution of the CKM ma
trix. The absolute values of the CKM matrix elements do n
depend on the parametrization of the CKM matrix. Noti
that in agreement with Theorem 1 in Ref.@14# the evolution
of the CKM matrix depends only on one functionh(t) of
energy. It is for this reason that we considerh(t) as a uni-
versal function of energy.

3Note that the equation for the evolution ofuV̂tbu2 given in Ref.
@14#, Eq. ~39d! has a missingh2 in the numerator.
11600
t

2. Jarlskog invariant

Jarlskog parameterJ is defined as@17#

J5I@V̂udV̂csV̂us* V̂cd* #5I@V̂udV̂tbV̂ub* V̂td* #5I~D !, ~57!

and it is nonvanishing if the CKM matrix is non-CP invar
ant.

Let us now consider the following expression:

d ln D

dt
5

d ln~V̂udV̂tbV̂ub* V̂td* !

dt

5
1

V̂ud

d

dt
V̂ud1

1

V̂tb

d

dt
V̂tb1

1

V̂ub*

d

dt
V̂ub* 1

1

V̂td*

d

dt
V̂td* .

~58!

Now using Eq. ~53! and the property that the matri
V̂†(dV̂/dt) is anti-Hermitian~and has imaginary diagona
elements! we obtain

d ln D

dt
522a2

dYt
2~ uV̂tbu22uV̂tdu2!'22a2

dYt
2uV̂tbu2,

~59!

and thus the Jarlskog invariant fulfills the equation

d ln J

dt
522a2

dYt
2uV̂tbu252

1

h2

dh2

dt
uV̂tbu2 ~60!

which gives using Eq.~56c!

ln
J

J0
5 ln

1

u11~h221!uV̂tb
0 u2u

~61!

or

J5
J0

u11~h221!uV̂tb
0 u2u

'
J0

h2
. ~62!

The evolution of the Jarlskog invariant is given in Fig. 4.

3. The Wolfenstein parameters

Equations~56! can be written in an approximate form
using the hierarchy of the CKM matrix, given by the Wolfe
stein parametrization@18,19#

V̂5S 12
1

2
l2 l Al3~r2 ih!

2l 12
1

2
l2 Al2

Al3~12 r̄2 i h̄ ! 2Al2 1

D ,

r̄5rS 12
l2

2 D , h̄5hS 12
l2

2 D . ~63!
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Now neglecting all the terms of the relative orderl4 and
higher, we obtain

12uV̂udu2'12uV̂ud
0 u2, uV̂usu2'uV̂us

0 u2,

uV̂ubu2'
uV̂ub

0 u2

h2
, uV̂cdu2'uV̂cd

0 u2,

12uV̂csu2'12uV̂cs
0 u21

12h2

h2
uV̂cb

0 u2, uV̂cbu2'
uV̂cb

0 u2

h2
,

~64!

uV̂tdu2'
uV̂td

0 u2

h2
, uV̂tsu2'

uV̂ts
0 u2

h2
, 12uV̂tbu2'

12uV̂tb
0 u2

h2
.

From Eqs.~64! immediately follows the simple evolution o
the Wolfenstein parameters

A~ t !5
A

h~ t !
, and l,r,h are invariant. ~65!

Notice that the dependence of the CKM matrix and Wolfe
stein parameters on the renormalization scheme is give
Ref. @20#.

4. The unitarity triangle

The unitarity triangle@21,22# is obtained from the scala
product of the first column of theV̂ matrix by the complex
conjugate of the third

FIG. 4. The scale dependence of the ratioJ(t)/J(mt) for the
Jarlskog invariant.
11600
-
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V̂udV̂ub* 1V̂cdV̂cb* 1V̂tdV̂tb* 50 ~66!

and then by rescaling it in such a way that the lengths of
sides of the resulting triangle are equal

Rb5S 12
l2

2 D 1

l UV̂ub

V̂cb
U , Rt5

1

l U V̂td

V̂cb
U , 1. ~67!

From Eqs.~64! and ~65! it immediately follows thatRb and
Rt are invariant upon the evolution which implies that t
unitarity triangle is also invariant. Thus the complex phas
of the CKM matrix elementsV̂td and V̂ub ~anglesb andg)
are also invariant up to the orderl4.

V. CONCLUSIONS

In this paper we analyzed the solutions of the RGE for
quark Yukawa couplings, for the Higgs VEV’s and also t
evolution of all the observables that follow from them. Th
results depend on the model dependent functions give
Eq. ~30!. The most interesting is the universal functionh(t)
because only on this function depends the evolution of
CKM matrix, Eq.~56! or Eq. ~64!. The running of the abso
lute values of the CKM matrix elements and the invarian
of the unitarity triangle angles implies that the evolution
the CKM matrix is remarkably simple

S V̂ud
0 V̂ud

0 V̂ub
0

V̂cd
0 V̂cs

0 V̂cb
0

V̂td
0 V̂ts

0 V̂tb
0
D →S V̂ud

0 V̂ud
0 V̂ub

0

h

V̂cd
0 V̂cs

0 V̂cb
0

h

V̂td
0

h

V̂ts
0

h
V̂tb

0

D . ~68!

We observe~see Fig. 2! that the functionh(t) is decreasing
for the SM and increasing for the DHM and MSSM. Th
results in a qualitatively different evolution of the matr
elements and the observables related to the CKM matrix
the SM in comparison to the DHM and MSSM. An importa
result is the dependence on it of the Jarlskog invariant wh
is shown in Fig. 4. We thus see that theCP violation is
enhanced with increasing energy in the SM while it d
creases for the DHM and MSSM.

The evolution of the unitarity triangle is also very impo
tant. We have shown that the angles of the unitarity trian
remain constant upon the evolution. The invariance of
angles of the unitarity triangle is very significant because
means that at the grand unification scale the angles are
same as at the low energy so if there is a symmetry at
grand unification scale then it has to predict the low ene
angles of the unitarity triangle. This strongly constrains t
possible symmetries or textures at the grand unificat
scale.
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As we discussed in Sec. I our results are approximate
we kept the terms up to the orderl3. In the next order one
has to keep the powers up to the orderl4. In this approxi-
mation the results are qualitatively the same and the o
corrections are small modifications of the functionshm(t)
andh(t). The next order,l5, is significantly different and it
will be discussed elsewhere.
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