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Second sheets pole and the threshold enhancement of the spectral function
in the scalar-isoscalar meson sector
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The scalar-isoscalar propagator of the effective linears model of meson dynamics is investigated with the
help of an expansion in the number of the Goldstone bosons. A generic scenario is suggested for the tempera-
ture or density driven evolution of its pole in the second Riemann sheet. An extended temperature range,
correlated with characteristic pole locations, is found where the phenomenon of threshold enhancement takes
place in the corresponding spectral function.
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I. INTRODUCTION

The aim of the present investigation is to relate the
called s pole in the second Riemann sheet in the comp
frequency plane and the behavior of the corresponding s
tral function at finite temperature or density. Both obje
will be determined from the scalar-isoscalar propagator. T
calculation suggests a generic trajectory for this pole ir
spective of the nature of the thermodynamical driving for
We investigate the question of when a well-defined re
nance characterized by a Lorentzian shaped spectral fun
is present. The study is performed in the framework of
linear s model, used as an effective field theory describ
the fluctuations of the chiral order parameter. We find
most convenient the application of an expansion in the nu
ber of the Goldstone mesons, which is a kind of largeN
approach to the physical excitation spectra of the relativi
O(N) field theory in its broken symmetry phase.

The application of theO(N) symmetric scalar field theory
to the thermal and finite baryonic density behavior of t
pion-sigma system was suggested and has been actively
sued for about 15 years, in particular by Hatsuda, Kunih
and collaborators~for the latest review see@1#!. The main
physical effect proposed for the scalar-isoscalar spec
function is its gradual enhancement near that value of
temperature/baryon density where the phase space ava
for the s→2p decay is squeezed to zero.

For the theoretical consolidation of this effect, Hatsu
et al. put forward apparently model independent argume
for the behavior of both the real and imaginary parts of thes
propagator. Using an improved version of the fin
temperature/density perturbative evaluation of thes self-
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energy@2# the pole describing thes-resonance moves from
its zero temperature/density location smoothly to the locat
of the two-pion threshold. Both real and imaginary parts
the pole location diminish monotonically. The real part a
proaches the two-pion threshold faster than the imagin
part vanishes, and the spectral function becomes proporti
in this temperature range to the inverse of the imaginary p
@3#. The maximum of the proposed threshold enhancem
occurs for that well-defined temperature/density value wh
the s pole reaches the threshold.

The effects of partial symmetry restoration realized by
diminishing of f p was studied also on the unitarizedp2p
scattering amplitude@4#. This quantity was computed an
analyzed recently with dispersive techniques in the fram
work of the chiral perturbation theory@5#.

The approximations made by these authors may be v
fied soon when reliable spectral functions will be obtain
using the nonperturbative lattice field theoretical approa
@6,7#. In the meantime different semianalytic approximati
schemes also might shed light on the generality of the p
posed arguments. A possible scheme can be based o
expansion in the inverse number of the Goldstone boson

The largeN expansion has been applied already some
years ago to the characterization of the elementary exc
tions of criticalO(N) symmetric lattice systems@8,9#. It was
realized that it provides faithful information on the excitatio
spectra of these systems in the full broken symmetry ph
between zero and the critical temperature.

In a recent letter@10# we proposed its application to th
present relativistic system, since it avoids all problems
principles showing up in other perturbative approaches. F
of all its validity does not depend on the rather strong se
coupling of the effectives model. Second, its result is no
sensitive to the choice of the normalization point, that is
change can be always compensated by an appropriate ch
in the value of the couplings as required by the renormali
tion group. Third, it leads automatically to the same spec
for the elementarys field and for the scalar-isoscalar qu
dratic composite field. In other approaches this feature
usually missing or found to be true after nontrivial manip
lations. Finally, in the chiral limit it provides a correct critica
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description of the chiral symmetry restoration.
The leading order largeN approximation has been applie

to the Goldstone boson scattering by Chivukula and Gol
@11# at zero temperature. They have explicitly checked t
this approximation fulfills in the scalar-isoscalar channel
unitarity condition and also satisfies the Adler-zero con
tion.

The large N leading order amplitude (N21)A(s) has
been compared also with the existing phase shift data in
I 5J50 channel of thep2p scattering by Dobado and Mo
rales@12#. They have completed the leading order amplitu
by subleading terms, dictated by the requirement of cross
symmetry:A00(s,t,u)53A(s)1A(t)1A(u). Though this is
not a systematic next-to-leading order computation the
thors found a satisfactory fit to the relevant phase shiftd0

0(s)
up to As'600 MeV.

To our best knowledge no application of the largeN ap-
proach at finite temperature/baryon density was attempte
date. In view of the importance oft- andu-channel exchange
contributions to thep2p scattering amplitude, emphasize
in the recent literature@13#, a fully satisfactory largeN treat-
ment will also require the calculation of the next-to-leadi
order contribution to thes propagator. The leading orde
calculation presented in this paper is a necessary interm
ate step also towards this goal.

The fact that forT50 the real and imaginary parts of th
s resonance are of comparable magnitude implies that fo
finite temperature description we cannot restrict ourselve
the immediate vicinity of the real axis. An exception is wh
the s resonance gets close to the two-pion threshold, wh
is the situation where threshold enhancement develops.
the explanation of the detailed features of this phenomeno
is unavoidable to trace the complete temperature driven
trajectory. The main purpose of the present paper is to c
out such an investigation within the leading order of the la
N expansion. According to our calculation to be presented
this paper, thes self-energy continued analytically into th
lower half plane leads to a pole trajectory~when the tempera
ture T or the baryonic densitynB is varied! whose real part
assumes smaller values than twice the pion mass, while
decrease of the imaginary part is not drastic. As a con
quence of this the pole looses its meaning as a resonance
at the same time in the spectral function the direct neighb
hood of the threshold will be emphasized. When further
creasingT/nB the trajectory hits the real axis on the seco
Riemann sheet and moves along it before it reaches
threshold. This pole evolution will be demonstrated to
generic in the sense that it is insensitive to the variation
the parameters of the theory. One can argue that it can
valid beyond the leading order largeN approximation, since
it is unlikely that the trajectory would hit the threshold poi
directly. Only in the limiting chiral symmetric case do w
find the smooth behavior which was proposed by Hats
et al. @1#.

One should be aware of the fact that in scalar mode
tachyonic pole is always present@14–16# related to the
Landau-ghost phenomenon. It restricts the range of varia
of the renormalized parameters where the model can be
in an effective sense at all. For this reason we find in
11600
n
t

e
-

e

e
g

u-

to

di-

ts
to

h
or
it
le
ry
e
in

he
e-
nd

r-
-

he
e
f
ay

a

a

n
ed
e

leading largeN approximation that a parametrization a
counting for theT50 phenomenological data of thep ands
mesons can be achieved only approximately. However,
shall argue that the relationship between the pole trajec
and the variation of the spectral function to be describ
below might not change qualitatively.

The presentation of the paper is aimed at a self-contain
technically transparent description. In Sec. II the Schwing
Dyson equations for the finite temperature two-point fun
tions of the linears model are given to leading order inN.
Their analytical continuation onto the second Riemann sh
in the complex frequency variable is presented in Sec. III.
explicit expression was found by studying the bubble d
gram, describing the splitting of thes field into two off-shell
pions. In Sec. IV we analyze the temperature driven evo
tion of thes pole trajectory. This investigation makes use
theT50 parametrization of the model as an input, therefo
one first works out the details of the physical and unphys
poles forT50. Here we fix all couplings in a way to achiev
the closest possible characteristics of thes to the particle
data, and still staying by a factor of 2 to 3 below the ‘‘ener
scale’’ of the tachyon. In the second part of the section
shall argue that the pole trajectory found by varying the te
perature remains qualitatively the same when the sys
evolves under the variation of the baryonic density. A d
tailed discussion of the change in the pole trajectory patt
with the pion mass is also presented. The spectral functio
s is computed in Sec. V by approaching the real axis fro
the physical upper half plane. We shall analyze also the fu
tion which arises when the threshold factor is divided out
will be demonstrated that in an extended temperature ra
the maximum of the spectral function is located in the clos
neighborhood of the (T-dependent! position of the two-pion
threshold. The extension of this interval is very well corr
lated with the piece of the pole trajectory, when its real p
is below the two-pion threshold. In Sec. VI the conclusio
of the present study are summarized.

II. LEADING LARGE N EXPRESSION OF THE
PROPAGATORS AT FINITE TEMPERATURE

The appropriate parametrization of theO(N) symmetric
Lagrangian for a largeN expansion has the following form

L5
1

2
@]mfa]mfa2m2fafa#2

l

24N
~fa!2~fb!21ANhf1.

~1!

The last term explicitly breaks theO(N) symmetry and in-
troduces nonzero mass for pions.

In the broken symmetry phase one separates the exp
tion valueF(T) of the field, which points along the directio
a51 in the internal space

fa→@ANF~T!1f1,f i #. ~2!

In the following all quantities will be computed to leadin
order in the largeN limit.

The quantum fluctuations of the order parameter are
vided into a longitudinal mode, which represents thes me-
4-2
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FIG. 1. Diagrams determining the self-energy of thes field represented to leading order inN. The external solid lines correspond to th
s, while in the internal bubbles pions propagate. The dashed line represents the expectation valueF[F(T). The vertices can be read from
Eq. ~1! after the shift defined in Eq.~2! is performed.
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son and the transversal ones. The latter correspond to
Goldstone modes, the pions. Their mass,mG(T) is deter-
mined as the pole of the resummed pion propagator, in wh
the tadpole contribution is calculated with the pion propa
tor self-consistently. This results in the following gap equ
tion:

mG
2 ~T!5m21

l

6
F2~T!1

l

6N
^~fa!2&

5m21
l

6
F2~T!1

l

6E d3k

~2p!3

1

2vk
@112n~vk!#,

~3!

wheren(vk)51/@exp(vk /T)21# andvk5Ak21mG
2 (T).

The equation of state obtained from the requirem
^f1&50 is as follows:

ANF~T!Fm21
l

6
F2~T!1

l

6E d3k

~2p!3

1

2vk

3@112n~vk!#2
h

F~T!G50. ~4!

Comparing this with Eq.~3! one can observe that forF(T)
Þ0 consistency requiresmG

2 5h/F(T). This is precisely the
Goldstone theorem in the presence of explicit symme
breaking.

At leading largeN order the contribution to the longitudi
nal self-energy is given by the sum of the contributions c
responding to the diagrams of Fig. 1, i.e., the bubble ser
On both internal lines of a bubble exclusively the propa
tion of pion fields are taken into account to leading order
N. In each term of the bubble contribution there is a comm
multiplicative vertex contribution coming from the tw
edges of each diagram. The bubble series consistently t
into account the nonzero classical value forF(T), partly by
the implicit dependence ofmG

2 (T), due to the gap equatio
and also by the two legs of the effective four-point vert
formed by the sum of the bubble-series.

By adding the tree level massm2 to the self-energy of the
s field determined in the backgroundF(T), using Eq.~4!
one finds for the effectives mass a simple expression
terms ofb(p), denoting the value of the single bubble di
gram:
11600
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2~p!5

h

F~T!
1

l

3
F2~T!F11

l

6
b~p!1S l

6
b~p! D 2

1•••G
5

h

F~T!
1

lF2~T!/3

12lb~p!/6
. ~5!

The bubble contribution with external momentump
5(p0 ,p) is the sum of a zero temperature and aT-dependent
part,b.(p)5b0

.(p)1bT
.(p0 ,p). The superscript. hints at

the fact that the expression of the bubble contribution is va
in the upperp0 half plane. The explicit expressions of th
two terms read as follows:

b0
.~p!5 i E d4k

~2p!4

1

k22mG
2 ~T!1 i«

1

~p1k!22mG
2 ~T!1 i«

,

~6!

bT
.~p!5E d3q

~2p!3

1

4v1v2
H ~n11n2!F 1

p02v12v21 i e

2
1

p01v11v21 i eG2~n12n2!F 1

p02v11v21 i e

2
1

p01v12v21 i eG J , ~7!

where ni51/(exp@bvi)21# and v15@q21mG
2 (T)#1/2,v2

5@(q1p)21mG
2 (T)#1/2, ande.0.

Using cutoff regularization the zero temperature bub
contribution is

b0
.~p!5

1

16p2 F ln
mG

2 ~T!

L2
212A12

4mG
2 ~T!

p2

3S ln
12A124mG

2 ~T!/p2

11A124mG
2 ~T!/p2

1 ip D G . ~8!

It is common to discuss the spectral function forp50,
when the expression of the finite temperature bubble con
bution simplifies to

bT
.~p0!52

1

4p2EmG(T)

` dq0

q0
Aq0

22mG
2 ~T!

3F n~q0!

2q02p0
1

n~q0!

2q01p0
G ,

Im p0.0. ~9!
4-3
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In view of the quadratic and logarithmic cutoff depende
cies which appear in Eqs.~3!, ~4!, and~8! a mass- and cou
pling constant renormalization is necessary. It requires
introduction of a normalization scaleM0. This scale should
lie below the scale of the tachyonic pole to be discus
below. Its choice within the relevant range where theO(N)
model can serve for the effective description of hadron
namics should not affect sensitively the physical results.

The expressions of the renormalized couplings go bey
the accuracy of the usual one-loop relations. Actually, th
ensure that a change in the normalization scale can be c
pensated in all formulas below by an appropriate chang
the couplings. The following nonperturbative mass- and s
coupling renormalizations are introduced:

m2

l
1

L2

96p2 5
mR

2

lR
,

1

l
1

1

96p2 ln
eL2

M0
2 5

1

lR
. ~10!

In terms of the renormalized couplings the equation of s
Eq. ~4! can be cast into the following explicitly finite form
o
ria

th
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n
.
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6

F0
2

mG0
2 S mG0

4

mG
4 ~T!

21D
1

lR

96p2 F S mG
2 ~T!

mG0
2

21D ln
mG0

2 e

M0
2

1
mG

2 ~T!

mG0
2

ln
mG

2 ~T!

mG0
2 G

1
lRT2

12p2mG0
2 E

mG(T)/T

`

dy
Ay22mG

2 ~T!/T2

exp~y!21
5

mG
2 ~T!

mG0
2

21.

~11!

HeremG0 andF0 stand for theT50 value of the Goldstone
mass and of the expectation value of thes field, respectively.

The formal expression of the effective mass term of thes
propagator~5! is unchanged after renormalization, justlR
should replacel and for theT50 contribution ofb(p) in
Eq. ~8! the scaleM0

2 is put in place ofeL2.
The finite part of the zero temperature bubble contribut

defined in this way has different forms depending on
range ofp0 values:
b0
.~p0!5

1

16p2 5 F ln
mG

2 ~T!

M0
2

12A4mG
2 ~T!

p0
2

213arctanS 4mG
2 ~T!

p0
2

21D 21/2G , p0,2mG~T!

F ln
mG

2 ~T!

M0
2

2A12
4mG

2 ~T!

p0
2 S ln

12A124mG
2 ~T!/p0

2

11A124mG
2 ~T!/p0

2
1 ip D G , p0.2mG~T!.

~12!
of
he
III. ANALYTICAL CONTINUATION OF THE
PROPAGATORS ONTO THE SECOND RIEMANN SHEET

The interpretation of the temperature driven variation
the spectral function will be based on the study of the va
tion of the scalar-isoscalar pole mass, that is the zero
Gs

21(p0 ,p50)5p0
22ms

2 in the lowerp0 half plane. For this
it is necessary to construct an analytical continuation of
longitudinal propagator onto the second Riemann sheet
Eq. ~5! it is clear that the problem is equivalent to the co
tinuation ofb(p0), which will be discussed in this section

We decided to perform the analytical continuation in su
a way thatb(p0) varies continuously when the real axis
crossed above the two-pion thresholdp0.2mG(T). This im-
plies that the bubble contribution is discontinuous across
real axis for22mG(T),p0,2mG(T). We will actually see
that there it is Reb(p0) which is discontinuous.

Above the threshold on the real axis both the real a
imaginary parts of the zero temperature bubble are cont
ous as one can see from the second line of Eq.~12!. In view
of this, for values ofp0 below the real axis~lying on the
second Riemann sheet! we simply use the expression writte
in the second line of Eq.~12!. We denote this continuation
b0

,(p0). ~In this sense the indices ‘‘. ’’ and ‘‘ , ’’ on b0 are
redundant, yet we keep them for the sake of clarity.!

We turn now to the finite temperature part of the bubb
f
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h

e

d
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For real values ofp0, above the threshold the real part
bT(p0) can be obtained by taking the principal value in t
right-hand side of Eq.~9!:

Re bT
.~p0!5

1

4p2
PE

mG(T)/T

`

dx
Ax22mG

2 ~T!/T2

p0
2/4T22x2

3
1

exp~x!21
. ~13!

Introducing the parametrizationp05Rep01 i« we can
evaluate the imaginary part ofbT(p0) in the neighborhood of
the real axis both for«.0 ~the physical prescription! and for
«,0:

ImE
mG(T)

` dq0

q0
Aq0

22mG
2 ~T!

n~q0!

2q06~Rep01 i«!

52pE
mG(T)

` dq0

q0
Aq0

22mG
2 ~T!n~q0!d~2q02uRep0u!

3@Q~6«!2Q~7«!#. ~14!

With this one obtains
4-4



a
t

e
r

a

se
q

ol

ar
y
n
ng
at

plic-

to

the

the

u-
nd
ers
ion
ase

ro-
ro-
xis

are

gi-
an
r
m-

SECOND SHEETs POLE AND THE THRESHOLD . . . PHYSICAL REVIEW D66, 116004 ~2002!
Im bT~p0!52
sgn~«!

8p

A~Rep0!224mG
2 ~T!

Rep0
n~ uRep0u/2!

3$Q@Rep022mG~T!#

1Q@2Rep022mG~T!#%. ~15!

In order to ensure the continuity of the imaginary parts
extra term has to be added to the expression used in
upper half plane for the bubble:

bT
,~p0!5bT

.~p0!2
i

4p
n~p0/2!A12

4mG
2 ~T!

p0
2

. ~16!

For later use~among others for the computation of th
spectral function! it is useful to write explicit expressions fo
the physical values ofb(p0) on the real positive axis. We
have bT

.(p0)5Re bT
.(p0)1 i Im bT

.(p0), where the first
term is given by Eq.~13!, and

Im bT
.~p0!52

1

8p
A12

4mG
2 ~T!

p0
2

3n~p0/2!Q@p022mG~T!#. ~17!

The bubble is fully real below the threshold and it is cle
that the integral in Eq.~13! is not singular for p0
,2mG(T). Its integrand has forp052mG(T) an integrable
square root singularity:

Re bT
.@p052mG~T!#

52
1

4p2
E

mG(T)/T

`

dx
1

Ax22mG
2 ~T!/T2

1

exp~x!21
.

For complexp0 also in the lower half plane one can u
for b0

,(p0) the expression written on the second line of E
~12! and the complete expression ofbT

,(p0) reads as

bT
,~p0!5

1

4p2EmG(T)/T

`

dx
Ax22mG

2 ~T!/T2

p0
2/4T22x2

1

exp~x!21

2
i

4p
n~p0/2!A12

4mG
2 ~T!

p0
2

. ~18!

IV. THE TEMPERATURE DEPENDENCE OF THE s POLE

In this section the temperature driven variation of the p
of Gs(p0), located in the fourth quadrant of the complexp0
plane will be found. We shall argue that the generic scen
of its variation is realized independently of what thermod
namical quantity would drive this variation. As an illustratio
of this we shall discuss the pole trajectory under the cha
of the baryonic charge density implemented following H
suda, Kunihiro, and Shimizu@3#.

For the solution of the equation
11600
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Gs
21~p0!S 12

lR

6
b,~p0! D

5@p0
22mG

2 ~T!#S 12
lR

6
~b0

,~p0!1bT
,~p0!! D

2
lR

3
F2~T!50 ~19!

one obviously should knowF(T) @and mG
2 (T)5h/F(T)],

calculable from the renormalized equation of state~11!. This
equation requires two inputs. The phenomenological~physi-
cal! input is F0

2/mG0
2 5F0

3/h[ f p
2 /4mG0

2 ;0.11, but in the
equation of state also the normalization scale appears ex
itly.

In order to simplify the formulas we have decided
choose the absolute value of the pole location atT50 for the
normalization scaleM0. Therefore one has to find first thes
pole for this temperature and only then one can turn to
discussion of the finite temperature variation.

A. The poles ofGs„p0… at TÄ0

We parametrize the solution of the equation

Gs
21~p0!S 12

lR

6
b0

,~p0! D
5~p0

22mG0
2 !S 12

lR

6
b0

,~p0! D2
lR

3
F0

250 ~20!

in the form p05M0exp(2iw0), 0,w0,p/2. Note that the
renormalization scale is fixed in proportion tomG0 once a
renormalized coupling is chosen.

One can introduce instead ofM0 and w0 a more conve-
nient parametrizationp052mG01M̄0exp(2iw̄0), whereM̄0

andw̄0 are uniquely determined byM0 andw0. Attention has
to be payed when switching from one parametrization to
other because changing the scaleM0 means changing the
renormalized coupling constantlR .

In addition one has to deal with care when realizing n
merically the analytic continuation. For the square root a
for the evaluation of the argument of the complex numb
appearing inb0

,(p) one has to choose a phase convent
which ensures the continuous variation of the complex ph
of the final complex number withw0. Good guidance for
how to define the argument of complex numbers in the p
cess of evaluating complicated multivalued functions is p
vided by their series expansion near the positive real a
above the threshold.

The output isM0 /F0 andw0 in terms of which we obtain
the massMs5M0cosw0 and the widthG52M0sinw0 of the
s as the real and imaginary parts of the pole. These
shown as a function of the renormalized couplinglR in Fig.
2. At lR5400 one finds the ratioMs /G;1.4 with Ms

53.95f p . These values are away from the phenomenolo
cal expectations@17,18#, but these are the best values we c
reach in the leading largeN approximation. The use of highe
values oflR which appear to be closer to the observed nu
4-5
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bers might not be advisable since the tachyonic pole
scribed below comes very close to the scaleM0 for that
coupling region. We will uselR5400 henceforth in the finite
temperature calculations.

Scalar theories are known to have a tachyonic pole rela
to the Landau ghost@16#, that is a zero of the inverse propa
gator on the positive imaginary axisp05 iM L . Equation~20!
takes the following form when looking forML :

~ML
21mG0

2 !S 12
lR

6
b0

.~ iM L! D1
lR

3
F0

250, ~21!

with a fully real expression forb0
.( iM L):

b0
.~ iM L!5

1

16p2 F ln
mG0

2

M0
2

2A11
4mG0

2

ML
2

3 ln
A114mG0

2 /ML
221

A114mG0
2 /ML

211
G . ~22!

With a suitable parametrization, for example,ML /M0
5exp(z), one can solve Eq.~21! for z at a given value of
F0

2/mG0
2 and using the value ofM0 /F0 obtained by solving

Eq. ~20!. The logarithm of the ratioML /Ms whose value
restricts the range of validity of the theory is shown in Fig
as a function oflR , not only for T50 but also for some
nonzero temperatures.

B. Finite TÕnB behavior of the s pole

The features of the numerical solution of Eq.~19! will be
discussed in the main part of the present section. It will
pointed out that when moving on the second Riemann s
its root approaches and eventually hits at a certain temp
ture the unphysical real axisbelow the two-pion threshold.

FIG. 2. The real and imaginary parts of the physical poles
T50. Also shown is the logarithm of the tachyon pole position
proportion to the mass ofs for various temperatures. The line
appear in the same order downward from above on the right sid
the figure as the labels in the key.
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For the determination of the poles on this piece of the r
axis one can evaluate the analytic functions directly. The r
solution provides a useful check of the solution based on
complex equation. We give here the corresponding formu
explicitly.

In both parametrizations of the pole one has on the r
axis below the threshold@p0,2mG(T)#, w5p,w̄5p, re-
spectively. Then one has @124mG

2 (T)/p0
2#1/25

2 i @4mG
2 (T)/p0

221#1/2[2 iQ. Using this in Eq.~12! one
obtains:

2A12
4mG

2 ~T!

p0
2 S ln

12A124mG
2 ~T!/p0

2

11A124mG
2 ~T!/p0

2
1 ip D

5 iQS ln
Q211 i

Q212 i
1 ip D

522Q arccot~Q21!2pQ52Q@arccot~Q!1p#.

~23!

So, on the real axis of the second Riemann sheet, below
threshold, one has

b0
,2~p0!5

1

16p2 F ln
mG

2 ~T!

M0
2

12A4mG
2 ~T!

p0
2

21

3S arctanS 4mG
2 ~T!

p0
2

21D 21/2

2p D G , ~24!

bT
,2~p0!52

1

4p
A4mG

2 ~T!

p0
2

21
1

exp~p0/2T!21

1
1

4p2EmG(T)/T

`

dx
Ax22mG

2 ~T!/T2

~p0
2/4T22x2!

1

exp~x!21
.

~25!

@Here we use a somewhat redundant superscript ‘‘2’’ on
b,(p) in order to emphasize that the formulas refer to
continuation below the threshold.#

The evaluation ofb.(p0) below threshold on the real axi
becomes relevant for temperatures when the pole ‘‘clim
up’’ from the second onto the first Riemann sheet and rep
sents a stables particle. When approaching this portion o
the real axis from the physical upper half plane one trivia
finds the corresponding real expression. For realp0 the equa-
tions which determine the poles on the physical and unph
cal real axes below the threshold@p0,2mG(T)# are the fol-
lowing:

„p0
22mG

2 ~T!…S 12
lR

6
„b0

.~p0!1bT
.~p0!…D2

lR

3
F2~T!50

~26!

and

t

of
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~p0
22mG

2 ~T!!S 12
lR

6
~b0

,2~p0!1bT
,2~p0!! D

2
lR

3
F2~T!50, ~27!

respectively.
In Fig. 3 the trajectory of the real part of the pole positi

is shown as it evolves with the temperature. In the sa
figure also theT-dependent location of the two-pion thres
old appears. One notes that Re(p0) crosses below the actua
position of the threshold forT** /mG0;0.68. As it is seen
from Fig. 3 Im(p0) hardly diminishes until this temperatur
is reached, therefore the relative broadening ofs actually
increases. Similar conclusions were drawn in the contex
chiral perturbation theory in@19#. AboveT** the imaginary
part decreases faster and the pole position is landing on
real axis forTreal/mG0;0.93.

One can study the solutions of Eq.~19! also in the upper
p0 half plane on thesecondRiemann sheet. One finds th
starting fromT50, there exists a ‘‘mirror’’-root, which ar-
rives at the same point of the real axis forT5Treal. This
collision of the poles results in two oppositely moving re
solutions for higher temperatures. The solutions of Eq.~27!
fully confirm this scenario.

The pole moving upwards catches up with the thresh
for T* /mG051.074.~The other pole first moves downward
later its motion changes direction, but it lags behind the
sition of the threshold in the whole temperature range
interest; cf. Fig. 3.! It does not stop there, but moves furth
with increasing temperature, now on the real axis of
physical Riemann sheet. This part of the scenario is c
firmed also by the direct solution of Eqs.~27! and~26!. The
T-dependent position of the stable physicals particle is also
displayed in Fig. 3. One has to notice that all scales incre
with the temperature; therefore the tachyon pole puts a s
temperature limit to the validity of the proposed effecti
treatment of the pion-sigma system.

FIG. 3. The temperature dependence of the real and imagi
parts of thes pole.
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The scenario obtained is clearly different from the o
suggested by Hatsuda, Kunihiro, and their collaborators@1#.
In their various approximate descriptions the real part of
pole position never goes below the two-pion threshold u
it has a finite imaginary part. In order to test the gene
nature of the pole evolution found above, we have follow
the procedure proposed by Hatsudaet al. @3# for the intro-
duction of finite baryonic charge densitynB into the effective
pion-sigma dynamics. In summary, the nonzero value ofnB
results in a rescaling of the vacuum expectation valueF
@20#. At T50, for low densities they propose

F~nB!5~12CnB!F0 , ~28!

with C50.2 to 0.3. With the parametrizationp0
5hM0 exp(2iw) we have solved Eq.~20! for h andw with
F(nB) replacingF0 everywhere. This equation is much sim
pler, since the details of its continuation onto the seco
Riemann sheet are self-evident. Still, we find qualitative
the same pattern for the pole trajectory as one can see in
4. In another test the strength of the explicit symmetry bre
ing ~h! was gradually decreased. The distance of the po
where the complex solution arrives to the real axis from
two-pion threshold monotonically decreases with the
crease ofh. In the chiral limit it approaches smoothly th
origin as it should for a true phase transition. It is worthwh
to point out that the most recent dispersive investigation
Yokokawaet al. @5# investigates exactly this limit. They find
the same smooth behavior, therefore there is no conflict
tween the results of the two approaches yet. It will be int
esting to see the effect of explicit symmetry breaking in th
approach.

Finally, we have studied systematically the deformation
the T-driven pole trajectory when 2mG0 / f p is decreased
gradually with f p kept constant. A quite interesting patte
appears in Fig. 5. The trajectory reaches closer to the n
tive imaginary axis as the strength of the explicit symme
breaking diminishes, before it turns to the real axis, a
eventually ends at the two-pion threshold. At some va
1.317.2mG0,imag/ f p.1.316 it touches first this axis, but i

ry
FIG. 4. The dependence of the real part of the pole position

the variation off p due to nonzero baryonic density.
4-7
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‘‘reflected’’ from it back into the fourth quarter. For highe
temperatures it will have again a nonzero real part.

In order to understand what happens, it is convenien
search directly for poles on the negative imaginary axis
turns out that already for 2mG0 / f p53.01 one has an infinite
number of approximately equidistantly located poles alo
this axis for finite temperature. Below we call the pole l
cated the closest to the origin thes* pole. Already at low
temperature the distance of all these poles from the thres
is much larger than that of thes pole. This explains why the
latter dominates nearT50 the behavior of the spectral func
tion, as will be argued in the next section. The distance
ther increases with the increase of the temperature.

It turns out that for the above quoted value
2mG0,imag/ f p thes pole and its mirror from the third quarte
touch the imaginary axis exactly at the location of the hig
est ~negative! imaginary s* pole at that temperature. Th
result of the ’’s2s* ’’ collision is the reflection of the two
complex poles back into their respective quarters.

Further decreasing 2mG0 / f p the pair of mirror poles ar-
rives onto the negative imaginary axis below the high
imaginary pole.~In Fig. 5 it is aboves* , since the negative
imaginary axis is directed upwards.! The colliding poles now
give rise to a purely imaginary pair, one member of whi
moves towards the origin the other one moving the oppo
direction. The pole moving towards the origin collides
some higher temperature with the oppositely moving ge
inely imaginarys* pole, and they are pushed back into t
complex quarters as mirror poles. Eventually, the pole in
fourth quarter will land on the real axis and moves up to
threshold forT* (mG0), where it is converted into a stabl
particle pole on the physical sheet, as described earlier in
section. In view of the multiple pole collisions it is clear th
the stable high-Ts particle is not directly related to theT
50 complexs pole.

In the chiral limit thes pole reaches the origin and de
scribes the phase transition restoring the chiral symmetr
the model. This simple trajectory has been already discus
in our previous publication@10#. The presence of explici

FIG. 5. Trajectory of the complexs pole for various values of
2mG0 / f p . Note the tendency of the trajectory to approach close
the imaginary axis asmG0 decreases.
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symmetry breaking with realistic strength led to a rath
spectacular change in this scenario. It is a valid ques
whether a smooth continuous deformation of the pole tra
tory connects the case of the explicit symmetry break
with the chiral limit.

In the region, when the pion mass is much smaller th
the temperature for which the complex pole becomes pu
imaginary, one can find analytically the firsts* pole in the
infinite sequence described above. Its location is given
proximately asps*

2 ;mG
3 (T)T/F2(T). In view of the fact

that T/F(T);O(1), this pole goes faster to zero than th
pion mass. Our numerical study shows that the point wh
the pole lands on the negative imaginary axis does
change more than 10% between the pion massmG0,imag and
the chiral limit. Therefore the interval of temperatures f
which the pole moves on the imaginary axis increases w
decreasing pion mass~see Fig. 5!. Eventually formG050 the
highest negative imaginary pole stays~with zero residuum!
in the origin and the scenario characterizing the chiral lim
sets in smoothly.

For symmetry breaking much smaller than the parame
characterizing the onset of the dynamical scaling in
chirally symmetric case one can even experience the rea
tion of the scaling behavior.

To some extent the above complicated trajectory is to
expected, since it is highly ‘‘improbable’’ that the roots of
complex equation would move smoothly to a specific po
~e.g., the two-pion threshold! of the real axis, irrespective o
the variation of its parameters. The limitations of the tr
resonance interpretation of thes pole will be discussed in
the next section, when the correlation of its location with t
measurable spectral functionrs will be discussed.

V. THE T DEPENDENCE OF THE SPECTRAL
FUNCTION rs

The spectral function of the order parameter fields is
defined using the expression of the propagator in the phys
half plane as

rs~p0 ,p,T!52
1

p
lim

«→10
Im Gs~p01 i«,p,T!. ~29!

The leading order largeN expression of spectral function
at p50, is given by

rs~p0,0,T!5lR
2F2~T!Im b.~p0!/18p

3F F „p0
22mG

2 ~T!…S 12
lR

6
Reb.~p0! D

2
lR

3
F2~T!G2

1„p0
22mG

2 ~T!…2

3
lR

2

36
„Im b.~p0!…2G21

. ~30!

We have seen that Imb.(p0)Þ0 only for p0.2mG(T) if
there is no stable particle pole below the threshold. There

o
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SECOND SHEETs POLE AND THE THRESHOLD . . . PHYSICAL REVIEW D66, 116004 ~2002!
the spectral function is nonzero only forp0 values above the
threshold untilT,T* . For this reason the numerator and t
second term in the denominator of Eq.~30!, that is
Im b.(p0) goes to zero whenp0→2mG(T)10.

The scalar-isoscalar spectral function is displayed in F
6. One notices the shift of its maximum towards the two-p
threshold with increasing temperature, though its width d
not decrease initially. ForT.T** the shape ofrs becomes
cuspier. Finally, a very high value of the maximum is exp
rienced numerically aroundT/mG0;1.07. Above this tem-
perature the value of the maximum gradually diminishes
its location shifts increasingly farther from the threshold
wards largerp0.

For a qualitative interpretation ofrs one verifies that for
the temperatureT* '1.074mG0, the first term of the denomi
nator of Eq.~30! vanishes at the thresholdp052mG(T* ),
that is Eq.~26! is equivalent to the condition for the vanish
ing of the first term in the denominator of Eq.~30!:

6

lR
2b0

.@2mG~T* !#2bT
.@2mG~T* !#2

2

3

F2~T* !

mG
2 ~T* !

50.

~31!
Because the term containing the real part of the bub

vanishes more rapidly atT* asp0→2mG(T* ) than the term
containing the imaginary part of the bubble, the behavior
the spectral function around the threshold is dominated
the imaginary part of the bubble rs(p0,0,T* )
;1/Imb.(p0)51/@124mG

2 (T* )/p0
2#1/2. This is formally

the same behavior exploited by Hatsudaet al. @3# when ar-
guing in favor of the generic nature of the threshold enhan
ment phenomenon. It is worthwhile to emphasize, howe
the obvious fact that according to our calculation the spec
function has nothing to do with the imaginary part of t
second sheet pole which is a purely real~unphysical! quan-
tity in this temperature regime, and the singular behavio
due to the fact that the pole along the unphysical real a
moves towards the threshold whenT→T* .

One might suspect that the coincidence of the pole p
tion at T5T* with the threshold would lead to a strong
;d@p022mG(T* )# singularity for this temperature. This i

FIG. 6. The scalar-isoscalar spectral function at various te
peratures.
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not true since one can easily demonstrate the vanishing o
residuum forT5T* . The residuum of the stables pole ap-
pearing on the physical sheet forT.T* continuously in-
creases with the temperature.

The near threshold enhancement of the spectral func
is maximal atT* . WhenT.T* , the position of the maxi-
mum moves away from the threshold and its height dim
ishes. This is consistent with the requirement arising fr
the sum rule,*dp0p0rs(p0)51 in the presence of a stables
pole with increasing residuum.

The enhancement sets in gradually and forT.T** the
maximum ofrs stays very close to the actual threshold p
sition. We can argue rather convincingly for a certain phy
cal significance of T** , when displaying rs

1(p0)
[rs(p0)/A124mG

2 (T)/p0
2. The argument for this operatio

is the fact that the phase space volume is just proportiona
the factor divided out. In Fig. 7 one can follow the positio
of the maxima ofrs andrs

1 relative to the two-pion thresh
old as a function of the temperature. One sees that the p
tion of max(rs) touches the threshold only in a single poi
T5T* . On the other hand the position of max@rs

1(T)# ap-
proaches 2mG(T) rather steeply, but starting fromT5T**
the distance is found numerically always smaller than 1025.

In conclusion of this section one sees that the qualita
changes in the spectral function can be well interpreted w
the help of the scalar-isoscalar pole located in the lowerp0
half plane. The threshold enhancement occurs in an exten
temperature region,T** ,T,T* . Any analysis attempting
the reconstruction of the in-mediums resonance from some
experiment is necessarily based on the behavior of the sc
isoscalar spectral function. From the above discussion
suggestive that by the enhanced signal coming from
neighborhood of the threshold one would be led to the c
clusion that in the temperature rangeT** ,T,T* the ‘‘s ’’
moves together with the two-pion threshold. But no trace
any Lorentzian resonance shape can be detected in the
tral function.

VI. CONCLUSIONS

In this paper we have presented all the technical detail
analyzing the pole trajectory of the propagator describing

-
FIG. 7. The temperature dependence of the locations of

maxima ofrs and ofrs
1 as compared to the two-pion threshold.
4-9
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PATKÓS, SZÉP, AND SZÉPFALUSY PHYSICAL REVIEW D66, 116004 ~2002!
fluctuations of the chiral order parameter in the linear sig
model with the help of a leading largeN approximation. It is
worth noting that the propagator of the composite fie
@fa(x,t)#2 has the same poles as that off in the broken
symmetry phase~see Ref.@10# and references therein!. De-
tailed mapping of the trajectory under the variation of t
temperature/baryonic density as well as the parameter
trolling the explicit breaking of the chiral symmetry leads
to conjecture that generically the real part of the comp
pole will decrease below the two-pion threshold energy w
a finite imaginary part. The application of higher order c
rections in the largeN expansion are expected to give n
more than 25% correction. Therefore only quantitat
change may happen in the scenario presented in our pa

Our main result is the prediction that in a whole tempe
ture rangeT** ,T,T* the maximum of the spectral func
tion is rather close to the actual location of the two-pi
threshold. In this sense one can speak about an interva
threshold enhancement. The point of maximal enhancem
is T5T* .

The usual connection between the second Riemann s
pole and the spectral function is restricted to the tempera
rangeT,T** . In this region the spectral function has a
approximately Lorentzian shape; its maximum is cente
nearly at the location of the real part of the pole, its wid
scales with its imaginary part. When approachingT** from
in

o,

e
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below, the approximately Lorentzian shape of the spec
function will be distorted; in particular it is losing its sym
metry. With considerable compromise one can extend
s-particle interpretation of the second Riemann sheet p
up to T** .

The complete loss of this characteristic means that
resonance interpretation can be given to the pole in
T** ,T,T* range. On the other hand any phenomenolo
cal analysis of a particle signal proportional to the spec
function will be peaked near the two-pion threshold in t
above temperature interval. The real-time propagator in
channel will be dominated by the contribution of frequenc
slightly above 2mG(T). In this sense an increasingly narro
s signal can be detected atv'2mG(T) in the final two-pion
spectra.

Above T* it is a stable physicals particle, which reap-
pears. Accordingly, the peak of the spectral function dim
ishes. By the increased effect of the phase space facto
maximum will be reached again at frequencies farther ab
the two-pion threshold.
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