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The scalar-isoscalar propagator of the effective lineanodel of meson dynamics is investigated with the
help of an expansion in the number of the Goldstone bosons. A generic scenario is suggested for the tempera-
ture or density driven evolution of its pole in the second Riemann sheet. An extended temperature range,
correlated with characteristic pole locations, is found where the phenomenon of threshold enhancement takes
place in the corresponding spectral function.
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[. INTRODUCTION energy[2] the pole describing the-resonance moves from
its zero temperature/density location smoothly to the location
The aim of the present investigation is to relate the soof the two-pion threshold. Both real and imaginary parts of

called o pole in the second Riemann sheet in the comple%he pole location diminish monotonically. The real part ap-

frequency plane and the behavior of the corresponding speroaches the two-pion threshold faster than the imaginary
tral function at finite temperature or density. Both objects.part vanishes, and the spectral function becomes proportional

. . . in this temperature range to the inverse of the imaginary part
will be determined from the scalar-isoscalar propagator. Thf3]_ The mpaximum of t%e proposed threshold enr?ancgn?ent

calculation suggests a generic trajectory for this pole irreg e s for that well-defined temperature/density value when
spective of the nature of the thermodynamical driving forcepe pole reaches the threshold.

We investigate the question of when a well-defined reso- The effects of partial symmetry restoration realized by the
nance characterized by a Lorentzian shaped spectral functiafiminishing of f., was studied also on the unitarizec— 7

is present. The study is performed in the framework of thescattering amplitudg¢4]. This quantity was computed and
linear o model, used as an effective field theory describinganalyzed recently with dispersive techniques in the frame-
the fluctuations of the chiral order parameter. We find thevork of the chiral perturbation theoiff].

most convenient the application of an expansion in the num- The approximations made by these authors may be veri-
ber of the Goldstone mesons, which is a kind of lahge fied soon when reliable spectral functions will be obtained

approach to the physical excitation spectra of the relativisti¢Sind the nonperturbative lattice field theoretical approach
O(N)) field theory in its broken symmetry phase. 6,7]. In the meantime d|ffe_rent semianalytic approximation
L i i schemes also might shed light on the generality of the pro-
The application of th&(N) symmetric scalar field theory 5sed arguments. A possible scheme can be based on an
to the thermal and finite baryonic density behavior of theexpansion in the inverse number of the Goldstone bosons.
pion-sigma system was suggested and has been actively pur- The largeN expansion has been applied already some 30
sued for about 15 years, in particular by Hatsuda, Kunihiroyears ago to the characterization of the elementary excita-
and collaboratorgfor the latest review sefl]). The main  tions of criticalO(N) symmetric lattice systeni$,9]. It was
physical effect proposed for the scalar-isoscalar spectrakalized that it provides faithful information on the excitation
function is its gradual enhancement near that value of thgpectra of these systems in the full broken symmetry phase
temperature/baryon density where the phase space availaljetween zero and the critical temperature.
for the o— 27 decay is squeezed to zero. In a recent lettef10] we proposed its application to the
For the theoretical consolidation of this effect, Hatsudapresent relativistic system, since it avoids all problems of
et al. put forward apparently model independent argumentgrinciples showing up in other perturbative approaches. First
for the behavior of both the real and imaginary parts ofd¢he of all its validity does not depend on the rather strong self-
propagator. Using an improved version of the finite coupling of the effectiver model. Second, its result is not
temperature/density perturbative evaluation of theself-  sensitive to the choice of the normalization point, that is its
change can be always compensated by an appropriate change
in the value of the couplings as required by the renormaliza-
*Electronic address: patkos@ludens.elte.hu tion group. Third, it leads automatically to the same spectra
"Present address: Research Group for Statistical Physics of tHer the elementaryr field and for the scalar-isoscalar qua-
Hungarian Academy of Sciences, H-1117 Budapest, Hungary. Eledratic composite field. In other approaches this feature is
tronic address: szepzs@antonius.elte.hu usually missing or found to be true after nontrivial manipu-
*Electronic address: psz@galahad.elte.hu lations. Finally, in the chiral limit it provides a correct critical
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description of the chiral symmetry restoration. leading largeN approximation that a parametrization ac-
The leading order largl approximation has been applied counting for thelT =0 phenomenological data of theando
to the Goldstone boson scattering by Chivukula and Goldemesons can be achieved only approximately. However, we
[11] at zero temperature. They have explicitly checked thashall argue that the relationship between the pole trajectory
this approximation fulfills in the scalar-isoscalar channel theand the variation of the spectral function to be described
unitarity condition and also satisfies the Adler-zero condi-below might not change qualitatively.
tion. The presentation of the paper is aimed at a self-contained,
The largeN leading order amplitudeN—1)A(s) has technically transparent description. In Sec. Il the Schwinger-
been compared also with the existing phase shift data in thByson equations for the finite temperature two-point func-
I =J=0 channel of ther— 7 scattering by Dobado and Mo- tions of the linearc model are given to leading order k
rales[12]. They have completed the leading order amplitudeTheir analytical continuation onto the second Riemann sheet
by subleading terms, dictated by the requirement of crossing the complex frequency variable is presented in Sec. lll. Its
symmetry:Aqq(s,t,u) =3A(s) +A(t) + A(u). Though thisis  explicit expression was found by studying the bubble dia-
not a systematic next-to-leading order computation the augram, describing the splitting of the field into two off-shell
thors found a satisfactory fit to the relevant phase sfifs) pions. In Sec. IV we analyze the temperature driven evolu-
up to Js~600 MeV. tion of the o pole trajectory. This investigation makes use of
To our best knowledge no application of the lalgeap- the T=0 parametrization of the model as an input, therefore
proach at finite temperature/baryon density was attempted tene first works out the details of the physical and unphysical
date. In view of the importance of andu-channel exchange poles forT=0. Here we fix all couplings in a way to achieve
contributions to ther— 7 scattering amplitude, emphasized the closest possible characteristics of theo the particle
in the recent literaturg13], a fully satisfactory largé\ treat- ~ data, and still staying by a factor of 2 to 3 below the “energy
ment will also require the calculation of the next-to-leadingscale” of the tachyon. In the second part of the section we
order contribution to ther propagator. The leading order shall argue that the pole trajectory found by varying the tem-
calculation presented in this paper is a necessary intermedperature remains qualitatively the same when the system
ate step also towards this goal. evolves under the variation of the baryonic density. A de-
The fact that forT=0 the real and imaginary parts of the tailed discussion of the change in the pole trajectory pattern
o resonance are of comparable magnitude implies that for it@ith the pion mass is also presented. The spectral function of
finite temperature description we cannot restrict ourselves tg is computed in Sec. V by approaching the real axis from
the immediate vicinity of the real axis. An exception is whenthe physical upper half plane. We shall analyze also the func-
the o resonance gets close to the two-pion threshold, whicHion which arises when the threshold factor is divided out. It
is the situation where threshold enhancement develops. Fd¥ill be demonstrated that in an extended temperature range
the explanation of the detailed features of this phenomenon the maximum of the spectral function is located in the closest
is unavoidable to trace the complete temperature driven poléeighborhood of theT(-dependentposition of the two-pion
trajectory. The main purpose of the present paper is to Carrghreshold. The extension of this interval is very well corre-
out such an investigation within the leading order of the largdated with the piece of the pole trajectory, when its real part
N expansion. According to our calculation to be presented iris below the two-pion threshold. In Sec. VI the conclusions
this paper, ther self-energy continued analytically into the of the present study are summarized.
lower half plane leads to a pole trajectdwyhen the tempera-
ture T or the baryonic densityg is varied whose real part Il. LEADING LARGE N EXPRESSION OF THE
assumes smaller values than twice the pion mass, while the PROPAGATORS AT FINITE TEMPERATURE
decrease of the imaginary part is not drastic. As a conse-
guence of this the pole looses its meaning as a resonance aE
at the same time in the spectral function the direct neighbor-
hood of the threshold will be emphasized. When further in- A
creasingT/ng the trajectory hits the real axis on the second L= >[4, ¢23* 3~ m2p2p?]— = (¢?) X #°)2+ Nhe™.
Riemann sheet and moves along it before it reaches the 2 24N
threshold. This pole evolution will be demonstrated to be (1)
generic in the sense that it is insensitive to the variation ofrhe |ast term explicitly breaks th@(N) symmetry and in-
the parameters of the theory. One can argue that it can stayoquces nonzero mass for pions.
valid beyond the leading order lardéapproximation, sincé |n the broken symmetry phase one separates the expecta-

it is unlikely that the trajectory would hit the threshold point tjon valued (T) of the field, which points along the direction
directly. Only in the limiting chiral symmetric case do We 5—1 in the internal space

find the smooth behavior which was proposed by Hatsuda

etal. [1], ¢*=[NO(T)+ " ¢']. )
One should be aware of the fact that in scalar models a

tachyonic pole is always presept4-14 related to the In the following all quantities will be computed to leading

Landau-ghost phenomenon. It restricts the range of variationrder in the largeN limit.

of the renormalized parameters where the model can be used The quantum fluctuations of the order parameter are di-

in an effective sense at all. For this reason we find in thesided into a longitudinal mode, which represents thene-

dThe appropriate parametrization of t@{N) symmetric
agrangian for a larg®l expansion has the following form:
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FIG. 1. Diagrams determining the self-energy of théield represented to leading orderih The external solid lines correspond to the
o, while in the internal bubbles pions propagate. The dashed line represents the expectatidr=vdl(i€). The vertices can be read from
Eq. (1) after the shift defined in Eq2) is performed.

son and the transversal ones. The latter correspond to the ) h A 2
Goldstone modes, the pions. Their masg(T) is deter- mg(p)=m+ 3¢’2(T) 1+ 6b( p)+ b(p) }
mined as the pole of the resummed pion propagator, in which

the tadpole contribution is calculated with the pion propaga- h AD%(T)/3

tor self-consistently. This results in the following gap equa- = O(T) + 1—\b(p)/6’ ®)
tion:

The bubble contribution with external momentum
=(po,P) is the sum of a zero temperature an@-dependent
part,b” (p) =bg (p) + b7 (pPo.p). The superscript hints at
the fact that the expression of the bubble contribution is valid
in the upperpy half plane. The explicit expressions of the

A A
mg(T) =m?+ 2 PA(T) + ={(6)?)

A N[ dk two terms read as follows:
2 2 - .
=m-+ 6<I> (T)+6f (2m)? 2oy —[1+2n(wy)],
@ b2p) f d*k 1 1
= s
ofP (2m)* K2—mi(T) +ie (p+k)2—ma(T)+ie
(6)
wheren(w,) = 1 exp(/T)—1] and w= VkZ+mZ(T). .
The equation of state obtained from the reqU|rement0>(p)_f d°q (Ni+n,) 1
(¢*)=0 is as follows: (27)% 4wy, b po-wi—wptie
1 1
\/N(I)(T) 2 )\(1)2(1') )\J d3k 1 B p0+w1+w2+i6 _(nl_nZ) po—w1+w2+i6
m?+ — + = —
6 6) (2m)% 2wy 1
- )
po+w1—w2+lf
X[1+2n =0. 4
[ (@]~ O(T) @ where n;=1/(exdBw)—1] and w;=[q?+m3(T)]*?% e

=[(g+p)2+m3(T)]¥2 ande>0.
Using cutoff regularization the zero temperature bubble
Comparing this with Eq(3) one can observe that fap(T) contribution is

#0 consistency requweslG h/®(T). This is precisely the

Goldstone theorem in the presence of explicit symmetry 1 m2(T) 4mZ(T)
breaking. bo(p)= In —1-1\/1-

At leading largeN order the contribution to the longitudi- 1672 A? p?
nal self-energy is given by the sum of the contributions cor-
responding to the diagrams of Fig. 1, i.e., the bubble series. ( 1— l—4mé(T)/p2 )
On both internal lines of a bubble exclusively the propaga- In +im (8)
tion of pion fields are taken into account to leading order in 1+ \/1—4mé(T)/p2

N. In each term of the bubble contribution there is a common
multiplicative vertex contribution coming from the two It is common to discuss the spectral function forO0,
edges of each diagram. The bubble series consistently tak#g1en the expression of the finite temperature bubble contri-
into account the nonzero classical value T), partly by ~ bution simplifies to
the implicit dependence ah2 c(T), due to the gap equation
and also by the two legs of the effective four-point vertex b2 (pg) = — i - % 2 m2(T)
formed by the sum of the bubble-series. T (Po 4722 ) mem o 0o~ Mg

By adding the tree level mass® to the self-energy of the
o field determined in the backgrounB(T), using Eq.(4)
one finds for the effectiver mass a simple expression in
terms ofb(p), denoting the value of the single bubble dia-
gram: Im py>0. 9)

n(do) n(do)
+ 1
200—Po 200+ Po
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In view of the quadratic and logarithmic cutoff dependen- 2 4
, - - Ar @5 [ Mgo

cies which appear in Eq$3), (4), and(8) a mass- and cou- — — | = )

pling constant renormalization is necessary. It requires the® Mgo \ Mg(T)

introduction of a normalization scaM . This scale should 2 2 2 2

lie below the scale of the tachyonic pole to be discussed Ar | [ MG(T) 1 mgee = mg(T) ImG(T)

below. Its choice within the relevant range where @N) 967 méo MS méo méo

model can serve for the effective description of hadron dy-

namics should not affect sensitively the physical results. ART2 (= N mGZ(T)/T2 mé(T)
The expressions of the renormalized couplings go beyond T Fméofme(T)/T y exply)—1 = méo -1

the accuracy of the usual one-loop relations. Actually, they
ensure that a change in the normalization scale can be com- (11
ensated in all formulas below by an appropriate change in
Fhe couplings. The following nonp)érturbgtliaveenass- and g'jself-HeremGO and<, stand fo_r thel =0 vaIue_ of the GoId_stone
coupling renormalizations are introduced: mass and of the expeqtaﬂon value of th(’aeld, respectively.
The formal expression of the effective mass term ofdhe
propagator(5) is unchanged after renormalization, just
—=—. (10 should replacen and for theT=0 contribution ofb(p) in
Mg Ar Eq. (8) the scaleM3 is put in place ofeA?.
The finite part of the zero temperature bubble contribution
In terms of the renormalized couplings the equation of statelefined in this way has different forms depending on the
Eq. (4) can be cast into the following explicitly finite form: range ofp, values:

m2 A2 mi 1 1  eA?
—+—=—, —+—=lIn
N 967 ANg' N 967

2 2 2 -2
mg(T) 4mg(T) 4mg(T)
In ﬁ/lz +2 GZ —1xarcta GZ -1 , Po<<2mg(T)
p p
b5 (Po)= ° ° (12
162 2 2
mg(T) Amg(T)[ 1—1-4mg(T)/pj
In————/1- >— In > s+im ||, Po>2mg(T).
E ps | 1+VI-4mZ(T)/p3
|
lll. ANALYTICAL CONTINUATION OF THE For real values op,, above the threshold the real part of

PROPAGATORS ONTO THE SECOND RIEMANN SHEET b+(po) can be obtained by taking the principal value in the

The interpretation of the temperature driven variation ofrlght—hand side of Equ9):

the spectral function will be based on the study of the varia- — 5
tion of the scalar-isoscalar pole mass, that is the zero of 1 ” dx VXE=mg(T)/T

>
G, *(po,p=0)=p3—mZ in the lowerp, half plane. For this Re b (po)= 4_7727) ma(T)/T p2IAT2 2
it is necessary to construct an analytical continuation of the
longitudinal propagator onto the second Riemann sheet. By v 1 (13)
Eq. (5) it is clear that the problem is equivalent to the con- exp(x)—1°

tinuation ofb(pgy), which will be discussed in this section.
We decided to perform the analytical continuation in such Introducing the parametrizatiop,=Rep,+is we can

a way thatb(p,) varies continuously when the real axis is gyajuate the imaginary part bf(p) in the neighborhood of
crossed above the two-pion threshpl>2mg(T). This im- e req) axis both fos >0 (the physical prescriptigrand for
plies that the bubble contribution is discontinuous across thg -

real axis for—2mg(T) <po<2mg(T). We will actually see
that there it is Rév(py) which is discontinuous. dq n(q0)
Above the threshold on the real axis both the real anqm f *  UQo 2= m2(T). 0
imaginary parts of the zero temperature bubble are continu- Jmg(m do A5~ ma( )Zqu(RepoJris)
ous as one can see from the second line of(Eg). In view g
of this, for values ofp, below the real axiglying on the __ fw 900 —— T S(2an— IR
second Riemann sheate simply use the expression written ™ J e 9o do—Mg(T)n(do) (200~ [Repo|)
in the second line of Eq12). We denote this continuation .
by (Po)- (In this sense the indices>*” and “ <” on b, are X[O(£e)=0O(xe)]. (14
redundant, yet we keep them for the sake of clarity.
We turn now to the finite temperature part of the bubble.With this one obtains
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sgr(z) V(Repo)*—4mg(T) 1 ( AR, - )
=- G 1- b
Im b(po) = Repe n(|Repo|/2) + (Po) 5 D (Po)
X {O[Repy—2mg(T AR
{O[Repo=2mo(T)] =[p8—mé<T>](1—g<b§<po>+b$<po>>
+0O[ —Repy—2mg(T)]}. (15
In order to ensure the continuity of the imaginary parts an - ?‘I’Z(T)=0 (19
extra term has to be added to the expression used in the
upper half plane for the bubble: one obviously should knowp(T) [and m3(T)=h/®(T)],
calculable from the renormalized equation of st@®. This
i 4m(2;(T) equation requires two inputs. The phenomenologiphlsi-
b+ (Po) =b7 (Po) = 7— N(Po/2) > (18 ca) input is ®Z/m2,=dYh=12/amZ,~0.11, but in the

Po equation of state also the normalization scale appears explic-

For later use(among others for the computation of the itly.
spectral functiopit is useful to write explicit expressions for
the physical values ob(py) on the real positive axis. We
have by (pg)=Reby(po)+ilm by (py), where the first
term is given by Eq(13), and

In order to simplify the formulas we have decided to
choose the absolute value of the pole locatiom-al0 for the
normalization scal®,. Therefore one has to find first tle
pole for this temperature and only then one can turn to the
discussion of the finite temperature variation.

1 4m&(T)

0

Xn(Po/2)O[po—2mg(T)]. 7

A. The poles of G,(py) at T=0
We parametrize the solution of the equation

A
| - Gﬁ(po)(l—{bé(po))
The bubble is fully real below the threshold and it is clear
that the integral in Eq.(13) is not singular for pg A A
<2mg(T). Its integrand has fopy=2mg(T) an integrable =(p3—méo)( 1- gbé(po)) - ?ang:o (20)
square root singularity:

in the form py=Myexp(—igg), 0<¢@o<w/2. Note that the

> —
Re brlpo=2mg(T)] renormalization scale is fixed in proportion tag, once a

1 e 1 1 renormalized coupling is chosen.
= dx _ One can introduce instead M, and ¢, a more conve-
42 me(MIT X2~ mZ(T)/T2 &XAX)—1 nient parametrizatiomo,=2mgg+ M oexp(—igg), WhereM,

andgoo are uniquely determined byl and¢g. Attention has
For complexp, also in the lower half plane one can use tg be payed when switching from one parametrization to the
for by (po) the expression written on the second line of Eq.other because changing the scalg means changing the

(12) and the complete expression of (p,) reads as renormalized coupling constaig.
In addition one has to deal with care when realizing nu-
1 (= \/xz—mé(T)/TZ 1 merically the analytic continuation. For the square root and
bt (po)=-— for the evaluation of the argument of the complex numbers

X
21AT2 %2 expx)—1
4w Jm(mim Po/AT =X Px) appearing inbg (p) one has to choose a phase convention

Am2(T) which ensures the continuous variation of the complex phase
1— & 7~ (18) of the final complex number witkpy. Good guidance for
pS how to define the argument of complex numbers in the pro-
cess of evaluating complicated multivalued functions is pro-
vided by their series expansion near the positive real axis
above the threshold.
In this section the temperature driven variation of the pole The output isM/®y and ¢ in terms of which we obtain
of G,(py), located in the fourth quadrant of the complgx  the massM ,=Mcos¢, and the widthl’=2M gsin ¢ of the
plane will be found. We shall argue that the generic scenarior as the real and imaginary parts of the pole. These are
of its variation is realized independently of what thermody-shown as a function of the renormalized couplingin Fig.
namical quantity would drive this variation. As an illustration 2. At A\g=400 one finds the ratioM,/I"~1.4 with M,
of this we shall discuss the pole trajectory under the change=3.95 .. These values are away from the phenomenologi-
of the baryonic charge density implemented following Hat-cal expectation§17,18, but these are the best values we can
suda, Kunihiro, and Shimiz[8]. reach in the leading large approximation. The use of higher
For the solution of the equation values ofA g which appear to be closer to the observed num-

i
- En(polz)

IV. THE TEMPERATURE DEPENDENCE OF THE o POLE
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4 — - - - y - For the determination of the poles on this piece of the real
a5 } axis one can evaluate the analytic functions directly. The real
' solution provides a useful check of the solution based on the
sl complex equation. We give here the corresponding formulas
explicitly.
25 In both parametrizations of the pole one has on the real
! axis below the thresholfipg<2mg(T)], o=, 0=, re-
spectivel. Then one has [1—4m3(T)/p3]¥?=
15 —i[4mZ(T)/p3—1]*?=—iQ. Using this in EqQ.(12) one
al . obtains:
| c’f;: 2 —J1—am2(T)/ 02
0.5 R A — amg(T)[  1-vV1-4mg(T)/py
. - IN(M,(TYM) - - 1- 5 In \/ﬁ +im
0 100 200 300 400 500 600 700 Po 1+ v1-4mg(T)/po
A .
" et
FIG. 2. The real and imaginary parts of the physical poles at =iQ| In 1 - Lk
T=0. Also shown is the logarithm of the tachyon pole position in Q i
proporti_on to the mass of for various temperatures. T_he Iin_es --20Q arCCO(Q_l)—7TQ=2Q[arcc0(Q)+7r].
appear in the same order downward from above on the right side of
the figure as the labels in the key. (23

bers might not be advisable since the tachyonic pole deSo, on the real axis of the second Riemann sheet, below the

scribed below comes very close to the schlg for that  threshold, one has

coupling region. We will usé g=400 henceforth in the finite

temperature calculations. _
Scalar theories are known to have a tachyonic pole relateBlo  (Po) =

to the Landau ghogtl6], that is a zero of the inverse propa-

ma(T) 4ma(T)
2 +2 2
Mg Po

In

1642

gator on the positive imaginary axis=iM . Equation(20) Am2(T) -12
takes the following form when looking fdvl, : % ( arctar( SR _ T,) , (24)
\ \ P5
<ME+méo>(1——Rb5<iML> + 5 ®3=0, (@1
6 3 b= (o) - 4m(T) 1
Po)=—7— -
with a fully real expression fobg (iM | ): ! 4m PS exp(po/2T) — 1

5 1 (= § VX2—mg(T)/T? 1

1 m2 4m +— X .
b5 (iM)=——| In 1 — 42 gt (pYATZ—x2) expx)—1
16m Mg M{ (25
/ 2 2
<IN 1+4mgo/M—1 22) [Here we use a somewhat redundant superscript 6n

b=<(p) in order to emphasize that the formulas refer to a
continuation below the threshold.

The evaluation ob~ (p,) below threshold on the real axis
becomes relevant for temperatures when the pole “climbs
up” from the second onto the first Riemann sheet and repre-
sents a stable particle. When approaching this portion of
the real axis from the physical upper half plane one trivially
finds the corresponding real expression. For pgahe equa-
tions which determine the poles on the physical and unphysi-
cal real axes below the threshdlg,<2mg(T)] are the fol-
lowing:

V1+4mE/M2+1

With a suitable parametrization, for exampliel, /M,
=exp@), one can solve Eq21) for z at a given value of
®3/m3, and using the value df1,/® obtained by solving
Eqg. (20). The logarithm of the ratioi, /M, whose value
restricts the range of validity of the theory is shown in Fig. 2
as a function ofAg, not only for T=0 but also for some
nonzero temperatures.

B. Finite T/ng behavior of the o pole

The features of the numerical solution of E9) will be PR AR, - > AR
discussed in the main part of the present section. It will be (Po~Ma(T)| 1= (b (Po) +br (Po)) | - ?(DZ(T):O
pointed out that when moving on the second Riemann sheet (26)
its root approaches and eventually hits at a certain tempera-
ture the unphysical real axizelowthe two-pion threshold. and
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55 F = Re pf’/f" for the comple)f solution e 1 — solutions on the real axis of the 2nd Riemann sheet
sl — solutions on the real axis of the 2™ Riemann sheet ] - solution on the real axis of the 1st Riemann sheet .-~
----- solution on the real axis of the 1" Riemann sheet - sl 7 complex solution
45 | - 4 . r- e 7
S
35 ® 2mg(0),(0)=3.0107527
X .:o M (0N (0)=3.
5]
25 o _
2
L 1
___________ - Ag=400 Ag=400 T
1r Im Po/fn \‘ 1
*w ~\\
05 | T \\Treal T 1
1 1 1 I 1 “J 1 I L L L L 15()4 0‘5 0‘6 0I7 0‘8 Olg 1
0 02 04 06 08 1 12 14 16 18 2 ' ' ' ; ' '
Timeg f(p)A(0)

FIG. 4. The dependence of the real part of the pole position on

FIG. 3. The temperature dependence of the real and imagina%e variation off . due to nonzero baryonic density
- .

parts of theo pole.

The scenario obtained is clearly different from the one
suggested by Hatsuda, Kunihiro, and their collaboratbts
In their various approximate descriptions the real part of the
pole position never goes below the two-pion threshold until
it has a finite imaginary part. In order to test the generic
nature of the pole evolution found above, we have followed
the procedure proposed by Hatsuetaal. [3] for the intro-
duction of finite baryonic charge density into the effective
respectively. pion-sigma dynamics. In summary, the nonzero valuegpHf

In Fig. 3 the trajectory of the real part of the pole positionresults in a rescaling of the vacuum expectation value
is shown as it evolves with the temperature. In the samé&20]. At T=0, for low densities they propose
figure also theT-dependent location of the two-pion thresh-
old appears. One notes that Rg) crosses below the actual
position of the threshold fof ** /mgy~0.68. As it is seen
from Fig. 3 Im(py) hardly diminishes until this temperature with C=0.2 to 0.3. With the parametrizationp,
is reached, therefore the relative broadeningoofctually =M, exp(—i¢) we have solved Eq20) for » and ¢ with
increases. Similar conclusions were drawn in the context ofb(ng) replacing®, everywhere. This equation is much sim-
chiral perturbation theory ifil9]. Above T** the imaginary pler, since the details of its continuation onto the second
part decreases faster and the pole position is landing on thHeiemann sheet are self-evident. Still, we find qualitatively

A
(P5—mB(T))| 1= 5 (b5~ (Po)+b5 ~(po))

AR

3 D4(T)=0,

(27)

@ (ng)=(1-Cng) Py, (28)

real axis forT gy/Mgp~0.93.

One can study the solutions of E3d.9) also in the upper
po half plane on thesecondRiemann sheet. One finds that
starting fromT=0, there exists a “mirror”-root, which ar-
rives at the same point of the real axis fOorT,,. This

the same pattern for the pole trajectory as one can see in Fig.
4. In another test the strength of the explicit symmetry break-
ing (h) was gradually decreased. The distance of the point
where the complex solution arrives to the real axis from the
two-pion threshold monotonically decreases with the de-

collision of the poles results in two oppositely moving real crease ofh. In the chiral limit it approaches smoothly the

solutions for higher temperatures. The solutions of 4)
fully confirm this scenario.

origin as it should for a true phase transition. It is worthwhile
to point out that the most recent dispersive investigation of

The pole moving upwards catches up with the thresholdrokokawaet al.[5] investigates exactly this limit. They find
for T* /mgo=1.074.(The other pole first moves downwards, the same smooth behavior, therefore there is no conflict be-
later its motion changes direction, but it lags behind the potween the results of the two approaches yet. It will be inter-
sition of the threshold in the whole temperature range ofesting to see the effect of explicit symmetry breaking in their
interest; cf. Fig. 3.1t does not stop there, but moves further approach.
with increasing temperature, now on the real axis of the Finally, we have studied systematically the deformation of
physical Riemann sheet. This part of the scenario is conthe T-driven pole trajectory when Bgy/f, is decreased
firmed also by the direct solution of ER7) and(26). The  gradually withf . kept constant. A quite interesting pattern
T-dependent position of the stable physieaparticle is also  appears in Fig. 5. The trajectory reaches closer to the nega-
displayed in Fig. 3. One has to notice that all scales increastve imaginary axis as the strength of the explicit symmetry
with the temperature; therefore the tachyon pole puts a stridireaking diminishes, before it turns to the real axis, and
temperature limit to the validity of the proposed effective eventually ends at the two-pion threshold. At some value
treatment of the pion-sigma system. 1.317>2Mgg imagl f »>1.316 it touches first this axis, but is
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3 y - - - - - - symmetry breaking with realistic strength led to a rather
e spectacular change in this scenario. It is a valid question
. whether a smooth continuous deformation of the pole trajec-
tory connects the case of the explicit symmetry breaking
_ with the chiral limit.
In the region, when the pion mass is much smaller than
il the temperature for which the complex pole becomes purely
imaginary, one can find analytically the first pole in the
infinite sequence described above. Its location is given ap-
proximately aspi*~m(33(T)T/(132(T). In view of the fact
that T/®(T)~O(1), this pole goes faster to zero than the
pion mass. Our numerical study shows that the point where
the pole lands on the negative imaginary axis does not
0 05 1 15 2 25 3 35 4 change more than 10% between the pion nMaggy,.g and
Re po/fy the chiral limit. Therefore the interval of temperatures for
which the pole moves on the imaginary axis increases with
decreasing pion magsee Fig. 5. Eventually formgo=0 the
0highest negative imaginary pole stajgith zero residuumn
in the origin and the scenario characterizing the chiral limit
sets in smoothly.
“reflected” from it back into the fourth quarter. For higher For symmetry breaking much smaller than the parameter
temperatures it will have again a nonzero real part. characterizing the onset of the dynamical scaling in the
In order to understand what happens, it is convenient tghirally symmetric case one can even experience the realiza-
search directly for poles on the negative imaginary axis. Itjon of the scaling behavior.
turns out that already forrBg,/f,=3.01 one has an infinite To some extent the above complicated trajectory is to be
number of approximately equidistantly located poles alongaxpected, since it is highly “improbable” that the roots of a
this axis for finite temperature. Below we call the pole lo- complex equation would move smoothly to a specific point
cated the closest to the origin the' pole. Already at low (e.g., the two-pion thresholaf the real axis, irrespective of
temperature the distance of all these poles from the thresholle variation of its parameters. The limitations of the true
is much larger than that of the pole. This explains why the resonance interpretation of the pole will be discussed in
latter dominates nedf=0 the behavior of the spectral func- the next section, when the correlation of its location with the
tion, as will be argued in the next section. The distance furmeasurable spectral functign, will be discussed.
ther increases with the increase of the temperature.
It turns out that for the above quoted value of V. THE T DEPENDENCE OF THE SPECTRAL
2Mgo,imag/ f = the o pole and its mirror from the third quarter FUNCTION p,,
touch the imaginary axis exactly at the location of the high-
est (negativg imaginary o* pole at that temperature. The  The spectral function of the order parameter fields
result of the "o— o* " collision is the reflection of the two defined using the expression of the propagator in the physical
complex poles back into their respective quarters. half plane as
Further decreasingridg,/f , the pair of mirror poles ar-
rives onto the negative imaginary axis below the highest
imaginary pole(In Fig. 5 it is aboves™, since the negative
imaginary axis is directed upwarg@d.he colliding poles now
give rise to a purely imaginary pair, one member of which  The |eading order larghl expression of spectral function,
moves towards the origin the other one moving the oppositgtp=0, is given by
direction. The pole moving towards the origin collides at
some higher temperature with the oppositely moving genu- p(,(po,O,T)z)\ﬁd)z(T)lm b~ (po) /187
inely imaginaryc™ pole, and they are pushed back into the

Am p0/f1|:

Ag=400 %,
1} 3,
— 2mg =301 %
_— 2 W

1
!

1

'

|

1

'

1

1

W 1
1L I
]

1

1

I

'

|

1

FIG. 5. Trajectory of the comple# pole for various values of
2mgo/f . Note the tendency of the trajectory to approach closer t
the imaginary axis amg, decreases.

1
p(r(pO!p!T):_; lim lmGa(pO+i8!p!T)' (29)

e—+0

complex quarters as mirror poles. Eventually, the pole in the AR

fourth quarter will land on the real axis and moves up to the X (pé—mé(T))( 1- §R8b>(Po))
threshold forT* (mgg), where it is converted into a stable

particle pole on the physical sheet, as described earlier in this 7\Rq)2 2 2 2 2
section. In view of the multiple pole collisions it is clear that —3 M|+ (Po—Mg(T))

the stable highfFo particle is not directly related to th€

=0 complexo pole. AR > 2
In the chiral limit theo pole reaches the origin and de- x 36(|m b~(po))

scribes the phase transition restoring the chiral symmetry of

the model. This simple trajectory has been already discussetfe have seen that lim (py) #0 only for pg>2mg(T) if

in our previous publicatiof10]. The presence of explicit there is no stable particle pole below the threshold. Therefore

2 -1

(30
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FIG. 6. The scalar-isoscalar spectral function at various tem-

peratures. FIG. 7. The temperature dependence of the locations of the

maxima ofp, and Ofp(lr as compared to the two-pion threshold.

the spectral f_unctlop IS nonzero only fpg values above the not true since one can easily demonstrate the vanishing of its
threshold untllT_<T . For this reason the numerator anpl the Lasiduum forT=T*. The residuum of the stable pole ap-
second ferm in the denominator of Eq30), that is  pearing on the physical sheet far>T* continuously in-
Im b~ (po) goes to zero whepo— 2mg(T) +0. __ creases with the temperature.
The scalar-isoscalar spectral function is displayed in Fig. The near threshold enhancement of the spectral function
6. One notices the shift of its maximum towards the two-pionjs maximal atT*. WhenT>T*, the position of the maxi-
threshold with increasing temperature, though its width doeghum moves away from the threshold and its height dimin-
not decrease initially. Fof>T** the shape op, becomes ishes. This is consistent with the requirement arising from
cuspier. Finally, a very high value of the maximum is expe-the sum rule/dpypop,(Po) =1 in the presence of a stahte
rienced numerically around/mgo~1.07. Above this tem- pole with increasing residuum.
perature the value of the maximum gradually diminishes and The enhancement sets in gradually and Tor T** the
its location shifts increasingly farther from the threshold to-maximum ofp,, stays very close to the actual threshold po-
wards largem,. sition. We can argue rather convincingly for a certain physi-
For a qualitative interpretation gf, one verifies that for cal significance of T**, when displaying p;(po)
the temperaturg* ~ 1.074ng,, the first term of the denomi- Epa(po)/\/l—4mG2 (T)/poz. The argument for this operation

nator of Eq.(30) vanishes at the thresholth=2mg(T*), is the fact that the phase space volume is just proportional to
that is Eq.(26) is equivalent to the condition for the vanish- the factor divided out. In Fig. 7 one can follow the position
ing of the first term in the denominator of ERO): of the maxima ofp,, andp(l, relative to the two-pion thresh-
old as a function of the temperature. One sees that the posi-
6 - . - . 2 OA(T*) tion of maxfp,) touches the threshold only in a single point
)\_R_bo[sz(T )]1=br[2mg(T )]—§m=0- T=T*. On the other hand the position of njiaX(T)] ap-

proaches thg(T) rather steeply, but starting frofi=T**

h . h | ¢ h(3é) bblthe distance is found numerically always smaller than®10
Because the term containing the real part of the bubble |, cqnciusion of this section one sees that the qualitative

vanishes more rapidly at* aspo—2mg(T*) than the term  hanges in the spectral function can be well interpreted with
containing the imaginary part of the bubble, the behavior ofhe help of the scalar-isoscalar pole located in the lopger
the spectral function around the threshold is dominated byg|f plane. The threshold enhancement occurs in an extended
the imaginary part of the bubble p,(po,0T*)  temperature regionT** <T<T*. Any analysis attempting
~1/lmb” (pg) =111—4mZ(T*)/pj]*2 This is formally  the reconstruction of the in-medium resonance from some
the same behavior exploited by Hatsuetaal. [3] when ar-  experiment is necessarily based on the behavior of the scalar-
guing in favor of the generic nature of the threshold enhanceisoscalar spectral function. From the above discussion it is
ment phenomenon. It is worthwhile to emphasize, howeversuggestive that by the enhanced signal coming from the
the obvious fact that according to our calculation the spectraneighborhood of the threshold one would be led to the con-
function has nothing to do with the imaginary part of the clusion that in the temperature range* <T<T* the “o”
second sheet pole which is a purely réahphysical quan- ~ moves together with the two-pion threshold. But no trace of
tity in this temperature regime, and the singular behavior i€2ny Lorentzian resonance shape can be detected in the spec-
due to the fact that the pole along the unphysical real axi§al function.
moves towards the threshold wh&p-T*.

One might suspect that the coincidence of the pole posi-
tion at T=T* with the threshold would lead to a stronger In this paper we have presented all the technical details of
~ 8 po—2mg(T*)] singularity for this temperature. This is analyzing the pole trajectory of the propagator describing the

VI. CONCLUSIONS
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fluctuations of the chiral order parameter in the linear sigmaelow, the approximately Lorentzian shape of the spectral
model with the help of a leading largéapproximation. Itis  function will be distorted; in particular it is losing its sym-
worth noting that the propagator of the composite fieldmetry. With considerable compromise one can extend the
[#2(x,t)]* has the same poles as that ¢fin the broken  g-particle interpretation of the second Riemann sheet pole
symmetry phasésee Ref[10] and references therginDe- up to T** .
tailed mapping of the trajectory under the variation of the = The complete loss of this characteristic means that no
temperature/baryonic density as well as the parameter cofiesonance interpretation can be given to the pole in the
trO”ing the eXpIiCit breaking of the chiral Symmetry leads UST** <« T<T* range. On the other hand any phenomen0|ogi-
to conjecture that generically the real part of the complexcal analysis of a particle signal proportional to the spectral
pole will decrease below the two-pion threshold energy withfunction will be peaked near the two-pion threshold in the
a finite imaginary part. The application of higher order cor-ahove temperature interval. The real-time propagator in this
rections in the largeN expansion are expected to give no channel will be dominated by the contribution of frequencies
more than 25% correction. Therefore only quantitativesnghﬂy above Ing(T). In this sense an increasingly narrow
change may happen in the scenario presented in our papey; signal can be detected at~2mg(T) in the final two-pion
Our main result is the prediction that in a whole tempera-pectra.
ture range ** <T<T* the maximum of the Spectral func- Above T* it is a stable phys|cab- partide, which reap-
tion is rather c!ose to the actual location of the t_wo-pionpears_ Accordingly, the peak of the spectral function dimin-
threshold. In this sense one can speak about an interval gdhes. By the increased effect of the phase space factor its
threshold enhancement. The point of maximal enhancememfaximum will be reached again at frequencies farther above

is T=T*. _ _ the two-pion threshold.
The usual connection between the second Riemann sheet

pole and the spectral function is restricted to the temperature
rangeT<T**. In this region the spectral function has an
approximately Lorentzian shape; its maximum is centered
nearly at the location of the real part of the pole, its width  This research has been supported by the research contract
scales with its imaginary part. When approachirig from  OTKA-T037689 of the Hungarian Research Fund.
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