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A different lattice fermion method is introduced. Staggered domain wall fermions are definattit 2
dimensions and describd' 2lavors of light lattice fermions with exact U(X)U(1) chiral symmetry in B
dimensions. As the size of the extra dimension becomes lafgehigal flavors with the same chiral charge are
expected to be localized on each boundary and the full K SU(2") flavor chiral symmetry is expected to
be recovered. SDWF give a different perspective into the inherent flavor mixing of lattice fermions and by
design present an advantage for numerical simulations of lattice QCD thermodynamics. The chiral and topo-
logical index properties of the SDWF Dirac operator are investigated. And, there is a surprise ending.
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I. INTRODUCTION tween the remaining doubler stafd®9—21]. In the spirit of
staggered fermions, our domain wall construction presented
Lattice fermions are elusive. They not only present enorhere will preserve some exact chiral symmetry at agyat
mous challenges to numerical simulations of lattice QCDthe cost of introducing flavor mixing between light fermion
and other strongly interacting field theories but also pose in @oublers. Flavor symmetry violations should be exponen-
most blatant way the problem of nonperturbative regularizatially suppressed in theg—< limit. A preliminary version
tion of chiral gauge theories. Obviously the two problemsof this work was presented {i22].
have a common source. In the past several years enormous Staggered domain wall fermionSDWP are similar to
progress has been made in this direction. Interestingly, extrBWF in the use of exponential localization of surface states
dimensions have been used again in theoretical physics, exs counter unwanted features of lattice regularization. In our
cept this time the dimension is a tool to generate the correatase, this means disentangling the inherent flavor mixing be-
low energy physics. tween light doubler states. As a result, even at fihife they
Domain wall fermions DWF) were introduced if1-6].  have an exact U(2¥U(1) chiral symmetry very much like
A large volume of work has followed since. The reader isstandard staggered fermions. This property makes them at-
referred to the annual revieW8-16] and references therein. tractive for QCD thermodynamic simulations. Ag— o the
The DWF lattice regulator begins by defining a massive Wil-light surface states in the theory are expected to recover the
son fermion[17] in 2n+ 1 dimensions. If the boundary con- full SU(2") x SU(2") chiral symmetry. It must be noted that
dition at the edges of the extra dimension is free then chiraSDWF (and Wilson DWF as wellmay not be able to de-
surface states develop with the plus chirality fermion expovelop light states if the coupling is extremely strong. De-
nentially bound on one wall and the minus chirality fermion pending on one’s perspective, SDWF combine the nice prop-
on the other wal[18]. The two chiralities have an overlap erties of the domain wall method and staggered fermions.
that breaks chiral symmetry. As the sike of the extra di- For simulations of QCD thermodynamics with standard
mension increases the overlap tends to zero exponentiallpWF the reader is referred {@3-26.
fast. AsL,— the theory has a single massless Dirac fer- We would like to draw the attention of the reader to a
mion in 2n dimensions. Obviously, this construction ad- more subtle issue in this paper that might otherwise be over-
dresses both problems mentioned above. looked. In most of what follows, the Saclay basis proposed
Since the DWF construction starts with massive Wilsonby Kluberg-Sterret al. and predecessof27-29 is used for
fermions, it is easy to see that for any finltg there can be its nice spin-flavor algebra. While this is formally equivalent
none of the exact chiral symmetries available in the naiveao the standard bases used for numerical simulafi8as31],
lattice fermion formulation. In return for this shortcoming, the transformation is gauge dependent and quite compli-
flavor mixing between doubler states inherent in naive fercated. However, the conclusions we draw from our analytic
mions are pushed up to the scale of the lattice cutoff, makingvork should be basis independent. The construction of ac-
them irrelevant. Early in the development of lattice field tions suitable for numerical simulation will be discussed at
theories, the staggered approach to lattice fermions was deke end of the paper.
vised to preserve some of the exact chiral symmetries of One interesting result is that it may be possible to do
naive fermions. This meant there was still flavor mixing be-numerical simulations directly in the Saclay basis when
Pauli-Villars fields are introduced. This applies equally to
staggered fermions as well as SDWF and may eliminate a
*Electronic address: gfleming@mps.ohio-state.edu serious obstacle for using the Saclay basis for simulation.
"Electronic address: vranasp@us.ibm.com The reason is that the gauge field dependent transformation
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that accompanies the basis change will cancel as part of the 1

subtraction. We believe this is yet another example of the Se=8> [1— N.ReTu p} 3

potential usefulness ofloubly regularizediattice fermions P ¢

[25]. . o .

For a semi-infinite extent in the extra dimension, theiS the standard plagquette action wish=2N./g§ with g the

theory has four chiral fermions with the same chiral chargedattice gauge coupling antll; the number of colors. The

and is anomalous. To construct an anomaly free theory, wiermion action is

must use such “quadruplets” with charges as dictated by the

corresponding anomaly cancellation condition. This is com- .

pletely analogous to the case of Wilson DWF. Of course, in Se=— >, W(y,s)DHy,sy’,sHW(Y',s')  (4)

order to simulate a two flavor theory, a dynamical algorithm vy'.ss’

which effectively takes the square root of the fermionic de-

terminant should be used. Further in the future, nondegenewith the fermion matrix given by

ate quark mass matrices could be explored to simulate the

four lightest quarks. L , , o, ,
The paper is organized as follows: The SDWF Dirac op- De(y.siy’,s")=8(s=s")D(y,y") +D(s,s") 8y —y’)

erator and action are defined in Sec. Il. The symmetries as- (5

sociated with the SDWF action are presented in Sec. Ill. The " o
flavor content is discussed in Sec. IV and the free propagatd¥hereD(y,y’) is the standard staggered action in the Saclay

is calculated in Sec. V. The transfer matrix along the extr2@Sis with the typical staggered mastistance zerpset to
direction is given in Sec. VI. The promised surprise is in SecZ€r© and a different masglistance one proportional to

VII but the reader ought to work through the preceding sec{1/@s—Mmo) added as described below. Here are the expres-
tions first. The transcription to the single component basisSions in a chiral basis inrg=4 dimensions. Extensions to
problems and future directions are presented in Sec. VIII. ther even dimensions are straightforward:
discussion about alternative actions is given in Sec. IX. The

paper is concluded with Sec. X. 5 ( B C )

ct -B ©

II. STAGGERED DOMAIN WALL FERMIONS

mg 1
AMVM+——5—

In this section the SDWF Dirac operator and action is B=—E (195, >~ 7a| @
o

presented in the Saclay baf&/]. Here, we show that in the
free theory light fermion fields localize exponentially along
the extra direction with suppressed flavor mixing. 1
The SDWF partition function is C=-7 > 7 (), 8
Y23

- W T -s 1 R
z ﬁdu]j[dmdmj[d@ db] e = @ Au(Viyy" )= gLy +u=y)V,u(y)

U, (x) is the gauge fieldx is a site coordinate vector in the
2n dimensional space ang=1,2, --,2n. ¥(y,s) is the
fermion field and®d(y,s) is a bosonic Pauli-VillardPV)

+8(y—p—y)Vi(y)—28y-y)], (9

field. y is a hypercube coordinate vector related to the site o1 A~

vector x by x=2y+O+A where O is a 2n dimensional VulV3y Y )_Z[a(w—'“_y WVulY)

binary vector indicating one of the?2 possible origins of the .

hypercubic structure anélis a binary vector which indicates —8(y—p—y")Vi(y)] (10

position within the given hypercubge This implies the rela-

tions y=(x—0—A)/2 andA=[(x—O)mod2] between the where o, are the Pauli matrices and, is the identity.
vectors.s=0,1,... Ls—1 is a site coordinate in then2-1 v (y) are the gauge links between hypercubes related to the
direction, wherel_¢ is the number of sites in this dimension. U,(x) links of the gauge action byV,(y)=U,(2y

The actionSis given by +0)U,(2y+0+p). The parametemy is the mass repre-

senting the height of the domain wall. Thes-dependent

_ - part of the Dirac operator is exactly as for DWF but with a
S=S(B,Lsmo,my ;U W, ) different mass mixing. Here we consider the action f8r 2
_ . . degenerate flavors. For nondegenerate flavors the action is
SalBiU) + SelLs,mo, my W, W, V) similar and can be constructed according to the rules outlined
+Spy(Ls,Mg; @1, @,V) (2) in Sec.III
where Dt=Dsg+H(my), (12)
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1
— PRré(1-9"), s=0,
as
1
Ds(s,s")={ a—[PR5(s+1—s’)+ P o(s—1—-s')], 0<s<L¢ -1 (12
5
1
—P_ 8(Lg—2-5"), s=Ls—1.
\ 35
|
The mass mixing term depends to whethgiis even or odd. As with DWF, the PV action is designed to cancel the

For oddL we have the following purely imaginary terms: contribution of the heavy fermions. This is necessary be-
cause the number of heavy fermions~id_ g and in thelg
—oo limit they produce bulk type infinitied3,4,32,33.
There is some flexibility in the definition of the PV action
since different actions could have the samg-oo limit.
+PLo(S)6(Ls—1-8")] (13 However, the choice of the PV action may affect the ap-
roach to theLs—o limit. Here the same approach as in
4,35 was chosen. The;=1 case is exactly the quenched
Cttheory(infinitely massive fermions The PV action is

1
H(ms;s,s")=— a_5i m¢[ Pro(s—Ls+1)58(s")

wherem is the degenerate mass of the flavor states localize
on the domain wall. For evebhg more care must be used in
constructing the mass mixing term to preserve the exa
U(1)xU(1) symmetry(see Sec. ll. In that case the mass
term does not just involve the boundarysat0 gnd Ls—1 Sev= > dY(x,85)Ddmi=1](x,s:x",s")

but also ats=1 and Ls—2. Furthermore notice that the x.x'.s,s'

terms are real. The different “reality” of the mass term fay X D(x'.s') (19)
even or odd is just a reflection of a staggered wave function =

(s—s') ;
phase of the form - The everl; mass term is The symmetries and detailed properties of the SDWF

Dirac operator will be discussed in the rest of the paper.

H(m;;s,s')=— E[PLR‘S(S) S(Lg—2-5") However, as a first check we verify that in the free case the
as SDWF Dirac operator indeed describes four flavors with the
+P 8(s—1)8(Ls—1—5') chiralities localized on the opposite walls. Following identi-
cal steps as ifl] we go to momentum space and demand
+PRrré(s—Ls+2)8(s) that in order for light modes to exist there must be a wave

P B(s—Lo—1)8(1—5"]. (14 function such that

The chiral and flavor projectors are De(k,sik’,s") p(k',8")=Dpaid k,s;k’,8") (K',S").

li Vs 1i 55
PrL= Pi:T’ Fri=F:= > In essence this equation demands that the extra term in the
Dirac operatoD* cancels the flavor breaking terB From
the above equations it is easy to see that leads to
PrLrt=P--=(P.®F.). (15 q y &Q
The gamma matrices are taken in the standard chiral basis. 1 , o
For example 2=4 dimensions they are chosen to be ; :;1_5[P+5(‘°’Jrl §')+P_d(s—1-5)]
0 Ik 3 ! +3 (75®5,)b,8(5—8') | b(k,5)=0
= ’ = 112; ’ = y S—S ,S -
yMULO M a=l1 ¢ ’u755,uu
20
(1 0 ) (20)
= 1
57 lo -1 (16) where
with o, the Pauli matrices. The flavor matrices are defined 1—cok,,—my+ 1/ag
as usua[27] o= = 5 (21)
£,= ) (17) _ . _
The P.. projectors in thes-dependent part commute with the
and notations such ag{®&s,) mean (ys®§&s¢,). flavor breaking part so that each may be simultaneously di-
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agonalized. This constraint alone effectively restricts the al- as=1, T, (1-cosp )2 =n
lowed projectors to the ones chosen here. mT — &
The solution is separable amf(s) is thes-dependent part

d(S)=(dyy b, p_1,dp__) (22

where ¢_  (S)=P_, ¢(s), etc. In this notation, we can
write

> (y5®&s,)b,= | @3
I b

bt

where FIG. 1. From Eq.(29): b? at the origins of the five Brillouin
zonesn=[0,1,2,3,4 plotted vs.m,.

bj=icfb;, j=1,2,3, bs=b,. (24 _ _ N

same as for Wilson DWF. However, this condition does not
Solving Egs.(20) relating nearest neighba sites is a bit ensure that the doubler modes are non-normalizable for all
complicated because the flavor components mix and is not dfor example, fon=1 andmy= 1.5 both Eqs(30) and(31)
interest for this discussion. On the other hand, the solutionare satisfied making the®1Brillouin zone doubler wave
to these equations after iterating twice are simple. &9r functions normalizable. The range wf needs to be further
=1 we have restricted. The following condition ensures that only tH& 0

L Brillouin zone wave function is normalizable
¢.+(sx2)=—bb'¢. (),
(25) 0<my<1. (32

¢+ (s+2)=—Dbb. (s). _ N N
The above is presented graphically in Fig. 1. It is straightfor-

For free fermions[HFr]=0 andbb®, b'b are both propor- ward to extend these results to the more general case of O

tional to the identity with eigenvalue <as<l1.
A(bb")=x(bTb)=b?, (26) Ill. SYMMETRIES
When constructing the SDWF action, it is important to
b= \/E bi. (27) preserve the symmetries of the massless staggered action
K [19,36. Of course, adding any new terms to the staggered

action will break some of those symmetries, so we have to

If we require that find new symmetries that involve the extra dimension. The

b2<1 (29) symmetry transformations for the SDWF action in the Saclay
basis of Sec. Il are presented below.
then for a semi-infinites direction,s=0, only ¢, . is nor- U(1)ex U(1), chiral rotations The presence of this sym-

malizable, while¢ _ .. is not. However, this is not enough to metry is one of the main motivations of this paper. The re-
ensure that the doubler modes are not present. We must fugidual chiral symmetry of staggered fermions involves mak-
ther require that the above condition excludes momenta Wltlmg separate chiral rotations on even and odd sites. Terms in
components larger or equal ta This can be seen by writing D+ are not invariant under these rotations unless we extend

out Eq.(28): the notion of even and oddhcluding the extra dimension
The operatosS is defined as
1
=7 % [(1-cok,)+(1-mp)?<1. (29 Seu=(—1)%8(s—8") 33

For momenta near the origins of th&" Brillouin zone and then the extended even or odd projection operators are
(wheren is the number of momentum components near ~ defined as
this gives .

(1-mg)?+n(1—mg)+n<1. (30) Pe=5[(181)+S(v5@85)],

Whenn=0 the sufficient condition is (34)

}_\

0<my<2, (31) Po E[(MM) S(y5®E&s)].
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Using these projection operators the chiral transformation is IV. FLAVORS OF SDWF

S In this section the SDWF flavor identification is made in
V(y)—(e'%Pg+e P )W(y), (35  the Saclay basis. From Sec. Il we see that for a finite extra
direction withLg sites theP, components of all flavors are
— — P localized arounds=0 while the P_ components are local-
W(y)—W(y)(e ToPete 7P,). ized arounds=L¢—1. However, as already mentioned in
Sec. Il one of the main goals of this paper is to preserve
Rotations byzr/2. These rotations are in planes perpen-most of the staggered symmetries and particularly the
dicular to the extra dimension and the transformations are theg(1).x U(1), chiral symmetry. For example, to generate the

same as the original staggered ones. four-dimensional flavor componengswith P . , we should
u-parity. These transformations reflect the21 space- choose s near zero. If s=0 is chosen, P, q(y)
time axes perpendicular to the spacetime axis ingthdirec- =PV (y,0), then these components also belong toRpe

tion. D* is not invariant under this symmetry unless we alsopart of the fermion field. Therefore, to project flavor compo-

reflect thes direction as well. If the reflection operator is nents withP_ ., we are not only restricted to choosenear
defined as Ls—1 but also chooss so these components belong to the

P, part of the fermion field. Then, componer®s. . q(y)
Reg=08(Li—1—s—5') (36) will not mix even .for finiteLs because of the even or o_dd
’ symmetry. In this example, we would like to pick
o P_.q(y)=P__ V¥(y,s) with s being even and nedrs—1.
then the transformation is So, if L is odd thems=L¢— 1 is a good choice. However, if
L, is even, then we should choose Ls—2 instead:
‘I’(%S)H(YM®§5)R5,S"I'(Y’S'), _

(37) X\ X\ |{(o
V(y,8)—W(y,S)Re o 7,® ). 2 0 z
T 0 T
Shift by_ one lattice s_pacimgThe my— 1/ag term in_ the z \x) \0)
SDWF action breaks this standard staggered fermion sym-
metry at the expense of absorbing the renormalization of the
flavor breaking term. That these terms are additively renor- (w \ [0 \ (x\
malized in the interacting theory follows from the work of
Mitra and Weisz[37]. Nevertheless, interesting methods to X 0
alleviate the breaking of this symmetry are discussed in Sec. T z 0
VIII. This symmetry relates to interactions inside a hyper- \ ) 0} }
cube which are essentially nonphysical. We feel that the z \ \ =
breaking of this symmetry is a small sacrifice, but the issue
certainly can and should be debated. : : . (39)
The symmetry transformation for the casg=1/as is ' ) ) '
given. Already for staggered fermions, the symmetry trans- = +
formation is complicated in the Saclay basis due to the im- T T 0
posed hypercubic structure of the formulation. For SDWF,
there is an added complication. Some parts of the transfor- z 0 z
mation require a reflection in thedirection 0
1 T T 0
V() —5L(10E,) ~ (7,50 &) RIV(Y)
1 T 0 z
508 &)+ (7us®E)RIV(Y+ ), T T 0
(39 T T 0
— — 1 — N X 0 X
W(y) =V (y)SL(18 &) = R(y5,8 ) ]+ V(Y +p) - - " - " .
1 v PY PV
XS (1®£,) + R(75,@s)]
Using the block notation of Eq22), an example for even
wheres indices have been suppressed. L, is sketched in Eq(39). In this equatior?’ (s=0) is at the
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top and¥(s=L¢—1) is at the bottom. The capital letters where|b| is given in Eq.(27). Fors—s’ even andn;=0 the
denote one of the correct choices. On the other hand, i  propagator has no flavor mixing except for tg term in
odd, e.g.L;=3, then Eq. (41). In this term e(odd) breaks flavor in exactly the
same way as for free staggered fermions. An exact

X X 0 U(1)XU(1) symmetry is maintained. The matrix coefficient
G35 vanishes exponentially fast with for s, s’ near oppos-

X 0 X ing boundaries and therefore as— with m;=0 the

z 0 z propagator anticommutes withy{®1) and has no flavor
mixing provideds—s’ is even. This is in accordance with

z x the discussion in Sec. IV. F&—s’ odd more severe flavor
mixing is present.

z 0 z TheG;, G, andG; terms are

z z 0 L,

. . 0 (40 Gy(pis;s) =i DS Dy, sinp,

= + M
x 0 z X[P,G(s,8")+P_G(Ls—1—sL—1-5"],
(44)

z T 0

T 0 T G,=—i6" [P, 5(5,0)G(Ls—15")

X 0 X —68(s,Lq—1)P_G(Lg—1L—1-5")], (45

X X 0

i - T i G3=i"5"DpP_ [bG(s,s')+i6.(S)G(s—15")]
v PY P,

+P_[bG(L—1—s,L—1-5")
We note that other choices for selecting flavor compo- Fi10-(s)G(Ls—2=sLs—1=s)], (46

nents near the boundaries are certainly possible. h
where

V. THE SDWF PROPAGATOR
6.(s)=1, (s#0)

The propagator in the Saclay basis in momentum space
and formf=0 has the form 6,.(s)=0 (s=0)

D (s,5')=Ge(s—s')+Gze(s—s' —1). (41
! s 0_(s)=1, (s#L.—1) (47)
For m;#0 andL = multiple of 4 has the form
0_(s)=0, (s=Ls—1).
D 1(s,8')=[G;+mM;G,]e(s—s')+Gze(s—s' —1).

(42) There is an exact correspondence with the terms of the stan-

dard DWF propagator. In the notation [#4,35 the symbol

For Ls= even but not multiple of 4, the propagator has thecorrespondences between SDWE and DWE are

same form as in Eq42) but with m;— —m;. For Lg=o0dd
them; term is more complicated and is not given here. Nev-
ertheless, based on Secs. Il and Il one can see that the form
is similar.

Gi(p;s,s’), Gi(p;s,s’) and Gg(p;s,s’) (p is the mo-
mentum are proportional to the identity in their flavor indi- The reader is referred there for the detailed forms.

.
G(p:s,s')—G,(p:s,s’), b—b, p—>Zp. (48

ces. Also,G; anticommutes with 5®1) while G, andG3 As can be seen the decay coefficient is now in termis of
commute with ¢s®1). The flavor mixing is in the function given in Eq. (27) instead of the DWFb=% ,[1-cop,]
€(s) +1/as—m,. The localization condition fom, is over half
the DWF rangdsee Eq(31)]. Also, for L odd, the effective
e(s)=(1e1), (seven massmg; has the same general form as in Wilson DWF
(43)  [34,39
E (1®§5,u)b,u
M 2n 2 L
G(S)ZT’ (sodd) Mef= 1_Tm° (mi+|1—mg|"s). (49
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VI. THE SDWF TRANSFER MATRIX

The SDWF transfer matrix in the Saclay basis is pre-

sented. We can use the technique of Neubef88} to re-

PHYSICAL REVIEW D66, 114503 (2002

VII. ABOUT THAT SURPRISE . ..

At this point the reader must be wondering: “What is the
spectrum of the transfer matrix?” and “What is the corre-

write the free SDWF determinant in a form that allows for asponding Hamiltonian?” Here is where we were a bit sur-
quick identification of the transfer matrix. A complete Hamil- prised. Just in case the reader will latafter reading this

tonian analysis is beyond the scope of this work.

section be tempted to claim that there is no surprise, she or

After interchanging various rows and columns of thehe is invited to guess the;— 0 limit Hamiltonian as well as
SDWF matrix, the determinant is equivalent to the determithe generahs spectrum ofT2.

nant of the matrix

@ Bo
B1
a_» (50)
BL-1 a1
where all of theag and B are the block triangular matrices
-B 0 llag —C'
=\ ¢ qpm) Pl o &) ©Y

Forag g and Bq, l/ag is replaced with—u/as sou is a
parameter that controls the boundary conditiqus: =1 for

We find, after some algebra, the following Hamiltonian
Hg corresponding to thes— 0 limit of the transfer matrix

lim —T?=e 22",

ag—0
Ho=—(ys®1)
1
5 % A, +mg C
X 1 . (57
t
_C E % AM"'mO

The first surprise is thatl is exactly diagonal in flavor. It is
almost, but not exactly, the same as the standard overlap

(antperiodic andu =0 for free. This parameter is used only HamiltonianH,,, asA,, has a factor of; compared toC.
for the derivation of the transfer matrix and it is not neededNevertheless, becaust, is diagonal in flavor, the standard
in the theory. In particular, the reader is cautioned againsinachinery of DWF can be directly applied.

usingu as a mass parameter since it is inconsistent with the  For example, let us consider the spectruntgf Follow-

rules of Sec. IV. The definitions @&,C are given in Eqs(7)
and(8).

In this notation, following Neuberger’s construction leads

to the SDWF determinant
D= (fixed sign(deB/ag)‘s

w0y (1 0
(0 1)_T Ls(o _M” 52

and the SDWF transfer matrix identification

X det

B~ Yas B IC
T:_(CTB-1 aS[CTB-lc—B])' ®3
We can easily check that
[C.(1©&5)]=0, {B,(1©&5)}=0 (54)
and as a result
{T,(1®&5)}=0. (55

Also sinceBT= —B we can see thaf is also anti-Hermitian

TH=-T. (56)

ing methods identical t63,4,32,33 we find that

u
HO(U):O = ulAu+vTAv—2my=0. (59

Because the matriceé(y+,&—y’)vﬂ(y) are unitary the
range for which this equation can have a solutifor all
Brillouin zones is
0<my<2 (as—0). (59

Formg in the above rangkl, can have zero eigenvalues that
via the overlap formalism correspond to a change of index
and to exact and robust zeros of the fermionic determinant.
This can also be seen graphically in Fig. 2. The background
field configuration is a smooth gauge field that has nontrivial
topology[32,33. The plaquette value for that configuration
[i.e. the sum in Eq(3)] is about 0.05. For the rest of the
paper we will refer to this configuration as thastanton”
configuration.

The crossing diagrams were done for fermions in the
Saclay basis with gauge field§,(y) defined on a 2 lattice
of hypercubes. Since no attempt is made here to make a
connection with the topological charge of the underlying
gauge configurations ,(x), the reader can regard the gauge

This is different from Wilson DWF and gives some idea why fields as examples “pulled out of a hat.” All numerical

solving the zero mode problem in E5) simplifies when

analysis was done by full diagonalization of the relevant ma-

solving for the field two sites away. Obviously, standardtrices using theApPAcK libraries and an IBM-T20 Think Pad.

transfer matrix manipulations should be done with the Her-

However, numerical simulations are done at nhonzgy0

mitian transfer matrixT2 which corresponds to a Hermitian typically atas=1. In standard DWF there is an exact con-

HamiltonianH.

nection between zero eigenvaluedf and unit eigenvalues
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FIG. 3. A\{m VS Mg for as=1 and an SB) “instanton” back-
FIG. 2. The spectrum oH, vs m, for an SU3) “instantorf  ground (plaquette~0.05) on a 2 lattice of hypercubes. The dia-
background on a 2lattice of hypercubes. monds represent eigenvectors Bf with chirality +1 while the
pluses with—1. All eigenvalues are fourfold degenerate and are
of the transfer matrix at angis. This correspondence does indistinguishable by the graphics. For an example please refer to
not hold here. As a result the analysis is more complicatedlable I.

In other words ] .
occurs here as it reassures us that on a given boundary of the

i T2)| — ; _ extra dimension there are four flavors of light chiral fermions
leig=T5)[=1 # eigHo)=0 ¥ as#0. (60 b e same chiral charge.

For a very rough background gauge fieldlaquette
From Egs.(55) and (56) we deduce that the spectrum of ~0.85) the crossing diagram is given in Fig. 4. The eigen-

_,TZ is strictly real, positive and doubly degenerate becausg,|es are doubly degenerate and very nearly but not quite
T is anti-Hermitian and anticommutes wWith&&s). In 2n s5ur-fold degenerate. The nondegeneracy is small and almost
=2 dimensions that would be the end of the story becausggyisible. One of the worst cases is presented in Table II.
there are only 2=2 flavors. Two exact zero modes are pro- The |ack of exact fourfold degeneracy should be the subject
duced for every crossing in the Hamiltonian spectrum. Ing¢ fyrther research but it is obviously small even on this

2n=4 dimensions there are"24 flavors and we do not exireme background gauge field that is unlikely to occur in
have an exact correspondence between the degeneracy of figrent numerical simulations of QCD. Furthermore, it

unit magnitude eigenvalues dfand the number of flavors. \yoyid be interesting to study the transfer matrix in=26
This is problematic since this is a basic and defining propertyjimensions, where the required near-degeneracy should be

for a chiral theory. , 2", to see if the same behavior persists.
For the“instanton” background the eigenvalue crossing  Even with the lack of exact fourfold degeneracy, if we

diagram of choosem, away from the crossing region then the fermion

Mm= Iog[spectrum—Tz)] (61) TABLE I. The near zero spectrum of log{T?) for my=0.2 for
an SU3) “instanton” background on a ®lattice of hypercubes.

VS mg is given in Fig. 3 foras=1. A closeup of the region

: . o log\(—T?)
aroundmgy=0 is shown and the eigenvalues are marked de-
pending on the sign of thg(ys®1)q whereq is the corre- 0.2 —0.0408683
sponding eigenvector. All eigenvalues in Fig. 3 are fourfold0.2 —0.0408683
degenerate. The symbols for each eigenvalue are there bR —0.0408683
are literally overlapping. An example is given in Table |. 0.2 —0.0408683
Also, the reader should observe that in Fig. 3 the transfe0.2 0.327367
matrix eigenvector chirality does follow each flow line. This 0.2 0.327367
ensures that the four modes are of the same chirality angd.2 0.327367
therefore a crossing should correspond to a net change ¢f2 0.327367

four in the index. It is of fundamental importance that this
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FIG. 4. \ym VS M, for as=1 and a‘rough” SU(3) background
(plaquette~0.85) on a 2 lattice of hypercubes. All eigenvalues are
twofold degenerate and are indistinguishable by the graphics. Al
though there is no exact fourfold degeneracy the graphics can
hardly distinguish the nondegeneracy. Please refer to Table II.

determinant will still have four exact zeros. This will only
break down ifmg is chosen between the two nearly degen-
erate sets of crossings. Of course, based on DWF studies
lattice spacings used in today’s simulations one expect
dense crossings in the usable rangengf Then there will be
configurations for whichm, is between double crossings that
have split. As far as topology is concerned this will break

FIG. 5. Ay VS. my for as=1 and an SB) “instanton” back-
ground(plaquette~0.05) on a 2 lattice of hypercubes.

crossings correspond to small instantons and are unphysical
we would expect that as the lattice spacing becomes smaller
such configurations will become less important.
Nevertheless it is instructive to further study the spectrum

%f[T for unit magnitude eigenvalues. Becauseontains the

verse ofB it is hard to study analytically. However, in the
Subspacé\ | =1 we can proceed as [13,4,32,33. In par-
ticular we find that

flavor to some degree. Nevertheless, since in DWF the dense T( ! = tiT( u) = Hp< u) =0 (62
v v v
TABLE II. The near zero spectrum of log(T?) for my=0.3 for

a‘rough” SU(3) backgroundplaquette~0.85) on a 2 lattice of where
hypercubes. 1+agiB asC

> Hp= T . (63
mo logh\(—T%) asC —1—asB
0.3 —0.290045 So, we can study the crossings of the spectrum of this
0.3 —0.290045 pseudeHamiltonianH,. The crossing range can be deter-
03 —0.286291 mined as before by using the unitarity of the matriéy
0.3 —0.286291 ~ ' ;
03 0262633 +u—y")V,(y). There are two crossing ranges
0.3 —0.262638 2 2
0.3 —0.261551 o< m0<2 anda—< m0<a— +2. (64)
0.3 —0.261551 ° °
0.3 0.0260566 For the“instanton” background the crossing diagrartier
0.3 0.0260566 all Brillouin zoneg are shown foas=1 in Fig. 5,a5=0.5 in
0.3 0.0272779 Fig. 6 andas=0.25 in Fig. 7 and the reader can see the
0.3 0.0272779 agreement with Eq(64).
0.3 0.414225 But this is not all. We had a hard time at first because we
0.3 0.414225 used SW2) gauge fields. And the spectrum was always inex-
0.3 0.414597 plicably not twofold but fourfold degenerate, fany gauge
0.3 0.414597 field (smooth or roughThis is the second surprise. And it

will not be investigated further here. After all, what good is a
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L L L group. By now, the reader has seen the advantage of this
approach in determining the properties of robust zeros of the
transfer matrix. In the past, technical problems have disfa-
vored direct simulation of dynamical fermions in this basis in
lieu of the simpler single component basis, where there is
just a single fermionic spin-flavor degree of freedom per site.
In this section, we will first discuss the construction of the
SDWEF in the single component basis with an emphasis on
preserving, to the maximum extent possible, all of the sym-
metries of Sec. lll. One consequence is that the spin-flavor
algebra, i.e., 5®1)2=(1®1), will be broken and only re-
covered in the continuum limit. Next, we will discuss a tech-
nigue where the spin-flavor algebra is restored at the expense
of some lattice symmetries. We believe these lattice symme-
tries can be restored by proper stochastic averaging. Finally,
we will discuss a new algorithm based dauble regulariza-
tion for simulating staggeretand SDWH fermions directly
in the Saclay basis. As is typically the case in our field,
performance during numerical simulation of QCD will likely
0 5 determine which of the three proposals survive. We feel that
m, further research in this area is needed.

FIG. 6. \ym VS Mg for a5=0.5 and an S(B) “instanton” back- A. Single component basis without projection
ground (plaquette~0.05) on a 2 lattice of hypercubes. ) . o .
Let us first review the staggered action in the single com-

paper that does not leave some mystery behind. In any cag®nent basis and the transformation connecting it to the
this property is likely linked to the fact that 1 is part of the ~ Saclay basis. From Eq&) through(10), with my= 1/as, the
groups SW2), SU4), ... butis not part of the group §8),  equivalent 2 dimensional Dirac operator is usually written
etc.
DK X(X) =2 3 (~ 1) [, (X) S+ A= X')
X, X ) x(x")=z - X) 8(X+ u—X
VIIl. THE SINGLE COMPONENT BASIS AND X 2 H” H
SIMULATING SDWF

_ . . _ —UL(x=m)d(x—p=x)Ix(x') (65
In the previous sections we discussed the properties of the
SDWEF Dirac operator in the basis proposed by the Saclayith the components of the binary vectgrgiven by

T T T T T T T T T T T T
» -

71(x)=0,

72(X) =x1(mod 2,
(66)

Nan(X) =X+ - - - +Xzn-1(mod 2.

In the free theory, the unitary transformation from single
component site-wise fieldg(x) to the hypercubic fields
Y(y) is simple. As in Sec. Il, if we label sites on the hyper-
cube starting at the origi@® by a binary vectoA the trans-
formation is

-2

YoalY)<T ga ax(2y+O+A) (67)

-4

with the rows of the 2"x 22" dimensional matrixX" indexed
by the various combinations of spim and flavora indices

0 5 o} .
' and the columns indexed by the corners of the hypergube
Mg Specifically, the components of the frEemay be chosen as
FIG. 7. \ym VS M for a5=0.25 and an S(B) “instanton” back- AL A Ay
ground(plaquette~0.05) on a 2 lattice of hypercubes. Foaa=[71"72°X - X Y50 aa (68)
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where the row indexx and column indea of the 2" dimen- (—1)°® )
sional representation of the Clifford algebra are interpreted (ys®1) lﬂ(Y)HW €4y B, X XH)
as spin and flavor indices. T ML Hen

When the staggered action is made gauge invariant, dif- X oo ><Eﬂzn(x(znf1),X(2n))X(X(2n)) (73

ferences will arise between the two formulations. In the
single component basis, fermions are only coupled to nearest _ . _
neighbor sites, so simple links are all that is needed to prewheree, ..., is the totally antisymmetric tensor and the
serve gauge invariance. Of course, longer paths could bsummation over the 12 site vectorsx®, ... x®" is im-
used to link sites and indeed are often used to implement aplied. The upside to this approach is that it preserves the
improvement program. In the Saclay basis, since fermiorstaggered symmetries to the maximal extent possible. The
fields are associated with hypercubes, the gauge fields mudbwnside is that chiral projection is no longer exact, except
be used to move the components on the hypercube to sonvethe continuum limit. Of course, this is a different manifes-
common point where the hypercubic field can be assembledation of the same problem that makes the transformation to
While it may seem that the resulting actions could be comthe Saclay basis nonunitary, where projection is exact.
pletely different, they have the same terms, site by site, that
differ only in the choice of paths used to connect nearest
neighbors. Hence, they have the same continuum limit.
However, this is not the end of the story. For example, The second approach addresses the projection problem at
when moving a component two sites on the hypercube fothe expense of breaking some symmetries, which can be re-
the construction of the hypercubic field there are two equivastored in the ensemble average as described bel6jvOur
lent minimum distance paths from which to choose. Choosexample will use the hypercubic basis of Daniel and Sheard
ing one path over the other will preserve the unitarityTof [31] but equivalent examples are to construct a unitary trans-
but break the rotation byr/2 symmetry. Conversely, choos- formation I' into the Saclay basis or even to restrict the
ing to average over both paths preserves rotations but meag@®lterman-Smit operators to single paths between sites.
I' need not be unitary, and thus potentially singular for suf- Quickly reviewing the Daniel-Sheard formulation, we
ficiently rough gauge fields. For SDWF, some terms in thewant to constructlocal” fermion bilinears of definite spin
action may also break the shift by one lattice spacing symand flavor, where local means local to the hypercube, from
metry. The well known source of the problem is the imposi-the single component statggx). We identify the hypercu-
tion of the artificial hypercubic structure for the identification bic Daniel-Sheard fields by a simple relabelinga(y)
of spin and flavor degrees of freeddBi]. =x(x) and x=2y+O+A as before. Local bilinears are
Thus, a conservative approach is to abandon a transcripvritten
tion from hypercubic bases and directly use the single com-

B. Exact projection with stochastic symmetrization

ponent basis and the technique of Golterman and £30it XaY) (7s® €6) apxs(Y)

Using the symmetric shift operator with the binary vector

{(x) and scalak(x), :Z (—1)¢(X’X,);(X)Z/I(X,X’)X(X’) (74)
x,x"

- 1 R
N=(— L) Z Y
Eu(xx")=(=1)# z[Uﬂ(X)é()H"“ x') where x,x’ are summed over the hypercube awik,x")

) R R represents the links chosen to make the bilinear gauge invari-
TU,(X=p)8(X—pu—x")] (69  ant. The notation isys=7>X - - - X 52" and the phase fac-
tor is computed from
L1(X)=Xo+ -+ - +Xyp(mod 2, .. .,

- 1
Con_1=Xon(MOd 2, {»7=0 (70) (')’S®§F)AB:¢(A-B):ETr(')’L'}’S'YB')’It)- (79)

e(X)=Xy+ -+ +Xpn(mod 2 (") Asan aside, this gives exactly the same terms appearing in

Egs. (72) and (73) provided you keep only the terms on a
we write them, term single hypercube.
As mentioned before, imposing a hypercubic structure in-
1 troduces problems with maintaining the staggered symme-
a——mo> 2 (v5®&s5,) ¥(y) tries for arbitrary spin and flavor choices. Our proposal is at
5 ® the beginning of each update step of whatever update algo-

1

2

1/1 rithm, first choose the origi® at random from the ' ways
_>§(a——m0>(—l)s(x)2 E.(xx")x(x") (72 of imposing the hypercubic structure on the lattice. Next,
5 © choose at random only one of the minimum distance paths
on the hypercube for making bilinears gauge invariant with
and the chiral projection operators are constructed using the restriction that the same path is used in both directions.
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Thus,U(A,B) is unitary and/T(A,B)=U/(B,A). Note that staggered symmetries is certainly descended from the work
different paths can be used on different hypercubes. Choo®f Christ, Freidberg and Lef89].

ing a random hypercubic structure and random paths on the

hypercubes at each update step ensures that symmetry break-

ing effects due to these choices will cancel out in the en- IX. ALTERNATIVE ACTIONS

semble average. The purpose of choosing only one path per . . _ . .
pair of corners on the hypercube is to guarantee the chiral Th_e SDWF action cpn5|dered her_e IS not unique. It is
projection property. For exampley€®1) [(ye®1)x]— x possible that actions with better scaling properties may be
which is the same as the continuum where we normall
choose Hermitian gamma matrices.

constructed using improved fields in the same spirit as with
ystaggered fermiontsee[40,41] and references therginAd-
ditionally, in our earlier wor22] we introduced the domain
wall defect using a local mass terfdistance zerpwhich
preserved the shift by one lattice spacing symmédmong

The third proposal is specific to the Saclay basis but apethers and broke the U(TXU(1) chiral symmetry. In this
plies equally well to SDWF and staggered fermions withwork, we considered a distance one mass term which pre-
Pauli-Villars fields. Following the second proposal, we canserves the chiral symmetry and breaks the shift symmetry.
construct at each update step a unitary transformation frond/e view this as a better choice because the additive renor-
the single component basis to the Saclay basis that will cemalization it produce$37] merely contributes to the flavor
tainly depend on the gauge field but not on the value of thdreaking term that our domain wall formulation is designed
massm;. Since the fermionic action and the Pauli-Villars to eliminate. It is possible that other distance mass terms
action only differ by the value afn;, then the contributions might prove useful in the future and even have a faster ex-
from the transformation will cancel between fermions andponential rate of restoration of flavor symmetry. We empha-
the pseudofermions. Specifically, the fermionic partitionsize that the primary requirements for these mass terms are
function on a fixed gauge background and for finite latticethat they be of the order of the cutoff and commute with the
spacing, volume and is operators in Eq(20).

C. Doubly regularized staggered fermions

ZF[U]IJ [d;FdXF]f [dd’;de"Pv] X. CONCLUSIONS

In this paper a different lattice fermion regulator was pre-

Xe;Fr*DF(mf)rXF—qs;\,r*DF(mf:1)F¢PV sented. Staggered domain wall fermions are definednin 2
+1 dimensions and describe' avors of light lattice fer-
def "detD¢(m;)detl’ mions with exact U(1X U(1) chiral symmetry in & dimen-

= sions. The full SU(2) X SU(2") flavor symmetry is recov-
detl"'detD(my=1)detl ered as the size of the extra dimension is increased. SDWF
detDe(my) give a different perspective into the inherent flavor mixing of
= detd(m=1) Iattu_:e ferr_mons _and by des_lgn present an advantage for nu-
R merical simulations of lattice QCD thermodynamics. We

— have paid particular attention to the chiral and topological
Zf [d‘l’d‘l’]f [ddTdd] index properties of the SDWF Dirac operator and its associ-
- ated transfer matrix. In the limit where the lattice spacing in

x @V DE(M) ¥ - De(m=1)d (76)  the extra dimensioras tends to zero the corresponding

HamiltonianH is proportional to the identity in flavor space

which is what we had back in EqL). In practice, we do not illustrating the complete absence of flavor mixing.
need to specify the paths chosen for the basis transformation For a semi-infinite extent in the extra dimension, the
since they cancel from the path integral. But, it would still betheory has four chiral fermions with the same chiral charges
important to choose at random the origrof the hypercubic and is anomalous. To construct an anomaly free theory, we
structure at each update step to avoid violations of the shifinust use such “quadruplets” with charges as dictated by the
by one lattice spacing symmetry. We would like to empha-corresponding anomaly cancellation condition. This is com-
size again that this proposal should work for staggered ferpletely analogous to the case of Wilson DWF.
mions with added Pauli-Villars fields and we believe this is However, there are still a number of unresolved issues
another example of the potential dbuble regularizatiorto  related to this formulation which need to be studied in future
improve the usefulness of existing fermion actions by canwork. In particular:
celing lattice artifact§25]. Also, notice that the number of (1) For QCD, the nearly fourfold crossing degeneracy of
fermionic degrees of freedom is the same as in the singléhe Hamiltonian must be investigated thoroughly.
component basis because the Saclay fields are defined on (2) SDWF should be implemented for numerical simula-
hypercubes. tion according to the proposals of Sec. VIIl. In the broken

Of course, some of the ideas presented in this section fgshase of QCD, it is obviously important to confirm that one
implementing SDWF for numerical simulation have beenpion is a pseudo-Goldstone boson and that the remaining
discussed before, e.g. the idea for stochastic restoration dburteen nonsinglet pions become degenerate with the
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pseudo-Goldstone boson ag— . Also, the expected ro- by one lattice spacing symmetry, causing quantum correc-
bustness of topological zero modes should be confirmed &afons to the SDWF transfer matr{87]. Our analysis of the
was done for DWHA42]. transfer matrix spectrum indicates a rangargfvalues can

(3) We have presented an analysis of the zeros of thsatill be found where the transfer matrix behaves correctly in
SDWF Hamiltonian through the pseudo-Hamiltonldpand  the presence of gauge field topology, as was the case with
in the limit as— 0 where the flavor breaking is trivially ab- Wilson DWF. We believe this issue should be studied thor-
sent inH,. A derivation and analysis of the full spectrum of oughly[46].
the Hamiltonian for generals is needed. (8) Can SDWEF revealor has it already reveal@dome

(4) Since the nearly degenerate fourfold crossings in thenew insight into the nature of inherent flavor mixing of lat-
spectrum of the Hamiltonian have the same chiral charge, thiéce fermions?
conserved currents of the full SU{R<SU(2") symmetry On the strength of the results of our transfer matrix analy-
must exist and can be constructed in the overlap formalisnsis, we believe that SDWF may be an attractive alternative to
[33]. Simpler constructions of these currents may be posPWF. The formulation is now sufficiently mature that the
sible. Constructing and measuring the conservation of thesesues above should now be addressed in the context of
currents in simulations is important. QCD. As has been the case with staggered and Wilson fer-

(5) SDWF were constructed with the simulation of QCD mions in the past, we should have a choice between SDWF
thermodynamics in mind because of the importance of havand DWF for a given problem according to our resources
ing a continuous subgroup of chiral symmetry for dny It ~ and preference in the near future.
is worth confirming that this gives SDWF some advantage
over DWF in looking for critical fluctuations at the finite
temperature QCD phase transition.

(6) It would be very interesting to add the Kogut-Sinclair ~ We would like to thank J. B. Kogut for continued encour-
four-fermion interactior{ 43,44 to the SDWF action to en- agement and support throughout the course of this project.
able simulation at zero quark mass in the region of the QCDVe would also like to thank M. Di Pierro, M. F. L. Golter-
phase transition. man, Y. Shamir and S. R. Sharpe for useful discussions.

(7) The domain wall mass term must be of the order of theG.T.F. would like to thank the Institute for Nuclear Theory at
lattice spacing and will introduce a hard breaking of somethe University of Washington for hospitality and support pro-
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