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Staggered domain wall fermion method
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A different lattice fermion method is introduced. Staggered domain wall fermions are defined in 2n11
dimensions and describe 2n flavors of light lattice fermions with exact U(1)3U(1) chiral symmetry in 2n
dimensions. As the size of the extra dimension becomes large, 2n chiral flavors with the same chiral charge are
expected to be localized on each boundary and the full SU(2n)3SU(2n) flavor chiral symmetry is expected to
be recovered. SDWF give a different perspective into the inherent flavor mixing of lattice fermions and by
design present an advantage for numerical simulations of lattice QCD thermodynamics. The chiral and topo-
logical index properties of the SDWF Dirac operator are investigated. And, there is a surprise ending.

DOI: 10.1103/PhysRevD.66.114503 PACS number~s!: 11.15.Ha, 11.30.Hv, 11.30.Rd, 12.38.Gc
o
D

in
za

o
xt
, e
re

is
.
il
-
ir

po
on
p

ia
er
d-

on

iv
g,
e
in
ld
d

e

ted

n
en-

tes
our
be-

at-

the
t

-
e-
op-
ns.
rd

a
ver-
ed

nt

pli-
tic
ac-
at

do
en
to
e a
ion.
tion
I. INTRODUCTION

Lattice fermions are elusive. They not only present en
mous challenges to numerical simulations of lattice QC
and other strongly interacting field theories but also pose
most blatant way the problem of nonperturbative regulari
tion of chiral gauge theories. Obviously the two problem
have a common source. In the past several years enorm
progress has been made in this direction. Interestingly, e
dimensions have been used again in theoretical physics
cept this time the dimension is a tool to generate the cor
low energy physics.

Domain wall fermions~DWF! were introduced in@1–6#.
A large volume of work has followed since. The reader
referred to the annual reviews@7–16# and references therein
The DWF lattice regulator begins by defining a massive W
son fermion@17# in 2n11 dimensions. If the boundary con
dition at the edges of the extra dimension is free then ch
surface states develop with the plus chirality fermion ex
nentially bound on one wall and the minus chirality fermi
on the other wall@18#. The two chiralities have an overla
that breaks chiral symmetry. As the sizeLs of the extra di-
mension increases the overlap tends to zero exponent
fast. As Ls→` the theory has a single massless Dirac f
mion in 2n dimensions. Obviously, this construction a
dresses both problems mentioned above.

Since the DWF construction starts with massive Wils
fermions, it is easy to see that for any finiteLs there can be
none of the exact chiral symmetries available in the na
lattice fermion formulation. In return for this shortcomin
flavor mixing between doubler states inherent in naive f
mions are pushed up to the scale of the lattice cutoff, mak
them irrelevant. Early in the development of lattice fie
theories, the staggered approach to lattice fermions was
vised to preserve some of the exact chiral symmetries
naive fermions. This meant there was still flavor mixing b
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tween the remaining doubler states@19–21#. In the spirit of
staggered fermions, our domain wall construction presen
here will preserve some exact chiral symmetry at anyLs at
the cost of introducing flavor mixing between light fermio
doublers. Flavor symmetry violations should be expon
tially suppressed in theLs→` limit. A preliminary version
of this work was presented in@22#.

Staggered domain wall fermions~SDWF! are similar to
DWF in the use of exponential localization of surface sta
to counter unwanted features of lattice regularization. In
case, this means disentangling the inherent flavor mixing
tween light doubler states. As a result, even at finiteLs , they
have an exact U(1)3U(1) chiral symmetry very much like
standard staggered fermions. This property makes them
tractive for QCD thermodynamic simulations. AsLs→` the
light surface states in the theory are expected to recover
full SU(2n)3SU(2n) chiral symmetry. It must be noted tha
SDWF ~and Wilson DWF as well! may not be able to de
velop light states if the coupling is extremely strong. D
pending on one’s perspective, SDWF combine the nice pr
erties of the domain wall method and staggered fermio
For simulations of QCD thermodynamics with standa
DWF the reader is referred to@23–26#.

We would like to draw the attention of the reader to
more subtle issue in this paper that might otherwise be o
looked. In most of what follows, the Saclay basis propos
by Kluberg-Sternet al. and predecessors@27–29# is used for
its nice spin-flavor algebra. While this is formally equivale
to the standard bases used for numerical simulations@30,31#,
the transformation is gauge dependent and quite com
cated. However, the conclusions we draw from our analy
work should be basis independent. The construction of
tions suitable for numerical simulation will be discussed
the end of the paper.

One interesting result is that it may be possible to
numerical simulations directly in the Saclay basis wh
Pauli-Villars fields are introduced. This applies equally
staggered fermions as well as SDWF and may eliminat
serious obstacle for using the Saclay basis for simulat
The reason is that the gauge field dependent transforma
©2002 The American Physical Society03-1
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that accompanies the basis change will cancel as part o
subtraction. We believe this is yet another example of
potential usefulness ofdoubly regularizedlattice fermions
@25#.

For a semi-infinite extent in the extra dimension, t
theory has four chiral fermions with the same chiral char
and is anomalous. To construct an anomaly free theory,
must use such ‘‘quadruplets’’ with charges as dictated by
corresponding anomaly cancellation condition. This is co
pletely analogous to the case of Wilson DWF. Of course
order to simulate a two flavor theory, a dynamical algorith
which effectively takes the square root of the fermionic d
terminant should be used. Further in the future, nondege
ate quark mass matrices could be explored to simulate
four lightest quarks.

The paper is organized as follows: The SDWF Dirac o
erator and action are defined in Sec. II. The symmetries
sociated with the SDWF action are presented in Sec. III. T
flavor content is discussed in Sec. IV and the free propag
is calculated in Sec. V. The transfer matrix along the ex
direction is given in Sec. VI. The promised surprise is in S
VII but the reader ought to work through the preceding s
tions first. The transcription to the single component ba
problems and future directions are presented in Sec. VII
discussion about alternative actions is given in Sec. IX. T
paper is concluded with Sec. X.

II. STAGGERED DOMAIN WALL FERMIONS

In this section the SDWF Dirac operator and action
presented in the Saclay basis@27#. Here, we show that in the
free theory light fermion fields localize exponentially alon
the extra direction with suppressed flavor mixing.

The SDWF partition function is

Z5E @dU#E @dC̄dC#E @dF†dF# e2S. ~1!

Um(x) is the gauge field,x is a site coordinate vector in th
2n dimensional space andm51,2,•••,2n. C(y,s) is the
fermion field andF(y,s) is a bosonic Pauli-Villars~PV!
field. y is a hypercube coordinate vector related to the
vector x by x52y1O1A where O is a 2n dimensional
binary vector indicating one of the 22n possible origins of the
hypercubic structure andA is a binary vector which indicate
position within the given hypercubey. This implies the rela-
tions y5(x2O2A)/2 andA5@(x2O)mod2# between the
vectors.s50,1, . . . ,Ls21 is a site coordinate in the 2n11
direction, whereLs is the number of sites in this dimensio

The actionS is given by

S5S~b,Ls ,m0 ,mf ;U,C̄,C,F!

5SG~b;U !1SF~Ls ,m0 ,mf ;C̄,C,V!

1SPV~Ls ,m0 ;F†,F,V! ~2!

where
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F12
1

Nc
Re TrUpG ~3!

is the standard plaquette action withb52Nc /g0
2 with g0 the

lattice gauge coupling andNc the number of colors. The
fermion action is

SF52 (
y,y8,s,s8

C̄~y,s!DF~y,s;y8,s8!C~y8,s8! ~4!

with the fermion matrix given by

DF~y,s;y8,s8!5d~s2s8!D~y,y8!1D'~s,s8!d~y2y8!
~5!

whereD(y,y8) is the standard staggered action in the Sac
basis with the typical staggered mass~distance zero! set to
zero and a different mass~distance one! proportional to
(1/a52m0) added as described below. Here are the exp
sions in a chiral basis in 2n54 dimensions. Extensions t
other even dimensions are straightforward:

D5S B C

2C† 2BD , ~6!

B52(
m

~1^ j5m!FDm~V!1
m0

2
2

1

2a5
G , ~7!

C52
1

4 (
m

sm¹m~V!, ~8!

Dm~V;y,y8!5
1

4
@d~y1m̂2y8!Vm~y!

1d~y2m̂2y8!Vm
† ~y8!22d~y2y8!#, ~9!

¹m~V;y,y8!5
1

4
@d~y1m̂2y8!Vm~y!

2d~y2m̂2y8!Vm
† ~y8!# ~10!

where s1,2,3 are the Pauli matrices ands4 is the identity.
Vm(y) are the gauge links between hypercubes related to
Um(x) links of the gauge action byVm(y)5Um(2y

1O)Um(2y1O1m̂). The parameterm0 is the mass repre
senting the ‘‘height’’ of the domain wall. Thes-dependent
part of the Dirac operator is exactly as for DWF but with
different mass mixing. Here we consider the action forn

degenerate flavors. For nondegenerate flavors the actio
similar and can be constructed according to the rules outli
in Sec. III:

D'5D51H~mf !, ~11!
3-2
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The mass mixing term depends to whetherLs is even or odd.
For oddLs we have the following purely imaginary terms

H~mf ;s,s8!52
1

a5
i mf@PRd~s2Ls11!d~s8!

1PLd~s!d~Ls212s8!# ~13!

wheremf is the degenerate mass of the flavor states local
on the domain wall. For evenLs more care must be used i
constructing the mass mixing term to preserve the ex
U(1)3U(1) symmetry~see Sec. III!. In that case the mas
term does not just involve the boundary ats50 andLs21
but also ats51 and Ls22. Furthermore notice that th
terms are real. The different ‘‘reality’’ of the mass term forLs
even or odd is just a reflection of a staggered wave func
phase of the formi (s2s8). The evenLs mass term is

H~mf ;s,s8!52
mf

a5
@PLRd~s!d~Ls222s8!

1PLLd~s21!d~Ls212s8!

1PRRd~s2Ls12!d~s8!

1PRLd~s2Ls21!d~12s8!#. ~14!

The chiral and flavor projectors are

PR,L5P65
16g5

2
, FR,L5F65

16j5

2
,

PRL,RL5P665~P6 ^ F6!. ~15!

The gamma matrices are taken in the standard chiral b
For example 2n54 dimensions they are chosen to be

gm5S 0 sm

sm
† 0 D , m51,2,3, g45S 0 1

1 0D ,

g55S 1 0

0 21D ~16!

with sm the Pauli matrices. The flavor matrices are defin
as usual@27#

jm5gm
T , ~17!

and notations such as (g5^ j5m) mean (g5^ j5jm).
11450
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As with DWF, the PV action is designed to cancel t
contribution of the heavy fermions. This is necessary
cause the number of heavy fermions is;Ls and in theLs
→` limit they produce bulk type infinities@3,4,32,33#.
There is some flexibility in the definition of the PV actio
since different actions could have the sameLs→` limit.
However, the choice of the PV action may affect the a
proach to theLs→` limit. Here the same approach as
@34,35# was chosen. Themf51 case is exactly the quenche
theory ~infinitely massive fermions!. The PV action is

SPV5 (
x,x8,s,s8

F†~x,s!DF@mf51#~x,s;x8,s8!

3F~x8,s8!. ~18!

The symmetries and detailed properties of the SDW
Dirac operator will be discussed in the rest of the pap
However, as a first check we verify that in the free case
SDWF Dirac operator indeed describes four flavors with
chiralities localized on the opposite walls. Following iden
cal steps as in@1# we go to momentum space and dema
that in order for light modes to exist there must be a wa
function such that

DF~k,s;k8,s8!f~k8,s8!5Dnaive~k,s;k8,s8!f~k8,s8!.
~19!

In essence this equation demands that the extra term in
Dirac operatorD' cancels the flavor breaking termB. From
the above equations it is easy to see that Eq.~19! leads to

(
s8

H 1

a5
@P1d~s112s8!1P2d~s212s8!#

1(
m

~g5^ j5m!bmd~s2s8!J f~k,s8!50

~20!

where

bm5
12coskm2m011/a5

2
. ~21!

The P6 projectors in thes-dependent part commute with th
flavor breaking part so that each may be simultaneously
3-3
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agonalized. This constraint alone effectively restricts the
lowed projectors to the ones chosen here.

The solution is separable andf(s) is thes-dependent par

f~s!5~f11 ,f12 ,f21 ,f22! ~22!

where f21(s)5P21f(s), etc. In this notation, we can
write

(
m

~g5^ j5m!bm5S b̄

2b̄†

2b̄

b̄†

D ~23!

where

b̄ j5 is j* bj , j 51,2,3, b̄45b4 . ~24!

Solving Eqs.~20! relating nearest neighbors sites is a bit
complicated because the flavor components mix and is no
interest for this discussion. On the other hand, the soluti
to these equations after iterating twice are simple. Fora5
51 we have

f61~s62!52b̄b̄†f61~s!,
~25!

f62~s62!52b̄†b̄f62~s!.

For free fermions,@ b̄,b̄†#50 andb̄b̄†, b̄†b̄ are both propor-
tional to the identity with eigenvalue

l~ b̄b̄†!5l~ b̄†b̄!5b2, ~26!

b5A(
m

bm
2 . ~27!

If we require that

b2,1 ~28!

then for a semi-infinites direction,s>0, only f16 is nor-
malizable, whilef26 is not. However, this is not enough t
ensure that the doubler modes are not present. We mus
ther require that the above condition excludes momenta w
components larger or equal top. This can be seen by writing
out Eq.~28!:

b25
1

4 (
m

@~12coskm!1~12m0!#2,1. ~29!

For momenta near the origins of thenth Brillouin zone
~wheren is the number of momentum components nearp)
this gives

~12m0!21n~12m0!1n,1. ~30!

Whenn50 the sufficient condition is

0,m0,2, ~31!
11450
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same as for Wilson DWF. However, this condition does n
ensure that the doubler modes are non-normalizable for an.
For example, forn51 andm051.5 both Eqs.~30! and~31!
are satisfied making the 1st Brillouin zone doubler wave
functions normalizable. The range ofm0 needs to be further
restricted. The following condition ensures that only theth

Brillouin zone wave function is normalizable

0,m0,1. ~32!

The above is presented graphically in Fig. 1. It is straightf
ward to extend these results to the more general case
,a5,1.

III. SYMMETRIES

When constructing the SDWF action, it is important
preserve the symmetries of the massless staggered a
@19,36#. Of course, adding any new terms to the stagge
action will break some of those symmetries, so we have
find new symmetries that involve the extra dimension. T
symmetry transformations for the SDWF action in the Sac
basis of Sec. II are presented below.

U(1)e3U(1)o chiral rotations. The presence of this sym
metry is one of the main motivations of this paper. The
sidual chiral symmetry of staggered fermions involves m
ing separate chiral rotations on even and odd sites. Term
D' are not invariant under these rotations unless we ext
the notion of even and odd,including the extra dimension.
The operatorS is defined as

Ss,s8[~21!sd~s2s8! ~33!

and then the extended even or odd projection operators
defined as

P̄e5
1

2
@~1^ 1!1S~g5^ j5!#,

~34!

P̄o5
1

2
@~1^ 1!2S~g5^ j5!#.

FIG. 1. From Eq.~29!: b2 at the origins of the five Brillouin
zonesn5@0,1,2,3,4# plotted vs.m0.
3-4
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Using these projection operators the chiral transformatio

C~y!→~eiueP̄e1eiuoP̄o!C~y!, ~35!

C̄~y!→C̄~y!~e2 iuoP̄e1e2 iueP̄o!.

Rotations byp/2. These rotations are in planes perpe
dicular to the extra dimension and the transformations are
same as the original staggered ones.

m-parity. These transformations reflect the 2n21 space-
time axes perpendicular to the spacetime axis in them̂ direc-
tion. D' is not invariant under this symmetry unless we a
reflect thes direction as well. If the reflection operator
defined as

Rs,s8[d~Ls212s2s8! ~36!

then the transformation is

C~y,s!→~gm ^ j5!Rs,s8C~y,s8!,
~37!

C̄~y,s!→C̄~y,s8!Rs8,s~gm ^ j5!.

Shift by one lattice spacing. The m021/a5 term in the
SDWF action breaks this standard staggered fermion s
metry at the expense of absorbing the renormalization of
flavor breaking term. That these terms are additively ren
malized in the interacting theory follows from the work
Mitra and Weisz@37#. Nevertheless, interesting methods
alleviate the breaking of this symmetry are discussed in S
VIII. This symmetry relates to interactions inside a hyp
cube which are essentially nonphysical. We feel that
breaking of this symmetry is a small sacrifice, but the iss
certainly can and should be debated.

The symmetry transformation for the casem051/a5 is
given. Already for staggered fermions, the symmetry tra
formation is complicated in the Saclay basis due to the
posed hypercubic structure of the formulation. For SDW
there is an added complication. Some parts of the trans
mation require a reflection in thes direction

C~y!→1

2
@~1^ jm!2~gm5^ j5!R#C~y!

1
1

2
@~1^ jm!1~gm5^ j5!R#C~y1m̂ !,

~38!

C̄~y!→C̄~y!
1

2
@~1^ jm!2R~g5m ^ j5!#1C̄~y1m̂ !

3
1

2
@~1^ jm!1R~g5m ^ j5!#

wheres indices have been suppressed.
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IV. FLAVORS OF SDWF

In this section the SDWF flavor identification is made
the Saclay basis. From Sec. II we see that for a finite e
direction withLs sites theP1 components of all flavors are
localized arounds50 while theP2 components are local
ized arounds5Ls21. However, as already mentioned
Sec. III one of the main goals of this paper is to prese
most of the staggered symmetries and particularly
U(1)e3U(1)o chiral symmetry. For example, to generate t
four-dimensional flavor componentsq with P11 , we should
choose s near zero. If s50 is chosen, P11q(y)
5P11C(y,0), then these components also belong to thePe
part of the fermion field. Therefore, to project flavor comp
nents withP21 we are not only restricted to chooses near
Ls21 but also chooses so these components belong to t
Po part of the fermion field. Then, componentsP61q(y)
will not mix even for finiteLs because of the even or od
symmetry. In this example, we would like to pic
P21q(y)5P21C(y,s) with s being even and nearLs21.
So, if Ls is odd thens5Ls21 is a good choice. However, i
Ls is even, then we should chooses5Ls22 instead:

~39!

Using the block notation of Eq.~22!, an example for even
Ls is sketched in Eq.~39!. In this equationC(s50) is at the
3-5
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top andC(s5Ls21) is at the bottom. The capital letter
denote one of the correct choices. On the other hand, ifLs is
odd, e.g.Ls53, then

~40!

We note that other choices for selecting flavor comp
nents near the boundaries are certainly possible.

V. THE SDWF PROPAGATOR

The propagator in the Saclay basis in momentum sp
and formf50 has the form

D21~s,s8!5G1e~s2s8!1G3e~s2s821!. ~41!

For mfÞ0 andLs5multiple of 4 has the form

D21~s,s8!5@G11mfG2#e~s2s8!1G3e~s2s821!.
~42!

For Ls5 even but not multiple of 4, the propagator has t
same form as in Eq.~42! but with mf→2mf . For Ls5odd
themf term is more complicated and is not given here. Ne
ertheless, based on Secs. II and III one can see that the
is similar.

G1(p;s,s8), G2(p;s,s8) and G3(p;s,s8) (p is the mo-
mentum! are proportional to the identity in their flavor ind
ces. Also,G1 anticommutes with (g5^ 1) while G2 andG3
commute with (g5^ 1). The flavor mixing is in the function
e(s)

e~s!5~1^ 1!, ~s even!
~43!

e~s!5

(
m

~1^ j5m!bm

b
, ~s odd!
11450
-

ce

-
rm

whereubu is given in Eq.~27!. Fors2s8 even andmf50 the
propagator has no flavor mixing except for theG3 term in
Eq. ~41!. In this term e(odd) breaks flavor in exactly the
same way as for free staggered fermions. An ex
U(1)3U(1) symmetry is maintained. The matrix coefficie
G3 vanishes exponentially fast withLs for s, s8 near oppos-
ing boundaries and therefore asLs→` with mf50 the
propagator anticommutes with (g5^ 1) and has no flavor
mixing provideds2s8 is even. This is in accordance wit
the discussion in Sec. IV. Fors2s8 odd more severe flavo
mixing is present.

The G1 , G2 andG3 terms are

G1~p:s,s8!5 i (s2s821)
1

2 (
m

gmsinpm

3@P1G~s,s8!1P2G~Ls212s,Ls212s8!#,

~44!

G252 i (s2s821)@P1d~s,0!G~Ls21,s8!

2d~s,Ls21!P2G~Ls21,Ls212s8!#, ~45!

G35 i (s2s821)P1@bG~s,s8!1 iu1~s!G~s21,s8!#

1P2@bG~Ls212s,Ls212s8!

1 iu2~s!G~Ls222s,Ls212s8!#, ~46!

where

u1~s!51, ~sÞ0!

u1~s!50, ~s50!

u2~s!51, ~sÞLs21! ~47!

u2~s!50, ~s5Ls21!.

There is an exact correspondence with the terms of the s
dard DWF propagator. In the notation of@34,35# the symbol
correspondences between SDWF and DWF are

G~p:s,s8!→G1~p:s,s8!, b→b, p̄→ 1

4
p̄. ~48!

The reader is referred there for the detailed forms.
As can be seen the decay coefficient is now in terms ob

given in Eq. ~27! instead of the DWFb5(m@12cospm#
11/a52m0. The localization condition form0 is over half
the DWF range@see Eq.~31!#. Also, for Ls odd, the effective
massmeff has the same general form as in Wilson DW
@34,35#

meff5S 12
2n

4
m0

2D ~mf1u12m0uLs!. ~49!
3-6
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VI. THE SDWF TRANSFER MATRIX

The SDWF transfer matrix in the Saclay basis is p
sented. We can use the technique of Neuberger@38# to re-
write the free SDWF determinant in a form that allows for
quick identification of the transfer matrix. A complete Ham
tonian analysis is beyond the scope of this work.

After interchanging various rows and columns of t
SDWF matrix, the determinant is equivalent to the deter
nant of the matrix

S a0 b0

b1 �

� aLs22

bLs21 aLs21

D ~50!

where all of theas andbs are the block triangular matrice

as5S 2B 0

C 1/a5
D , bs5S 1/a5 2C†

0 B D . ~51!

For aLs21 and b0 , 1/a5 is replaced with2m/a5 so m is a

parameter that controls the boundary conditions:m561 for
~anti!periodic andm50 for free. This parameter is used on
for the derivation of the transfer matrix and it is not need
in the theory. In particular, the reader is cautioned aga
usingm as a mass parameter since it is inconsistent with
rules of Sec. IV. The definitions ofB,C are given in Eqs.~7!
and ~8!.

In this notation, following Neuberger’s construction lea
to the SDWF determinant

DF5~fixed sign!~detB/a5!Ls

3detF S 2m 0

0 1D 2T2LsS 1 0

0 2m D G ~52!

and the SDWF transfer matrix identification

T52S B21/a5 B21C

C†B21 a5@C†B21C2B#
D . ~53!

We can easily check that

@C,~1^ j5!#50, $B,~1^ j5!%50 ~54!

and as a result

$T,~1^ j5!%50. ~55!

Also sinceB†52B we can see thatT is also anti-Hermitian

T†52T. ~56!

This is different from Wilson DWF and gives some idea w
solving the zero mode problem in Eq.~25! simplifies when
solving for the field two sites away. Obviously, standa
transfer matrix manipulations should be done with the H
mitian transfer matrixT2 which corresponds to a Hermitia
HamiltonianH.
11450
-

i-

d
st
e

r-

VII. ABOUT THAT SURPRISE . . .

At this point the reader must be wondering: ‘‘What is th
spectrum of the transfer matrix?’’ and ‘‘What is the corr
sponding Hamiltonian?’’ Here is where we were a bit su
prised. Just in case the reader will later~after reading this
section! be tempted to claim that there is no surprise, she
he is invited to guess thea5→0 limit Hamiltonian as well as
the generala5 spectrum ofT2.

We find, after some algebra, the following Hamiltonia
H0 corresponding to thea5→0 limit of the transfer matrix

lim
a5→0

2T25e22a5H0,

H052~g5^ 1!

3S 1

2 (
m

Dm1m0 C

2C†
1

2 (
m

Dm1m0
D . ~57!

The first surprise is thatH0 is exactly diagonal in flavor. It is
almost, but not exactly, the same as the standard ove
HamiltonianHw , as Dm has a factor of12 compared toC.
Nevertheless, becauseH0 is diagonal in flavor, the standar
machinery of DWF can be directly applied.

For example, let us consider the spectrum ofH0. Follow-
ing methods identical to@3,4,32,33# we find that

H0S u

v D 50 ⇒ u†Du1v†Dv22m050. ~58!

Because the matricesd(y1m̂2y8)Vm(y) are unitary the
range for which this equation can have a solution~for all
Brillouin zones! is

0,m0,2 ~a5→0!. ~59!

For m0 in the above rangeH0 can have zero eigenvalues th
via the overlap formalism correspond to a change of ind
and to exact and robust zeros of the fermionic determin
This can also be seen graphically in Fig. 2. The backgro
field configuration is a smooth gauge field that has nontriv
topology @32,33#. The plaquette value for that configuratio
@i.e. the sum in Eq.~3!# is about 0.05. For the rest of th
paper we will refer to this configuration as the‘‘instanton’’
configuration.

The crossing diagrams were done for fermions in
Saclay basis with gauge fieldsVm(y) defined on a 24 lattice
of hypercubes. Since no attempt is made here to mak
connection with the topological charge of the underlyi
gauge configurationsUm(x), the reader can regard the gau
fields as examples ‘‘pulled out of a hat.’’ All numerica
analysis was done by full diagonalization of the relevant m
trices using theLAPACK libraries and an IBM-T20 Think Pad

However, numerical simulations are done at nonzeroa5,
typically at a551. In standard DWF there is an exact co
nection between zero eigenvalues ofH0 and unit eigenvalues
3-7
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of the transfer matrix at anya5. This correspondence doe
not hold here. As a result the analysis is more complica
In other words

ueig~2T2!u51 ⇒” eig~H0!50 ; a5Þ0. ~60!

From Eqs.~55! and ~56! we deduce that the spectrum o
2T2 is strictly real, positive and doubly degenerate beca
T is anti-Hermitian and anticommutes with (1^ j5). In 2n
52 dimensions that would be the end of the story beca
there are only 2n52 flavors. Two exact zero modes are pr
duced for every crossing in the Hamiltonian spectrum.
2n54 dimensions there are 2n54 flavors and we do no
have an exact correspondence between the degeneracy
unit magnitude eigenvalues ofT and the number of flavors
This is problematic since this is a basic and defining prope
for a chiral theory.

For the ‘‘instanton’’ background the eigenvalue crossin
diagram of

l tm5 log@spectrum~2T2!# ~61!

vs m0 is given in Fig. 3 fora551. A closeup of the region
aroundm050 is shown and the eigenvalues are marked
pending on the sign of theq̄(g5^ 1)q whereq is the corre-
sponding eigenvector. All eigenvalues in Fig. 3 are fourfo
degenerate. The symbols for each eigenvalue are there
are literally overlapping. An example is given in Table
Also, the reader should observe that in Fig. 3 the tran
matrix eigenvector chirality does follow each flow line. Th
ensures that the four modes are of the same chirality
therefore a crossing should correspond to a net chang
four in the index. It is of fundamental importance that th

FIG. 2. The spectrum ofH0 vs m0 for an SU~3! ‘‘ instanton’’
background on a 24 lattice of hypercubes.
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occurs here as it reassures us that on a given boundary o
extra dimension there are four flavors of light chiral fermio
with the same chiral charge.

For a very rough background gauge field~plaquette
'0.85) the crossing diagram is given in Fig. 4. The eige
values are doubly degenerate and very nearly but not q
four-fold degenerate. The nondegeneracy is small and alm
nonvisible. One of the worst cases is presented in Table
The lack of exact fourfold degeneracy should be the sub
of further research but it is obviously small even on th
extreme background gauge field that is unlikely to occur
current numerical simulations of QCD. Furthermore,
would be interesting to study the transfer matrix in 2n>6
dimensions, where the required near-degeneracy shoul
2n, to see if the same behavior persists.

Even with the lack of exact fourfold degeneracy, if w
choosem0 away from the crossing region then the fermio

FIG. 3. l tm vs m0 for a551 and an SU~3! ‘‘instanton’’ back-
ground ~plaquette'0.05) on a 24 lattice of hypercubes. The dia
monds represent eigenvectors ofT2 with chirality 11 while the
pluses with21. All eigenvalues are fourfold degenerate and a
indistinguishable by the graphics. For an example please refe
Table I.

TABLE I. The near zero spectrum of log(2T2) for m050.2 for
an SU~3! ‘‘instanton’’ background on a 24 lattice of hypercubes.

m0 logl(2T2)

0.2 20.0408683
0.2 20.0408683
0.2 20.0408683
0.2 20.0408683
0.2 0.327367
0.2 0.327367
0.2 0.327367
0.2 0.327367
3-8
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STAGGERED DOMAIN WALL FERMION METHOD PHYSICAL REVIEW D66, 114503 ~2002!
determinant will still have four exact zeros. This will on
break down ifm0 is chosen between the two nearly dege
erate sets of crossings. Of course, based on DWF studi
lattice spacings used in today’s simulations one expe
dense crossings in the usable range ofm0. Then there will be
configurations for whichm0 is between double crossings th
have split. As far as topology is concerned this will bre
flavor to some degree. Nevertheless, since in DWF the de

FIG. 4. l tm vs m0 for a551 and a‘‘rough’’ SU~3! background
~plaquette'0.85) on a 24 lattice of hypercubes. All eigenvalues a
twofold degenerate and are indistinguishable by the graphics.
though there is no exact fourfold degeneracy the graphics
hardly distinguish the nondegeneracy. Please refer to Table II.

TABLE II. The near zero spectrum of log(2T2) for m050.3 for
a ‘‘rough’’ SU~3! background~plaquette'0.85) on a 24 lattice of
hypercubes.

m0 logl(2T2)

0.3 20.290045
0.3 20.290045
0.3 20.286291
0.3 20.286291
0.3 20.262638
0.3 20.262638
0.3 20.261551
0.3 20.261551
0.3 0.0260566
0.3 0.0260566
0.3 0.0272779
0.3 0.0272779
0.3 0.414225
0.3 0.414225
0.3 0.414597
0.3 0.414597
11450
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crossings correspond to small instantons and are unphy
we would expect that as the lattice spacing becomes sm
such configurations will become less important.

Nevertheless it is instructive to further study the spectr
of T for unit magnitude eigenvalues. BecauseT contains the
inverse ofB it is hard to study analytically. However, in th
subspaceul tmu51 we can proceed as in@3,4,32,33#. In par-
ticular we find that

TS u

v D 56 iTS u

v D ⇒ HpS u

v D 50 ~62!

where

Hp5S 11a5iB a5C

a5C† 212a5iB D . ~63!

So, we can study the crossings of the spectrum of
pseudo-Hamiltonian Hp . The crossing range can be dete
mined as before by using the unitarity of the matricesd(y

1m̂2y8)Vm(y). There are two crossing ranges

0,m0,2 and
2

a5
,m0,

2

a5
12. ~64!

For the ‘‘instanton’’ background the crossing diagrams~for
all Brillouin zones! are shown fora551 in Fig. 5,a550.5 in
Fig. 6 anda550.25 in Fig. 7 and the reader can see t
agreement with Eq.~64!.

But this is not all. We had a hard time at first because
used SU~2! gauge fields. And the spectrum was always ine
plicably not twofold but fourfold degenerate, forany gauge
field ~smooth or rough! This is the second surprise. And
will not be investigated further here. After all, what good is

l-
n

FIG. 5. l tm vs. m0 for a551 and an SU~3! ‘‘instanton’’ back-
ground~plaquette'0.05) on a 24 lattice of hypercubes.
3-9
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G. T. FLEMING AND P. M. VRANAS PHYSICAL REVIEW D66, 114503 ~2002!
paper that does not leave some mystery behind. In any
this property is likely linked to the fact that21 is part of the
groups SU~2!, SU~4!, . . . but is not part of the group SU~3!,
etc.

VIII. THE SINGLE COMPONENT BASIS AND
SIMULATING SDWF

In the previous sections we discussed the properties o
SDWF Dirac operator in the basis proposed by the Sac

FIG. 6. l tm vs m0 for a550.5 and an SU~3! ‘‘instanton’’ back-
ground~plaquette'0.05) on a 24 lattice of hypercubes.

FIG. 7. l tm vs m0 for a550.25 and an SU~3! ‘‘instanton’’ back-
ground~plaquette'0.05) on a 24 lattice of hypercubes.
11450
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group. By now, the reader has seen the advantage of
approach in determining the properties of robust zeros of
transfer matrix. In the past, technical problems have dis
vored direct simulation of dynamical fermions in this basis
lieu of the simpler single component basis, where there
just a single fermionic spin-flavor degree of freedom per s

In this section, we will first discuss the construction of t
SDWF in the single component basis with an emphasis
preserving, to the maximum extent possible, all of the sy
metries of Sec. III. One consequence is that the spin-fla
algebra, i.e., (g5^ 1)25(1^ 1), will be broken and only re-
covered in the continuum limit. Next, we will discuss a tec
nique where the spin-flavor algebra is restored at the expe
of some lattice symmetries. We believe these lattice sym
tries can be restored by proper stochastic averaging. Fin
we will discuss a new algorithm based ondouble regulariza-
tion for simulating staggered~and SDWF! fermions directly
in the Saclay basis. As is typically the case in our fie
performance during numerical simulation of QCD will likel
determine which of the three proposals survive. We feel t
further research in this area is needed.

A. Single component basis without projection

Let us first review the staggered action in the single co
ponent basis and the transformation connecting it to
Saclay basis. From Eqs.~5! through~10!, with m051/a5, the
equivalent 2n dimensional Dirac operator is usually writte

D~x,x8!x~x8!5
1

2 (
m

~21!m̂•h(x)@Um~x!d~x1m̂2x8!

2Um
† ~x2m̂ !d~x2m̂2x8!#x~x8! ~65!

with the components of the binary vectorh given by

h1~x!50,

h2~x!5x1~mod 2!,
~66!

A

h2n~x!5x11•••1x2n21~mod 2!.

In the free theory, the unitary transformation from sing
component site-wise fieldsx(x) to the hypercubic fields
c(y) is simple. As in Sec. II, if we label sites on the hype
cube starting at the originO by a binary vectorA the trans-
formation is

caa~y!}Gaa,Ax~2y1O1A! ~67!

with the rows of the 22n322n dimensional matrixG indexed
by the various combinations of spina and flavora indices
and the columns indexed by the corners of the hypercuby.
Specifically, the components of the freeG may be chosen as

Gaa,A5@g1
A1g2

A23•••3g2n
A2n#aa ~68!
3-10
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STAGGERED DOMAIN WALL FERMION METHOD PHYSICAL REVIEW D66, 114503 ~2002!
where the row indexa and column indexa of the 2n dimen-
sional representation of the Clifford algebra are interpre
as spin and flavor indices.

When the staggered action is made gauge invariant,
ferences will arise between the two formulations. In t
single component basis, fermions are only coupled to nea
neighbor sites, so simple links are all that is needed to p
serve gauge invariance. Of course, longer paths could
used to link sites and indeed are often used to implemen
improvement program. In the Saclay basis, since ferm
fields are associated with hypercubes, the gauge fields m
be used to move the components on the hypercube to s
common point where the hypercubic field can be assemb
While it may seem that the resulting actions could be co
pletely different, they have the same terms, site by site,
differ only in the choice of paths used to connect near
neighbors. Hence, they have the same continuum limit.

However, this is not the end of the story. For examp
when moving a component two sites on the hypercube
the construction of the hypercubic field there are two equi
lent minimum distance paths from which to choose. Cho
ing one path over the other will preserve the unitarity ofG
but break the rotation byp/2 symmetry. Conversely, choos
ing to average over both paths preserves rotations but m
G need not be unitary, and thus potentially singular for s
ficiently rough gauge fields. For SDWF, some terms in
action may also break the shift by one lattice spacing sy
metry. The well known source of the problem is the impo
tion of the artificial hypercubic structure for the identificatio
of spin and flavor degrees of freedom@37#.

Thus, a conservative approach is to abandon a trans
tion from hypercubic bases and directly use the single co
ponent basis and the technique of Golterman and Smit@30#.
Using the symmetric shift operator with the binary vec
z(x) and scalar«(x),

Em~x,x8!5~21!m̂•z(x)
1

2
@Um~x!d~x1m̂2x8!

1Um
† ~x2m̂ !d~x2m̂2x8!# ~69!

z1~x!5x21•••1x2n~mod 2!, . . . ,

z2n215x2n~mod 2!, z2n50 ~70!

«~x!5x11•••1x2n~mod 2! ~71!

we write them0 term

1

2 S 1

a5
2m0D(

m
~g5^ j5m!c~y!

→ 1

2 S 1

a5
2m0D ~21!«(x)(

m
Em~x,x8!x~x8! ~72!

and the chiral projection operators are constructed using
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~g5^ 1!c~y!→ ~21!«(x)

~2n!! (
m1•••m2n

em1•••m2n
Em1

~x,x(1)!

3•••3Em2n
~x(2n21),x(2n)!x~x(2n)! ~73!

whereem1•••m2n
is the totally antisymmetric tensor and th

summation over the 2n site vectorsx(1), . . . ,x(2n) is im-
plied. The upside to this approach is that it preserves
staggered symmetries to the maximal extent possible.
downside is that chiral projection is no longer exact, exc
in the continuum limit. Of course, this is a different manife
tation of the same problem that makes the transformatio
the Saclay basis nonunitary, where projection is exact.

B. Exact projection with stochastic symmetrization

The second approach addresses the projection proble
the expense of breaking some symmetries, which can be
stored in the ensemble average as described below@45#. Our
example will use the hypercubic basis of Daniel and She
@31# but equivalent examples are to construct a unitary tra
formation G into the Saclay basis or even to restrict t
Golterman-Smit operators to single paths between sites.

Quickly reviewing the Daniel-Sheard formulation, w
want to construct‘‘local’’ fermion bilinears of definite spin
and flavor, where local means local to the hypercube, fr
the single component statesx(x). We identify the hypercu-
bic Daniel-Sheard fields by a simple relabeling:xA(y)
5x(x) and x52y1O1A as before. Local bilinears ar
written

x̄A~y!~gS^ jF!ABxB~y!

5(
x,x8

~21!f(x,x8)x̄~x!U~x,x8!x~x8! ~74!

where x,x8 are summed over the hypercube andU(x,x8)
represents the links chosen to make the bilinear gauge inv
ant. The notation isgS5g1

S13•••3g2n
S2n and the phase fac

tor is computed from

~gS^ jF!AB⇒f~A,B!5
1

2n
Tr~gA

†gSgBgF
† !. ~75!

As an aside, this gives exactly the same terms appearin
Eqs. ~72! and ~73! provided you keep only the terms on
single hypercube.

As mentioned before, imposing a hypercubic structure
troduces problems with maintaining the staggered sym
tries for arbitrary spin and flavor choices. Our proposal is
the beginning of each update step of whatever update a
rithm, first choose the originO at random from the 22n ways
of imposing the hypercubic structure on the lattice. Ne
choose at random only one of the minimum distance pa
on the hypercube for making bilinears gauge invariant w
the restriction that the same path is used in both directio
3-11
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G. T. FLEMING AND P. M. VRANAS PHYSICAL REVIEW D66, 114503 ~2002!
Thus,U(A,B) is unitary andU †(A,B)5U(B,A). Note that
different paths can be used on different hypercubes. Ch
ing a random hypercubic structure and random paths on
hypercubes at each update step ensures that symmetry b
ing effects due to these choices will cancel out in the
semble average. The purpose of choosing only one path
pair of corners on the hypercube is to guarantee the ch
projection property. For example, (g5^ 1)†@(g5^ 1)x#→x
which is the same as the continuum where we norm
choose Hermitian gamma matrices.

C. Doubly regularized staggered fermions

The third proposal is specific to the Saclay basis but
plies equally well to SDWF and staggered fermions w
Pauli-Villars fields. Following the second proposal, we c
construct at each update step a unitary transformation f
the single component basis to the Saclay basis that will
tainly depend on the gauge field but not on the value of
massmf . Since the fermionic action and the Pauli-Villa
action only differ by the value ofmf , then the contributions
from the transformation will cancel between fermions a
the pseudofermions. Specifically, the fermionic partiti
function on a fixed gauge background and for finite latt
spacing, volume andLs is

ZF@U#5E @dx̄FdxF#E @dfPV
† dfPV#

3ex̄FG†DF(mf )GxF2fPV
† G†DF(mf51)GfPV

5
detG†detDF~mf !detG

detG†detDF~mf51!detG

5
detDF~mf !

detDF~mf51!

5E @dC̄dC#E @dF†dF#

3eC̄DF(mf )C2F†DF(mf51)F ~76!

which is what we had back in Eq.~1!. In practice, we do not
need to specify the paths chosen for the basis transforma
since they cancel from the path integral. But, it would still
important to choose at random the originO of the hypercubic
structure at each update step to avoid violations of the s
by one lattice spacing symmetry. We would like to emph
size again that this proposal should work for staggered
mions with added Pauli-Villars fields and we believe this
another example of the potential ofdouble regularizationto
improve the usefulness of existing fermion actions by c
celing lattice artifacts@25#. Also, notice that the number o
fermionic degrees of freedom is the same as in the sin
component basis because the Saclay fields are define
hypercubes.

Of course, some of the ideas presented in this section
implementing SDWF for numerical simulation have be
discussed before, e.g. the idea for stochastic restoratio
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staggered symmetries is certainly descended from the w
of Christ, Freidberg and Lee@39#.

IX. ALTERNATIVE ACTIONS

The SDWF action considered here is not unique. It
possible that actions with better scaling properties may
constructed using improved fields in the same spirit as w
staggered fermions~see@40,41# and references therein!. Ad-
ditionally, in our earlier work@22# we introduced the domain
wall defect using a local mass term~distance zero! which
preserved the shift by one lattice spacing symmetry~among
others! and broke the U(1)3U(1) chiral symmetry. In this
work, we considered a distance one mass term which
serves the chiral symmetry and breaks the shift symme
We view this as a better choice because the additive re
malization it produces@37# merely contributes to the flavo
breaking term that our domain wall formulation is design
to eliminate. It is possible that other distance mass te
might prove useful in the future and even have a faster
ponential rate of restoration of flavor symmetry. We emph
size that the primary requirements for these mass terms
that they be of the order of the cutoff and commute with t
operators in Eq.~20!.

X. CONCLUSIONS

In this paper a different lattice fermion regulator was p
sented. Staggered domain wall fermions are defined inn
11 dimensions and describe 2n flavors of light lattice fer-
mions with exact U(1)3U(1) chiral symmetry in 2n dimen-
sions. The full SU(2n)3SU(2n) flavor symmetry is recov-
ered as the size of the extra dimension is increased. SD
give a different perspective into the inherent flavor mixing
lattice fermions and by design present an advantage for
merical simulations of lattice QCD thermodynamics. W
have paid particular attention to the chiral and topologi
index properties of the SDWF Dirac operator and its asso
ated transfer matrix. In the limit where the lattice spacing
the extra dimensiona5 tends to zero the correspondin
HamiltonianH0 is proportional to the identity in flavor spac
illustrating the complete absence of flavor mixing.

For a semi-infinite extent in the extra dimension, t
theory has four chiral fermions with the same chiral charg
and is anomalous. To construct an anomaly free theory,
must use such ‘‘quadruplets’’ with charges as dictated by
corresponding anomaly cancellation condition. This is co
pletely analogous to the case of Wilson DWF.

However, there are still a number of unresolved issu
related to this formulation which need to be studied in futu
work. In particular:

~1! For QCD, the nearly fourfold crossing degeneracy
the Hamiltonian must be investigated thoroughly.

~2! SDWF should be implemented for numerical simu
tion according to the proposals of Sec. VIII. In the brok
phase of QCD, it is obviously important to confirm that o
pion is a pseudo-Goldstone boson and that the remain
fourteen nonsinglet pions become degenerate with
3-12
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pseudo-Goldstone boson asLs→`. Also, the expected ro
bustness of topological zero modes should be confirme
was done for DWF@42#.

~3! We have presented an analysis of the zeros of
SDWF Hamiltonian through the pseudo-HamiltonianHp and
in the limit a5→0 where the flavor breaking is trivially ab
sent inH0. A derivation and analysis of the full spectrum
the Hamiltonian for generala5 is needed.

~4! Since the nearly degenerate fourfold crossings in
spectrum of the Hamiltonian have the same chiral charge
conserved currents of the full SU(2n)3SU(2n) symmetry
must exist and can be constructed in the overlap formal
@33#. Simpler constructions of these currents may be p
sible. Constructing and measuring the conservation of th
currents in simulations is important.

~5! SDWF were constructed with the simulation of QC
thermodynamics in mind because of the importance of h
ing a continuous subgroup of chiral symmetry for anyLs . It
is worth confirming that this gives SDWF some advanta
over DWF in looking for critical fluctuations at the finit
temperature QCD phase transition.

~6! It would be very interesting to add the Kogut-Sincla
four-fermion interaction@43,44# to the SDWF action to en
able simulation at zero quark mass in the region of the Q
phase transition.

~7! The domain wall mass term must be of the order of
lattice spacing and will introduce a hard breaking of so
part of the staggered symmetry group, in our case the s
ar
hi
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by one lattice spacing symmetry, causing quantum corr
tions to the SDWF transfer matrix@37#. Our analysis of the
transfer matrix spectrum indicates a range ofm0 values can
still be found where the transfer matrix behaves correctly
the presence of gauge field topology, as was the case
Wilson DWF. We believe this issue should be studied th
oughly @46#.

~8! Can SDWF reveal~or has it already revealed! some
new insight into the nature of inherent flavor mixing of la
tice fermions?

On the strength of the results of our transfer matrix ana
sis, we believe that SDWF may be an attractive alternative
DWF. The formulation is now sufficiently mature that th
issues above should now be addressed in the contex
QCD. As has been the case with staggered and Wilson
mions in the past, we should have a choice between SD
and DWF for a given problem according to our resourc
and preference in the near future.
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