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We calculate one-loop matching factors for bilinear operators composed of improved staggered fermions.
We compare the results for different improvement schemes used in the recent literature, all of which involve
the use of smeared links. These schemes aim to reduce, though not completely eli@aa}aiscretization
errors. We find that all these improvement schemes substantially reduce the size of matching factors compared
to unimproved staggered fermions. The resulting corrections are comparable to, or smaller than, those found
with Wilson and domain-wall fermions. In the best cd%Eat-7” and mean-field improved hypercubic fat
links) the corrections are 10% or smaller aa%/2 GeV.
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I. INTRODUCTION change the fermion action and operators such thaOffae)
corrections are reduced from the large size typical of unim-
Improved staggered fermions are an attractive choice foproved staggered fermions to the size seen with Wilson, do-
numerical simulations of unquenched QCMD-11. They  main wall or overlap fermions. We do not improve the gauge
maintain the positive features of unimproved staggeredction.

fermions—smaller CPU requirements than other fermion The plan of this paper is as follows. In the next section we
discretizations, a remnant chiral symmetry, ad@a?) dis- describe the alternatives we have considered for improved

cretization  errors—while  potentially  avoiding  its operators and actions. Section Il collects the new features of

drawbacks—large flavor symmetry breaking and large perihe Feynman rules that are introduced by improvement. In

turbative matching factors. We have begun a program of calS€c- IV we present analytic results for the one-loop matching

culations of electroweak matrix elements using these fermionstants. We then, in Sec. V, describe how to do a second

ons, and thus need to decide between the differe level of mean-fleld improvement o_f the bilinear operators.
. . close in Sec. VI with the numerical results and a discus-
improvement schemes that have been suggested in the rec%ﬂf

literat Si intend at first t | curb n of their implications. We collect some definitions in an
Iterature. since we intend at first to use one-loop pertur .aAppendix, along with the results that allow us to push the
tion theory to match lattice and continuum operators, it is

. . analytic calculation one step further than in previous work.
important that the matching factors for relevant operators are We lean heavily on the notation and methodology of Patel
close to unity. In this paper we calculate these matching facénd SharpéPs [14]

tors for the bilinear operators which form the building blocks '
of the four-fermion operators we intend to use in our matrix
element calculations. We expect our results to be a good

guide to the size of corrections for the four-fermion operators Il. IMPROVED ACTIONS AND OPERATORS
themselves—typically the one-loop contributions get roughly | epage[2,8] and Lagae and Sinclai6] have argued that
doubled. In any case, finding small one-loop corrections foflayor symmetry breaking can be substantially reduced by
bilinears is a prerequisite for proceeding to four-fermion op-suppressing the coupling of high momentum gluons which
erators. connect “physical” quarks residing at different corners of the
We stress that we are using the term “improvement”Brillouin zone. Such suppression is also expected to reduce
loosely in this work. Although the improved actions and op-the size of one-loop contributions to perturbative matching
erators that we use are motivated by the Symanzik programactors, since, as noted by Golterm@h5], their size is
we are not fO"OWing this program Systematically. This WOU|d|arge|y due to tadpo|e-type diagrams which involve these
involve improving the gauge and fermion actions, and theflavor-changing vertices.
operators, so as to remo@a?) errors either order by order The flavor-changing coupling can be suppressed by re-
in perturbation theory or nonperturbatively. Such a progranplacing the standard “thin” link with some form of
is much more difficult for staggered fermions than for “smeared” link in the quark covariant derivative. Various
Wilson-like fermions, particularly with the operators we useoptions have been tried, and we consider here two choices
which are spread out over & hypercubé. Our aim is to  which have been successful at reducing flavor symmetry
breaking in pion masses, are relatively local, and have been
extensively studied: the “Fat-7" link introduced by Orginos
'For recent work on further improving staggered fermions seeand Toussaint7] and studied numerically by the MILC Col-
Refs.[12,13. laboration[10], and the hypercubic fa(HYP) link intro-

0556-2821/2002/68.1)/1145019)/$20.00 66 114501-1 ©2002 The American Physical Society



W. LEE AND S. R. SHARPE PHYSICAL REVIEW D56, 114501 (2002

duced by Hasenfratz and KnecHhtli6]. We refer to the origi-  field2 The only improvement of the operators that we con-
nal papers for the details of the constructions and do nasider is the use of smeared links. Intuitively, the reduction in
repeat them here. Both are “fattened” by averaging overfluctuations in these links will reduce the flavor symmetry
paths containing links in some or all of the transverse direcbreaking between bilineaf&6]. In all cases we use the same
tions (and which in the Fat-7 case are up to 7 links [prad ~ type of smeared links in the operators as in the action, so that
in this way they reduce the coupling to gluons with trans-the hypercube vector current is conserestcept in case
verse momenta oD(1/a). In some sense the Fat-7 link is V)] » ) . .

the simplest choice which accomplishes this, while the HYP The specific choices of links we consider are as follows.
link involves an average over more paths. On the other hand, (1) The original gauge links, tadpole improvéliowing

the HYP link involves three levels of APE-like smearing the prescription of Ref18] as implemented in PSWe use

with projection back into S(B). Simulations show that such ;[ehrz f(;ulri';]hk,r’?]ot qlfr:ihse éilc\a/ﬁjrsgz dpliﬁe%ier:ertc?vggtfr:irmn?ot\?: d av-
smearing is very effective at reducing flavor-symmetry 9 o y P P P

breaking. Indeed, using the HYP links leads to a greater re§taggered fermions and unimproved operators, and allows us

s . ) to check our results against those in PS.
duction in flavor symmetry breaking than the Fat-7 links. (i) Fat-7 smearedglinks built out of tadpole improved
The introduction of smeared links can be viewed as on '

. X finks (as in the numerical implementation of Refg,10)).
part of the Symanzik improvement program applied at treéye siress again that we use these smeared links both in the

level to staggered fermions. Complete removaIQJ(faz) action and in the bilinear operators.
terms from fermion vertices requires two other improve- jii) Fully O(a?) improved smeared links, i.e. Fat-7 links
ments[8]. First, the smearing of the links introduces anjth the Lepage “double-staple” term added, again both in
O(a?) correction to the flavor-conserving quark-gluon cou-the action and the operators.
pling. This can be removed by adding to the smearing a (iv) Links smeared according the HYP prescription of
5-link “double staple”—we refer to this as the “Lepage Hasenfratz and Knecht[il6], again both in the action and
term.” Second, theéd(a?) corrections to the fermion propa- the operators. Three parametess, 3, need to be specified
gator need to be removed, and this can be done by addingta completely define HYP smearing, and we focus on two
next-to-nearest-neighbor derivative, the “Naik terfri’9]. choices, as described below. We also consider a variant in
An observation of practical relevance is that the Naikwhich we tadpole improve the smeared links themselves
term is the only part of the improvement of the fermion (Sec. V.
vertex that cannot be accomp|ished s|mp|y by Changing the In addition, we consider a final choice of action and op-
links in the unimproved staggered action. In other words, iferators: _ o
one does not include the Naik term, and if one is interested in (V) Following the “Asqtad” action introduced by Lepage
calculating propagators on configurations that have alreadif] @nd used extensively by the MILC Collaboratidr0], we
been generatetiwhether quenched or unquencheden the add the Naik term to th_e action of ch0|(:m),_wh|le taking
practical implementation of smeared links is simple: one Cal-the same operators as in choi@e). In the N‘T’"k term alc_)ne,
culates the smeared links, and then uses an unimproved sta %Vlés(‘je the original unsmeared gauge lirkadpole im-
gered inverter. o . This differs from the “Asqtad” action, however, because
Complete tree-levelO(a“) improvement of physical

it . in addition to the i t of th we use the unimproved Wilson gauge action, whereas
quantities requires, in addition fo the improvement o e“Asqtad” includes an improved gauge action. We thus refer
fermion vertex outlined above, the use of a tree-lejosl

] ’ i ; ' to our choice as the “Asqtad-like” action. Our expectation is
more highly improved gaugezacnon. The previous discus-that the choice of gauge action has relatively little impact on
sion implies, however, thad(a®) errors from the gauge ac- the size of matching factors, and particularly on the variation
tion are not responsible for the large flavor-symmetry breakof these factors between bilinears having the same spin and
ing or the large “tadpole” contributions to matching factors. different flavor.

With these general comments in mind, we can now ex-
plain our choices of action and operators. We use the single- Ill. FEYNMAN RULES
plaquette Wilson gauge action, since this is the action we are

using in our present simulatioAg=or the fermion action, we The Feynman rules for unimproved staggered fermions

L . . are standard. In the notation we use here, they can be found
keep the original staggered fortwithout the Naik term, but in PS, and we do not repeat them. We discuss only the

use various types of smeared links. The only exception i%han es introduced by smearing the links and including the
case(v) below, in which we keep the Naik term. Finally, for Naik%erml. . y g ! Inciuding

the bilinears we use the standard hypercube féime defi-
nition of which is given in the Appendjx rendered gauge

invariant by including the average of the product of .Ilnks 3We do not consider here so-called “Landau gauge” operators—
along the shortest paths between the quark and anti-quatkose rendered gauge invariant by transforming to the Landau
gauge and then leaving out the links. These are not useful for matrix
elements involving “eye” diagrams, because they allow mixing
2For this reason, we cannot compare our results with those of Refwith lower-dimension gauge noninvariant operatt@]. They are
[20], since these authors use an improved gauge action. also subject to uncertainties due to the presence of Gribov copies.
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We consider first the effect of smearing the links. For all d;=1, d,=1, dy3=1, d,=0, (10)
except tadpole diagram@.e. those in which two gluons
emerge from a single, possibly smeared, Jjrtke only effect i.e. the same as for Fat-7 links.
is to change the coupling to the underlying gluon field. With  These results agree with those of Rdf&0,21], but are
the unimproved action, a link in thgth direction couples written here in a somewhat different notation. The fact that
only to a gluonA (k) with v=u. The smeared links, how- all four choices can be collected in this form simplifies the
ever, couple toA,(k) for all », and the extra factor this resulting one-loop calculations. It is particularly noteworthy

introduces can be conveniently written as that the Fat-7 and HYP vertices can be made identical, show-
ing that these two choices cannot be distinguished by their
8,,,D,(K)+(1-96,,G, .(K). (1)  flavor breaking effects in perturbation thed4]. The one-

_ _ _ loop matching factors for these two choices are not, however,
The diagonal and off-diagonal couplings can be decomposegientical, because the tadpole contributions differ.

respectively, as For tadpole diagrams, which involve two-gluon vertices,
the differences between the actions are more complicated,
—1_ 2 22 and will be given explicitly below.
D,(k=1 dl;M s, +d; ,,Z,J S5 The inclusion of the Naik term alters the Feynman rules in
VipF several ways. In the fermion propagator, all factorsspf
=sinp, are replaced:
_d3SVSpSo'_ d42 ?;u (2) g
vrm S,—Sy=5,(1+dys>/6). (1)
with s, =sink,/2), etc., and Here we have introduced a fifth coefficieyj which distin-
— guishes the different choices of actiody=0 unless the
G, u(k)=s,5,G, .(k) (3)  Naik term is included, in which casdy=1. This device
allows us to write most of our results in a way which holds
- (si+s) - for all choices of action and operators.
G, u(k)=di—dy——5—+d3—5=+dss,, 4 The one-gluon vertex is also changed by the Naik term,
but this can only be represented in a simple way if one of the
where all indices 4, v,p,o) are different. quarks in the vertex has vanishing physical momenfim
The coefficientsd; _, distinguish the different choices of =(0.m/@)]. In this case, the diagonal part of the vertex
links: changes as follows:
i) Unimproved[choice(i) abovd:
0 proved| (i) abovd D,—DN=D,,+dys%/6. (12
d1=0, d=0, d;=0, ds=0. ® " This substitution works for all except the self-energy dia-
(i) Fat-7 links[choice(ii) abové: gram, which we consider explicitly below.
d,=1, d,=1, dz=1, d,=0. (6) IV. ANALYTIC RESULTS FOR MATCHING CONSTANTS
(III) O(a2) improved Iinks[choices(iii) and (v) abovd: The one-loop matching relations take the general form
2
=0, d=1, di=1 d,=1. M oF-oftCrras 2 [82d)n(u2)+ ¢y 1O},
(iv) HYP smeared link$choice(iv) abovd: (13
di=(23) aq[1+ ay(1+ asz)], where C=4/3 is the color Casimir factor is the renor-
malization scale of the continuum operators, amehdj run
dy=(43) ayay(1+2a3), over all the different possible bilinears in a four-flavor
theory. The explicit forms of the operators are given in the
dz=8ayaye3, d;=0. (8) Appendix. The constantd; are proportional to the one-loop

anomalous dimensions of the bilinearg{®=—2C.d;.
We consider two choices for the;. The first was deter- They depend only on the spin of the bilinear, and dre
mined in Ref[16] using a nonperturbative optimization pro- =(3,0,—1) for spins &P,V/A,T). The finite part of the
cedure:a;=0.75, @,=0.6 a3=0.3. This gives coefficient can be written

d12089, d2:096, d3:108, d4:0 (9) Cij :5lj[dl(7E_FOOOO)+tS]_C|j] y (14)
The second is chosen so to remdd¢a?) flavor-symmetry  with tg depending on the continuum renormalization scheme.

breaking couplings at tree level. This choiee,=7/8, «, For the NDR schemets=(—0.5,0,1.5) for spins
=4/7 andaz=1/4, gives (S/P,VIA,T). The conversion to other schemes is given in
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+22, | s,shs,shONNBF2V(K)
k

Y) (2
u<v
% X[1—(—1)%*+5]. (18)
(D (D

Here [=167"11,7 (dk,/2m), c,=cosk,/2) and Sy
=sin(,). The functions arising from boson and fermion
FIG. 1. Notation for diagrams contributing to matching factors. propagators are, respectively,

B2 =
cZPIN(S))2BF2V; (k) — s (—1)S:*S

1 1
PS. The constants arge=0.577216 andFypo=4.36923. B(k)= , F(kky=——. (19
Finally, the “lattice” part of the coefficient can be broken up 43, s > (sh)?
as follows: m s

For the sake of brevity we do not show the argumieraf
Ci=Xij+ 8 (Y +Ti+2). (15 these functions or oP)," and O}})) in Eq. (18) and in the
following. The indexi in Eqg. (18) labels the spin and flavor
o ) of the operator, and thB?%/4 term on the first line is the
HereX, Y, T and Z refer to contributions from the different . entional integral used to cancel divergences. The func-
types of d!agrams using the notation of PS, as |]Iustrated IBion v;(k) is defined in Eq(A8); we stress again that the use
Fig. 1. This equation incorporates the fact, derived belowy ihis equation leads to a simpler form than that given in PS.
that only theX diagrams lead to mixing among bilinears. Only the X diagrams lead to mixing, i.e. nonzero values

All'our calculations are done.in the Feynman gauge. We,, Xij, 1#]. We find that we can also give explicit expres-
have checked our results by doing two independent calcul%—iOn

. ing diff hods—the first followi dth s for the mixing terms using E@A9). As for unim-
tions using di erent methods—the |rst. ollowing PS and t eproved staggered fermions, the mixing that occurs at one-
second using the methods presented in Hef3,23.

loop turns out to be only a subset of that allowed by the
hypercubic symmetry group. The nonzero mixing coeffi-
A. X diagrams cients arg(using the definitions in PS—see Tablg I

The calculation follows the same steps as in PS, except

for two changes. Cyvm= fk4B F?s;5)'s,sy(PYNC5—005's3),  (20)
(a) We have been able to carry out the calculation analyti-

cally apart from one final integral, using the resuléss),

(A9) given in the Appendix. _ Cyam= f 4BF?s,s\'s,s)(— PYNc3cac,
(b) The improved vertex Eql) allows propagation from k

a smeared link in thesth direction to another in any direc- NN_2 _
tion, even in the Feynman gauge. It is useful to distinguish 012 53 2¢2~ C3]C4), @D
between the case where the second link is also ingtie
direction, for which the gluon propagator is multiplied by CyTm= f 2BF2s;s\s,sh(— pg”\'Eg[chr c4]
k
P/’:‘N( k)= D/'j(k)2+ Vz‘# G, u(k)?, (16) +0h's3[2C,— C3+ ¢y ), (22

and the case where the second link is in a different direction
p# ., for which the multiplying factor is

_ 2¢ Ne N/ NN2
CTAM_fKZBF 151 5,8, (P3 c3[Cs—C3]

+0N's3[2¢,— c3—c4)), (23)
N N wherec = cosk,,).
DNG, ,+DNG, ,+ V%yp) G, ,.G,, w .
_ B. Y diagrams
=14s,5,00 (k). (17)

Y diagrams involve the gluon connecting an external
quark or antiquark line to the operator. As explained in PS,
The superscripts emphasize the fact that there is a possibiégth the unimproved staggered action and unsmeared links,

Naik term at both ends of the propagator. Y diagrams do not lead to mixing between different bilinears,
Using these results, we find the following expression forand the result depends only on the “distanc&*>Z> (S
the diagonal part of the contributions from tKediagrams:  — F)i, of the bilinear. It is straightforward, though tedious,
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to check that these arguments generalize to the improvedhere the factor ofr? comes from tadpole improvement

actions considered here. The result is

Ya=Ya-1t+ly (A>0), (24

with Y,-0,=0, and

la= J BFs;s) PV (A)+ f 12BF 25,5y 0NV (A)
k k

(25
Co+C3+Cy
VY(1)=1, VY(Z):Ty
C,C3+CyCyq+C3Cy
Vy(3)= 3 » Vy(4)=c,c3e,. (26)
The new functions are defined by
PE(k)zDE<k>DH<k>+§ G,,.(k)?, 27
vE U
and
'« « AN —_ N
4s,s,0) (k)=DNG,, ,+ DPGP’M+V¢% ; G, .G,
(28)

using the fourth-root of the plaquette. If one uses the trace of
the Landau gauge link, them? is replaced byf3B/8.

(i) For the Fat-7 linkgwithout the Naik tern, the result
is the same as for unimproved staggered fermions(&J),
due to cancellations.

(i) For O(a?) improved links (but without the Naik
term), we find

Ta=(A-1) (wZ—JkB/z +§Jk5c1§§ . (3D
(iv) For HYP links, we find
TZz(A—l)Jk(—B/Z)Pl, (32
whereP, contains no Naik vertices:
P,(k)=D,,(k)2+ % G, u(K)2 (33

We emphasize that, at this stage, there is no tadpole improve-
ment factor for the HYP linkgalthough a related mean-field
improvement will be introduced in Sec.) Vit is also note-
worthy that this result would apply for both the Fat-7 and
O(a?) improved links were one to also include projection
back into SUW3) in those casef24].

(v) Finally, for the Asqgtad-like action we find

The single superscriptN” reflects the fact that the Naik

term appears only at the quark-gluon vertex and not in the a ) 3 —
operator. Note that, unlik®},", O} is not symmetrical. a=(A=Dj| 7= kB/Z ts kBC152
: 1
C. Tadpole diagrams +Z 72_f501(1+01) , (34)
k

Here we include tadpole diagrams both on the external
quark and antiquark propagatofise. self-energy contribu- . . L .
tions), and those coming from the bilinear. In the latter case” vmhmh thet sec;)n(tjhcopt#béj_tlon 'Slff“t"edto ;[he ’}ll_ﬁ'k term.l
we include all diagrams in which the two gluons both come_ . ow we turn 1o the “ofi-diagonal” tadpoles. These only
ise from the bilinears, and not from the self-energy contri-

from the bilinear, irrespective of whether they emanate fronf!'s ! 4
b y rr_%‘utlons, and are only present for operators Witk 2. Since

the same smeared link. Thus, for the example of a distance i | th p dBU(3 )
bilinear, which involves an average of a sum of products of €Y are off-diagonal they are not affected $y(3) projec-
tion, and so take a common form for all actions and opera-

two links, the gluon can couple between the liris well as

going from each link back to itself tors
It is convenient to divide the contribution into two parts,
b_ 52 2
T,=T+T°, (29) TA—4LB 155012V 1(A) (35

with the former coming from gluon loops beginning and end- v,(2)=1,
ing on the same smeared link, and the latter involving gluons
propagating between smeared links. In both cases the result (36)
depends only on the distangeof the bilinear.

No simple general formula covers all choices of links andere 0,, does not contain Naik contributions, even for the
action, so we quote the results in turn. Asqtad-like action:

(i) For unimproved staggered fermions, the resultf§)

VT(3)22+03, VT(3):3+2C3+C304.

4SMSpO,up

(k=D,G,,+D,G,,+ > G,,G

v v,p

a __ _ 71_2_
a=(A 1)( ka/z), (30)

v (u,p)

(37
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D. Self-energy diagrams because it is not entirely clear to us how to incorporate the
If the Naik term is not included in the action, the flavor- Naik term. We find that one must add to the tadpole contri-

singlet vector current is conserved, and it follows from thePution the following:
corresponding Ward identity that its matching factor van-

ishes. Thus it must be that, in cag@s-(iv), S=(A—1)| ~Ti,~ TR o kaP1C2/2 . (43

Z=—X;i—Yq, i=(y,®1). (39
o WhereTi'b and P, are given in the previous section. The
Here we have used the result that=0 for casesi)—(\v).  guantity in square brackets evaluates-t6.9125 for Fat-7
We have checked E@38) analytically and numerically. links, —4.0634 forO(a2) improved links, 0.5782 for HYP
We cannot use this relation for the Asqtad-like action, ks with @, 3=0.75, 0.6, 0.3, and to 1.0538 for HYP links
since the hypercube vector operator is not the conserved CUfi the “Eat-7 choicé"al ’3: 7'/8,4/7,1/4. These values are

rent(as it does not contain a Naik-like contributioA direct g nstantially smaller than the analogous factor in the tadpole
calculation is needed, and we find improvement of the unsmeared links, namef§. They are,

nevertheless, significant, as we see in the next section.
z:f|32+f|3|:|z, (39 It is noteworthy that the Fat-7 and)(az) improved
k k smeared links receive a mean-field correction of opposite
sign to that of both the HYP links. This indicates that the
| ;= cq(1+dys2/2)(1—2(s))?F) (c2PYN-3c2P)N) fluctuations in the former case have been “overcompen-
sated” by smearing, and suggests that this higher level of
— 5,5\ [P +dy(253/3—¢3) D, — dys2cic, /6] mean-field improvement is likely to be more significant for
N 5 Ne NN - N the HYP smeared links.
—12s;8,¢1(1+dys1/2)s25, FO7; —3515,5,(4012 Finally, we note that after this higher level of mean-field
—x o improvement, the results for Fat-7 and HYP links with
—dNC1C1Gy o+ dnS5G5 1/6). (40

aq_3=718,4/7,1/4 are identical. The equality of the tadpole
contributions can be seen by combining E0), (32) and

t‘l;]he :;'.rSt terrrtl m_Z IS tr:/?/ stﬁndarq mteigrallused to sqbttract(43); that of other contributions follows from the fact that the
e divergent piece. We have inserteld in appropriate single-gluon vertex is the same in both cases.

places so that this result is valid for all the actions we con-

sider.
VI. NUMERICAL RESULTS AND DISCUSSION

V. FURTHER MEAN-FIELD IMPROVEMENT We present numerical results for the matching coefficients
OF OPERATORS in Tables I-11l. As explained in Ref17], the corrections are

It is possible to apply another level of tadpole, or, moreunchanged if the operators are multiplied by ¢ ¢5), due

accurately, mean-field, improvement to the operators and a0 the conserved axial symmetry. Thus we show results for
tions which involve smeared links. Actually, for the HYP only half the operators. Recall thqt we have chosen the NDR
smeared links, this is the first level of tadpole improvementScheme MS with an anticommutingys) and setu=1/.
The fluctuations in the smeared links are reduced compare@€ €xpect this to be a reasonable choice for the matching
to those of the original links but are still present. The residuafc@l€, but, in any case, the depandence ofdheon w is
fluctuations can be estimated and partially removed by deWeak, as can be seen from H43). _ o
fining a smeared mean-link by analogy with the definition of The most striking result from the tables is the significant

the original mean-link18: reduction in the size of one-loop corrections for all of the
choices of smeared links. This is true also for the off-
(ug"")4=(smeareekplaquetté. (41 diagonal matching constants, although here the corrections

were small to start with. We also see that the mean-field
Here the “smeared-plaquette” means the plaquette built outmprovement of Sec. V leads to a significant further reduc-
of smeared links. The operators are then mean-field imtion in the corrections for HYP smearing, although the cor-

proved by multiplying them by rections increase somewhat for Fat-7 aB¢a?) improved
smearing.
(ug™r=4, (42 To compare the different alternatives for improvement we

quote, in Table IV, the range of variation of the diagonal
whereA is the number of links in the bilinear. The argument coefficientsc;;, both for a given spin(varying the flavoy,

leading to this factor is identical to that used in PS whenand for all spins and flavors. The range for a given spin is
tadpole improving staggered operators, and we do not repeat

it here. This procedure should be simple to implement iT——
practice. . ) 4Approximate methods of calculating the optimal matching scale,
We have calculated the effect of such a mean-field img*, do not obviously generalize to the case of operators with non-

provement for Fat-7Q(a?) improved, and HYP links. We vanishing anomalous dimensions. We return to this issue elsewhere
have not applied it to the case of the Asqtad-like action[24].
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TABLE |. Diagonal part of the one-loop matching constamts, using the NDR scheme witjpypr
=1/a in the continuum. The components v, p ando are all different. Results are given for six choices of
action and operatorga) unimproved;(b) Fat-7 links; (c) fully O(a?) improved links;(d) fully O(a?)
improved links and Naik ternfAsqtad-like actioi () HYP links with the smearing coefficients from Ref.
[16], a;_3=0.75,0.6,0.3;(f) HYP links with tree-level improvement coefficients; 3=7/8,4/7,1/4. The
error in the results is no larger than 0.0001.

Operator (a) (b) (c) (d) (e) (f)
(1®1) —29.3551 1.8696 —4.3917 —2.1750 —0.5939 —0.0966
(1®¢,) —8.6416 2.4633 —2.5643 —0.3301 1.8394 2.4633
(1®€¢,,) 0.5657 2.8990 —2.8420 —0.7999 4.0139 4.8653
(1® 5#5) 5.2378 3.3351 —4.0469 —2.1427 6.0380 7.2676
(1®&s) 8.7493 3.7704 —5.5793 —3.7774 7.9837 9.6693
(v,®1) 0.0000 0.0000 0.0000 1.4155 0.0000 0.0000
(7M® fﬂ) —4.9092 0.7869 2.9240 4.2755 —0.9457 —1.1794
(yﬂ® £) 0.1721 —0.1201 —2.9799 —1.5110 1.3090 1.8461
(yﬂ®§ﬂ,,) —3.3948 0.3636 —0.0621 1.4290 0.2617 0.3636
(y#® fyp) 2.5040 —0.1930 —5.4907 —4.0295 2.7140 3.7396
(7.®¢&,5) 0.1902 0.1367 —2.5010 —1.0264 1.6009 2.1030
(y#® §u5) 4.8930 —0.2147 —7.9437 —6.4957 4,1592 5.6841
(7u®&s) 2.7709 0.0369 —5.0332 —3.5799 2.9898 3.9694
(y,“,® 1) 1.5969 0.3741 —1.3115 —0.0393 1.9442 2.3404
(7ur®€,) 0.8194 0.8758 2.1260 3.3442 0.9819 0.8758
(7,,®E&,) 3.0150 0.0410 —4.4862 —3.1752 3.0313 3.9735
(Yus®E,) 45728 1.7594 6.6960 7.7590 0.2703 —0.2069
(yw,® §M,) 1.2809 0.3800 —1.4041 —0.1178 1.9309 2.3463
(y#,,® f,m) 4.9409 —0.2098 —7.3985 —6.0684 4.2177 5.6890

independent of the renormalization scale(sinced; is the that tadpole improved HYP fermions lead to corrections of
same for all flavors and thus is a good measure of the sizeabout this size.
of lattice contributions to matching factors. The range for all  Finally, it is interesting to compare to the size of one-loop
spins and flavors does depend @nbut only rather weakly. corrections for bilinears obtained with other fermion actions.
The table shows that, of the alternatives we have comparedror unimproved Wilson fermions one finds, after tadpole im-
Fat-7 links, with or without mean-field improvement, and provemen{picking for definiteness the tadpole improvement
mean-field improved HYP or Fat-7 links lead to the smallestscheme of Ref[25]), ¢;=—0.1,-9.7,—-7.8,-2.9,—4.3 for
range of corrections. A similar conclusion holds if we con-i=S,P,V,A, T, using the same renormalization scheme and
sider the maximum magnitude of the corrections rather thascale for the continuum operator as in the tables. We have
the spread. not been able to find the corresponding results for improved
What values ofc;; give rise to “small enough” correc- Wilson fermions incorporating tadpole improvement, but it is
tions in present simulations? TakingaX 2 GeV as a typical clear from Table 3 of Refl.26] that one-loop matching fac-
lattice spacing, and usingvys(2 GeV)~0.19, we find tors are of similar size as for unimproved Wilson fermions.
Crays/(47)~0.02. Thus a matching coefficieat=5 cor-  For domain-wall fermions, tadpole-improved results are
responds to about a 10% correction at this lattice spacingiven in Ref. [27]: ¢=-11.2~-53-2.0 for i
This is the size of corrections we are aiming for, and we see= S/P,V/A, T (setting the domain-wall masdl =1.7). We

TABLE II. Nonvanishing off-diagonal one-loop matching constants, The componentg, » andp are
all different, but otherwise can take any values. Results are given for the same choices of action and operators
as in Table I, except that HYP links with tree-level coefficients give identical results to Fat-7 links and thus
are not shown. The error in the results is no larger than 0.0001.

Name Operatot- Operator} (a) (b) (c) (d) (e)
Cuym (7.®€,) (Y,.®€,) 3.0412 0.3508 1.4104 1.2976 0.4203
CvaM (7u®€,5) (7,®&,5) —0.6463 —0.2565 —0.6192 —0.5481 —0.3000
cvrm  (7.®€u8)  (7,®E,,5)  —1.4861 —0.2797 —0.9241 -0.8211 —0.3512
Cram  (Vu®&us)  (v,,0&5)  —0.6763 0.0065 —0.2055 —0.1753 —0.0202
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TABLE Ill. Results for c;; after the mean-field improvement TABLE IV. Spread of values for diagonal correctioms,, both
discussed in Sec. V. Notation as in Table I. Results are given fofor a given spin, and between all operators. Notation as in Tables |
(b’,f") Fat-7 links and HYP links with tree-level improvement co- and Il
efficients, a;_3=7/8,4/7,1/4; ¢') fully O(a®) improved links;
(e') HYP links with smearing coefficients from Ref16], a;_3 Spin (@ (b) (¢) (d) (e) (f) (b',f") (c) (&)

=0.75,0.6,0.3.
S/P 381 19 30 34 86 098 5.5 151 6.3
Operator b/,f’) (C/) (e’) V/A 9.8 1.0 109 10.8 5.1 6.9 2.6 54 2.8
T 41 20 141 138 39 59 17 27 16
(1e1) 0.9571 —8.4551 —0.0156 Al 381 40 146 143 89 108 66 151 66
(1®¢,) 2.4633 —2.5643 1.8394
(19£,,) 3.8115 1.2214 3.4357
(18¢,5) 5.1600 4.0799 4.8815 Here the sums run over all positions in the hypercube, and
(1® &) 6.5079 6.6110 6.2490 L
(7,01) 0.0000 0.0000 0.0000 (7e® En)cn=—TH 71 t (A2)
(7,0£,) ~0.1255 —1.1394 —0.3675 7s®&rleo= 7T yeysyo el
(7,9¢,) 0.7924 1.0835 0.7308 i
(Y,8£,,) 0.3636 ~0.0621 0.2617 Wi
(,®€,,) 1.6320 2.6361 1.5576 _ 5152 s S (A3)
(7,8 &,5) 1.0492 1.5624 1.0227 VSTV Y2 Vs Vs
(7u®8p5) 2.5227 4.2466 2.4245 composed of Hermitian Euclidean gamma matrices. It fol-
(7.8¢5) 1.8619 3.0936 1.8334 lows that they and y fields are separated by a fixed number
(Yur®1) 1.2866 2.7519 1.3660 of links which is given by the “distance’A=X (S,
(V0 ® &) 0.8758 2.1260 0.9819 —FM)Z. In the continuum limit, this lattice bilinear has the
(V® &) 1.8659 3.6407 1.8748 same spin, flavor and normalization as the continuum bilin-
(Vur® ) 0.8469 2.6325 0.8486 ear
(Vur®E,p) 1.2925 2.6593 1.3527
1 apsab
(Vur®E o) 2.5276 4.7918 2.4830 o(cggfg, gF)zQi’ays'Bgﬁ Q% (A4)

whereQ¥ , is a four-flavor quark field, with spinor ind
conclude that the size of corrections with improved stagnq fla?/%rb indexb. both rugning from 1 to 4p and thzé,:l

gered fermions is comparable to, or smaller than, that for_ ¥% form a convenient basis for the flavor matrices.

other fermions. This provides further impetus to pursue cal- . K ~K - "
. s ; The superscript ony, QY, etc. indicates an additional
culations with improved staggered fermions. : . . .
flavor index, corresponding to the different continuum fla-
vors (u, d, s, etc). We consider here only continuum flavor
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ik-C_ ik, 2 c-M
APPENDIX: NOTATION AND TECHNICAL DETAILS e —(1;[ e'fw )% Em(k)(—) (A5)

We use the hypercube fields and bilinears introduced in .
Ref. [28]. The lattice is divided into % hypercubes labeled With
by a vectory, with all components even. Points within a 1 ~
hypercube are labeled by a hypercube vecty (D, in the En(K) =11 S[e 2+ (—)Mueku?]. (AB)
following), with all components 0 or 1. The lattice bilinears w2
we use are specified by “spin” and “flavor” hypercube vec-
tors S, andF, in the following way in terms of the stag-

gered fieldsy and y:

Here we have introduced the conjugate hypercube vectors

|\7|M=2; M, . (A7)
1 — I T
) =— Yy+C)(ys® 2(y+D). , . .
(75®§F)(y) 16;:» X Y+C)(rs® Erleox™(y+D) Previous results foiX diagrams in Ref[29] and PS were
(A1) expressed as sums over the additional hypercube véttor
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which were then evaluated numerically. We have been abla which all indices are different. These results can be ob-

to perform this sum analytically, which simplifies the final tained by combining PS Eq§24) and(27).

expressions. The two results we need in this paper are The explicit forms for lattice integrals are abbreviated us-
ing the following notations:

Vi(k)E% EM(k)EM(_k)(_)M»(NSHN:)

" dk,

_.2m’

T cogk,(s—F),], (A8) f —16:7[[
" k M

wherei labels the spin and flavor, and

> En(K)Ey s ol —K)(—)M D) s,=sin(k,/2), s, =sin(k,),
M
== |(S_ F),u.”(s_ F)V|S,u.sv
X cogk,(S—F),lcogk,(S—F),], (A9) c,=cogk,/2), c,=cogk,). (A10)
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