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One-loop matching coefficients for improved staggered bilinears
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We calculate one-loop matching factors for bilinear operators composed of improved staggered fermions.
We compare the results for different improvement schemes used in the recent literature, all of which involve
the use of smeared links. These schemes aim to reduce, though not completely eliminate,O(a2) discretization
errors. We find that all these improvement schemes substantially reduce the size of matching factors compared
to unimproved staggered fermions. The resulting corrections are comparable to, or smaller than, those found
with Wilson and domain-wall fermions. In the best case~‘‘Fat-7’’ and mean-field improved hypercubic fat
links! the corrections are 10% or smaller at 1/a52 GeV.
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I. INTRODUCTION

Improved staggered fermions are an attractive choice
numerical simulations of unquenched QCD@1–11#. They
maintain the positive features of unimproved stagge
fermions—smaller CPU requirements than other ferm
discretizations, a remnant chiral symmetry, andO(a2) dis-
cretization errors—while potentially avoiding it
drawbacks—large flavor symmetry breaking and large p
turbative matching factors. We have begun a program of
culations of electroweak matrix elements using these fer
ons, and thus need to decide between the differ
improvement schemes that have been suggested in the r
literature. Since we intend at first to use one-loop pertur
tion theory to match lattice and continuum operators, it
important that the matching factors for relevant operators
close to unity. In this paper we calculate these matching
tors for the bilinear operators which form the building bloc
of the four-fermion operators we intend to use in our mat
element calculations. We expect our results to be a g
guide to the size of corrections for the four-fermion operat
themselves—typically the one-loop contributions get roug
doubled. In any case, finding small one-loop corrections
bilinears is a prerequisite for proceeding to four-fermion o
erators.

We stress that we are using the term ‘‘improvemen
loosely in this work. Although the improved actions and o
erators that we use are motivated by the Symanzik progr
we are not following this program systematically. This wou
involve improving the gauge and fermion actions, and
operators, so as to removeO(a2) errors either order by orde
in perturbation theory or nonperturbatively. Such a progr
is much more difficult for staggered fermions than f
Wilson-like fermions, particularly with the operators we u
which are spread out over a 24 hypercube.1 Our aim is to

1For recent work on further improving staggered fermions
Refs.@12,13#.
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change the fermion action and operators such that theO(a2)
corrections are reduced from the large size typical of un
proved staggered fermions to the size seen with Wilson,
main wall or overlap fermions. We do not improve the gau
action.

The plan of this paper is as follows. In the next section
describe the alternatives we have considered for impro
operators and actions. Section III collects the new feature
the Feynman rules that are introduced by improvement
Sec. IV we present analytic results for the one-loop match
constants. We then, in Sec. V, describe how to do a sec
level of mean-field improvement of the bilinear operato
We close in Sec. VI with the numerical results and a disc
sion of their implications. We collect some definitions in a
Appendix, along with the results that allow us to push t
analytic calculation one step further than in previous wor

We lean heavily on the notation and methodology of Pa
and Sharpe~PS! @14#.

II. IMPROVED ACTIONS AND OPERATORS

Lepage@2,8# and Lagae and Sinclair@6# have argued tha
flavor symmetry breaking can be substantially reduced
suppressing the coupling of high momentum gluons wh
connect ‘‘physical’’ quarks residing at different corners of t
Brillouin zone. Such suppression is also expected to red
the size of one-loop contributions to perturbative match
factors, since, as noted by Golterman@15#, their size is
largely due to tadpole-type diagrams which involve the
flavor-changing vertices.

The flavor-changing coupling can be suppressed by
placing the standard ‘‘thin’’ link with some form o
‘‘smeared’’ link in the quark covariant derivative. Variou
options have been tried, and we consider here two cho
which have been successful at reducing flavor symme
breaking in pion masses, are relatively local, and have b
extensively studied: the ‘‘Fat-7’’ link introduced by Orgino
and Toussaint@7# and studied numerically by the MILC Col
laboration @10#, and the hypercubic fat~HYP! link intro-

e
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duced by Hasenfratz and Knechtli@16#. We refer to the origi-
nal papers for the details of the constructions and do
repeat them here. Both are ‘‘fattened’’ by averaging ov
paths containing links in some or all of the transverse dir
tions~and which in the Fat-7 case are up to 7 links long!, and
in this way they reduce the coupling to gluons with tran
verse momenta ofO(1/a). In some sense the Fat-7 link
the simplest choice which accomplishes this, while the H
link involves an average over more paths. On the other ha
the HYP link involves three levels of APE-like smearin
with projection back into SU~3!. Simulations show that suc
smearing is very effective at reducing flavor-symme
breaking. Indeed, using the HYP links leads to a greater
duction in flavor symmetry breaking than the Fat-7 links.

The introduction of smeared links can be viewed as o
part of the Symanzik improvement program applied at tr
level to staggered fermions. Complete removal ofO(a2)
terms from fermion vertices requires two other improv
ments @8#. First, the smearing of the links introduces
O(a2) correction to the flavor-conserving quark-gluon co
pling. This can be removed by adding to the smearin
5-link ‘‘double staple’’—we refer to this as the ‘‘Lepag
term.’’ Second, theO(a2) corrections to the fermion propa
gator need to be removed, and this can be done by addi
next-to-nearest-neighbor derivative, the ‘‘Naik term’’@19#.

An observation of practical relevance is that the Na
term is the only part of the improvement of the fermio
vertex that cannot be accomplished simply by changing
links in the unimproved staggered action. In other words
one does not include the Naik term, and if one is intereste
calculating propagators on configurations that have alre
been generated~whether quenched or unquenched! then the
practical implementation of smeared links is simple: one c
culates the smeared links, and then uses an unimproved
gered inverter.

Complete tree-levelO(a2) improvement of physica
quantities requires, in addition to the improvement of t
fermion vertex outlined above, the use of a tree-level~or
more highly! improved gauge action. The previous discu
sion implies, however, thatO(a2) errors from the gauge ac
tion are not responsible for the large flavor-symmetry bre
ing or the large ‘‘tadpole’’ contributions to matching factor

With these general comments in mind, we can now
plain our choices of action and operators. We use the sin
plaquette Wilson gauge action, since this is the action we
using in our present simulations.2 For the fermion action, we
keep the original staggered form~without the Naik term!, but
use various types of smeared links. The only exception
case~v! below, in which we keep the Naik term. Finally, fo
the bilinears we use the standard hypercube form~the defi-
nition of which is given in the Appendix!, rendered gauge
invariant by including the average of the product of lin
along the shortest paths between the quark and anti-q

2For this reason, we cannot compare our results with those of
@20#, since these authors use an improved gauge action.
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field.3 The only improvement of the operators that we co
sider is the use of smeared links. Intuitively, the reduction
fluctuations in these links will reduce the flavor symme
breaking between bilinears@16#. In all cases we use the sam
type of smeared links in the operators as in the action, so
the hypercube vector current is conserved@except in case
~v!#.

The specific choices of links we consider are as follow
~i! The original gauge links, tadpole improved~following

the prescription of Ref.@18# as implemented in PS!. We use
the fourth root of the average plaquette to determine the ‘‘
erage link’’ u0. This yields~tadpole-improved! unimproved
staggered fermions and unimproved operators, and allow
to check our results against those in PS.

~ii ! Fat-7 smeared links, built out of tadpole improve
links ~as in the numerical implementation of Refs.@7,10#!.
We stress again that we use these smeared links both in
action and in the bilinear operators.

~iii ! Fully O(a2) improved smeared links, i.e. Fat-7 link
with the Lepage ‘‘double-staple’’ term added, again both
the action and the operators.

~iv! Links smeared according the HYP prescription
Hasenfratz and Knechtli@16#, again both in the action and
the operators. Three parameters,a123, need to be specified
to completely define HYP smearing, and we focus on t
choices, as described below. We also consider a varian
which we tadpole improve the smeared links themsel
~Sec. V!.

In addition, we consider a final choice of action and o
erators:

~v! Following the ‘‘Asqtad’’ action introduced by Lepag
@8# and used extensively by the MILC Collaboration@10#, we
add the Naik term to the action of choice~iii !, while taking
the same operators as in choice~iii !. In the Naik term alone,
we use the original unsmeared gauge links~tadpole im-
proved!.

This differs from the ‘‘Asqtad’’ action, however, becaus
we use the unimproved Wilson gauge action, wher
‘‘Asqtad’’ includes an improved gauge action. We thus re
to our choice as the ‘‘Asqtad-like’’ action. Our expectation
that the choice of gauge action has relatively little impact
the size of matching factors, and particularly on the variat
of these factors between bilinears having the same spin
different flavor.

III. FEYNMAN RULES

The Feynman rules for unimproved staggered fermio
are standard. In the notation we use here, they can be fo
in PS, and we do not repeat them. We discuss only
changes introduced by smearing the links and including
Naik term.

f.

3We do not consider here so-called ‘‘Landau gauge’’ operator
those rendered gauge invariant by transforming to the Lan
gauge and then leaving out the links. These are not useful for ma
elements involving ‘‘eye’’ diagrams, because they allow mixin
with lower-dimension gauge noninvariant operators@17#. They are
also subject to uncertainties due to the presence of Gribov cop
1-2
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ONE-LOOP MATCHING COEFFICIENTS FOR IMPROVED . . . PHYSICAL REVIEW D66, 114501 ~2002!
We consider first the effect of smearing the links. For
except tadpole diagrams~i.e. those in which two gluons
emerge from a single, possibly smeared, link!, the only effect
is to change the coupling to the underlying gluon field. W
the unimproved action, a link in themth direction couples
only to a gluonAn(k) with n5m. The smeared links, how
ever, couple toAn(k) for all n, and the extra factor this
introduces can be conveniently written as

dn,mDm~k!1~12dn,m!Gn,m~k!. ~1!

The diagonal and off-diagonal couplings can be decompo
respectively, as

Dm~k!512d1 (
nÞm

s̄n
21d2 (

n,r
n,rÞm

s̄n
2s̄r

2

2d3s̄n
2s̄r

2s̄s
22d4 (

nÞm
s̄n

4 , ~2!

with s̄n5sin(kn/2), etc., and

Gn,m~k!5 s̄ms̄nG̃n,m~k! ~3!

G̃n,m~k!5d12d2

~ s̄r
21 s̄s

2 !

2
1d3

s̄r
2s̄s

2

3
1d4s̄n

2 , ~4!

where all indices (m,n,r,s) are different.
The coefficientsd124 distinguish the different choices o

links:
~i! Unimproved@choice~i! above#:

d150, d250, d350, d450. ~5!

~ii ! Fat-7 links@choice~ii ! above#:

d151, d251, d351, d450. ~6!

~iii ! O(a2) improved links@choices~iii ! and ~v! above#:

d150, d251, d351, d451. ~7!

~iv! HYP smeared links@choice~iv! above#:

d15~2/3!a1@11a2~11a3!#,

d25~4/3!a1a2~112a3!,

d358a1a2a3 , d450. ~8!

We consider two choices for thea i . The first was deter-
mined in Ref.@16# using a nonperturbative optimization pro
cedure:a150.75, a250.6 a350.3. This gives

d150.89, d250.96, d351.08, d450. ~9!

The second is chosen so to removeO(a2) flavor-symmetry
breaking couplings at tree level. This choice,a157/8, a2
54/7 anda351/4, gives
11450
l

d,

d151, d251, d351, d450, ~10!

i.e. the same as for Fat-7 links.
These results agree with those of Refs.@20,21#, but are

written here in a somewhat different notation. The fact th
all four choices can be collected in this form simplifies t
resulting one-loop calculations. It is particularly notewort
that the Fat-7 and HYP vertices can be made identical, sh
ing that these two choices cannot be distinguished by t
flavor breaking effects in perturbation theory@21#. The one-
loop matching factors for these two choices are not, howe
identical, because the tadpole contributions differ.

For tadpole diagrams, which involve two-gluon vertice
the differences between the actions are more complica
and will be given explicitly below.

The inclusion of the Naik term alters the Feynman rules
several ways. In the fermion propagator, all factors ofsm
5sinpm are replaced:

sm→sm
N5sm~11dNsm

2 /6!. ~11!

Here we have introduced a fifth coefficientdN which distin-
guishes the different choices of action:dN50 unless the
Naik term is included, in which casedN51. This device
allows us to write most of our results in a way which hol
for all choices of action and operators.

The one-gluon vertex is also changed by the Naik te
but this can only be represented in a simple way if one of
quarks in the vertex has vanishing physical momentum@km
5(0,p/a)#. In this case, the diagonal part of the vert
changes as follows:

Dm→Dm
N5Dm1dNsm

2 /6. ~12!

This substitution works for all except the self-energy d
gram, which we consider explicitly below.

IV. ANALYTIC RESULTS FOR MATCHING CONSTANTS

The one-loop matching relations take the general form

O i
cont5O i

lat1CF

g2

16p2 (
j

@d i j 2di ln~ma!1ci j #O j
lat ,

~13!

whereCF54/3 is the color Casimir factor,m is the renor-
malization scale of the continuum operators, andi and j run
over all the different possible bilinears in a four-flav
theory. The explicit forms of the operators are given in t
Appendix. The constantsdi are proportional to the one-loo
anomalous dimensions of the bilinears,g i

(0)522CFdi .
They depend only on the spin of the bilinear, and aredi
5(3,0,21) for spins (S/P,V/A,T). The finite part of the
coefficient can be written

ci j 5d i j @di~gE2F0000!1tS#2ci j
1 , ~14!

with tS depending on the continuum renormalization schem
For the NDR scheme tS5(20.5,0,1.5) for spins
(S/P,V/A,T). The conversion to other schemes is given
1-3
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PS. The constants aregE50.577216 andF000054.36923.
Finally, the ‘‘lattice’’ part of the coefficient can be broken u
as follows:

ci j
1 5Xi j 1d i j ~Yi1Ti1Z!. ~15!

HereX, Y, T andZ refer to contributions from the differen
types of diagrams using the notation of PS, as illustrated
Fig. 1. This equation incorporates the fact, derived bel
that only theX diagrams lead to mixing among bilinears.

All our calculations are done in the Feynman gauge.
have checked our results by doing two independent calc
tions using different methods—the first following PS and t
second using the methods presented in Refs.@22,23#.

A. X diagrams

The calculation follows the same steps as in PS, exc
for two changes.

~a! We have been able to carry out the calculation anal
cally apart from one final integral, using the results~A8!,
~A9! given in the Appendix.

~b! The improved vertex Eq.~1! allows propagation from
a smeared link in themth direction to another in any direc
tion, even in the Feynman gauge. It is useful to distingu
between the case where the second link is also in themth
direction, for which the gluon propagator is multiplied by

Pm
NN~k!5Dm

N~k!21 (
nÞm

Gn,m~k!2, ~16!

and the case where the second link is in a different direc
rÞm, for which the multiplying factor is

Dm
NGm,r1Dr

NGr,m1 (
nÞ(m,r)

Gn,mGn,r

[4s̄ms̄rOmr
NN~k!. ~17!

The superscripts emphasize the fact that there is a pos
Naik term at both ends of the propagator.

Using these results, we find the following expression
the diagonal part of the contributions from theX diagrams:

FIG. 1. Notation for diagrams contributing to matching factor
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m,r

E
k
F c̄m

2 Pm
NN~sr

N!2BF2Vi~k!2
B2

4 G~21!S̃m1S̃r

12 (
m,n

E
k
smsm

Nsnsn
NOmn

NNBF2Vi~k!

3@12~21!S̃m1S̃n#. ~18!

Here *k[16p2)m*2p
p (dkm /2p), c̄m5cos(km/2) and sm

5sin(km). The functions arising from boson and fermio
propagators are, respectively,

B~k!5
1

4(
m

s̄m
2

, F~k!5
1

(
m

~sm
N!2

. ~19!

For the sake of brevity we do not show the argumentk of
these functions or ofPm

NN and Omn
NN in Eq. ~18! and in the

following. The indexi in Eq. ~18! labels the spin and flavo
of the operator, and theB2/4 term on the first line is the
conventional integral used to cancel divergences. The fu
tion Vi(k) is defined in Eq.~A8!; we stress again that the us
of this equation leads to a simpler form than that given in P

Only the X diagrams lead to mixing, i.e. nonzero valu
for Xi j , iÞ j . We find that we can also give explicit expre
sions for the mixing terms using Eq.~A9!. As for unim-
proved staggered fermions, the mixing that occurs at o
loop turns out to be only a subset of that allowed by t
hypercubic symmetry group. The nonzero mixing coe
cients are~using the definitions in PS—see Table II!

cVVM5E
k
4BF2s1s1

Ns2s2
N~P3

NNc̄3
22O12

NNs3
2!, ~20!

cVAM5E
k
4BF2s1s1

Ns2s2
N~2P3

NNc̄3
2c3c4

1O12
NNs3

2@2c22c3#c4!, ~21!

cVTM5E
k
2BF2s1s1

Ns2s2
N~2P3

NNc̄3
2@c31c4#

1O12
NNs3

2@2c22c31c4# !, ~22!

cTAM5E
k
2BF2s1s1

Ns2s2
N~P3

NNc̄3
2@c42c3#

1O12
NNs3

2@2c22c32c4# !, ~23!

wherecm5cos(km).

B. Y diagrams

Y diagrams involve the gluon connecting an extern
quark or antiquark line to the operator. As explained in P
with the unimproved staggered action and unsmeared lin
Y diagrams do not lead to mixing between different bilinea
and the result depends only on the ‘‘distance,’’D5(m(S
2F)m

2 , of the bilinear. It is straightforward, though tediou
1-4
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to check that these arguments generalize to the impro
actions considered here. The result is

YD5YD211I D ~D.0!, ~24!

with YD5050, and

I D5E
k
BFs1s1

NP1
NVY~D!1E

k
12BFs̄1

2s2s2
NO21

N VY~D!

~25!

VY~1!51, VY~2!5
c21c31c4

3
,

VY~3!5
c2c31c2c41c3c4

3
, VY~4!5c2c3c4 . ~26!

The new functions are defined by

Pm
N~k![Dm

N~k!Dm~k!1 (
nÞm

Gn,m~k!2, ~27!

and

4s̄ms̄rOmr
N ~k![Dm

NGm,r1DrGr,m1 (
nÞ(m,r)

Gn,mGn,r .

~28!

The single superscript ‘‘N’’ reflects the fact that the Naik
term appears only at the quark-gluon vertex and not in
operator. Note that, unlikeOmr

NN , Omr
N is not symmetrical.

C. Tadpole diagrams

Here we include tadpole diagrams both on the exter
quark and antiquark propagators~i.e. self-energy contribu-
tions!, and those coming from the bilinear. In the latter ca
we include all diagrams in which the two gluons both com
from the bilinear, irrespective of whether they emanate fr
the same smeared link. Thus, for the example of a distan
bilinear, which involves an average of a sum of products
two links, the gluon can couple between the links~as well as
going from each link back to itself!.

It is convenient to divide the contribution into two part

Ti5Ti
a1Ti

b , ~29!

with the former coming from gluon loops beginning and en
ing on the same smeared link, and the latter involving glu
propagating between smeared links. In both cases the r
depends only on the distanceD of the bilinear.

No simple general formula covers all choices of links a
action, so we quote the results in turn.

~i! For unimproved staggered fermions, the result is~PS!

TD
a 5~D21!S p22E

k
B/2D , ~30!
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where the factor ofp2 comes from tadpole improvemen
using the fourth-root of the plaquette. If one uses the trace
the Landau gauge link, thenp2 is replaced by*k3B/8.

~ii ! For the Fat-7 links~without the Naik term!, the result
is the same as for unimproved staggered fermions, Eq.~30!,
due to cancellations.

~iii ! For O(a2) improved links ~but without the Naik
term!, we find

TD
a 5~D21!F S p22E

k
B/2D 1

3

2Ek
Bc1s̄2

2G . ~31!

~iv! For HYP links, we find

TD
a 5~D21!E

k
~2B/2!P1 , ~32!

wherePm contains no Naik vertices:

Pm~k!5Dm~k!21 (
nÞm

Gn,m~k!2. ~33!

We emphasize that, at this stage, there is no tadpole impr
ment factor for the HYP links~although a related mean-fiel
improvement will be introduced in Sec. V!. It is also note-
worthy that this result would apply for both the Fat-7 a
O(a2) improved links were one to also include projectio
back into SU~3! in those cases@24#.

~v! Finally, for the Asqtad-like action we find

TD
a 5~D21!F S p22E

k
B/2D 1

3

2Ek
Bc1s̄2

2G
1

1

4 Fp22E
k
Bc1~11c1!G , ~34!

in which the second contribution is due to the Naik term.
Now we turn to the ‘‘off-diagonal’’ tadpoles. These onl

arise from the bilinears, and not from the self-energy con
butions, and are only present for operators withD>2. Since
they are off-diagonal they are not affected bySU(3) projec-
tion, and so take a common form for all actions and ope
tors:

TD
b 54E

k
Bs̄1

2s̄2
2O12VT~D! ~35!

VT~2!51, VT~3!521c3 , VT~3!5312c31c3c4 .

~36!

Here O12 does not contain Naik contributions, even for th
Asqtad-like action:

4s̄ms̄rOmr~k![DmGm,r1DrGr,m1 (
nÞ(m,r)

Gn,mGn,r .

~37!
1-5
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D. Self-energy diagrams

If the Naik term is not included in the action, the flavo
singlet vector current is conserved, and it follows from t
corresponding Ward identity that its matching factor va
ishes. Thus it must be that, in cases~i!–~iv!,

Z52Xii 2Y1 , i 5~gm ^ 1!. ~38!

Here we have used the result thatT150 for cases~i!–~iv!.
We have checked Eq.~38! analytically and numerically.

We cannot use this relation for the Asqtad-like actio
since the hypercube vector operator is not the conserved
rent ~as it does not contain a Naik-like contribution!. A direct
calculation is needed, and we find

Z5E
k
B21E

k
BFIZ , ~39!

I Z5c1~11dNs1
2/2!~122~s1

N!2F !~ c̄1
2P1

NN23c̄2
2P2

NN!

2s1s1
N@P11dN~2s1

2/32 c̄1
2!D12dNs1

2c̄1
2c1/6#

212s1s1
Nc1~11dNs1

2/2!s2s2
NFO12

NN23s̄1
2s2s2

N~4O12

2dNc1c̄1
2G̃1,21dNs2

2G̃2,1/6!. ~40!

The first term inZ is the standard integral used to subtra
the divergent piece. We have inserteddN in appropriate
places so that this result is valid for all the actions we c
sider.

V. FURTHER MEAN-FIELD IMPROVEMENT
OF OPERATORS

It is possible to apply another level of tadpole, or, mo
accurately, mean-field, improvement to the operators and
tions which involve smeared links. Actually, for the HY
smeared links, this is the first level of tadpole improveme
The fluctuations in the smeared links are reduced comp
to those of the original links but are still present. The resid
fluctuations can be estimated and partially removed by
fining a smeared mean-link by analogy with the definition
the original mean-link@18#:

~u0
SM!45^smeared2plaquette&. ~41!

Here the ‘‘smeared-plaquette’’ means the plaquette built
of smeared links. The operators are then mean-field
proved by multiplying them by

~u0
SM!12D, ~42!

whereD is the number of links in the bilinear. The argume
leading to this factor is identical to that used in PS wh
tadpole improving staggered operators, and we do not re
it here. This procedure should be simple to implement
practice.

We have calculated the effect of such a mean-field
provement for Fat-7,O(a2) improved, and HYP links. We
have not applied it to the case of the Asqtad-like acti
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because it is not entirely clear to us how to incorporate
Naik term. We find that one must add to the tadpole con
bution the following:

TD
c 5~D21!F2TD52

a 2TD52
b 2E

k
BP1c2/2G , ~43!

where TD
a,b and P1 are given in the previous section. Th

quantity in square brackets evaluates to20.9125 for Fat-7
links, 24.0634 forO(a2) improved links, 0.5782 for HYP
links with a12350.75, 0.6, 0.3, and to 1.0538 for HYP link
with the ‘‘Fat-7 choice’’a12357/8,4/7,1/4. These values ar
substantially smaller than the analogous factor in the tadp
improvement of the unsmeared links, namelyp2. They are,
nevertheless, significant, as we see in the next section.

It is noteworthy that the Fat-7 andO(a2) improved
smeared links receive a mean-field correction of oppo
sign to that of both the HYP links. This indicates that t
fluctuations in the former case have been ‘‘overcomp
sated’’ by smearing, and suggests that this higher leve
mean-field improvement is likely to be more significant f
the HYP smeared links.

Finally, we note that after this higher level of mean-fie
improvement, the results for Fat-7 and HYP links wi
a12357/8,4/7,1/4 are identical. The equality of the tadpo
contributions can be seen by combining Eqs.~30!, ~32! and
~43!; that of other contributions follows from the fact that th
single-gluon vertex is the same in both cases.

VI. NUMERICAL RESULTS AND DISCUSSION

We present numerical results for the matching coefficie
in Tables I–III. As explained in Ref.@17#, the corrections are
unchanged if the operators are multiplied by (g5^ j5), due
to the conserved axial symmetry. Thus we show results
only half the operators. Recall that we have chosen the N
scheme (MS with an anticommutingg5) and setm51/a.
We expect this to be a reasonable choice for the match
scale, but, in any case, the dependence of theci j on m is
weak, as can be seen from Eq.~13!.4

The most striking result from the tables is the significa
reduction in the size of one-loop corrections for all of t
choices of smeared links. This is true also for the o
diagonal matching constants, although here the correct
were small to start with. We also see that the mean-fi
improvement of Sec. V leads to a significant further redu
tion in the corrections for HYP smearing, although the c
rections increase somewhat for Fat-7 andO(a2) improved
smearing.

To compare the different alternatives for improvement
quote, in Table IV, the range of variation of the diagon
coefficientscii , both for a given spin~varying the flavor!,
and for all spins and flavors. The range for a given spin

4Approximate methods of calculating the optimal matching sca
q* , do not obviously generalize to the case of operators with n
vanishing anomalous dimensions. We return to this issue elsew
@24#.
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TABLE I. Diagonal part of the one-loop matching constants,cii , using the NDR scheme withmNDR

51/a in the continuum. The componentsm, n, r ands are all different. Results are given for six choices
action and operators:~a! unimproved;~b! Fat-7 links; ~c! fully O(a2) improved links; ~d! fully O(a2)
improved links and Naik term~Asqtad-like action!; ~e! HYP links with the smearing coefficients from Re
@16#, a12350.75,0.6,0.3;~f! HYP links with tree-level improvement coefficients,a12357/8,4/7,1/4. The
error in the results is no larger than 0.0001.

Operator ~a! (b) (c) (d) (e) ( f )

(1^ 1) 229.3551 1.8696 24.3917 22.1750 20.5939 20.0966
(1^ jm) 28.6416 2.4633 22.5643 20.3301 1.8394 2.4633
(1^ jmn) 0.5657 2.8990 22.8420 20.7999 4.0139 4.8653
(1^ jm5) 5.2378 3.3351 24.0469 22.1427 6.0380 7.2676
(1^ j5) 8.7493 3.7704 25.5793 23.7774 7.9837 9.6693
(gm ^ 1) 0.0000 0.0000 0.0000 1.4155 0.0000 0.0000
(gm ^ jm) 24.9092 0.7869 2.9240 4.2755 20.9457 21.1794
(gm ^ jn) 0.1721 20.1201 22.9799 21.5110 1.3090 1.8461
(gm ^ jmn) 23.3948 0.3636 20.0621 1.4290 0.2617 0.3636
(gm ^ jnr) 2.5040 20.1930 25.4907 24.0295 2.7140 3.7396
(gm ^ jn5) 0.1902 0.1367 22.5010 21.0264 1.6009 2.1030
(gm ^ jm5) 4.8930 20.2147 27.9437 26.4957 4.1592 5.6841
(gm ^ j5) 2.7709 0.0369 25.0332 23.5799 2.9898 3.9694
(gmn ^ 1) 1.5969 0.3741 21.3115 20.0393 1.9442 2.3404
(gmn ^ jm) 0.8194 0.8758 2.1260 3.3442 0.9819 0.8758
(gmn ^ jr) 3.0150 0.0410 24.4862 23.1752 3.0313 3.9735
(gmn ^ jmn) 4.5728 1.7594 6.6960 7.7590 0.2703 20.2069
(gmn ^ jmr) 1.2809 0.3800 21.4041 20.1178 1.9309 2.3463
(gmn ^ jrs) 4.9409 20.2098 27.3985 26.0684 4.2177 5.6890
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independent of the renormalization scalem ~sincedi is the
same for all flavors!, and thus is a good measure of the s
of lattice contributions to matching factors. The range for
spins and flavors does depend onm, but only rather weakly.
The table shows that, of the alternatives we have compa
Fat-7 links, with or without mean-field improvement, an
mean-field improved HYP or Fat-7 links lead to the small
range of corrections. A similar conclusion holds if we co
sider the maximum magnitude of the corrections rather t
the spread.

What values ofcii give rise to ‘‘small enough’’ correc-
tions in present simulations? Taking 1/a52 GeV as a typical
lattice spacing, and usingaMS(2 GeV)'0.19, we find
CFaMS /(4p)'0.02. Thus a matching coefficientc55 cor-
responds to about a 10% correction at this lattice spac
This is the size of corrections we are aiming for, and we
11450
ll

d,

t
-
n

g.
e

that tadpole improved HYP fermions lead to corrections
about this size.

Finally, it is interesting to compare to the size of one-lo
corrections for bilinears obtained with other fermion action
For unimproved Wilson fermions one finds, after tadpole i
provement~picking for definiteness the tadpole improveme
scheme of Ref.@25#!, ci520.1,29.7,27.8,22.9,24.3 for
i 5S,P,V,A,T, using the same renormalization scheme a
scale for the continuum operator as in the tables. We h
not been able to find the corresponding results for impro
Wilson fermions incorporating tadpole improvement, but it
clear from Table 3 of Ref.@26# that one-loop matching fac
tors are of similar size as for unimproved Wilson fermion
For domain-wall fermions, tadpole-improved results a
given in Ref. @27#: ci5211.2,25.3,22.0 for i
5S/P,V/A,T ~setting the domain-wall massM51.7). We
perators
thus
TABLE II. Nonvanishing off-diagonal one-loop matching constants,ci j . The componentsm, n andr are
all different, but otherwise can take any values. Results are given for the same choices of action and o
as in Table I, except that HYP links with tree-level coefficients give identical results to Fat-7 links and
are not shown. The error in the results is no larger than 0.0001.

Name Operator-i Operator-j ~a! (b) (c) (d) (e)

cVVM (gm ^ jn) (gm ^ jm) 3.0412 0.3508 1.4104 1.2976 0.4203
cVAM (gm ^ jm5) (gm ^ jn5) 20.6463 20.2565 20.6192 20.5481 20.3000
cVTM (gm ^ jmn5) (gm ^ jrn5) 21.4861 20.2797 20.9241 20.8211 20.3512
cTAM (gmn ^ jm5) (gmn ^ jr5) 20.6763 0.0065 20.2055 20.1753 20.0202
1-7
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conclude that the size of corrections with improved st
gered fermions is comparable to, or smaller than, that
other fermions. This provides further impetus to pursue c
culations with improved staggered fermions.
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APPENDIX: NOTATION AND TECHNICAL DETAILS

We use the hypercube fields and bilinears introduced
Ref. @28#. The lattice is divided into 24 hypercubes labeled
by a vectory, with all components even. Points within
hypercube are labeled by a hypercube vector (Cm , Dm in the
following!, with all components 0 or 1. The lattice bilinea
we use are specified by ‘‘spin’’ and ‘‘flavor’’ hypercube ve
tors Sm and Fm in the following way in terms of the stag
gered fieldsx and x̄:

O(gS^ jF)~y!5
1

16 (
C,D

x̄1~y1C!~gS^ jF!CDx2~y1D !.

~A1!

TABLE III. Results for cii after the mean-field improvemen
discussed in Sec. V. Notation as in Table I. Results are given
(b8, f 8) Fat-7 links and HYP links with tree-level improvement c
efficients, a12357/8,4/7,1/4; (c8) fully O(a2) improved links;
(e8) HYP links with smearing coefficients from Ref.@16#, a123

50.75,0.6,0.3.

Operator (b8, f 8) (c8) (e8)

(1^ 1) 0.9571 28.4551 20.0156
(1^ jm) 2.4633 22.5643 1.8394
(1^ jmn) 3.8115 1.2214 3.4357
(1^ jm5) 5.1600 4.0799 4.8815
(1^ j5) 6.5079 6.6110 6.2490
(gm ^ 1) 0.0000 0.0000 0.0000
(gm ^ jm) 20.1255 21.1394 20.3675
(gm ^ jn) 0.7924 1.0835 0.7308
(gm ^ jmn) 0.3636 20.0621 0.2617
(gm ^ jnr) 1.6320 2.6361 1.5576
(gm ^ jn5) 1.0492 1.5624 1.0227
(gm ^ jm5) 2.5227 4.2466 2.4245
(gm ^ j5) 1.8619 3.0936 1.8334
(gmn ^ 1) 1.2866 2.7519 1.3660
(gmn ^ jm) 0.8758 2.1260 0.9819
(gmn ^ jr) 1.8659 3.6407 1.8748
(gmn ^ jmn) 0.8469 2.6325 0.8486
(gmn ^ jmr) 1.2925 2.6593 1.3527
(gmn ^ jrs) 2.5276 4.7918 2.4830
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Here the sums run over all positions in the hypercube, a

~gS^ jF!CD5
1

4
Tr@gC

† gSgDgF
† #, ~A2!

with

gS5g1
S1g2

S2g3
S3g4

S4 ~A3!

composed of Hermitian Euclidean gamma matrices. It f
lows that thex̄ andx fields are separated by a fixed numb
of links which is given by the ‘‘distance’’D5(m(Sm
2Fm)2. In the continuum limit, this lattice bilinear has th
same spin, flavor and normalization as the continuum bi
ear

O (gS^ jF)
cont 5Q̄a,a

1 gS
abjF

abQb,b
2 , ~A4!

whereQb,b
k is a four-flavor quark field, with spinor indexb

and flavor indexb, both running from 1 to 4, and thejF

5gF* form a convenient basis for the flavor matrices.
The superscript onxk, Qk, etc. indicates an additiona

flavor index, corresponding to the different continuum fl
vors (u, d, s, etc.!. We consider here only continuum flavo
nonsinglet operators, so that we do not have to calcu
diagrams in which the fermion fields in the bilinear are co
tracted together.

Because the lattice bilinears are spread over a hyperc
the phase factors due the external quark and antiquark
menta depend upon the hypercube vectorsC and D in Eq.
~A1!. To disentangle these phases Daniel and Sheard in
duced the following definition@29#:

eik•C5S)
m

eikm/2D(
M

EM~k!~2 !C•M̃ ~A5!

with

EM~k!5)
m

1

2
@e2 ikm/21~2 !M̃meikm/2#. ~A6!

Here we have introduced the conjugate hypercube vecto

M̃m52 (
nÞm

M n . ~A7!

Previous results forX diagrams in Ref.@29# and PS were
expressed as sums over the additional hypercube vectoM,

r
TABLE IV. Spread of values for diagonal corrections,cii , both

for a given spin, and between all operators. Notation as in Tabl
and III.

Spin ~a! (b) (c) (d) (e) ( f ) (b8, f 8) (c8) (e8)

S/P 38.1 1.9 3.0 3.4 8.6 9.8 5.5 15.1 6.3
V/A 9.8 1.0 10.9 10.8 5.1 6.9 2.6 5.4 2.8
T 4.1 2.0 14.1 13.8 3.9 5.9 1.7 2.7 1.6

All 38.1 4.0 14.6 14.3 8.9 10.8 6.6 15.1 6.6
1-8
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which were then evaluated numerically. We have been a
to perform this sum analytically, which simplifies the fin
expressions. The two results we need in this paper are

Vi~k![(
M

EM~k!EM~2k!~2 !M•(S̃1F̃)

5)
m

cos@km~S2F !m#, ~A8!

wherei labels the spin and flavor, and

(
M

EM~k!EM1m1n~2k!~2 !M•(S̃1F̃)

52u~S2F !muu~S2F !nusmsn

3cos@kr~S2F !r#cos@ks~S2F !s#, ~A9!
. B

v

s.

.

g-

k-

11450
lein which all indices are different. These results can be
tained by combining PS Eqs.~24! and ~27!.

The explicit forms for lattice integrals are abbreviated u
ing the following notations:

E
k
[16p2)

m
E

2p

p dkm

2p
,

s̄m[sin~km/2!, sm[sin~km!,

c̄m[cos~km/2!, cm[cos~km!. ~A10!
. B

B

G.

s.
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