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Infrared behavior of the gluon propagator in nonequilibrium situations
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The infrared behavior of the medium modified gluon propagator in nonequilibrium situations is studied in
the covariant gauge using the Schwinger-Keldysh closed-time path formalism. It is shown that the magnetic
screening mass is nonzero at the one loop level whenever the initial gluon distribution function is nonisotropic
with the assumption that the distribution function of the gluon is not divergent at zero transverse momentum.
For isotropic gluon distribution functions, such as those describing local equilibrium, the magnetic mass at the
one loop level is zero, which is consistent with finite temperature field theory results. Assuming that a reason-
able initial gluon distribution function can be obtained from a perturbative QCD calculation of minijets, we
determine these out of equilibrium values for the initial magnetic and Debye screening masses at energy
densities appropriate to BNL RHIC and CERN LHC. We also compare the magnetic masses obtained here with
those obtained using finite temperature lattice QCD methods at similar temperatures at RHIC and LHC.
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Experiments at the BNL Relativistic Heavy Ion Collide
~RHIC! ~Au-Au collisions at As5200 GeV) and CERN
Large Hadron Collider~LHC! ~Pb-Pb collisions atAs
55.5 TeV) will provide an excellent opportunity to produc
a quark-gluon plasma in the laboratory. There is no do
that an energy density larger than;5 GeV/fm3 @1# will be
created during these collisions but it is not at all clear that
partons produced following the collision will reach equili
rium. The study of the equilibration of the quark-gluo
plasma is very crucial because it determines the time ev
tion of all global quantities such as energy density, num
density, etc. This study also plays a crucial role in determ
ing many of the potential signatures for quark-gluon plas
detection at RHIC. The space-time evolution of the par
gas for this nonequilibrium situation can be be modeled
solving semiclassical relativistic transport equations@2–10#.
Central to solving the transport equations is what goes
the scattering kernels. Perturbative vacuum expressions
gluon scattering suffer from severe infrared problems. O
loop medium effects in equilibrium provide an electric~De-
bye! screening mass, but not a magnetic screening mass@11#.
Thus one cannot use a one loop resummed finite tempera
gluon propagator as an approximation to the scattering
nel because of severe infrared problems in the limit thatp0

50 andupW u→0. To obtain magnetic screening in equilibriu
situations requires a nonperturbative lattice QCD calculat
What we would like to point out here is that if we use t
CTP formalism @12# with an arbitrary nonthermal initial
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Gaussian density matrix then it is possible to obtain at o
loop a magnetic screening mass as long as the initial gl
single particle distribution functionf (kx ,ky ,kz ,t0) is not
isotropic with the assumption that the gluon distributi
function is not divergent at zero transverse momentum. T
is, we assume that att5t0 one can write a Fourier decom
position of the gluon field in terms of creation and annihi
tion operators. By a Bogoliubov transformation att5t0 one
can always set the pair distribution functions^al

†(kW ,t

5t0)a†(qW ,t5t0)l&5^al(kW ,t5t0)a(qW ,t5t0)l&50. Thus the
propagator will have the usual vacuum part and a term wh
depends on the initial expectation value of the number d
sity

(
l51

2

^al
†~kW ,t5t0!a~qW ,t5t0!l&

5 f ~kW ,t0!~2p!3d~kW2qW !, ~1!

and we have summed over the physical transverse pola
tions. Forf to correspond to a physically realizable quant
the number density as well as energy density has to be fin
Thus f (kW ,t) has to go to zero ask→` fast enough so tha
one obtains finite number density and energy density.
Gaussian initial value problems, one only needs to know
two-point function att5t0. In our following analysis, we
will also need to make a quasi-adiabatic approximation
that we will assume, for the purpose of determining the i
tial screening masses, that the system is time-translation
variant. Thus the only difference we will assume in o
Green’s functions from the usual thermal ones will be t
choice of an anisotropicf (kW ,t0) which will replace the usua
Bose-Einstein distribution function. This approximation h
©2002 The American Physical Society16-1
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been discussed in detail by Thoma and others@13#. In our
calculations, we will use a simple ansatz forf (kW ,t0) in which
the parameters will be chosen to agree with known distri
tions for minijet production at RHIC and LHC. Here we a
not suggesting that this effect replaces the nonperturba
magnetic screening mass, but that the effect we are con
ering is of the same order of magnitude and already cures
infrared problems of the transport theory.

In what follows we will examine the infrared behavior o
the medium modified gluon propagator at one loop using
CTP formalism. The purpose of this paper is to study t
static limit of the longitudinal and transverse self-energy
the gluon ~Debye and magnetic screening masses! and, in
particular, to determine, at the one loop level, how the m
netic screening mass depends on the initialf (kW ,t0). Although
technically the magnetic screening mass is defined as
position of the zero of the inverse propagator@i.e. in the limit
p050,upW u→msc ,msc

2 5P(msc
2 )] @14#, at one loop the limit of

the inverse propagator asp050,upW u→0 is gauge invariant
~independent ofj for general covariantj gauges!, and more-
over this limit is the one important for controlling the infra
red properties of the collision kernel in the transport theo
Thus in this paper we will use the second limiting process
define the screening masses. At arbitrary momentum the
larization is not in general gauge invariant at one loop.
have a gauge invariant approximation at one loop one
make a hard momentum loop approximation as discusse
@13,15#.

In particular we are interested in nonisotropic nontherm
forms for f (kW ,t0) consistent with known minijet productio
results. Let us consider an expanding system of parton
111 dimensions. For this purpose we introduce the fl
velocity of the medium:

um5~coshh,0,0,sinhh!, ~2!

where h5 1
2 ln(t1z)/(t2z) is the space-time rapidity an

umum51. We define the four symmetric tensors@16–18# as

Tmn~p!5gmn2
~u•p!~umpn1unpm!2pmpn2p2umun

~u•p!22p2
,

Lmn~p!5
2p2

~u•p!22p2 S um2
~u•p!pm

p2 D S un2
~u•p!pn

p2 D ,

Cmn~p!5
1

A2@~u•p!22p2#

3F S um2
~u•p!pm

p2 D pn1S un2
~u•p!pn

p2 D pmG ,

Dmn~p!5
pmpn

p2
. ~3!
11401
-

ve
id-
he

e

f

-

he

.
o
o-
o
n
in

l

in

Here Tmn is transverse with respect to the flow-veloci
but Lmn and Dmn are mixtures of space-like and time-lik
components. These tensors satisfy the following transver
ity properties with respect topm:

pmTmn~p!5pmLmn~p!50,

pmpnCmn~p!50. ~4!

In terms of this tensor basis the gluon propagator in
covariant gauge is given by

G̃mn~p!52 iTmn~p!G̃T~p!2 iL mn~p!G̃L~p!

2 i jDmn~p!G̃D~p!, ~5!

where G̃T, G̃L, G̃D correspond toT, L and D components
respectively of the full gluon propagator at the one lo
level. The last partG̃D(p) is identical to the vacuum par
@16# and hence we do not consider it anymore. There
separate Dyson-Schwinger equations for the different co
ponents of theCTP matrix Green’s functions that do no
couple with each other. These equations can be written in
form

@G̃T,L~p!# i j 5@GT,L~p!# i j 1(
l ,k

@GT,L~p!# i l

3@PT,L~p!# lk•@G̃T,L~p!#k j . ~6!

Here i , j ,k,l 51,2 are theCTP contour labels, and sup
pression of Lorentz and color indices in the above equa
is understood.

In the Keldysh rotated representation of theCTP formal-
ism, in terms of retarded, advanced and symmetric Gre
functions we have instead

G̃R,A
T,L ~p!5GR,A

T,L ~p!1GR,A
T,L ~p!•PR,A

T,L ~p!•G̃R,A
T,L ~p!. ~7!

The straightforward solution of the above equation
given by

G̃R,A
T,L ~p!5

GR,A
T,L ~p!

12GR,A
T,L ~p!•PR,A

T,L ~p!

5
1

p22PR,A
T,L ~p!6 i sgn~p0!e

, ~8!

where the self-energy contains the medium effects. Sim
but more complicated equations are obtained for the
summed symmetric Green’s functions

FIG. 1. One loop graphs for the gluon self-energy.
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G̃S
T,L~p!5@112 f ~pW !#sgn~p0!@G̃R

T,L~p!2G̃A
T,L~p!#1$PS

T,L~p!2@112 f ~pW !#sgn~p0!@PR
T,L~p!2PA

T,L~p!#%G̃R
T,L~p!

3G̃A
T,L~p!. ~9!
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For the purposes of obtaining the correct kernel for the B
zmann equation, we need the medium improved Feynm
propagator for the gluon at the one loop level which is j
one component$11% of the matrix Green’s function of the
CTP formalism.

GF(p)[@G̃(p)#11 can be written as

@G̃~p!#115
1

2
@G̃S~p!1G̃A~p!1G̃R~p!#, ~10!

whereGA ,GR ,GS stand for advanced, retarded and symm
ric Green’s function respectively. In the above equation
‘‘ 1 ’’ sign refers to the upper branch in the closed-time pa
Using the relations of the various self-energies one fi
@13,15#

G̃11~p!5

p22RePR~p!1
1

2
Im PS~p!

@p22RePR~p!#21@ Im PR~p!#2
, ~11!

where RePR(p) and ImPR(p) are the real and imaginar
part of the retarded self-energy. These self-energies h
11401
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both longitudinal and transverse parts which, in the sta
limit ( p050,upW u→0), give Debye and magnetic screenin
masses of the gluon respectively. In the above equa
PS(p) is the symmetric part of the self-energy.

To obtain the infrared behavior of this propagator we ne
to find the static limit of the gluon self-energy for an anis
tropic f (kW ,t) corresponding to the initial distribution functio
expected from the parton model. In a frozen ghost formali
@18,19#, the gluon self-energy is obtained from the gluo
loop and tadpole loop as shown in Fig. 1. The ghost does
contribute to the medium effect in this formalism because
initial density of states is chosen to be that of the physi
gluons. All the effects of the ghost are present in the vacu

The general expressions for the real and imaginary par
the gluon self-energy in nonequilibrium in a covariant gau
for an expanding gluonic medium have been derived in
previous paper@15#. Here we examine the static limit o
these self-energies which play crucial roles to obtain a fin
collision integral to study equilibration of the quark-gluo
plasma at RHIC and LHC. The general expressions for
real part of the longitudinal and transverse self-energy of
gluon loop are given by
RePGl;R
L ~p!5

g2

2
dabNcE d3q

~2p!3 F 1

2uqW u
$@ f ~qW !G~q,p!#q05uqW u1@ f ~2qW !G~q,p!#q052uqW u%1

1

2upW 2qW u
$@ f ~pW 2qW !G~p

2q,p!#p02q05upW 2qW u1@ f ~2pW 1qW !G~p2q,p!#p02q052upW 2qW u%G ~12!

and

RePGl;R
T ~p!5

g2

2
dabNcE d3q

~2p!3 F 1

2uqW u
$@ f ~qW !H~q,p!#q05uqW u1@ f ~2qW !H~q,p!#q052uqW u%1

1

2upW 2qW u
$@ f ~pW 2qW !H~p

2q,p!#p02q05upW 2qW u1@ f ~2pW 1qW !H~p2q,p!#p02q052upW 2qW u%G ~13!

where

G~q,p!5
1

~p02q0!22~pW 2qW !2 H 8p2

~u•p!22p2 F S ~u•q!2
~u•p!~q•p!

p2 D 2G2@~p1q!2#F 2~q•p!~p•u!3

~q•u!p2@~p•u!22p2#

2
~q•p!2~p•u!2

~q•u!2p2@~p•u!22p2#
2

~p•u!2

@~p•u!22p2#
G24p218

~q•p!~u•p!

~u•q!
24

~q•p!2

~u•q!2

1~j21!
~p•u!2@~q•p!222~q•u!~p•u!~q•p!1~q•u!2p2#

~q•u!2@p22~p•u!2#
J ~14!
6-3
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and

H~q,p!5
1

~p02q0!22~pW 2qW !2 H 8
~u•q!~q•p!~u•p!

~u•p!22p2
24

~q•p!2

~u•p!22p2
24

p2~q•u!2

~u•p!22p2
2@~p1q!2#F12

~q•p!~u•p!

~u•q!@~u•p!22p2#

1
~q•p!2

2~u•q!2@~u•p!22p2#
1

p2

2@~u•p!22p2#
G24p218

~q•p!~u•p!

~u•q!
24

~q•p!2

~u•q!2

1
~j21!„p4$2~q•p!212~q•u!~p•u!~q•p!1~q•u!2@p222~p•u!2#%…

2~q•u!2@~q•p!2p2#@p22~p•u!2#
J . ~15!

The general expression for the tadpole loop contribution is given by

PTa;R
L ~p!5g2dabNcE d3q

~2p!3

f ~qW !

2uqW u
F322

~u•p!~q•p!

p2~u•q!
1

p2

~u•p!22p2 S 12
~u•p!~q•p!

p2~u•q!
D 2GU

q05uqW u

1
f ~2qW !

2uqW u
F322

~u•p!~q•p!

p2~u•q!
1

p2

~u•p!22p2 S 12
~u•p!~q•p!

p2~u•q!
D 2GU

q052uqW u

~16!

and

PTa;R
T ~p!5g2dabNcE d3q

~2p!3

f ~qW !

2uqW u
F11

~u•p!~q•p!

~u•q!@~u•p!22p2#
2

~q•p!2

2~u•q!2@~u•p!22p2#
2

p2

2@~u•p!22p2#
GU

q05uqW u

1
f ~2qW !

2uqW u
F11

~u•p!~q•p!

~u•q!@~u•p!22p2#
2

~q•p!2

2~u•q!2@~u•p!22p2#
2

p2

2@~u•p!22p2#
GU

q052uqW u

. ~17!

To simplify these equations in the infrared limit we expandf (qW 2pW ) as f (qW 2pW )5 f (qW )2pW •¹q
W f (qW ) and neglect the highe

order gradients. Similarly we expandupW 2qW u as upW 2qW u5uqW u$12(p•q̂)/uqW u}. In the static limit ~first takingp050 then using
upW u→0), and in the rest frame (u051,uW 50) we obtain from Eq.~12!

RePGl;R
L ~p050,upW u→0!522g2dabNcF E d3q

~2p!3 S p̂•¹qf ~qW !

p̂•q̂
D 1E d3q

~2p!3

f ~qW !

uqW u
G ~18!

and from Eq.~16!

PTa;R
L ~p050!52g2dabNcE d3q

~2p!3

f ~qW !

uqW u
. ~19!

Adding both the above equations we get the expression for the Debye screening mass,

mD
2 5@RePGl;R

L ~p050,upW u→0!#1@RePTa;R
L ~p050,upW u→0!#526g2E d3q

~2p!3 S p̂•¹qf ~qW !

p̂•q̂
D ~20!

which is the real part of the longitudinal self-energy.NC53 is used. This equation was obtained by various authors@20#.
Similarly in the static limit and in the rest frame we get from Eq.~13!

RePGl;R
T ~p050,upW u→0!5g2dabNcE d3q

~2p!3 H f ~qW !

uqW u
•F3

2
~ q̂• p̂!22

1

2G1
p̂•¹qf ~qW !

p̂•q̂
•@12~ q̂• p̂!2#J ~21!

and from Eq.~17!

PTa;R
T ~p050!5g2dabNcE d3q

~2p!3

f ~qW !

uqW u
•F3

2
2

1

2
~ q̂• p̂!2G . ~22!
114016-4
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Adding both the above equations we get the expression for the magnetic screening mass

mg
25@RePGl,R

T ~p050,upW u→0!#1@RePTa,R
T ~p050,upW u→0!#53g2E d3q

~2p!3 F f ~qW !

uqW u
•@11~ q̂• p̂!2#

1
p̂•¹qf ~qW !

p̂•q̂
•@12~ q̂• p̂!2#G ~23!
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which is the real part of the transverse self-energy. For
imaginary part of the gluon self-energy at one loop we
Im PGL:R

T,L 50, in the static limit. Note that the above formu
uses the medium part of the self-energy containing a gl
loop and a tadpole loop which appears in the resumm
gluon propagator@Eq. ~11!#. The expression for the Deby
screening mass that we obtained@see Eq.~20!# is the same as
that obtained by various authors@20#. The expression we
obtain here for the magnetic mass for a nonequilibrium glu
distribtution function is new@see Eq.~23!#. There is no ap-
proximation present in the derivation of Eqs.~20! and ~23!.
The static limit results are gauge invariant.

For an isotropic gluon distribution functionf (uqW u) we get,
from Eq. ~20!,

mD
2 5

6g2

p2 E dqq f~q! ~24!

whereq5uqW u and from Eq.~23!

mg
250. ~25!

Furthermore for the special isotropic case when the syste
described by an equilibrium Bose-Einstein distribution fun
tion for the gluon, Eqs.~20! and ~23! give

mD
2 5g2T2 and mg

250 ~26!

respectively. These results@Eq. ~26!# are identical to those
obtained by using finite temperature field theory in QC
assuming that the system is in thermal equilibriu
11401
e
t

n
d

n

is
-

@11,17,21#. It is interesting to note that the magnetic mass
not only zero at the one loop level in equilibrium@Eq. ~26!#
but it is also zero for any isotropic nonequilibrium gluo
distribution function@see Eq.~25!#. Only when the distribu-
tion function is nonisotropic does one get a nonzero con
bution to the magnetic screening mass with the assump
that the distribution function of the gluon is not divergent
zero transverse momentum~see below!. This result is not
particular to QCD but also will be true for QED when th
distribution function is nonisotropic. This is explicitly calcu
lated in@22# for the QED case where we have shown that
get the exact same formula for the magnetic screening m
in QED as we obtained in this paper for QCD~gluon loop!
except thatNcg

2}e2.
Before considering the situation at RHIC and LHC let

consider an example where there is momentum anisotrop
the transverse and longitudinal momentum distribution. F
this purpose we work in the cylindrical coordinate syste
(qt ,f,qz). From Eq.~20! we get

mD
2 52

6g2

~2p!3E d2qtE dqzuqW uS p̂•¹qf ~qW !

p̂•qW
D . ~27!

From this equation we realize that whenf (qW ) is isotropic, the
dependence onp̂ drops out and we obtain Eq.~24!. For anis-
tropic f the mass depends on the direction ofp̂. In what
follows we will assumep̂ is along the transverse directio
and give values only for this direction. Similar results can
obtained for the longitudinal choice. Assumingp̂ is along the
transverse direction we find
mDt
2 52

6g2

~2p!3E dqtE dfE dqzAqt
21qz

2] f ~qt ,f,qz!

]qt
. ~28!

Integrating by parts inqt we get

mDt
2 5

3g2

4p3 F E dqtqtE dfE dqz

uqW u
f ~qt ,f,qz!1E dfE dqz@ uqzu f ~qt ,qz ,f!#qt50G . ~29!

For an equilibrium distribution function of the formf eq51/(eAqx
2
1qy

2
1qz

2/T21)51/(eAqt
2
1qz

2/T21) we get from the above
equation

mDt
2 5

g2T2

2
1

g2T2

2
5g2T2 ~30!
6-5
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which is the correct result obtained by using finite temperature QCD.
Similarly, changing to aqt ,f,qz coordinate system we get from Eq.~23!

mg
25

3g2

8p3E dqtqtE dfE dqzH f ~qW !

uqW u
•F11

~qW • p̂!2

uqW u2 G1uqW u
p̂•¹qf ~qW !

p̂•qW
•F12

~qW • p̂!2

uqW u2
G J ~31!

when p̂ points in the transverse direction and we again perform partial integration overqt to obtain

mgt
25

3g2

8p3 F2E dqtqtE dfcos2fE dqz

f ~qt ,qz ,f!

uqW u
2E dfE dqz@ uqzu f ~qt ,qz ,f!#qt50G . ~32!
-
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For an equilibrium distribution function of the formf eq

51/(eAqx
2
1qy

2
1qz

2/T21)51/(eAqt
2
1qz

2/T21) the above equa
tion gives

mgt
25

3g2

~2p!3 F ~4p!
p2T2

6
2~4p!

p2T2

6 G50, ~33!

which is consistent with finite temperature QCD results.
Before proceeding to compute the initial magnetic scre

ing mass at RHIC and LHC situations we will adopt
nonisotropic test distribution function to compute the ma
netic screening mass from the formula given by Eq.~32!. We
choose a nonisotropic test distribution function of the for

f 5
1

eAqt
2
1hqz

2/T21
~34!

whereh is a parameter for nonisotropy. Forh51 we get the
usual Bose-Einstein distribution function. Using the abo
nonisotropic distribution function we plot the magne
screening mass from Eq.~32! in Fig. 2. It can be seen from
Fig. 2 that forh51 ~corresponding to the Bose-Einstein di
tribution function! we getmgt50 and forhÞ1 ~correspond-
ing to the nonisotropic distribution function! we get a non-
zero magnetic screening mass.

Now we consider the realistic situation at RHIC and LH
For the situation at RHIC and LHC where the parton dis
bution function att5t0 , f (qW ,t0) describes an out of equilib
rium situation, we can compute the value of these screen
masses assuming the distribution function can be descr
by the parton model result for minijets. We note that to co
pute the second term on the right-hand side of Eqs.~29! and
~32! we need to know the form of@ f (qt ,qz)#qt50 and its
behavior at RHIC and LHC. In this paper we are consider
the minijet distribution function which are computed by u
ing perturbative QCD ~PQCD! applicable above qt
51(2) GeV atRHIC ~LHC! which are obtained by satura
tion arguments as studied by several authors@23#. We men-
tion here that PQCD is not applicable for smallqt , for ex-
ample below 1~2! GeV at RHIC~LHC!. If one calculates the
PQCD minijet production, theqt distribution behaves a
}qt

2a wherea;4 for high qt and ;2 for low qt . If one
applies PQCD at smallqt , the distribution functionf (qt ,qz)
11401
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e
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is singular atqt50. However, for very lowqt , PQCD for-
mulas are not applicable and hence it is not obvious t
distribution will be singular atqt50 at RHIC and LHC. For
qt50 the only computation available at the moment is fro
the McLerran-Venugopalan model@24# where it is shown
that at qt50 the gluon distribution behaves as a const
with respect toqt and does not behave asqt

2a . In this case
we may assume that the gluon distribution does not dive
at qt50 in the realistic situation at RHIC and LHC. In suc
situations wheref (qt50,y,f) is not singular (qz5qtsinhy
for gluon minijets! one can neglect the boundary term,

@Aqt
21qz

2f ~qt ,qz ,f!#uqt50
qt5`

52@ uqzu f ~qt ,qz ,f!#qt50

52@qtusinhyu f ~qt ,y,f!#qt5050 ~35!

since for massless minijets

FIG. 2. The transverse component of the magnetic scree
mass as obtained from Eq.~32! by using a nonisotropic distribution

function of the form f 51/(eAqt
2
1hqz

2/T21) as a function of the
nonisotropy parameterh. Note that forh51 the distribution func-
tion becomes Bose-Einstein and hence the magnetic screening
is found to be zero from Eq.~32!.
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qz5qtsinhy50 when qt50 for finite y. ~36!

Herey is the momentum rapidity of the minijet parton. Th
boundary condition isnot true in general, and in particula
not true for a thermal distribution since a thermal distributi
function f eq51/(eqtcoshy/T21) is divergent atqt50. How-
ever if the gluon distribution atqt50 behaves as a consta
at qt50 at RHIC and LHC initial situations@24# then our
vanishing boundary condition should be valid at RHIC a
LHC. In any case a nonperturbative analysis of gluon dis
bution atqt50 is beyond the scope of this paper. If the glu
distribution behavior atqt50 is found to be divergent in an
nonperturbative calculation unlike the case in@24# then the
values reported in this paper might change. We have c
puted the Debye and magnetic screening masses in this p
aboveqt51 ~2! GeV at RHIC~LHC! which is similar to the
calculations done by several authors for the Debye scree
mass@25# where they have adopted similar cutoff values
the minijet momentum in their calculations.

With the above arguments and with the vanishing bou
ary conditions@Eqs. ~35! and ~36!# we get from Eq.~29!,
after changing to the rapidity variablesdqz /uqW u5dy,

mD
2

t5
3as

p2 E dqtqtE dfE dy f~qt ,f,y!, ~37!

wheref (qt ,f,y) is the nonisotropic gluon distribution func
tion. For a cylindrically symmetric system we get

mD
2

t5
6as

p E dqtqtE dy f~qt ,y!. ~38!

This is exactly the same equation used by several aut
@2,26# in the context of minijet plasma equilibration i
heavy-ion collisions at RHIC and LHC. Similarly using th
same vanishing boundary condition@Eqs.~35! and ~36!# we
get for the magnetic screening mass from Eq.~32!

mg
2

t5
3as

p E dqtqtE dy f~qt ,y!, ~39!

for a cylindrically symmetric distribution functionf (qt ,y).
It can be noted that in Eqs.~38! and~39! one should not use
an equilibrium distribution function or any other distributio
function which does not obey the vanishing boundary con
tion as stated in Eqs.~35! and ~36!.

For conditions pertinent to RHIC and LHC we use t
minijet gluon distribution function to evaluate the Debye a
magnetic screening masses. At high energy the minijet c
section can be calculated by using PQCD. The leading o
minijet cross section is given by

s jet5E dptE dy1E dy2

2ppt

ŝ
(
i jkl

x1f i /A~x1 ,pt
2!

3x2f j /A~x2 ,pt
2!ŝ i j →kl~ ŝ, t̂ ,û!. ~40!

Herex1 andx2 are the light-cone momentum fractions ca
ried by the partonsi and j from the projectile and the targe
11401
i-

-
per

ng
r

-

rs

i-

ss
er

respectively,f are the bound-nucleon structure functions a
y1 and y2 are the rapidities of the scattered partons. T
symbols with carets refer to the parton-parton c.m. syst
The ŝ i j →kl are the elementary PQCD parton cross sectio
As we will be considering a gluon system we include t
dominant gluon production cross sections at the parto
level which are given by

ŝgq→gq5
as

2

ŝ
~ ŝ21û2!F 1

t̂2
2

4

9ŝû
G , ~41!

and

ŝgg→gg5
9as

2

2ŝ
F32

ût̂

ŝ2
2

ûŝ

t̂2
2

ŝt̂

û2G . ~42!

Hereas is the strong coupling constant and

ŝ5x1x2s54pt
2cosh2S y12y2

2 D . ~43!

The rapiditiesy1 , y2 and the momentum fractionsx1 , x2 are
related by

x15pt~ey11ey2!/As,

x25pt~e2y11e2y2!/As. ~44!

The limits of integrations are given by

pmin<pt<
As

2 coshy1
,

2 ln~As/pt2e2y1!<y2< ln~As/pt2ey1!, ~45!

with

uy1u< ln~As/2pmin1As/4pmin
2 21!. ~46!

In the above equationspmin is the minimum transverse mo
mentum above which minijet production is computed by u
ing PQCD. We multiply the above minijet cross sections b
K factorK52 to account for the higher orderO(as

3) contri-
butions. The minimum transverse momentum above wh
the minijets are computed via PQCD is of the order
pmin;1 GeV at RHIC and;2 GeV at LHC @23#. These
values are energy dependent and are obtained from the
ration arguments. We takepmin51 GeV at RHIC and 2 GeV
at LHC for our computations. The minijet cross section@Eq.
~40!# can be related to the total number of partons~N! by

Njet5T~0! s jet , ~47!

where T(0)59A2/8pRA
2 is the total number of nucleon

nucleon collisions per unit area for central collisions@27#.
HereRA51.1A1/3 is the nuclear radius. A rough estimate
the initial volume in which these initial partons are formed
RHIC and LHC can be given byV05pRA

2t0, where the
partons are assumed to be spread by a lengtht051/pmin .
Assuming that the partons are uniformly distributed in t
6-7
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coordinate space~but nonisotropic in momentum space! we
can easily extract a phase-space gluon distribution func
of the gluon from the total number of gluon minijets fro
Eq. ~47!. The initial distribution function of the gluon is the
given by

f ~pt ,y1!5
1

pRA
2t0

dNjet/d3p ~48!
to

. 3
c
e
s

a

11401
n
where

d3p5d2ptdpz5ptd
2ptcoshy1dy1 . ~49!

Using the above minijet initial gluon distribution functio
in Eq. ~38! and Eq.~39! we get
e we take
mD
2

t5
T~0!

p2RA
2t0

6 KasE dptE dy1E dy2

1

ŝ coshy1
(
i jkl

x1f i /A~x1 ,pt
2!x2f j /A~x2 ,pt

2!ŝ i j →kl~ ŝ, t̂ ,û!, ~50!

for the Debye screening mass and

mg
2

t5
T~0!

p2RA
2t0

3 KasE dptE dy1E dy2

1

ŝ coshy1
(
i jkl

x1f i /A~x1 ,pt
2!x2f j /A~x2 ,pt

2!ŝ i j →kl~ ŝ, t̂ ,û!, ~51!

for the magnetic screening mass of the gluon at the one loop level. Note that in the above equationas occurs outside thept
integration and hence a scale has to be defined, at which this coupling constant has to be determined. For this purpos
as asas(^pt

2&) where the momentum scale^pt
2& is defined by

^pt
2&5

1

s jetE dptpt
2E dy1E dy2

2ppt

s
(
i jkl

x1f i /A~x1 ,pt
2!x2f j /A~x2 ,pt

2!ŝ i j →kl~ ŝ, t̂ ,û!, ~52!
he

s.

8.

e
unt

y be
wer
D
be
e
par-
e-
c-
wheres jet is defined by Eq.~40!.
In this paper we will be using both Glu¨ck-Reya-Vogti

1998 ~GRV98! @28# and CTEQ6M@29# parametrizations for
the gluon and quark structure functions inside a free pro
with Eskola-Kolhinen-Ruiskanen-Sagado 1998~EKRS98!
@30# parametrizations for the nuclear modifications. In Fig
we present the results of the initial gluon distribution fun
tion @see Eq.~48!# at RHIC as a function of the transvers
momentum of the gluon for different values of the rapiditie

FIG. 3. Initial gluon distribution function at RHIC energies as
function of pt .
n

-

.

The rapidityy is related to the longitudinal momentumpz via
pz5ptsinhy.

We present the longitudinal momentum distribution of t
initial gluon minijet distribution function at RHIC in Fig. 4
for different values ofpt .

Using these gluon minijet distribution functions in Eq
~50! and ~51! we get for RHIC

mDt5116 MeV and mgt582 MeV ~53!

and for LHC

mDt5150 MeV and mgt5105 MeV ~54!

by using GRV98 structure functions along with EKRS9
The coupling constantas(^pt

2&) is found to be 0.287 at
RHIC and 0.214 at LHC. If higher order contribution to th
minijet production would have not been taken into acco
then our results of screening mass would have beenAK(52)
times less than the above values. The above masses ma
lower bounds to the actual values as we have used a lo
transverse momentum cutoff for minijets in order for PQC
to be applicable. However, the gluon distribution may
dominant at lowerpt @24# and hence the magnitude of th
screening mass may increase if one can include the soft
tons into the gluon distribution function. The values we r
ported in this paper are for gluon minijet distribution fun
tions at RHIC and LHC withpmin greater than 1 and 2 GeV
respectively.
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Let us now look at the equilibrium situation. Note that
one loop level we get@see Eq.~26!# mD

2 5g2T2 andmg
250 in

equilibrium. Since the one loop magnetic mass is zero
equilibrium we will compare our results with the magne
mass which is obtained by using nonperturbative metho
The magnetic mass obtained by using nonperturbative m
ods in equilibrium is given bymg

25 3
2 (0.255g2T)2, see

@5,31#. Assuming a temperature of about 500 MeV at RH
and by using the coupling constant valueas50.287 at RHIC
@see above! we get mD5gT5950 MeV and mg

5A 3
2 (0.255g2T)5563 MeV. AssumingT51000 GeV at

LHC and using the LHC coupling constantas50.214 we
obtain mD51.639 GeV andmg5840 GeV. In obtaining
these masses, one has integrated over all momentum ra
of the equilibrium distribution functions. For example, if on
uses a Bose-Einstein distribution function in Eq.~24! and
then integrates from (pmin→As/2) then we obtainmD
5486 GeV at RHIC for T5500 GeV andas50.287. Simi-
larly for LHC one obtainsmD5840 GeV for T51 GeV and
as50.214.

Note that these values are of the same order as that
tained by using the nonequilibrium distribution functions

FIG. 4. Initial gluon distribution function at RHIC energies as
function of pz .
.

l.

B

11401
t

n

s.
h-

ges

b-
t

RHIC and LHC. Since the gluon distribution function ma
be dominant at lowerpt the magnitude of the screening ma
might increase if one can include the soft partons into
gluon distribution function@9,10,32–36#. The values we re-
ported in this paper are for gluon minijet distribution fun
tions at RHIC and LHC withpmin greater than 1 and 2 GeV
respectively. Note that due to the asymmetry we have co

puted a specific component (p̂ in the transverse direction! of
the Debye (mDt) and magnetic (mgt) screening mass. If one
computes the values in all directions their values may
even higher. Similar situations hold for magnetic screen
masses at RHIC and LHC. As the magnetic mass is a n
perturbative calculation at equilibrium and ours is a one lo
calculation at nonequilibrium, we expect that a nonpertur
tive nonequilibrium calculation might give a higher magne
screening mass. The argument is similar to the study o
nonperturbative calculation for the Debye screening mas
finite temperature@37#.

To summarize, we have applied the closed-time path
malism to nonequilibrium situations in QCD expected
RHIC and LHC energies to study the infrared behavior of
one loop gluon self-energy. We have followed a frozen gh
formalism where the initial density of states consists
physical gluons and the ghost is only present in the vacu
level. In the infrared limit of the gluon self-energy we obta
a nonvanishing magnetic screening mass of the gluon at
one loop level for nonisotropic gluon distribution function
with the assumption that the distribution function of th
gluon is not divergent at zero transverse momentum.
RHIC and LHC we assumed that the gluon distribution is n
divergent atqt50 which is supported by the computatio
done in @24#. With this approximation we then applie
PQCD aboveqt51 ~2! GeV at RHIC ~LHC! and obtain a
reasonable initial nonequilibrium gluon-minijet distributio
function. Using this nonisotropic gluon minijet distributio
function aboveqt51 ~2! GeV at RHIC~LHC! we predicted
the values of the magnetic and Debye screening masse
the initial time @38#.
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