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Infrared behavior of the gluon propagator in nonequilibrium situations
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The infrared behavior of the medium modified gluon propagator in nonequilibrium situations is studied in
the covariant gauge using the Schwinger-Keldysh closed-time path formalism. It is shown that the magnetic
screening mass is nonzero at the one loop level whenever the initial gluon distribution function is nonisotropic
with the assumption that the distribution function of the gluon is not divergent at zero transverse momentum.
For isotropic gluon distribution functions, such as those describing local equilibrium, the magnetic mass at the
one loop level is zero, which is consistent with finite temperature field theory results. Assuming that a reason-
able initial gluon distribution function can be obtained from a perturbative QCD calculation of minijets, we
determine these out of equilibrium values for the initial magnetic and Debye screening masses at energy
densities appropriate to BNL RHIC and CERN LHC. We also compare the magnetic masses obtained here with
those obtained using finite temperature lattice QCD methods at similar temperatures at RHIC and LHC.
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Experiments at the BNL Relativistic Heavy lon Collider Gaussian density matrix then it is possible to obtain at one
(RHIC) (Au-Au collisions at \/§: 200 GeV) and CERN loop a magnetic screening mass as long as the initial gluon
Large Hadron Collider(LHC) (Pb-Pb collisions atys  single particle distribution functiorf(ky,ky,k;,to) is not
=5.5 TeV) will provide an excellent opportunity to produce isotro_pic_ with the assumption that the gluon distribution
a quark-gluon plasma in the laboratory. There is no doub_{unctlon is not divergent at zero transverse momentum. That
that an energy density larger thans GeV/fn? [1] will be IS We assume that at=t, one can write a Fourier decom-
created during these collisions but it is not at all clear that thosition of the gluon field In terms of creation and annihila-
partons produced following the collision will reach equilib- tion operators. By a BOgO.I'Ub(?V t.ran.sformatlor.]tatto one
rium. The study of the equilibration of the quark-gluon can always set the pair distribution functior(, (k,t
plasma is very crucial because it determines the time evolu=to)a'(q,t=ty),)=(a,(k,t=tp)a(q,t=t),)=0. Thus the
tion of all global quantities such as energy density, numbepropagator will have the usual vacuum part and a term which
density, etc. This study also plays a crucial role in determindepends on the initial expectation value of the number den-
ing many of the potential signatures for quark-gluon plasmaty
detection at RHIC. The space-time evolution of the parton
gas for this nonequilibrium situation can be be modeled by
solving semiclassical relativistic transport equatips10.
Central to solving the transport equations is what goes into . o
the scattering kernels. Perturbative vacuum expressions for =f(K,to)(2m)38(k—q), 1
gluon scattering suffer from severe infrared problems. One
loop medium effects in equilibrium provide an electfide- and we have summed over the physical transverse polariza-
bye) screening mass, but not a magnetic screening fdgs  tions. Forf to correspond to a physically realizable quantity
Thus one cannot use a one loop resummed finite temperatuiee number density as well as energy density has to be finite.
gluon propagator as an approximation to the scattering kerfhus f(k,t) has to go to zero ak— fast enough so that
nel because of severe infrared problems in the limit hat one obtains finite number density and energy density. For
=0 and|5|—>0. To obtain magnetic screening in equilibrium Gaussian initial value problems, one only needs to know the
situations requires a nonperturbative lattice QCD calculationtwo-point function att=t,. In our following analysis, we
What we would like to point out here is that if we use the will also need to make a quasi-adiabatic approximation so

CTP formalism [12] with an arbitrary nonthermal initial ~ that we will assume, for the purpose of determining the ini-
tial screening masses, that the system is time-translation in-
variant. Thus the only difference we will assume in our

2
);1 (al(k,t=to)a(q,t=1to),)

"Electronic address: kao@a35.ph.man.ac.uk choice of an anisotropit(E,to) which will replace the usual
*Electronic address: nayak@shakti.lanl.gov Bose-Einstein distribution function. This approximation has
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been discussed in detail by Thoma and otH&3. In our Here T#” is transverse with respect to the flow-velocity

calculations, we will use a simple ansatz f¢k,to) in which ~ but L*” and D*” are mixtures of space-like and time-like
the parameters will be chosen to agree with known distribucomponents. These tensors satisfy the following transversal-
tions for minijet production at RHIC and LHC. Here we are ity properties with respect tp*:
not suggesting that this effect replaces the nonperturbative
magnetic screening mass, but that the effect we are consid- P, T*(p)=p,L*"(p)=0,
ering is of the same order of magnitude and already cures the
infrared problems of the transport theory. v
In what follows we will examine the infrared behavior of p.p,C*"(p)=0. 4
the medium modified gluon propagator at one loop using the |, terms of this tensor basis the gluon propagator in the
CTP fqrmallsm. The purpose of this paper is to study the.qyariant gauge is given by
static limit of the longitudinal and transverse self-energy of

the gluon(Debye and magnetic screening magsasd, in G =T GT(p)—iL el
particular, to determine, at the one loop level, how the mag- ) wr P) ~(p) wAPIG(P)
netic screening mass depends on the inftflt,). Although —i¢D,,,(p)G®(p), 5

technically the magnetic screening mass is defined as the .

position of the zero of the inverse propagdice. in the limit ~ WhereG', G-, GP correspond tdT, L and D components
Po=0,p|—Mee,m2.=TT(m2)] [14], at one loop the limit of ~resPectively of the full gluon propagator at the one loop
level. The last parGP(p) is identical to the vacuum part

(independent of for general covariang gaugey and more- [16] and hence wehdq not consit;ier itfanyr:no(;(?f.f There are
over this limit is the one important for controlling the infra- separate Dyson-Schwinger equations for the different com-

red properties of the collision kernel in the transport theoryPONeNts of theCTP matrix Green's functions that do not
Thus in this paper we will use the second limiting process tFouple with each other. These equations can be written in the

define the screening masses. At arbitrary momentum the po2™
larization is not in general gauge invariant at one loop. To

the inverse propagator %=O,||5|HO is gauge invariant

have a gauge invariant approximation at one loop one can [GTHP) ;=[G ()] + 2 [GTH(P);
make a hard momentum loop approximation as discussed in Lk
[13,15. TL ATL
In particular we are interested in nonisotropic nonthermal XTE) I [G 7 () I - ©®)

forms forf(IZ,to) consistent with known minijet production Herei,j,k,1=+,— are theCTP contour labels, and sup-
results. Let us consider an expanding system of partons ipression of Lorentz and color indices in the above equation
1+1 dimensions. For this purpose we introduce the flowjs understood.
velocity of the medium: In the Keldysh rotated representation of & P formal-

ism, in terms of retarded, advanced and symmetric Green’s

U= (cosh»,0,0,sinhy), @) functions we have instead

. . . -, GRA(P)=GRA(P) +GRA(P) - TIRA(P)-GRAP). (D
where n=3In(t+2)/(t—2) is the space-time rapidity and

u,u”=1. We define the four symmetric tens¢i6-18 as The straightforward solution of the above equation is
given by
u-p)(u,p,+u,p,)—pP.pP,—pP3u,u,
TMV(p)ZgMV—( p)( ,u,p p/J,Z) pz,up p M , - G;,’IA(p)
(u-p)—p Gra(p)= T.L T.L
1-Gra(p)-IIgA(P)
2
—p (U-p)p#)( (U-p)pv> 1
L..(P)= (u - u,— : = , : ®
g (u-p?=p?\ *  p? p’ p?—TIRA(P) =i sgr(po) e
where the self-energy contains the medium effects. Similar
C..(p)= but more complicated equations are obtained for the re-
wP)= 2[(u-p)2—p?] summed symmetric Green’s functions
(Uu-p)p, (u-p)p, g g
X[ u,———=—|p,*| U= ———|Pul
( e )P o2 | mgéj:::z?a g éz 1§
g S 9 g
PuPy
D,.(p)= " (3)
p FIG. 1. One loop graphs for the gluon self-energy.
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GLt(p)=[1+2f(p)1sgr(po)[Cr-(p)— GAt(P)1+{IIE (p) —[1+2f(p) Isgn po)[ITx (p) — I (P) LGE (p)
XGpAN(p). 9)

For the purposes of obtaining the correct kernel for the Boltboth longitudinal and transverse parts which, in the static

zmann equation, we need the medium improved Feynmapmit (p0:0,|5|_>o), give Debye and magnetic screening

propagator for the gluon at the one loop level which is justmasses of the gluon respectively. In the above equation

one component+ +} of the matrix Green’s function of the TI4(p) is the symmetric part of the self-energy.

CTP formalism. To obtain the infrared behavior of this propagator we need
GF(p)E[é(p)]++ can be written as to find the static limit of the gluon self-energy for an aniso-

1 tropic f(lZ,t) corresponding to the initial distribution function
e =218 +3 +3 ’ 10 expected from the parton model. In a frozen ghost formalism
[G(P)]++=5[Cs(P)+Ca(P) + Cr(P)] (10 [18,19, the gluon self-energy is obtained from the gluon

loop and tadpole loop as shown in Fig. 1. The ghost does not
whereG,,Gg,Gs stand for advanced, retarded and symmetqntripute to the medium effect in this formalism because the

[ic ?rgen’s function respectively. In the above equation thepiial density of states is chosen to be that of the physical
+ " sign refers to the upper branch in the closed-time pathj,ons, Al the effects of the ghost are present in the vacuum.
Using the relations of the various self-energies one finds' Tpe general expressions for the real and imaginary part of
[13,19 the gluon self-energy in nonequilibrium in a covariant gauge
1 for an expanding gluonic medium have been derived in a

p?—Rellg(p)+ =ImII4(p) previous papef15]. Here we examine the static limit of
2 (11) these self-energies which play crucial roles to obtain a finite

[p?2—Rellg(p)2+[ImIx(p)]?’ collision integral to study equilibration of the qqark-gluon
plasma at RHIC and LHC. The general expressions for the
where RdIz(p) and ImIlg(p) are the real and imaginary real part of the longitudinal and transverse self-energy of the

part of the retarded self-energy. These self-energies hawgluon loop are given by

G.i(p)=

. g2 d%q | 1 R . 1 .
ReHe.;R(p)=75achf 2m)? m{[f(qm(q,p)]qo:\aﬁ[f(—q)G(q,p)]qoz-\a|}+ m{[f(p—q)G(p
—q,pﬂpo_qog,_a+[f(—5+6>6(p—q,p>]po_qo_”;_m}] (12)
and
. g? d3q | 1 R . 1 .-
REHG|;R(D)=75achJ 2m? m{[f(q)H(q,p)]qo=\a|+[f(—q)H(q,p)]q0=7\a|}+ m{[f(p—Q)H(p
—q,p)]poq0=|,;a+[f(—5+6)H(p—q,p)]poq0=|5a|}l (13
where

G(q,p)=

8p> H <u~p>(q-p>)2] 2{ 2(9-p)(p-u)®
— ug)— ——2 2 —[(p+q)
(|o°—q°)2—(|o—q>2[(U-p)z—p2 (g p? L(pd ](q-U)pZ[(p-U)Z—pz]

L @piEpw? (prw)? ]_42+8<q~p)(u-p>_<q-p>2
(q-u)?p?[(p-w2-p?] [(p-u)®—p?] (u-q) (u-q)?

. 2 . 2_ . . . . 212
1 (1) PoLE@P)? 2200 W) (p-u)(G-P) + (G- W) ]] "

(g-u)?[p?—(p-u)?]
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and

(9-p)(u-p)

. . . . 2 2 . 2
1 glua@pu-p  (@p)° _ pAg-u
(u-@)[(u-p)*=p?]

(p°—q°>2—<5—&>2{ (u-p)2—p? (u-p)2—p? (u-p)?-
(9-p)? P l_4 2, @ P)UP) (a4
2(u-g)q(u-p)?>—p?] 2[(u-p)®—p?] (u-q) (u-q)?

H(a,p)= 2—[(p+q)2]{l—

L EDEH=(a-p)*+2(a-u)(p-u)(Q-P)+(q-w) [ p? 2(p-u)2]})] s
2(9-w)?[(q-p)—p2[p*~ (p-u)?] '
The general expression for the tadpole loop contribution is given by
d*q f(q)[. _(u-p)a-p) p’ ( <u~p)<q~p>)2]
%, 2(p)=0%8.oN, —3-2 + 1-
fare) ="t em2dl”  pua  weel e |,
—Q . . 2 . . 2
JfCal, wpi@p) P (1_(u p)(q p)) 1 6
2|q pA(u-q)  (u-p)?—p? pru-a) ]l _ g
0
and
d*q f(q) (u-p)(q-p) (q:-p)? p? 1
7,.r(P)=0%6.N. B - -
Farp) =G| @m2d|" walwp?—p 2ua e e 2w -],
f(—q) (u-p)(q-p) (9-p)° P
+ — |1+ - - . a7
2|q| (u-a)l(u-p)?=p7 2(u-a)’[(u-p)?=p? 2[(u-p)*=pifl, g

To simplify these equations in the infrared limit we expa‘r((f— 5) asf(ﬁ— 5)=f(ﬁ)—5ﬁ;f(ﬁ) and neglect the higher
order gradients. Similarly we expamgd—q| as|p—q|=|q|{1—(p-a)/|q|}. In the static limit (first takingp,=0 then using
|§|—>0), and in the rest frameu(,=1,ﬁ=0) we obtain from Eq(12)

d*q [p-V, (q)) dq f(&)l
Rellk, «(po=0, =—209°8,,N, ( |+ - (18)
cirtPo I G f(Zw) p-q f(2w)3 lal
and from Eq.(16)
d*q f(q)
M5, r(Po=0)=2g%6, N, | —— ——. (19
Ta:r(Po 9" 0ap f(zﬂ_)?, H

Adding both the above equations we get the expression for the Debye screening mass,

(20

p- Vyf(a)
= [Rellh, o(Po=0JF|—~0)]+ [Rellss(po=0J5l~0)1= 67 [ 0| P q)

(2m)® ( p-q

which is the real part of the longitudinal self-enerf=3 is used. This equation was obtained by various autfz0§
Similarly in the static limit and in the rest frame we get from ER)

. d*q [f(9) [3 - P V,f(a) ]
Rell’, r(Po=0,p|—0)=0%8,,N. N - +? 1- 2 21)
ci:r(Po=0/[p|~0)=g"5ap f 2m)? [ 5 12 gt ey (@-p)? (
and from Eq.(17)
d3q f(q) [3 1. . }
mnl 25 — 1 -z 2 22
Ta; R(po 0) 9% 0ap cj (277_)3 |q| 2 2 ) ( )
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Adding both the above equations we get the expression for the magnetic screening mass

R - ) “ -
Mg =[ReIl{ q(Po=0,p|—0)]+[Rell], x(Po=0/p|—0)]=3g? |<q| [1+(q-p)?]
V " o~
RLACCINIREIRS 23
p-q

which is the real part of the transverse self-energy. For th¢11,17,21. It is interesting to note that the magnetic mass is
imaginary part of the gluon self-energy at one loop we genot only zero at the one loop level in equilibriu&g. (26)]
Im HGL r=0, in the static limit. Note that the above formula but it is also zero for any isotropic nonequilibrium gluon
uses the medium part of the self-energy containing a gluoistribution function[see Eq.(25)]. Only when the distribu-
loop and a tadpole loop which appears in the resummetion function is nonisotropic does one get a nonzero contri-
gluon propagatofEq. (11)]. The expression for the Debye bution to the magnetic screening mass with the assumption
screening mass that we obtairjseée Eq(20)] is the same as that the distribution function of the gluon is not divergent at
that obtained by various authofg0]. The expression we Zero transverse momentutsee below. This result is not
obtain here for the magnetic mass for a nonequilibrium gluorparticular to QCD but also will be true for QED when the
distribtution function is newsee Eq.23)]. There is no ap- distribution function is nonisotropic. This is explicitly calcu-
proximation present in the derivation of Eq20) and (23).  lated in[22] for the QED case where we have shown that we
The static limit results are gauge invariant. get the exact same formula for the magnetic screening mass
For an isotropic gluon distribution functici{|q|) we get, " QED as we 2°bt";“”9d in this paper for QGBluon loop
from Eq. (20), except thaiNCg.oce_. o
Before considering the situation at RHIC and LHC let us
g consider an example where there is momentum anisotropy in
m%z—zf dqqf(q) (24)  the transverse and longitudinal momentum distribution. For
™ this purpose we work in the cylindrical coordinate system:

q ,$.,0,). From Eq.(20) we get
whereq=|q| and from Eq.(23) (0. .,0,) 0.(20 we g

mZ=0. (25 o g @7

(p w(q))
Qt

Furthermore for the special isotropic case when the system is

described by an equilibrium Bose-Einstein distribution func-From this equation we realize that whi(m) is isotropic, the
tion for the gluon, Eqs(20) and(23) give dependence op drops out and we obtain E¢R4). For anis-
tropic f the mass depends on the direction Euf In what
follows we will assumep is along the transverse direction
respectively. These resulf&q. (26)] are identical to those and give values only for this direction. Simil?r results can be
obtained by using finite temperature field theory in QCDobtained for the longitudinal choice. Assumipds along the
assuming that the system is in thermal equilibriumtransverse direction we find

m3=g*T? and m;=0 (26)

— af(Qtl¢ qz)
e | d¢J a0 o o 28
Integrating by parts i, we get
mzm qutqtf dd>f —f(q;, ¢, qz)+fd¢f da,[[d,/f(ar.0z,¢)]1q-0 (29)

For an equilibrium distribution function of the forrfy,= 1/(eVo&ToTa/T—1)=1/(eV%T9/T—1) we get from the above
equation
g2T2 92T2

Mg =——+—5—=0°T" (30)
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which is the correct result obtained by using finite temperature QCD.
Similarly, changing to ay, ¢,q, coordinate system we get from E@.3)

3¢g” fa) | @p? - p-Yf@ [ (a-p)?
m§=—3f dqtqtf d(ﬁf qu[T' 1+ = +|q| Aq_} : 1—T (3D
8 |l gl p-q g
when|6 points in the transverse direction and we again perform partial integrationgp¥erobtain
39 f(a.9,, )
o=y 2] daa [ docots [ a2 [ do | daflanfann 0l o @

For an equilibrium distribution function of the form,, is singular atq,=0. However, for very lowq,, PQCD for-

:1/(e\/qxz+qy2+q22/T_1):ll(ex/qt2+q22/T_l) the above equa- mula}s are nqt appljcable and hence it is not obvious that
distribution will be singular at;=0 at RHIC and LHC. For

tion gives . . .
g;=0 the only computation available at the moment is from
g2 72T2 22 the McLerran-Venugopalan modg24] where it is shown
mgt2= 3 (4r) 6 —(477)T =0, (33 that atq;,=0 the gluon distribution behaves as a constant
(2m) with respect tag; and does not behave g5 “. In this case

we may assume that the gluon distribution does not diverge

- - : at g,=0 in the realistic situation at RHIC and LHC. In such
Before proceeding to compute the initial magnetic screenSituations where(q,=0y, ) is not singular ¢, =g sinhy

ing mass at RHIC and LHC situations we will adopt a]c | inijets lect the boundary t
nonisotropic test distribution function to compute the mag- or giuon minyets one can negiect the boundary term,

netic screening mass from the formula given by 82). We

which is consistent with finite temperature QCD results.

choose a nonisotropic test distribution function of the form [ /qt2+q2f(qt q,, )] %=
z 1 1 qt=0
1 -
fo (34 =~[la,f(a.az,¢)]q-0

eVai+haliT_ 1

whereh is a parameter for nonisotropy. For=1 we get the
usual Bose-Einstein distribution function. Using the abovesince for massless minijets
nonisotropic distribution function we plot the magnetic
screening mass from E¢32) in Fig. 2. It can be seen from
Fig. 2 that forh=1 (corresponding to the Bose-Einstein dis-  T-1Gev
tribution function we getmy,=0 and forh#1 (correspond- [ e T = 500 MeV
ing to the nonisotropic distribution functiprve get a non-
zero magnetic screening mass.

Now we consider the realistic situation at RHIC and LHC. 02 | ]
For the situation at RHIC and LHC where the parton distri-

bution function at=tg, f((j,to) describes an out of equilib- E
rium situation, we can compute the value of these screening s
masses assuming the distribution function can be described
by the parton model result for minijets. We note that to com-
pute the second term on the right-hand side of E28). and

(32) we need to know the form o[ff(qt,qz)]qlzo and its

behavior at RHIC and LHC. In this paper we are considering
the minijet distribution function which are computed by us- o ‘
ing perturbative QCD (PQCD applicable above g, 1 10 100
=1(2) GeV atRHIC (LHC) which are obtained by satura-
tion arguments as studied by several auth@gj. We men- FIG. 2. The transverse component of the magnetic screening
tion here that PQCD is not applicable for sm@{l, for ex-  mass as obtained from E(2) by using a nonisotropic distribution

ample below 12) GeV at RHIC(LHC). If one calculates the  fynction of the formf=1/(eV% "%/T—1) as a function of the

PQCD minijet production, they, distribution behaves as nponisotropy parameter. Note that forh=1 the distribution func-

«q, “ wherea~4 for highq; and~2 for low g;. If one  tion becomes Bose-Einstein and hence the magnetic screening mass
applies PQCD at smadj;, the distribution functiorf (q; ,q,) is found to be zero from Eq32).

=—[adsinhy|f(ar.y,¢)]q-0=0 (39

0.3

01 ]
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q,=q;sinhy=0 when ;=0 for finite y. (36) respectivelyf are the bound-nucleon structure functions and
y, andy, are the rapidities of the scattered partons. The
Herey is the momentum rapidity of the minijet parton. This symbols with carets refer to the parton-parton c.m. system.

boundary condition im0t true in general, and in particular The g, are the elementary PQCD parton cross sections.
not true for a thermal distribution since a thermal distributionas we will be considering a gluon system we include the

function feq=1/(e%***™/T~1) is divergent ag;=0. HOW-  dominant gluon production cross sections at the partonic
ever if the gluon distribution ay;=0 behaves as a constant |eve| which are given by

at q;=0 at RHIC and LHC initial situation$24] then our
vanishing boundary condition should be valid at RHIC and . as ., o,
LHC. In any case a nonperturbative analysis of gluon distri- quﬂgq:§(s +u‘)
bution atg,= 0 is beyond the scope of this paper. If the gluon

distribution behavior at; =0 is found to be divergentin any gng

nonperturbative calculation unlike the casel24] then the

values reported in this paper might change. We have com- ~ gag
puted the Debye and magnetic screening masses in this paper Ogg—gg= =~
aboveq,=1 (2) GeV at RHIC(LHC) which is similar to the 2s
calculations done by several authors for the Debye screeni
mass| 25] where they have adopted similar cutoff values fo

2

oA,
t2 9sul

3—7—7—72]- (42)

Yere as is the strong coupling constant and
r

the minijet momentum in their calculations. ~ ) V1=V
With the above arguments and with the vanishing bound- S=X1XS=4p; COSH( > |- (43
ary conditions[Egs. (35 and (36)] we get from Eq.(29),
after changing to the rapidity variablesy,/|q| =dy, The rapiditiesy, , y, and the momentum fractions , x, are
related by
3a
mp = Wzsf dqtqtf dcbf dyf(ay,¢.y), (37) X, = py(eV1+e¥2)/ s,
X,=pe Yi+e V2)/ s, (44)

wheref(q;,®,y) is the nonisotropic gluon distribution func-

tion. For a cylindrically symmetric system we get The limits of integrations are given by

6
m-2( daa [ dyftay. @9 PP = e
coshy;

This is exactly the same equation used by several authors _

[2,26] in the context of minijet plasma equilibration in —In(\s/p—e )=y, =In(Vs/p—e”), (45)
heavy-ion collisions at RHIC and LHC. Similarly using the with

same vanishing boundary conditipggs. (35) and(36)] we

get for the magnetic screening mass from E3%) lya] <In(V/s/2pmin+ \/s/4pm2 in—1). (46)
3C¥ . . ..
2 _°%s In the above equationg,,;, is the minimum transverse mo-
Mot T J’ dqtqtf dyf(ae.y). (39 mentum above which minijet production is computed by us-

ing PQCD. We multiply the above minijet cross sections by a
for a cylindrically symmetric distribution functiof(q;,y). K factorK =2 to account for the higher ord€(a?) contri-
It can be noted that in Eq&38) and(39) one should not use pytions. The minimum transverse momentum above which
an equilibrium distribution function or any other distribution the minijets are computed via PQCD is of the order of
function which does not obey the vanishing boundary condiy, = 1 Gev at RHIC and~2 GeV at LHC[23]. These

tion as stated in Eq$35) and (36). values are energy dependent and are obtained from the satu-
For conditions pertinent to RHIC and LHC we use the aiion arguments. We take,..=1 GeV at RHIC and 2 GeV
minijet gluon distribution function to evaluate the Debye andt | HC for our computationlg. The minijet cross sectie,

magnetic screening masses. At high energy the minijet Cro§§0)] can be related to the total number of partéNs by
section can be calculated by using PQCD. The leading order

minijet cross section is given by NIet=T(0) Tiet (47)
(4 q d 2Py S . f 5 where T(0)=9A?/87R5 is the total number of nucleon-
Tiet™ | P QY1 ] GY2 T gy X irA(X1,Pp) nucleon collisions per unit area for central collisidr2y].

HereR,=1.1AY3 is the nuclear radius. A rough estimate of
XX2fj/A(X2aptz)(}ijﬂkl(gvfaa)- (40)  the initial volume in which these initial partons are formed at
RHIC and LHC can be given by,=mRi7, Where the
Herex, andx, are the light-cone momentum fractions car- partons are assumed to be spread by a leagthl/pyin-
ried by the partons andj from the projectile and the target, Assuming that the partons are uniformly distributed in the
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coordinate spacébut nonisotropic in momentum spaoge  where
can easily extract a phase-space gluon distribution function
of the gluon from the total number of gluon minijets from

Eq. (47). The initial distribution function of the gluon is then d3p=d?p,dp,= p;d?p;coshy,dy; . (49)
given by
_ jet/ 43 Using the above minijet initial gluon distribution function
f(Puya) - ATOdN fd°p “8) in Eg. (38) and Eq.(39) we get
|
, T(0) 1 .
Mp= —2R2 . —— 6 Kasf dptf dylf dyz—A Scoshy, | 2 X1f|/A(X1'pt)Xsz/A(Xz,Dt)U|Hk|( s,t,u), (50
A0 1

for the Debye screening mass and

t 3 Kasf dptf dhj dy,=———— > Xafiia(X1,PD)Xaf jja(X2, PO 0 _(S,1,0), (51
scoshy,

Ra7o ijkl

for the magnetic screening mass of the gluon at the one loop level. Note that in the above eguationrs outside the,
integration and hence a scale has to be defined, at which this coupling constant has to be determined. For this purpose we take

as as ag((p?)) where the momentum scal@?) is defined by

Pt I
(p})= JGJ dptptjdylf dY2 2 X1 fiia(X1, P9 %ot (X2, PF) o (S, 1, 0), (52)

whereo'® is defined by Eq(40). The rapidityy is related to the longitudinal momentym via

In this paper we will be using both Gtk-Reya-Vogti  p,=p;sinhy.
1998(GRV98) [28] and CTEQ6M[29] parametrizations for We present the longitudinal momentum distribution of the
the gluon and quark structure functions inside a free protoiinitial gluon minijet distribution function at RHIC in Fig. 4
with Eskola-Kolhinen-Ruiskanen-Sagado 199BKRS98§  for different values of;.
[30] parametrizations for the nuclear modifications. In Fig. 3  Using these gluon minijet distribution functions in Egs.
we present the results of the initial gluon distribution func-(50) and(51) we get for RHIC
tion [see Eq.(48)] at RHIC as a function of the transverse

momentum of the gluon for different values of the rapidities. mp=116 MeV and my=82 MeV (53
10" S - . and for LHC
—— y=0, CTEQEM
weN e y=0, GRV98 i mp;=150 MeV and my=105 MeV (54
N ---- y=1, CTEQ&M
el N ~ T y=1.GRVeS by using GRV98 structure functions along with EKRS98.
= The coupling constanivg((p?)) is found to be 0.287 at
:; 10° L RHIC and 0.214 at LHC. If higher order contribution to the
3 minijet production would have not been taken into account
2104 L then our results of screening mass would have hdef=2)
2 times less than the above values. The above masses may be
=410t | lower bounds to the actual values as we have used a lower

transverse momentum cutoff for minijets in order for PQCD

to be applicable. However, the gluon distribution may be

dominant at lowemp, [24] and hence the magnitude of the

10° 5 75 35 45 55 65 75 55 o3 1;5 scree_ning mass may.inc_rea_se if one can include the soft par-
' ' ' ' ;;' (GeV) ' ' ’ ’ tons into th_e gluon distribution functl_o_r}. Th_e v_alu_es we re-
ported in this paper are for gluon minijet distribution func-
FIG. 3. Initial gluon distribution function at RHIC energies as a tions at RHIC and LHC witlp,;, greater than 1 and 2 GeV

function of p; . respectively.
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10’ ‘ ‘ . RHIC and LHC. Since the gluon distribution function may
—— p=2GeV, CTEQ8M be dominant at lowep, the magnitude of the screening mass
T g*:g o might increase if one can include the soft partons into the

o | ——- p=3GeV, GRVa8 | gluon distribution functior{9,10,32—36 The values we re-

ported in this paper are for gluon minijet distribution func-
tions at RHIC and LHC withp,,;,, greater than 1 and 2 GeV
respectively. Note that due to the asymmetry we have com-

puted a specific componenp {n the transverse directiomf
the Debye (np,) and magneticrfiy;) screening mass. If one
computes the values in all directions their values may be
— even higher. Similar situations hold for magnetic screening
masses at RHIC and LHC. As the magnetic mass is a non-
perturbative calculation at equilibrium and ours is a one loop
10° ‘ ‘ ‘ ‘ ‘ ‘ . calculation at nonequilibrium, we expect that a nonperturba-
-8 -6 -4 -2 0 2 4 6 8 tive nonequilibrium calculation might give a higher magnetic
P. (GeV) screening mass. The argument is similar to the study of a
FIG. 4. Initial gluon distribution function at RHIC energies as a NONperturbative calculation for the Debye screening mass at
function of p, . finite temperaturg¢37].
To summarize, we have applied the closed-time path for-
Let us now look at the equilibrium situation. Note that at Malism to nonequilibrium situations in QCD expected at
one loop level we gdisee Eq(26)] sz:ngz andm2=0 in RHIC and LHC energies to study the infrared behavior of the
equilibrium. Since the one loop magnetic mass is zero iP"e loop gluon self-energy. We have followed a frozen ghost
equilibrium we will compare our results with the magnetic formalism where the initial density of states consists of
mass which is obtained by using nonperturbative methodg?hysical gluons and the ghost is only present in the vacuum
The magnetic mass obtained by using nonperturbative mettevel. In the infrared limit of the gluon self-energy we obtain
ods in equilibrium is given bym2=32(0.255°T)?, see & nonvanishing magnetic screening mass of the gluon at the
[5,31]. Assuming a temperature of%bout 500 MeV at RHIcone loop level for nonisotropic gluon distribution functions
and by using the Coup"ng constant Vahug: 0.287 at RHIC W|th the assumption that the diStribution fUnCtion Of the
[see above we get mp=gT=950 MeV and m gluon is not divergent at zero transverse momentum. At
. RHIC and LHC we assumed that the gluon distribution is not
_ /3 21\ _
IjH\(/;Saonljsu?n;)thSGL?—I éﬂi\éugfs;n;?r?;aalgo—og zGlin?at divergent atg,=0 which is supported by the computation
: e done in [24]. With this approximation we then applied
obtain mp=1.639 GeV andmy=840 GeV. In obtaining [24] on A

h has i d I CD aboveg;=1 (2) GeV at RHIC(LHC) and obtain a
these masses, one has integrated over all momentum ranges qonaple initial nonequilibrium gluon-minijet distribution
of the equilibrium distribution functions. For example, if one fun

) T L ction. Using this nonisotropic gluon minijet distribution
uses a Bose-Einstein distribution function in Eg84) and function aboveg,=1 (2) GeV at RHIC(LHC) we predicted
then integrates from f,i,— VS/2) then we obtainmp

D the values of the magnetic and Debye screening masses at
=486 GeV at RHIC for 500 GeV andag=0.287. Simi-

) the initial time[38].
larly for LHC one obtaingnp, =840 GeV for =1 GeV and

as=0.214. We thank Tanmoy Bhattacharya, Larry McLerran, Emil
Note that these values are of the same order as that olMottola, E. V. Shuryak and Raju Venugopalan for useful dis-
tained by using the nonequilibrium distribution functions atcussions.

f(py p,) (/GeV’ fm’)
81.
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