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When the transition temperature in color superconductors is not like in BCS theory
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We study color superconductivity withNf51, 2, and 3 massless flavors of quarks. We present a general
formalism to derive and solve the gap equations for condensation in the even-parity channel. This formalism
shows that the leading-order contribution to the gap equation is unique for all color superconductors studied
here, and that differences arise solely at the subleading order. We discuss a simple method to compute
subleading contributions from the integration over gluon momenta in the gap equation. Subleading contribu-
tions enter the prefactor of the color-superconducting gap parameter. In the case of color-flavor and color-spin
locking we identify further corrections to this prefactor arising from the two-gap structure of the quasiparticle
excitations. Computing the transition temperatureTc , where the color-superconducting condensate melts, we
find that these contributions lead to deviations from the BCS behaviorTc.0.57f0, wheref0 is the magnitude
of the zero-temperature gap at the Fermi surface.
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I. INTRODUCTION AND CONCLUSIONS

Cold and dense quark matter is most probably a co
superconductor@1,2#. At an asymptotically large quark den
sity or, equivalently, quark chemical potentialm, asymptotic
freedom@3# implies that the strong coupling constantg be-
comes small. In this case one can reliably compute the co
superconducting gap parameter to leading and subleadin
der ing from a gap equation derived within the framework
QCD @1,4,5#. For instance, in a color superconductor w
Nf52 massless flavors of quarks~commonly called the
‘‘2SC’’ phase!, the value of the gap at the Fermi surface a
at zero temperature is

f0
2SC52b̃b08m expS 2

p

2ḡ
D , ~1!

where

ḡ[
g

3A2p
, b̃[256p4S 2

Nfg
2D 5/2

, b08[expS 2
p214

8 D .

~2!

The term in the exponent of Eq.~1! was first computed by
Son@6#. It arises from the exchange of almost static magne
gluons. The factorb̃ in front of the exponential originate
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from the exchange of static electric and non-static magn
gluons@4,5#. The prefactorb08 is due to the quark self-energ
@7,8#.

In color superconductors withNf51 and 3 flavors, vari-
ous other prefactors may arise@9,10#, but the exponential

exp@2p/(2ḡ)# remains the same. As will be demonstrated
this paper, this is not an accident, but due to the fact that
leading-order contribution to the QCD gap equation does
depend on the detailed color, flavor, and Dirac structure
the color-superconducting order parameter. This struc
only enters at subleading order, and we provide a sim
method to extract these subleading contributions.

Let us briefly recall what the terms ‘‘leading,’’ ‘‘sublead
ing,’’ and ‘‘sub-subleading order’’ mean in the context of th
QCD gap equation@8#. Because of the nonanalytic depe
dence off0 on the strong coupling constantg one cannot
apply the naive perturbative counting scheme in powers og
in order to identify contributions of different order. In th
QCD gap equation there are also logarithms of the fo
ln(m/f0), which are;1/g due to Eq.~1! and thus may cance
simple powers ofg. A detailed discussion of the resulting
modified power-counting scheme was given in the introd
tion of Ref. @8# and need not be repeated here. In sho
leading-order contributions in the QCD gap equation are
to the exchange of almost static magnetic gluons and
proportional tog2f0ln2(m/f0);f0. They determine the argu
ment of the exponential in Eq.~1!. Subleading-order contri-
butions are due to the exchange of static electric and n
static magnetic gluons and are;g2f0ln(m/f0);gf0. They
determine the prefactor of the exponential in Eq.~1!. Finally,
sub-subleading contributions arise from a variety of sour
and, at present, cannot be systematically calculated. They
©2002 The American Physical Society10-1
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TABLE I. The constantsls , as , d, the ratiof0 /f0
2SC, and the ratioTc /f0 normalized to its BCS value. In case~vi!, q is the angle

between the direction of the spin-one condensate and the 3-momentum of the quarks in the Cooper pair. The approximations lead
result will be discussed in Sec. II G. In case~v!, the factors in parentheses do not occur iff0 is replaced by the true gapAl1f0.

l1 l2 a1 a2 d f0 /f0
2SC Tc /(egf0 /p)

~i! 2SC 1 0 1 0 0 1 1
~ii ! CFL 4 1 1/3 2/3 0 221/3 21/3

~iii ! CSL ~transv.1 long.! 4 1 2/3 1/3 5 222/3e2d 22/3

~iv! CSL ~long.! 1 0 1 0 6 e2d 1
~v! CSL ~transv.! 2 0 1 0 9/2 (221/2)e2d (21/2)1
~vi! polar 1 0 1 0 3
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proportional tog2f0 and constituteO(g) corrections to the
prefactor in Eq.~1!. It was argued that also gauge-depend
terms enter at this order@11#. This is, of course, an artifact o
the mean-field approximation which was used to derive
QCD gap equation@12#. On the quasiparticle mass shell, th
true gap parameter is in principle a physical observable
thus cannot be gauge dependent.

In color superconductors, the mass shell of a quasipar
is determined by its excitation energy

ek,r~f!5@~k2m!21l r uf~ek,r ,k!u2#1/2, ~3!

wherek[uku is the modulus of the 3-momentum of the qu
siparticle, andf(ek,r ,k) is the gap function on the quasipa
ticle mass shell. The indexr labels possible excitation
branches in the superconductor, which differ by the value
the constantl r . At the Fermi surface,k5m, the excitation
of a quasiparticle—quasiparticle-hole pair costs an ene
2em,r(f)52 Al rf0. The true energy gap is therefor
Al rf0.

At first sight the introduction of the constantl r appears
somewhat awkward. The advantage is that it allows us
generalize Eq.~3! to different color-superconducting sys
tems. For example, in a two-flavor color superconduc
quarks of two colors form Cooper pairs with total spin ze
while the third color remains unpaired@1#. Consequently,
there are two different excitation energies,ek,1 andek,2 . Four
quasiparticle excitations havel151, with gap f0, while
two have l250, corresponding to the unpaired quark
These are so-called ‘‘ungapped’’ excitations. At the Fer
surface, it costs no energy to excite them. In a three-fla
color superconductor, with color-flavor locking~CFL! @13#,
all nine quark colors and flavors form Cooper pairs, but th
are still two distinct branches of fermionic excitations. T
first, with l154, occurs with degeneracy one, while th
other, with l251, has degeneracy eight. The gap cor
sponding to the first excitation has magnitude 2f0, while for
the other eight the size of the gap isf0. A similar two-gap
structure also appears in the color-spin locked~CSL! phase
of a one-flavor color superconductor@10#. However, here the
first excitation, withl154, has a fourfold degeneracy, whi
the second, withl251, has an eightfold degeneracy.

In this paper we aim to clarify the similarities and diffe
ences between various color-superconducting systems
this end we systematically study six different cases. The
two cases are spin-zero color superconductors with~i! two
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flavors of massless quarks and~ii ! three flavors of massles
quarks in the CFL phase. The other four cases deal with
massless quark flavor. In this case, the condensate has
one @14#. Similar to helium-3@15#, this allows for a multi-
tude of different phases, distinguished by the symmetries
the order parameter@10#. We only focus on~iii ! the CSL
phase with longitudinal and transverse gaps,~iv! the CSL
phase with a longitudinal gap only,~v! the CSL phase with a
transverse gap only, and~vi! the polar phase. In this contex
‘‘longitudinal’’ and ‘‘transverse’’ refers to pairing of quarks
with the same or different chiralities, respectively@5#. Cases
~iv! and~v! can be considered separately because, as we
show below, longitudinal and transverse gaps do not ind
each other. In all six cases we only consider condensatio
even-parity channels because these are favored by ef
which explicitly break theU(1)A symmetry of the QCD La-
grangian. We also neglect color-sextet gaps which are po
bly induced by condensation in the color-antitriplet chan
@16#. These gaps presumably lead to sub-subleading co
butions.

We show that in all six cases the gap equation has
general form

f~ek,r ,k!5ḡ2E
0

d
d~q2m!(

s
asZ~eq,s!

f~eq,s ,q!

eq,s

3tanhS eq,s

2T D 1

2
lnS b2m2

ueq,s
2 2ek,r

2 u D . ~4!

The sum overs runs over all distinct branches of fermion
excitations with energyeq,s in the color superconductor. Fo
the systems considered here, there are only two s
branches, such thats51 or 2. The coefficientsas are posi-
tive numbers, obeying the constraint

(
s51

2

as51. ~5!

In the first four columns of Table I we display the values
ls andas for the six cases studied here. There are ungap
excitations (ls50) in the cases~i!, ~iv!, ~v!, and~vi!, while
all excitations are gapped in the cases~ii ! and ~iii !. For un-
gapped excitations, the correspondingas vanishes, and thus
these do not appear in the gap equation. This is natural,
cause ungapped excitations should not affect the value o
0-2
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color-superconducting gap. The constants are identical
the cases~ii ! and~iii !, l154 andl251. The coefficientsas
also assume the same values, 1/3 and 2/3, but the assoc
of these values with the corresponding constantsls is re-
versed in case~iii ! as compared to case~ii !.

The occurrence of the wave function renormalization f
tor Z(eq,s) in a gap equation of the type~4! was first dis-
cussed in Ref.@8#. The constantb in Eq. ~4! is defined as

b[b̃ exp~2d!, ~6!

with b̃ from Eq. ~2!, and d a constant of order one. Th
constantd originates from subleading contributions to th
gap equation. For spin-zero condensates,d50, due to an
accidental cancellation of some of the subleading terms a
ing from static electric and non-static magnetic gluon e
change. In the spin-one cases, this cancellation does no
cur and, consequently,dÞ0.

In this paper we present a simple method to extract
value of the constantd without actually solving a gap equa
tion. This method utilizes the fact that, to subleading ord
the integration over gluon momenta in the QCD gap equa
can be written as a sum of a few integrals multiplied
constants. Only these constants depend on the detailed c
flavor, and Dirac structure of the order parameter. The in
grals are generic for all cases studied here and have t
computed only once. The precise numerical values ford are
listed in the fifth column of Table I.

The fact that we can write the gap equation in all six ca
in the form ~4! is nontrivial. It means that the leading con
tribution to the gap equation isunique. If it were not, then
the prefactor of the gap integral would be different for ea
case. In other words, the contribution of almost static m
netic gluons to the gap equation is universal in the sense
it is independent of the detailed color, flavor, and Dirac str
ture of the color-superconducting order parameter. Diff
ences between the six cases studied here occur at suble
order. Only at this order the specific structure of the or
parameter is important and leads to different values for
constantd in Eq. ~6!.

We solve the gap equation~4! at zero temperature an
compute the value of the gap function at the Fermi surfa
f0. In all cases studied here, we can write the result in
form

f052bb08m expS 2
p

2ḡ
D ~l1

a1l2
a2!21/2. ~7!

~Remember that 00[1.! From this equation and Eq.~1! one
immediately determinesf0 in units of the gap in the 2SC
phase,

f0

f0
2SC

5exp~2d!~l1
a1l2

a2!21/2. ~8!

This ratio is given in the sixth column of Table I. For spi
one color superconductors,d is positive, and the exponentia
factor leads to a tremendous suppression of the gap by
11401
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torse24.5.1022 to e26.2.531023 relative to the spin-zero
gap@7,10#. In contrast to the value ofd, the additional factor
(l1

a1l2
a2)21/2 in Eq. ~8! cannot be simply read off from the

subleading contributions in the gap equation, but only f
lows from the explicit solution. It is different from 1 fo
color superconductors with two distinct branches ofgapped
quasiparticle excitations. In this case, this factor further
ducesf0 as compared to the 2SC case.

The factor (l1
a1l2

a2)21/2 is also different from 1 in case~v!
wherel152. However, according to Eq.~3! the ‘‘true’’ gap
is Al1 f05A2f0, and notf0. Therefore, the ratio of the
true gap to the gap in the 2SC case is just exp(2d). In order
to indicate this, in Table I we put the factor 221/2 arising
from Eq. ~8! in parentheses.

Finally, we discuss the transition temperatureTc , where
the color-superconducting condensate melts. We find

Tc

f0
5

eg

p
~l1

a1l2
a2!1/2.0.57~l1

a1l2
a2!1/2, ~9!

where g.0.577 is the Euler-Mascheroni constant. In t
cases~i!, ~iv!, and~vi!, where there is only one gapped qu
siparticle excitation, (l1

a1l2
a2)1/251, and we recover the re

lation Tc /f0.0.57 well known from BCS theory@17#. Its
validity for QCD with Nf52 flavors of massless quarks wa
first demonstrated in Refs.@5,8#. In case ~v!, (l1

a1l2
a2)1/2

5A2, but this factor is absent if we rescalef0 in Eq. ~9! by
Al1 to obtain the true gap. Therefore, also in this case
BCS relation between the zero-temperature gap and the c
cal temperature is valid. In the cases~ii ! and ~iii ! there are
two distinct gapped quasiparticle excitations, and con
quently two gaps,Al1f052f0 andAl2f05f0. The BCS
relation Tc /f05eg/p is violated by the additional facto
(l1

a1l2
a2)1/2.1.

In order to elucidate the deviations from the BCS relatio
in the last column of Table I we present our results forTc in
units of the critical temperature expected from BCS theo
Apparently, the two-gap structure in the cases~ii ! and~iii ! is
responsible for the observed deviations. It would be intere
ing to observe similar behavior in other weak-coupling s
perconductors with more than one gapped excitation bran
Note that, althoughTc /f0 is different than in BCS theory
the absolute values ofTc do not change. If the energy scale
set by f0

2SC, then Tc /f0
2SC5exp(2d), because the facto

(l1
a1l2

a2)21/2 in Eq. ~8! simply cancels the factor (l1
a1l2

a2)1/2

in Eq. ~9!.
The remainder of this paper is organized as follows.

Sec. II we show that the gap equations for all six cases c
sidered in this paper is of the form~4!. We explain the origin
of the constantsls as eigenvalues of an operator construc
from the color-superconducting gap matrix. We also pres
a simple method to compute subleading corrections to
gap arising from the integration over gluon momenta in
gap equation, leading to the suppression factor exp(2d) in
Eq. ~6!. In Sec. III we solve the gap equation~4! at zero
0-3
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temperature and explain the occurrence of the additional
tor (l1

a1l2
a2)21/2 in Eq. ~7!. Finally, in Sec. IV we compute

the critical temperaturesTc .
Our convention for the metric tensor isgmn5diag$1,21,

21,21%. Our units are\5c5kB51. Four-vectors are de
noted by capital letters,K[Km5(k0 ,k), andk[uku, while
k̂[k/k. We work in the imaginary-time formalism, i.e
T/V(K[T(n*d3k/(2p)3, where n labels the Matsubara
frequenciesvn[ ik0. For bosons,vn52npT, for fermions,
vn5(2n11)pT.

II. GAP EQUATIONS

A. General derivation

In fermionic systems at non-zero density, it is advan
geous to treat fermions and charge-conjugate fermions
independent degrees of freedom and to work in the so-ca
Nambu-Gorkov basis. In this basis, the full inverse ferm
propagator is defined as

S21[S S11
21 S12

21

S21
21 S22

21D 5S S0
11
211S11 S12

S21 S0
22
211S22

D ,

~10!

whereS0
11 is the propagator for free fermions andS0

22 the
propagator for free charge-conjugate fermions. In mom
tum space and for massless quarks,

S0
11~K !5~gmKm1mg0!21, S0

22~K !5~gmKm2mg0!21,
~11!

wheregm are the Dirac matrices. The 11 component of t
self-energy,S11, is the standard one-loop self-energy for fe
mions; similarly,S22 is the self-energy for charge-conjuga
fermions. In Ref.@8# it was shown that, in order to solve th
gap equation to subleading order, it is permissible to appr
mate these self-energies by

S~K ![S11~K !5S22~K !.g0ḡ2k0ln
M2

k0
2

, ~12!

whereM25(3p/4)mg
2 ; the zero-temperature gluon mass p

rameter~squared! is mg
25Nfg

2m2/(6p2). The 21 componen
of the self-energy,S21, which was denotedF1 in @5#, is the
gap matrix in a superconductor, whileS125g0S21

† g0.
Inverting Eq.~10! one obtains the full fermion propagato

S. The 11 component,

S115~S0
22
211S22!@~S0

11
211S11!~S0

22
211S22!2C#21,

~13!

is the full quasiparticle propagator, where we defined

C[S12~S0
22
211S22!

21S21~S0
22
211S22!. ~14!

The 21 component is the so-called ‘‘anomalous’’ propaga
It is given by

S2152~S0
22
211S22!

21S21S11. ~15!

In all cases considered here, the gap matrix can be writte
11401
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S21~K !5 (
e56

fe~K !MkLk
e , ~16!

wherefe(K) is the gap function,Mk is a matrix defined by
the symmetries of the color-superconducting condensate,
Lk

e5(11eg0g• k̂)/2, e56, are projectors onto states o
positive or negative energy. In general,Mk is a matrix in
color, flavor, and Dirac space, and is constructed such th

@Mk ,Lk
e#50. ~17!

With the gap matrix~16!, the operatorC(K) assumes the
form

C~K !5(
e

ufe~K !u2LkLk
2e , ~18!

where

Lk[g0M k
†Mkg0 . ~19!

Note that also@Lk ,Lk
e#50. SinceLk is Hermitian, it has real

eigenvalues and can be expanded in terms of a complet
of orthogonal projectorsPk

r ,

Lk5(
r

l rPk
r , ~20!

wherel r are the eigenvalues ofLk . Our choice of the sym-
bol l r is judicial: it will turn out that they are identical with
the constantsl r appearing in the quasiparticle excitation e
ergy ~3! and which are listed in Table I. In Appendix A w
determine the eigenvalues ofLk and their degeneracy for th
six color-superconducting systems studied here.

In all cases considered in this paper, there are only
distinct eigenvalues, so that one can easily express the
corresponding projectors in terms ofLk ,

Pk
1,25

Lk2l2,1

l1,22l2,1
. ~21!

Obviously, these projectors also commute with the ene
projectors,@Pk

1,2,Lk
e#50.

The next step is to compute the full quasiparticle prop
gatorS11. The inversion of the term in brackets in Eq.~13! is
particularly simple, because the four projectorsPk

1,2Lk
6 are

orthogonal and form a complete set in color, flavor, a
Dirac space. With Eqs.~12!, ~13!, ~18!, and~20! we obtain

S11~K !5@S22
0 21~K !1S22~K !#(

e,r
Pk

r Lk
2e

3
1

@k0 /Z~k0!#22@ek,r
e ~fe!#2

, ~22!

where

Z~k0![S 11ḡ2ln
M2

k0
2 D 21

~23!
0-4
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is the wave function renormalization factor introduced
Ref. @18# and

ek,r
e ~fe![@~k2em!21l r ufeu2#1/2 ~24!

are the excitation energies for quasiparticles,e51, see Eq.
~3!, or quasi-antiparticles,e52.

In order to compute the anomalous propagatorS21, we
insert Eq.~22! into Eq. ~15! and employ Eq.~16!. The result
is

S21~K !52(
e,r

g0Mkg0Pk
r Lk

2e fe~K !

@k0 /Z~k0!#22@ek,r
e ~fe!#2

.

~25!

In the mean-field approximation@12#, S21 obeys the gap
equation@8#

S21~K !5g2
T

V (
Q

Dmn
ab~K2Q!gmTa

TS21~Q!gnTb ,

~26!

whereTa are the Gell-Mann matrices~times a factor 1/2! and
Dmn

ab is the gluon propagator.
To derive the gap equation for the gap functionfe(K),

we insert Eq.~25! into Eq.~26!, multiply both sides from the
right with M k

†Lk
e and trace over color, flavor, and Dira

space. To subleading order in the gap equation, it is perm
sible to use the gluon propagator in the hard-dense-l
~HDL! approximation@19#, where it is diagonal in adjoin
color space,Dab

mn5dabD
mn. We obtain

fe~K !5g2
T

V (
Q

(
e8,s

fe8~Q!

@q0 /Z~q0!#22@eq,s
e8 ~fe8!#2

3Dmn~K2Q!T mn
ee8,s~k,q!, ~27!

where

T mn
ee8,s~k,q!52

Tr@gmTa
Tg0Mqg0Pq

sLq
2e8gnTaM k

†Lk
e#

Tr@MkM k
†Lk

e#
.

~28!

The form~27! of the gap equation holds for all cases cons
ered in this paper. What is different in each case is the st

ture of the termT mn
ee8,s(k,q). Our computation will be done

in pure Coulomb gauge, where
11401
s-
p

-
c-

D00~P!5D,~P!, D0i~P!50,

D i j ~P!5~d i j 2 p̂i p̂ j !D t~P!, ~29!

with the longitudinal and transverse propagatorsD,,t and
P[K2Q. Consequently, we only need the 00-compone

T 00
ee8,s(k,q), and the transverse projection of thei j compo-

nents,

T t
ee8,s~k,q![2~d i j 2 p̂i p̂ j !T i j

ee8,s~k,q!, ~30!

of the tensor~28!. ~The extra minus sign is included for th
sake of notational convenience.! It will turn out that in all

cases studied here the quantitiesT00,t
ee8,s(k,q) are related in the

following way:

T 00
ee8,2~k,q!

T 00
ee8,1~k,q!

5
T t

ee8,2~k,q!

T t
ee8,1~k,q!

5const. ~31!

The right-hand side of Eq.~28! depends onk, q, and
k̂•q̂. The latter can be replaced by the square of the glu
3-momentump2 via k̂•q̂5(k21q22p2)/(2kq). Thus, the
relevant components can be written in terms of a power
ries in p2,

T 00
ee8,s~k,q!5as (

m521

`

h2m
, ~ee8,k,q!S p2

kqD m

, ~32a!

T t
ee8,s~k,q!5as (

m521

`

h2m
t ~ee8,k,q!S p2

kqD m

. ~32b!

Here, the coefficientsh2m
,,t (ee8,k,q) no longer depend on

s on account of Eq.~31!. The overall normalization on the
right-hand side of Eq.~32! is still free, and we choose it suc
that Eq.~5! is fulfilled. This uniquely determines the value
of the dimensionless coefficientsh2m

,,t (ee8,k,q).
We now perform the Matsubara sum in Eq.~27!, which

does not depend on the detailed structure of the ten

T mn
ee8,s(k,q). This calculation is similar to that of Ref.@5#.

The difference is the appearance of the wave function ren
malization factor Z(q0) @8#. To subleading order, this

amounts to an extra factorZ(eq,s
e8 ) in the gap equation. Since

there are two different excitation energieseq,1 andeq,2 on the
right-hand side of the gap equation, we can put the gap fu
tion on the left-hand side on either one of the two possi
quasiparticle mass shellsk05ek,1 or k05ek,2 . One then ob-
tains
fe~ek,r
e ,k!5

g2

16p2k
E

m2d

m1d
dqq(

e8,s

as Z~eq,s
e8 !

fe8~eq,s
e8 ,q!

eq,s
e8

tanhS eq,s
e8

2T
D(

m
E

uk2qu

k1q

dppS p2

kqD m

3H 2

p213mg
2
h2m

, 1F 2

p2
Q~p2M !1Q~M2p!S p4

p61M4~eq,s
e8 1ek,r

e !2
1

p4

p61M4~eq,s
e8 2ek,r

e !2D Gh2m
t J .

~33!
0-5
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The first term in braces arises from static electric gluo
while the two terms in brackets originate from non-static a
almost static magnetic gluons, respectively. Various ot
terms which yield sub-subleading contributions to the g
equation@5# have been omitted. In deriving Eq.~33! we as-
sumed that the gap function does not depend on the direc
of k. This is true in all cases considered here, except for
polar phase, where we neglect this dependence, cf. Sec.

Although the coefficientsh2m
,,t depend onk andq, to sub-

leading order in the gap equation we may approxim
k.q.m. This can be easily proven by power counting.
this end, it is sufficient to takek5m, and writeq5m1j,
where j5q2m. In weak coupling, the gap function i
sharply peaked around the Fermi surface, and thus the r
of integration in the gap equation can be restricted to a sm
region of size 2d around the Fermi surface. All that is ne
essary is thatd is parametrically much larger thanf0, but
still much smaller thanm, f0!d!m @5#. It turns out that
d;mg is a convenient choice. Since the integral overj is
symmetric aroundj50, terms proportional to odd powers o
j vanish by symmetry. Thus, corrections to the leading-or
terms are at most;(j/m)2. As long asd is parametrically of
the order ofmg , j<mg , and these corrections are;g2, i.e.,
suppressed by two powers of the coupling constant. Even
the leading terms in the gap equation the correction du
terms;(j/m)2 is then only of sub-subleading order and th
negligible.

Since the coefficientsh2m
,,t are dimensionless, with the ap

proximationk.q.m they become pure numbers which,
we shall see in the following, are directly related to the co
stantd discussed in the Introduction and listed in Table I.
all cases considered here,h2m

,,t 50 for m>3, and the series in
Eq. ~32! terminate after the first few terms. Moreover,h22

,

always vanishes and, to subleading order, alsoh22
t 50. For

the remainingm, thep integral in Eq.~33! can be performed
exactly. The details of this calculation are deferred to App
dix B. We obtain

fe~ek,r
e ,k!5

g2

16p2Em2d

m1d
dq(

e8,s

asZ~eq,s
e8 !

fe8~eq,s
e8 ,q!

eq,s
e8

3tanhS eq,s
e8

2T
D Fh0

t 1

3
ln

M2

u~eq,s
e8 !22~ek,r

e !2u

1h0
, ln

4m2

3mg
2

1h0
t ln

4m2

M2
14~h2

,1h2
t !

18~h4
,1h4

t !G . ~34!

Note that the contribution from almost static magnetic g
ons only appears in the term proportional toh0

t , while non-
static magnetic and static electric gluons contribute to
other terms.

The antiparticle contribution (e852) does not have a
BCS logarithm, sinceeq,s

2 .q1m. For the same reason, fo
11401
,
d
r
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G.

e

ge
ll

r

or
to

-

-

-

ll

antiparticles the logarithm from almost static magnetic g
ons is also only of order 1 and, furthermore, there is no la
logarithm from thep integrals. Therefore, the antiparticle
contribute at most to sub-subleading order to the gap eq
tion and can be neglected. In the following, we may thus
e5e851 and omit this superscript for the sake of simpli
ity. Then, the gap equation for the quasiparticle gap funct
reads

f~ek,r ,k!5ḡ2E
0

d
d~q2m!(

s
asZ~eq,s!

f~eq,s ,q!

eq,s

3tanhS eq,s

2T D 3

4
h0

t lnS b2m2

ueq,s
2 2ek,r

2 u D , ~35!

where

b25
64m4

M4 S 4m2

3mg
2D 3h0

,/h0
t

exp~22d!, ~36!

with

d52
6

h0
t

@h2
,1h2

t 12~h4
,1h4

t !#. ~37!

In all cases considered in this paper,h0
,5h0

t , so thatb as-
sumes the value quoted in Eq.~6!. The expression~37! is a
general formula to compute the constantd from the coeffi-
cientsh2m

,,t . We also find that, for all cases considered he
h0

t 52/3. This is the uniqueness of the leading-order con
bution to the gap equation mentioned before. With this va
of h0

t , the gap equation has the general form~4!.
In the following, we shall discuss spin-zero color sup

conductors in the 2SC and CFL phases, as well as spin
color superconductors in the CSL phase with both longitu
nal and transverse gaps, the CSL phase with a longitud
gap only and with a transverse gap only, and the polar ph
Each case is uniquely characterized by the matrixMk which
is given by the symmetries of the color-superconducting c
densate. This matrix determines the eigenvaluesl r and the
projectorsPk

r . Evaluating the traces in Eq.~28! and compar-
ing with Eq.~32!, one reads off the coefficientsh2m

,,t , as well
as the constantsar . This completely specifies the gap equ
tion in each case.

B. The 2SC phase

For Nf52, the spin-zero condensate is a singlet in flav
and an antitriplet in color space@1#. The ~antisymmetric!
singlet structure in flavor space can be represented by
second Pauli matrix (t2) f g5 i e f g , f ,g51,2. The~antisym-
metric! antitriplet structure in color space restricts the g
matrix to be a linear combination of the antisymmetric Ge
Mann matricesl2 , l5, andl7. These form anSO(3) sub-
group ofSU(3)c , so that we can also choose the generat
(Ji) jk52 i e i jk , i , j ,k51,2,3, ofSO(3). The gapmatrix is
thus a scalar in flavor space and a 3-vector in color spa
Upon condensation, this vector points in an arbitrary,
0-6
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fixed, direction which breaksSU(3)c to SU(2)c . For the
sake of convenience, we align this vector withJ3. Thus, the
matrix Mk reads

Mk5J3t2g5 , ~38!

whereg5 takes into account that we restrict our discussion
the even-parity channel. This matrix obviously fulfills th
condition ~17!. From Eq.~19! we construct the matrix

~Lk! i j
f g5~J3

2! i j ~t2
2! f g5~d i j 2d i3d j 3!d f g. ~39!

In this case,Lk does not depend onk, and consists of a uni
matrix in flavor space and a projector onto the first two c
ors in color space. In principle, it also consists of a u
matrix in Dirac space, which we disregard on account of
spin-zero nature of the condensate.

The eigenvalues ofLk are ~cf. Appendix A!

l151 ~4-fold!, l250 ~2-fold!. ~40!

From Eq.~24! we conclude that there are four gapped a
two ungapped excitations.

The projectorsPk follow from Eq. ~21!:

Pk
15Lk , Pk

2512Lk . ~41!

They have the property thatJ3Pk
15J3 andJ3Pk

250. Conse-

quently, the tensorT mn
ee8,2(k,q) vanishes trivially. Fors51

we obtain

T 00
ee8,1~k,q!5

1

3
~11ee8k̂•q̂!, ~42a!

T t
ee8,1~k,q!5

1

3 F32ee8k̂•q̂2
~ek2e8q!2

p2
~11ee8k̂•q̂!G .

~42b!

We now match this result to the expansion in terms ofp2,

Eq. ~32!. SinceT mn
ee8,2(k,q)50 and because of Eq.~5!, we

have

a151, a250. ~43!

This uniquely fixes the coefficientsh2m
,,t (ee8,k,q). To sub-

leading order we only require their values fore5e851 and
k.q.m,

h0
,5

2

3
, h2

,52
1

6
, h4

,50, h0
t 5

2

3
, h2

t 5
1

6
, h4

t 50.

~44!

This result implies that the contributions from static elect
and non-static magnetic gluons to the constantd defined in
Eq. ~37! cancel, and consequentlyd50.

C. The CFL phase

In the CFL phase, the spin-zero condensate is a fla
antitriplet locked with a color antitriplet@13#,
11401
o

-
t
e

d

or

Mk5J•Ig5 , ~45!

whereJ5(J1 ,J2 ,J3) represents the antitriplet in color spac
with (Ji) jk52 i e i jk as introduced above. The vectorI repre-
sents the antitriplet in flavor space and is defined ana
gously. Consequently, (J•I ) i j

f g52d i
fd j

g1d i
gd j

f . This conden-
sate breaksSU(3)c3SU(3) f to SU(3)c1 f .

From Eq.~19! we obtain the matrix

~Lk! i j
f g5@~J•I !2# i j

f g5d i
fd j

g1d i j d
f g. ~46!

As in the 2SC case, the operatorLk is independent ofk, and
we omitted its trivial Dirac structure. It can be expanded
terms of its eigenvalues and projectors as in Eq.~20!, with
~cf. Appendix A!

l154 ~1-fold!, l251 ~8-fold!, ~47!

and

~Pk
1! i j

f g5
1

3
d i

fd j
g , ~Pk

2! i j
f g5d i j d

f g2
1

3
d i

fd j
g , ~48!

wherePk
1 andPk

2 correspond to the singlet and octet proje
tor introduced in Ref.@20#.

We now compute the relevant components of the ten

T mn
ee8,s(k,q). Since the Dirac structure ofMk is the same as

in the 2SC case, the dependence onk andq is identical to the
one in Eq.~42!. However, since the color-flavor structure
different, we obtain a non-trivial result both fors51 and
s52, with different prefactors,

T 00
ee8,1~k,q!5

1

2
T 00

ee8,2~k,q!5
1

9
~11ee8k̂•q̂!, ~49a!

T t
ee8,1~k,q!5

1

2
T t

ee8,2~k,q!

5
1

9 F32ee8k̂•q̂2
~ek2e8q!2

p2
~11ee8k̂•q̂!G .

~49b!

Obviously, the condition~31! is fulfilled. The coefficients
h2m

,,t remain the same as in Eq.~44!, which again yields
d50. However, the two-gap structure leads to the consta

a15
1

3
, a25

2

3
. ~50!

In our treatment we have so far neglected the color-sex
flavor-sextet gap which is induced by condensation in
color-antitriplet, flavor-antitriplet channel@16#. Such a color-
flavor symmetric structure is generated in the anomal
propagatorS21, even for the completely antisymmetric ord
parameter of Eq.~45!. ~This does not happen in the 2S
case, where the color-flavor structure ofS21 remains com-
pletely antisymmetric.! Consequently, it also appears on th
right-hand side of the gap equation. The reason why it d
appeared in our calculation is that we projected exclusiv
0-7
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onto the antisymmetric color-flavor channel when we mu
plied both sides of Eq.~26! with M k

†Lk
e and traced over

color, flavor, and Dirac space. To be consistent, one sho
have started with an order parameter which includes both
symmetric and the antisymmetric color-flavor structures.
weak coupling, however, the symmetric gap is suppresse
an extra power of the strong coupling constantg @9#. This
fact by itself is not sufficient to neglect the symmetric gap
the weak-coupling solution of the gap equation because
explained in the Introduction, this could still lead to a su
leading correction which modifies the prefactor of the~anti-
symmetric! gap. One way to avoid this is a cancellation
the leading terms involving the symmetric gap in the g
equation for the antisymmetric gap. A more detailed inve
gation of this problem, however, is outside the scope of
present paper.

D. The CSL phase

For condensation in the even-parity, spin-one channel
gap matrix reads~cf. Appendix C, see also Ref.@5#!

S21~K !5 (
e56

fe~K !•@ k̂1g'~k!#Lk
e , ~51!

whereg'(k)[g2g• k̂k̂ andg5(g1,g2,g3). This most gen-
eral form for the gap matrix in the spin-one case differs fro
the one in Ref.@10# by the appearance ofg'(k) instead ofg.
From the discussion in Appendix C it is obvious that bo
forms are equivalent.

The spin-one condensate is anSU(2) triplet, and thus the
order parameterfe(K) is a 3-vector. In the CSL phase, ea
spatial component of this vector is assigned a direction
color space, (x,y,z)→(r ,g,b). This breaks colorSU(3)c
and spatialSO(3) to anSO(3) subgroup of joint color and
spatial rotations. The matrixMk reads

Mk5J•@ k̂1g'~k!#. ~52!

This matrix fulfills the condition~17! due to the fact thatLk
e

commutes withg'(k). Had we usedg in Eq. ~51!, like in
Ref. @10#, this condition would have been violated and t
general discussion presented in Sec. II A would not apply
the subsequent calculation.

From Eqs.~19! and ~52! we compute

~Lk!ab
i j 5d i j dab1@ k̂idag1g'ag

i ~k!#@ k̂ jdgb2g'gb
j ~k!#.

~53!

In contrast to the 2SC and CFL cases, this 12312 matrix in
color and Dirac space now explicitly depends onk. Never-
theless, its eigenvalues are pure numbers~cf. Appendix A!,

l154 ~4-fold!, l251 ~8-fold!. ~54!

The projectors follow from Eq.~21!:

~P k
1!ab

i j 5
1

3
@ k̂idag1g'ag

i ~k!#@ k̂ jdgb2g'gb
j ~k!#,

~55a!
11401
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~P k
2!ab

i j 5d i j dab2
1

3
@ k̂idag1g'ag

i ~k!#@ k̂ jdgb2g'gb
j ~k!#.

~55b!

Inserting these projectors andMk from Eq. ~52! into Eq.
~28! we obtain

1

2
T 00

ee8,1~k,q!5T 00
ee8,2~k,q!

5
1

27
~11ee8k̂•q̂!@11~11ee8!k̂•q̂#,

~56a!

1

2
T t

ee8,1~k,q!5T t
ee8,2~k,q!

5
1

27
$2k̂•q̂ ~12ee8k̂•q̂! ~56b!

1F12
~ek2e8q!2

p2 G ~11ee8k̂•q̂!

3@11~11ee8!k̂•q̂#%. ~56c!

Comparing this to Eq.~49!, the prefactor 1/2 now accompa

niesT00,t
ee8,1 instead ofT00,t

ee8,2 . Consequently, the constantsa1

anda2 exchange their roles compared to the CFL case,
~50!,

a15
2

3
, a25

1

3
, ~57!

and to subleading order,

h0
,5

2

3
, h2

,52
7

18
, h4

,5
1

18
,

h0
t 5

2

3
, h2

t 52
5

18
, h4

t 50. ~58!

According to Eq.~37!, this yieldsd55.
As in the CFL case, another condensate with a symme

color structure is induced. This condensate belongs to
color-sextet representation and, forNf51, necessarily car-
ries spin zero. To identify this induced condensate, one ha
explicitly analyze the color structure ofS21. By analogy to
the CFL case, we expect this condensate to be suppresse
a power of g compared to the primary spin-one, colo
antitriplet condensate. Its contribution to the gap equat
could be of sub-subleading order, if there is a cancellation
the leading terms involving the spin-zero gap in the g
equation for the spin-one gap. A more detailed investigati
however, is beyond the scope of the present paper.

In the following two sections we study two special cas
of the CSL color superconductor. The first isMk;J• k̂, and
the second isMk;J•g'(k). In the first case, the gap matri
commutes with the chirality projectorPr ,,5(16g5)/2, and
consequently only quarks of the same chirality form Coo
0-8
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pairs. The ensuing gap was termedlongitudinal gapin Ref.
@5#. ~It corresponds to the LL and RR gaps of Ref.@10#.! In
the second case, commuting the gap matrix with the chira
projector flips the sign of chirality, which indicates that th
quarks in the Cooper pair have opposite chirality. This le
to the so-calledtransverse gap@5# ~the LR and RL gaps of
Ref. @10#!. The reason why we study both cases separate
that a purely longitudinal gap matrix on the right-hand s
does not induce a transverse gap on the left-hand side o
gap equation and vice versa. This will be explained in m
detail below.

E. The longitudinal CSL phase

In the CSL phase with longitudinal gaps only, the mat
Mk reads

Mk5J• k̂. ~59!

The condition~17! is trivially fulfilled. Inserting Eq. ~59!
into Eq. ~19!, we obtain

~Lk!ab
i j 5~d i j 2 k̂i k̂ j !dab . ~60!

This matrix is a projector onto the subspace orthogonal tok̂.
However, due to color-spin locking, the indicesi , j run over
fundamental colors and not over spatial dimensions,
thus, amusingly, this projection actually occurs in co
space. SinceLk is a projector, we find the eigenvalues~cf.
Appendix A!

l151 ~8-fold!, l250 ~4-fold!. ~61!

The projectorsPk
1,2 follow from Eq. ~21!,

Pk
15Lk , Pk

2512Lk , ~62!

similar to the 2SC case, cf. Eq.~41!. The peculiar feature o
Eq. ~62! is that the projectorPk

1 belongs to the eigenvalu
corresponding to quasiparticle excitations with a longitudi
gap, but it actually projects onto the subspace orthogona
k̂. This is, however, not a contradiction, since the project
occurs in color space, while the gap is longitudinal~parallel
to k̂) in real space.

The similarity to the 2SC case carries over to the qua

ties T00,t
ee8,s(k,q). For s52, these quantities again vanish b

causeJ• k̂Pk
250. Fors51, we obtain

T 00
ee8,1~k,q!5

1

3
k̂•q̂~11ee8k̂•q̂!, ~63a!

T t
ee8,1~k,q!5

1

3
k̂•q̂F32ee8k̂•q̂2

~ek2e8q!2

p2

3~11ee8k̂•q̂!G , ~63b!

which only differ by an overall factork̂•q̂ from those of Eq.
~42!. While the constantsar are the same as in the 2SC cas
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see Eq.~43!, this factor substantially changes the coefficien
h2m

,,t ,

h0
,5

2

3
, h2

,52
1

2
, h4

,5
1

12
,

h0
t 5

2

3
, h2

t 52
1

6
, h4

t 52
1

12
. ~64!

This leads tod56.
We finally comment on why it is impossible that a pure

longitudinal order parameter induces a transverse gap. In
ing the matrixMk from Eq. ~59! into the anomalous propa
gator S21 from Eq. ~25!, and the result into the right-han
side of the gap equation~26!, we realize that the resulting
Dirac structure still commutes withg5 and thus preserves th
chirality. This is the characteristic feature of a longitudin
gap. Therefore, the ansatz~59! does not induce a transvers
gap on the right-hand side of the gap equation.

F. The transverse CSL phase

For transverse gaps,

Mk5J•g'~k!. ~65!

The condition~17! is fulfilled becauseg'(k) commutes with
the energy projectorLk

e . For the matrixLk we obtain

~Lk!ab
i j 52k̂i k̂ jdab2g'ag

i ~k! g'gb
j ~k!. ~66!

The eigenvalues of this matrix are~cf. Appendix A!

l152 ~8-fold!, l250 ~4-fold!. ~67!

The projectorsPk
1,2 are given by

Pk
15

1

2
Lk , Pk

2512
1

2
Lk . ~68!

Although J•g'(k)Pk
sÞ0 for both s51 ands52, the final

result forT00,t
ee8,2(k,q) is nevertheless zero. To see this, ho

ever, one has to explicitly perform the trace in Eq.~28!. For
s51, we obtain

T 00
ee8,1~k,q!5

1

6
~11ee8k̂•q̂!2, ~69a!

T t
ee8,1~k,q!5

1

6
~11ee8k̂•q̂!2F12

~ek2e8q!2

p2 G .

~69b!

The constantsar are the same as in the 2SC and longitudin
CSL phases, see Eq.~43!. The coefficientsh2m

,,t are
0-9
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h0
,5

2

3
, h2

,52
1

3
, h4

,5
1

24
,

h0
t 5

2

3
, h2

t 52
1

3
, h4

t 5
1

24
. ~70!

This givesd59/2.
For the same reasons as explained at the end of Sec

it is impossible to induce a longitudinal gap with the mat
Mk of Eq. ~65! on the right-hand side of the gap equatio

G. The polar phase

In contrast to the CSL phase, in the polar phase the ve
fe(K) in Eq. ~51! does not couple to color space. Instead
simply points into a fixed spatial direction, which we choo
to be thez axis. Consequently, the matrixMk in Eq. ~16!
reads

Mk5J3@ k̂z1g'
z ~k!#. ~71!

As in the 2SC case, the condensate is aligned with the~anti-!
blue direction in color space. Thus, condensation sponta
ously breaks the colorSU(3)c and spatialSO(3) symme-
tries toSU(2)c andSO(2), respectively.

Due to the identity (k̂z1g'
z )( k̂z2g'

z )51, the Dirac
structure of the matrixLk is trivial, and it looks rather similar
as in the 2SC case, Eq.~39!,

~Lk!ab
i j 5~J3

2! i j dab5~d i j 2d i3d j 3!dab . ~72!

This similarity is also apparent in the eigenvalues ofLk ~cf.
Appendix A!,

l151 ~8-fold!, l250 ~4-fold!, ~73!

where the degeneracy refers to the combined color and D
spaces. The projectors are the same as in Eq.~41!. For this

reason, we again immediately conclude thatT00,t
ee8,2(k,q)50.

For s51 we obtain

T 00
ee8,1~k,q!5

1

3
$~11ee8k̂•q̂!@11~11ee8!k̂zq̂z#

2~ek̂z1e8q̂z!2%, ~74a!

T t
ee8,1~k,q!5

1

3 S 2k̂zq̂z~12ee8k̂•q̂!1F12
~ek2e8q!2

p2 G
3$~11ee8k̂•q̂!@11~11ee8!k̂zq̂z#

2~ek̂z1e8q̂z!2% D . ~74b!

From this it is obvious thata151 anda250 as in the 2SC
case, cf. Eq.~43!.

There is, however, a marked difference between the
pressions~74! and the corresponding ones for all previous
discussed cases. In contrast with the other cases, ther
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two independent, fixed spatial directions, that of the or
parameter and that of the vectork. Since we already aligned
the order parameter with thez direction, we are no longe
free to choosek5(0,0,k) for the d3q integration. Without
loss of generality, however, we may assumek to lie in thexz
plane, i.e.,k5k(sinq,0,cosq), where q is the angle be-
tween the order parameter andk. In spherical coordinates fo
thed3q integration, the azimuthal angleu is no longer iden-
tical with the angle betweenk and q. Or in other words,
k̂•q̂ no longer depends solely onu, but also on the polar
anglew. This has the consequence that also the modulu
the gluon 3-momentump depends onw. Sincep enters the
gluon spectral densities in a complicated fashion, it appe
impossible to perform thew integration analytically in this
way.

The solution is to rotate the coordinate frame for thed3q
integration by the angleq around they axis, such that the
rotatedz direction aligns withk. The quantitiesk̂•q̂, q̂z, and
k̂z appearing in Eqs.~74! are expressed in terms of the ne
spherical coordinates (q,u8,w8) and the rotation angleq as
follows:

k̂•q̂5cosu8,

q̂z5cosu8cosq2sinu8sinq cosw8,

k̂z5cosq. ~75!

In the new coordinates the angle betweenk andq is identical
with the azimuthal angleu8, and thusp becomes indepen
dent ofw8. Still, the w8 integral is not trivial because of th
potentialw8 dependence of the gap function. At this point w
can only proceed by assuming the gap function to be in
pendent ofw8. With this assumption, thew8 integration be-
comes elementary, and we are finally able to read off
coefficientsh2m

,,t , which now depend onq,

h0
,5

2

3
, h2

,52
21cos2q

6
, h4

,5
11cos2q

24
,

h0
t 5

2

3
, h2

t 52
22cos2q

6
, h4

t 5
123cos2q

24
. ~76!

From this and Eq.~37! we computed53(31cos2q)/2.
Let us now comment on our assumption that the gap fu

tion is independent ofw8. As mentioned in the Introduction
and as will be shown in the next section, the value of the g
function at the Fermi surface,f0, is proportional to
exp(2d), cf. also Table I. The angular dependence ofd then
implies a similar dependence of the gap itself. Ifk points in
the same direction as the order parameter,q50, we findd
56, while for k being orthogonal to the order paramete
q5p/2, one obtainsd59/2. In the first case, the gap i
longitudinal in the sense introduced in Sec. II D, while in t
second it is transverse. These two cases have also been
cussed in Refs.@7,10#, with the same results for the consta
d. Our results surpass the previous ones in that they inte
late between these two limiting cases.
0-10
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However, the angular dependence off0 causes the fol-
lowing problem. The gap functionf(ek,1 ,k) is proportional
to f0, cf. the next section, and thus also depends onq.
Under thed3q integral on the right-hand side of the ga
equation, this dependence translates into aw8 dependence o
f(eq,1 ,q). Our previous assumption, which was necess
in order to perform thew8 integral, precisely neglected thi
dependence. Therefore, this approximation is in principle
consistent. Nevertheless, the agreement of our results
the ones of Refs.@7,10# suggest that thew8 dependence o
the gap function could be a sub-subleading effect.

III. SOLUTION OF THE GAP EQUATION

In this section we solve the gap equation~4!. Let us first
distinguish between the cases wherea151, a250, and
where botha1 anda2 are nonzero. The former are the 2S
phase, Sec. II B, the longitudinal and transverse CSL pha
Secs. II E and II F, and the polar phase, Sec. II G. The la
are the CFL phase, Sec. II C, and the CSL phase with b
longitudinal and transverse gaps, Sec. II D.

In the former cases, there is only one gapped quasipar
excitation and the solution of the gap equation~4! is well
known. It was discussed in detail in Ref.@8#. In the 2SC
phase, the longitudinal CSL phase, and the polar phase

one has to do is replace the constantb̃ in the calculation of

Ref. @8# by the constantb5b̃exp(2d), cf. Eq.~6!. The result
for the value of the gap function at the Fermi surface is E
~7!, but without the factor (l1

a1 l2
a2)21/2. However, one im-

mediately reads off Table I that in the respective cases
factor trivially equals one. In the 2SC phase,d50, and con-

sequentlyb5b̃, such that the result coincides with Eq.~1!.
In the other phases, whered.0, the gap is reduced as com
pared to the 2SC phase by a factor exp(2d), cf. Table I.

There is a slight subtlety when solving the gap equation
the transverse CSL phase. The value of the nonvanis
eigenvalue isl152, not 1. One has to multiply both sides
Eq. ~4! with Al1 in order to obtain a gap equation for whic
the solution of Ref.@8# applies. This rescaling is appropriat
as in this case the gap in the quasiparticle excitation sp
trum is indeed 2Al1f0, and not simply 2f0. The factor
(l1

a1l2
a2)21/2 in Eq. ~7! precisely accounts for this rescalin

of the gap function, such that this equation is also valid in
transverse CSL phase.

In the CFL phase and the CSL phase with both longitu
nal and transverse gaps, there are two gapped quasipa
excitations, which renders the solution of Eq.~4! somewhat
more complicated.A priori, one has to solve two gap equ
tions, one for each quasiparticle mass shell,k05ek,1 and
k05ek,2 . Therefore, as a function of momentumk, there are
in principle two different gap functions,f r(k)[f(ek,r ,k),
r 51,2.

In order to proceed with the solution, to subleading ord
we may approximate the logarithm in Eq.~4! in a way first
proposed by Son@6#,
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1

2
lnS b2m2

ueq,s
2 2ek,r

2 u D .Q~eq,s2ek,r !lnS bm

eq,s
D

1Q~ek,r2eq,s!lnS bm

ek,r
D . ~77!

With this approximation and the new variables

xr[ḡlnS 2bm

k2m1ek,r
D , ys[ḡlnS 2bm

q2m1eq,s
D , ~78!

to subleading order the gap equation~4! transforms into@8#

f~xr !5(
s

asH xrE
xr

xs* dys~122ḡys!tanhFe~ys!

2T Gf~ys!

1E
x0

xr
dysys~122ḡys!tanhFe~ys!

2T Gf~ys!J . ~79!

Here we denoted the value ofxs at the Fermi surface, i.e., fo
k5m andek,s5em,s , by

xs* [ḡlnS 2bm

Alsf0,s
D , ~80!

wheref0,s[f(xs* ) is the value of the functionf(xs) at the
Fermi surface. The single pointk5m in momentum space
thus corresponds to two different pointsx1* ,x2* , x1* Þx2* in
the new variablesxs . Since we expectf0,s to be
;exp(21/ḡ), xs* is a constant of order one. Furthermore, w
defined

x0[ḡlnS bm

d D . ~81!

This constant is parametrically of orderO(ḡ). To subleading
order, the relation between the new variableys and the exci-
tation energy is given by@5#

e~ys!5bm expS 2
ys

ḡ
D . ~82!

A consequence of the transformation of variables~78! and of
neglecting sub-subleading corrections is that the two eq
tions ~79! for r 51 and r 52 become identical. The only
difference is the notation for the argument of the functionf,
which in both cases we may simply callx. Therefore, instead
of two separate equations, we only have to consider a sin
equation which determines the functionf(x). Moreover,ys
is merely an integration variable, and we may setys[y in
the following.

With Eq. ~5!, we rewrite Eq.~79! in the form
0-11
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f~x!5xE
x

x2* dy~122ḡy!tanhFe~y!

2T Gf~y!

1E
x0

x

dyy~122ḡy!tanhFe~y!

2T Gf~y!

2a1xE
x1*

x2* dy~122ḡy!tanhFe~y!

2T Gf~y!. ~83!

One can also write this equation in a form wherex2* is re-
placed byx1* anda1 by a2, respectively. Equation~83! is an
integral equation for the functionf(x), which is solved in
the standard manner by converting it into a set of differen
equations@6#,

df

dx
5E

x

x2* dy~122ḡy!tanhFe~y!

2T Gf~y!

2a1E
x1*

x2* dy~122ḡy!tanhFe~y!

2T Gf~y!, ~84a!

d2f

dx2
52~122ḡx!tanhFe~x!

2T Gf~x!. ~84b!

We now solve the second-order differential equation~84b! at
zero temperature,T50. One immediately observes that th
equation is identical to Eq.~22c! of Ref. @8#, and its solution
proceeds along the same lines as outlined there. The
difference compared to the previous calculation are the e
terms;a1 in Eqs. ~83! and ~84a!. To subleading order, we
expectf0,1/f0,2.1 ~we show below that this assumption
consistent with our final result!, such that the difference

x2* 2x1* 5ḡlnS Al1f0,1

Al2f0,2
D .

ḡ

2
lnS l1

l2
D ~85!

is of orderO(ḡ). Consequently, the extra terms;a1 are of
subleading order,O(ḡf0), and we may approximate

E
x1*

x2* dy~122ḡy!f~y!.~x2* 2x1* !f0,2. ~86!

Since we always ordered the eigenvalues such thatl1.l2,
cf. Table I,x2* 2x1* .0.

The subleading correction~86! qualitatively changes the
behavior of the gap functionf(x) near the Fermi surface. In
the absence of the term;a1 in Eq. ~84a!, the derivative of
the gap function vanishes forx5x2* , and the gap function
assumes its maximum at this point@8#. The subleading cor-
rection~86! induced by the two-gap structure in the CFL a
CSL phases causes the derivative~84a! of the functionf(x)
to benegativeat the Fermi surface. Consequently, since
still expectf(x) to rapidly vanish away from the Fermi su
face, this function assumes its maximum not rightat the
Fermi surface, but at a pointxmax which is close, but not
identical tox2* . We shall see thatx2* 2xmax;O(ḡ).
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The subleading correction~86! modifies the solution of
the differential equation~84b! from the one given in Ref.@8#.
Again, we fix the two unknown constants in the general
lution of the second-order differential equation~84b!
by matching the solution and its derivative to the righ
hand sides of Eqs.~83! and~84a! at the pointx5x2* . Intro-

ducing the variables z[2(2ḡ)22/3(122ḡx) and
z* [2(2ḡ)22/3(122ḡx2* ), the solution reads

f~z!5f0,2H M ~ uzu!

M ~ uz* u!

sin@w~ uz* u!2u~ uzu!#

sin@w~ uz* u!2u~ uz* u!#
1a1~x2* 2x1* !

3~2ḡ!21/3
M ~ uzu!

N~ uz* u!

sin@u~ uz* u!2u~ uzu!#

sin@w~ uz* u!2u~ uz* u!#J , ~87!

where the functionsM (uzu),N(uzu),w(uzu), andu(uzu) are re-
lated to the Airy functions Ai(z),Bi(z) and their derivatives
in the standard way@21#. The derivativedf(z)/dz can be
obtained from Eq.~87! simply by replacingM (uzu) and
u(uzu) by N(uzu) andw(uzu), respectively. The difference to
the solution for a single gapped quasiparticle excitation,
Eq. ~27! of Ref. @8#, is the term proportional toa1.

Finally, we have to determine the value off0,2. To this
end, we rewrite Eq.~83! at the pointx5x2* in the form

@z01~2ḡ!22/3#
df

dz
~z0!5f~z0!, ~88!

wherez0[2(2ḡ)22/3(122ḡx0). Remarkably, this equation
holds in this form also in the case of a single gapped qu
particle excitation, cf. Eq.~29! of Ref. @8#. In weak coupling,
the dependence on the variablez0 is spurious. Inserting the
solution ~87! and its derivative forz5z0 and expanding
M (uz0u),N(uz0u),w(uz0u), andu(uz0u) to orderO(ḡ) as dem-
onstrated in Ref.@8#, one derives the condition

x2* .
p

2
1ḡ

p214

8
1a1~x2* 2x1* !. ~89!

The second term is theO(ḡ) correction originating from the
quark self-energy. It leads to the constantb08 in Eq. ~1! and
was first derived in Refs.@7,8#. The last term;a1 is the
correction arising from the two-gap structure in the CFL a
CSL phases to the result~33! of Ref. @8#. Because of Eq.
~85!, this correction is also of orderO(ḡ). Using the defini-
tion ~80! of x2* , as well as the condition~5!, we conclude
that the expression forf0,2 is identical to the one forf0 in
Eq. ~7!. This is the value of the gap function at the Ferm
surface,k5m, or x5x2* , for the quasiparticle excitation
branchek,2 . The additional suppression factor compared
the 2SC gapf0

2SC of Eq. ~1!, which originates from the two-
gap structure, is (l1

a1l2
a2)21/2. For the CFL phase, we obtai

the value 221/3, while for the CSL phase, we have 222/3.
We can also compute the gap function at the Fermi s

face for the first excitation branchek,1 , i.e., atx5x1* . The
differencef0,22f0,1 can be obtained from Eq.~83! as
0-12
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f0,22f0,15E
x1*

x2* dy@y2x1* 2a1~x2* 2x1* !#~122ḡy!f~y!.

~90!

An upper bound for the term in brackets is given by sett
y5x2* , where it assumes the valuea2(x2* 2x1* ) on account
of Eq. ~5!. Pulling this factor out of the integral, the latter ca
be estimated with Eq.~86!. This proves that the differenc
f0,22f0,1 is only of orderO(ḡ2f0), which shows that our
above assumptionf0,1/f0,2.1 is consistent up to sublead
ing order. To this order, we may therefore setf0,15f0,2
[f0.

We now determine the value ofxmax, where the gap func-
tion assumes its maximum, by setting the left-hand side
Eq. ~84a! equal to zero. This leads to the condition

E
xmax

x2* dy~122ḡy!f~y!5a1E
x1*

x2* dy~122ḡy!f~y!.

~91!

To order O(ḡf0), one may easily solve this equation fo
xmax, with the result

xmax5x2* 2a1

ḡ

2
lnS l1

l2
D , ~92!

i.e., xmax is indeed smaller thanx2* by a term of orderO(ḡ),
as claimed above. Obviously, sincea1,1, from Eq.~85! we
derive the inequalityx1* ,xmax,x2* , i.e., the gap function
assumes its maximum between the valuesx1* and x2* . The
value of the gap function atxmax can be estimated via
calculation similar to the one for the differencef0,22f0,1

above. The result isfmax.f0@11O(ḡ2)#. This means that
the gap function is fairly flat over a region of sizeO(ḡ) ~in
the variablex) in the vicinity of the Fermi surface.

IV. TRANSITION TEMPERATURE

In this section we compute the transition temperatureTc
where the color-superconducting condensate melts. In
2SC phase, in the CSL phase with longitudinal gap, and
the polar phase, the calculation of Ref.@8# applies, and we
obtain the BCS resultTc /f05eg/p. In these cases
(l1

a1l2
a2)1/251, cf. Table I, such that Eq.~9! is valid.

In the transverse CSL phase, we also obtain the BCS
sult for the relationship betweenTc and the zero-temperatur
gap after a rescaling of the gap function by a factorAl1, cf.
the discussion in Sec. III. Since in this case (l1

a1l2
a2)1/2

5Al1, Eq. ~9! also applies.
In the CFL phase and the CSL phase with both longitu

nal and transverse gaps, we have to computeTc explicitly.
The calculation follows the line of arguments presented
Ref. @8#, taking into account the additional term;a1 in Eq.
~83!. As in Refs.@5,8# we assume that, to leading order, t
effect of temperature is a change of the magnitude of the g
but not of the shape of the gap function,
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f~x,T!.f~T!
f~x,0!

f0
, ~93!

wheref(T)[f(x2* ,T) is the value of the gap at the Ferm
surface at temperatureT, f(x,0) is the zero-temperature ga
function f(x) computed in Sec. III, cf. Eq.~87!, and
f0[f0,25f(x2* ,0). With this assumption, Eq.~83! reads at
the Fermi surface

15E
x0

xk
dyy~122ḡy!tanhFe~y!

2T G f~y,0!

f0

1E
xk

x2* dyy~122ḡy!tanhFe~y!

2T G f~y,0!

f0

2a1x2* E
x1*

x2* dy~122ḡy!tanhFe~y!

2T G f~y,0!

f0

[I11I21I3 , ~94!

where we divided the second integral in Eq.~83! into two
integrals: I1 which runs from x0 to xk , with xk[x2*

2ḡln(2k), k@1, andI2 which runs fromxk to x2* @5#. We
now compute the integralsI1 throughI3 separately to sub-
leading accuracy, i.e., to orderO(ḡ).

In the first integralI1, which runs over a region far from
the Fermi surface,e(y)@T, and we may approximate th
tanh by 1. This integral can be formally solved by integrati
by parts using the differential equation~84b!,

I15
1

f0
Ff~xk,0!2xk

df

dx
~xk,0!G , ~95!

where we exploited the condition~88!. Expanding the func-
tions on the right-hand side aroundx2* we obtain to sublead-
ing order

I1512
p

2
@ ḡln~2k!2a1~x2* 2x1* !#. ~96!

This estimate is similar to the one made in Eq.~36! of Ref.
@8#. The main difference to that calculation is the term;a1
which appears because the first derivative of the gap func
no longer vanishes at the Fermi surface, cf. the discussio
the preceding section.

In the second integralI2, which only contributes to orde
O(ḡ) to the right-hand side of Eq.~94!, to subleading order
we may setf(y,0)/f0.1 andy.x2* .p/2. Reverting the
transformation of variables~78! we obtain

I25
p

2
ḡE

0

Al2kf0 d~q2m!

eq,2
tanhS eq,2

2T D . ~97!

The last integral in Eq.~94!, I3, also contributes a term o
orderO(ḡ), and may thus be approximated by an argum
similar to that leading to Eq.~86!,
0-13
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I35a1x2* ~x2* 2x1* !tanhFf~T!

2T G . ~98!

At the critical temperatureTc , wheref(Tc)50, this term
vanishes. Putting everything together, atT5Tc Eq. ~94! be-
comes

ḡE
0

Al2kf0
d~q2m!F 1

q2m
tanhS q2m

2Tc
D

2
1

A~q2m!21l2f0
2G52a1~x2* 2x1* !, ~99!

where the term ln(2k) in Eq. ~96! was expressed in terms o
an integral according to Eq.~96! of Ref. @5#. In the integral
on the left-hand side, we may sendk→` @5#. This allows us
to perform it analytically, which yields the resu
ln@egAl2f0 /(pTc)#, where g.0.577 is the Euler-
Mascheroni constant. If the right-hand side of Eq.~99! were
zero, for l251 this would then lead to the BCS relatio
Tc /f05eg/p. However, using Eq.~85! we now obtain Eq.
~9!. The last factor on the right-hand side of this equation
exactly the inverse of the additional factor in Eq.~7!. This
factor violates the BCS relationTc /f05eg/p in the CFL
and CSL cases. In the first case, the transition temperatu
by a factor 21/3 larger than one would expect from BC
theory and in the second case it is larger by a factor 22/3.
However, in units of energy, this factor just cancels the o
from f0 in Eq. ~7!.
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APPENDIX A: COMPUTING EIGENVALUES

The eigenvaluesl r of Lk follow from the roots of

det~l12Lk!50. ~A1!

The left-hand side of this equation can be rewritten in
form

det~l12Lk![exp$Tr@ ln~l12Lk!#%. ~A2!

The logarithm of the matrixl12Lk is formally defined in
terms of a power series,

Tr@ ln~l12Lk!#5 ln l Tr11TrF lnS 12
Lk

l D G
5 ln l Tr12 (

n51

`
1

n
l2nTrLk

n . ~A3!

In order to proceed, one needs to know the trace of thenth
power of the matrixLk . In the 2SC phase, the CSL pha
11401
s

is

e

.
-

e

with longitudinal gap, and in the polar phase, this is partic
larly simple, sinceLk is a projector, cf. Eqs.~39!, ~60!, and
~72!, henceLk

n[Lk . Counting color and flavor degrees o
freedom in the 2SC phase, and color and Dirac degree
freedom in the longitudinal CSL and polar phases, the tr
of Lk is 4 in the former and 8 in the latter case, respective
Therefore, we obtain for the 2SC phase

det~l12Lk!5l2~l21!450. ~A4!

This yields the eigenvalues given in Eq.~40!. For the longi-
tudinal CSL and polar phases we analogously compute

det~l12Lk!5l4~l21!850, ~A5!

which leads to the eigenvalues of Eqs.~61! and ~73!.
The next simple case is the CSL phase with transve

gap. In this case,Lk is not a projector, but sinceg'•g'5
22, it is still idempotent up to a factor,Lk

252Lk . Because
of Lk

n52n21Lk and TrLk516 we then obtain

det~l12Lk!5l4~l22!850, ~A6!

from which we read off the eigenvalues of Eq.~67!.
The CFL phase and the CSL phase~with both longitudinal

and transverse gaps! are the only cases where the calculati
of Lk

n is slightly more involved. First, one proves the identi
Lk

255Lk241, which is valid in both cases. Repeated app
cation of this relation allows to reduce an arbitrary numb
of powers ofLk to a single power, plus a term proportional
the unit matrix,

Lk
n5anLk1bn1. ~A7!

Multiplying both sides of this equation byLk , one derives
the recursion relation

an1155an24an21 ~A8!

for the coefficientsan , and the identity

bn11524an ~A9!

for the coefficientsbn . The recursion relation~A8! can be
solved with the Ansatzan5pn, which yields a quadratic
equation forp with the solutionsp154 andp251. The gen-
eral solution of the recursion relation is thenan5ap1

n

1bp2
n5a4n1b. The coefficientsa and b can be deter-

mined froma151 anda255, such that

an5
4n21

3
, bn52

4n24

3
. ~A10!

In the CFL phase, TrLk512 and Tr159, while in the CSL
phase, TrLk524 and Tr1512. Consequently, in the CFL
phase

det~l12Lk!5~l24!~l21!850, ~A11!

which leads to Eq.~47!, while in the CSL phase
0-14
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det~l 12Lk!5~l24!4~l21!850, ~A12!

which yields Eq.~54!.

APPENDIX B: INTEGRATION OVER GLUON
MOMENTUM

In this appendix we compute the integrals over glu
3-momentump to subleading order in the gap equation. W
shall see that to this order it is consistent to setk5q5m.

After replacing k̂•q̂5(k21q22p2)/(2kq), the coeffi-
cients h2m

,,t (ee8,k,q) can be read off from Eqs.~42!, ~49!,
~56!, ~63!, ~69!, and~74!. One first observes that for all case
considered here,h2m

,,t (ee8,k,q)50 for m>3. Next, one also

realizes thath22
, 50, since there is no term inT 00

ee8,i propor-
tional to 1/p2. Consequently, we have to compute the in
grals

I 2m
, 5E

uk2qu

k1q

dpp
2

p213mg
2 S p2

kqD m

, m50,1,2, ~B1a!

for the contribution of static electric gluons to the gap eq
tion,

I 2m
t,1 5E

M

k1q

dpp
2

p2 S p2

kqD m

, m521,0,1,2, ~B1b!

for the contribution of non-static magnetic gluons, and

I 2m
t,2 5E

uk2qu

M

dpp
p4

p61M4v6
2 S p2

kqD m

, m521,0,1,2,

~B1c!

with v6[eq,s
e8 6ek,r

e , for the contribution of almost static
magnetic gluons. The result for the integrals~B1a! and~B1b!
is

I 0
,5 lnF ~k1q!213mg

2

~k2q!213mg
2G. lnS 4m2

3mg
2D , ~B2a!

I 2
,542

3mg
2

kq
lnF ~k1q!213mg

2

~k2q!213mg
2G.4, ~B2b!

I 4
,54

k21q223mg
2

kq
1S 3mg

2

kq D 2

lnF ~k1q!213mg
2

~k2q!213mg
2G.8,

~B2c!

I22
t,1 5

kq

M2
2

kq

~k1q!2
.

m2

M2
2

1

4
, ~B2d!

I 0
t,15 lnF ~k1q!2

M2 G. lnS 4m2

M2 D , ~B2e!

I 2
t,15

~k1q!22M2

kq
.4, ~B2f!
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I 4
t,15

~k1q!42M4

2~kq!2
.8. ~B2g!

The approximate equalities on the right-hand sides hold
subleading order in the gap equation. One obtains them
ploying two approximations. First, terms proportional to
least one power ofmg

2 or M2 carry at least two additiona
powers ofg, which renders them sub-subleading and th
negligible to the order we are computing. Second, one
lizes the fact that theq integration in the gap equation is ove
a region of size 2d around the Fermi surface, whered
;mg . To subleading order it is thus accurate to setk5q
5m ~see the discussion in Sec. II A!. This then yields the
right-hand sides of Eqs.~B2!.

Note that there is a term;m2/M2;1/g2 in Eq. ~B2d!.
This term is parametrically the largest and could in princip
give the dominant contribution to the gap equation. Ho
ever, in all cases considered here, it turns out that
coefficient h22

t is proportional to at least one power o
(k2q)2. Performing also theq integration in the gap equa
tion, one then has terms of the form

g2E
0

dd~q2m!

eq

~k2q!2

M2
f~eq ,q!

;g2
f0

M2E0

d dj

Aj21f0
2
j2;g2f0

d2

M2
1OS f0

3

m2D ,

~B3!

where for the purpose of power counting we have neglec
theq dependence of the gap function,f(eq ,q);f0, and we
have evaluated the integral on the left-hand side fork5m.
As long as d;mg;M , the leading term in Eq.~B3! is
;g2f0, and thus it is only of sub-subleading order in th
gap equation. It is obvious that the constant term21/4 in Eq.
~B2d! is parametrically even smaller. The contribution to t
term ;h22

t from non-static magnetic gluons is therefo
negligible to subleading order.

Finally, also the integralsI 2m
t,2 can be computed analyti

cally @22#. Defininga[(M4v6
2 )1/3, the result is

I22
t,2 52

kq

12a H lnF ~x1a!2

x22ax1a2G
22A3arctgS 2x2a

A3a
D J

(k2q)2

M2

, ~B4a!

I 0
t,25

1

6
lnF M61a3

~k2q!61a3G.
1

6
lnS M2

v6
2 D , ~B4b!
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I 2
t,25

M22~k2q!2

2kq
2

a

12kq H lnF ~x1a!2

x22ax1a2G
12A3arctgS 2x2a

A3a
D J

(k2q)2

M2

.0, ~B4c!

I 4
t,25

M42~k2q!4

4~kq!2
2

a3

~kq!3
I22

t,2 .0. ~B4d!

Here, we used the short notation$ f (x)%b
a[ f (a)2 f (b). In

order to obtain the approximate equalities on the right-h
sides of Eqs.~B4b!, ~B4c!, and~B4d!, one employs the fac
that typically (k2q)2;v6

2 !M2, such that parametrically
(k2q)2!a!M2. This immediately yields the right-han
side of Eq.~B4b!. For Eqs.~B4c! and ~B4d!, we use this
estimate in order to expand the logarithm occurring in E
~B4a! and~B4c!. One finds that the leading term is;a/M2.
Similarly, one expands the inverse tangent occurring in th
equations, which leads to terms which are even of or
O(1). By collecting all prefactors, however, all terms in Eq
~B4c! and~B4d! are then suppressed by at least one powe
g2. These sub-subleading corrections are negligible to
order we are computing.

Somewhat more care is necessary in estimating the te
in Eq. ~B4a!. Again, one may expand the logarithm and t
inverse tangent. Together with the prefactor, this leads
term ;1/M2 for the logarithm, and a term;1/a for the
inverse tangent. The first term is harmless: together with
factor (k2q)2 from h22

t it leads to an integral of the form
~B3!, which was already shown to give a sub-sublead
contribution to the gap equation. The other term leads to
integral

g2E
0

dd~q2m!

eq

~k2q!2

a
f~eq ,q!;g2

f0

M4/3E0

d djj2

~j21f0
2!5/6

,

~B5!

where we used similar power-counting arguments as in
~B3!. The last integral is finite even forf050, so that we
can estimate it to be;d4/3. For d;mg this contribution is
then again;g2f0 and thus of sub-subleading order in th
gap equation.

In conclusion, also the contribution of almost static ma
netic gluons to the term;h22

t is of sub-subleading orde
and can be neglected. To subleading order, it is there
consistent to seth22

t 50 from the beginning, provided on
choosesd;mg .

APPENDIX C: DIRAC STRUCTURE OF THE SPIN-1 GAP
MATRIX

Since the gap matrixS21(K) is a complex 434 matrix in
Dirac space, it can be written as a linear combination of
basis matrices. The gap matrix is a scalar in momen
space, which reduces this number to eight@12#. We choose
this basis set to be
11401
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M[~M1 , . . . ,M8!

[~1,g0,g• k̂,g• k̂g0,g• k̂g0g5,g0g5,g• k̂g5,g5!.

~C1!

In the spin-1 case the order parameter has to be a th
dimensional vector. ButS21 has no vector structure. Thus th
order parameter has to be contracted with other vectors.
only available vectors arek̂ andg, and each contraction ca
still multiply any element ofM . Thus, we can write the gap
matrix in terms of 16 3-vector order parameterswi , i
51, . . . ,16, as

S21~K !5(
i 51

8

wi~K !• k̂ Mi1(
i 59

16

wi~K !•g Mi 28 . ~C2!

Decomposing thei th vector order parameterwi into a longi-
tudinal and a transverse part with respect tok̂, wi5w i

,k̂
1wi

t , wherewi
t5wi•(12 k̂k̂), the gap matrix becomes

S21~K !5(
i 51

8

w i
,~K !Mi1(

i 59

16

@w i
,~K !g• k̂1wi

t~K !•g#Mi 28 .

~C3!

Note that whenever a basis matrixMi is multiplied ~from the
left! by g• k̂ one obtains, up to a minus sign, another ba
matrix M j . Thus we can rearrange this expression such
there are only eight different longitudinal coefficients. T
eight longitudinal and sixteen~independent! transverse coef-
ficients can be combined into eight new 3-vector order
rametersfi ,

S21~K !5(
i 51

8

fi~K !•@ k̂1g'~k!#Mi , ~C4!

where g'(k)[g•(12 k̂k̂). Now one can perform a basi
transformation and write the gap matrix in terms of the p
jectors for energy, chirality and helicity. This is complete
analogous to the spin-0 case@12#. In the ultrarelativistic limit
two out of the three projectors are sufficient, for instan
those for energy,Lk

e , and chirality,Ph5(11hg5)/2, h56
for right- or left-handed quarks, respectively. Then we a
left with four 3-vector order parameters in terms of which t
gap matrix reads

S21~K !5(
e,h

fh
e~K !•@ k̂1g'~k!#P hLk

e . ~C5!

For condensation in the even-parity channel, only t
3-vector order parameters are independent, becausefr

e5f,
e

[fe @5#. The sum over chirality projections can be immed
ately performed to give

S21~K !5(
e

fe~K !•@ k̂1g'~k!#Lk
e . ~C6!

This is Eq.~51!.
0-16
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@4# T. Schäfer and F. Wilczek, Phys. Rev. D60, 114033~1999!;
D.K. Hong, V.A. Miransky, I.A. Shovkovy, and L.C.R. Wijew
ardhana,ibid. 61, 056001~2000!; 62, 059903~E! ~2000!.

@5# R.D. Pisarski and D.H. Rischke, Phys. Rev. D61, 074017
~2000!.

@6# D.T. Son, Phys. Rev. D59, 094019~1999!.
@7# W.E. Brown, J.T. Liu, and H.-C. Ren, Phys. Rev. D61, 114012

~2000!; 62, 054013~2000!; 62, 054016~2000!.
@8# Q. Wang and D.H. Rischke, Phys. Rev. D65, 054005~2002!.
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