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When the transition temperature in color superconductors is not like in BCS theory
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We study color superconductivity witN;=1, 2, and 3 massless flavors of quarks. We present a general
formalism to derive and solve the gap equations for condensation in the even-parity channel. This formalism
shows that the leading-order contribution to the gap equation is unique for all color superconductors studied
here, and that differences arise solely at the subleading order. We discuss a simple method to compute
subleading contributions from the integration over gluon momenta in the gap equation. Subleading contribu-
tions enter the prefactor of the color-superconducting gap parameter. In the case of color-flavor and color-spin
locking we identify further corrections to this prefactor arising from the two-gap structure of the quasiparticle
excitations. Computing the transition temperatlige where the color-superconducting condensate melts, we
find that these contributions lead to deviations from the BCS behayie0.574,, whereg, is the magnitude
of the zero-temperature gap at the Fermi surface.
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[. INTRODUCTION AND CONCLUSIONS from the exchange of static electric and non-static magnetic
gluons[4,5]. The prefactobj is due to the quark self-energy
Cold and dense quark matter is most probably a colo[7,g].
superconductof1,2]. At an asymptotically large quark den-  |n color superconductors witN;=1 and 3 flavors, vari-
sity or, equivalently, quark chemical potentja] asymptotic  ous other prefactors may ari§8,10], but the exponential

freedom[3] implies that the strong coupling constagibe- exf —/(2g)] remains the same. As will be demonstrated in

comes small. In this case one can reliably compute the COIOEfhis paper, this is not an accident, but due to the fact that the

superconducting gap parameter to leading and subleading qr- " ! o .
deFr)ing from a g%g eF()antion derived Withingthe framework %f eading-order contribution to the QCD gap equation does not

QCD [1,4,5. For instance, in a color superconductor with depend on the detailed color, flavor, and Dirac structure of
Ne=2 massless flavors of quarkgommonly called the the color-superconducting order parameter. This structure

“2SC” phase, the value of the gap at the Fermi surface andonly enters at subleading order, and we provide a simple
at zero temperature is method to extract these subleading contributions.

Let us briefly recall what the terms “leading,” “sublead-

ing,” and “sub-subleading order” mean in the context of the

¢gSC: ZBbé,u exp( - l_) (1) QCD gap equatiorf8]. Because of the nonanalytic depen-
29 dence of¢g on the strong coupling constagtone cannot

apply the naive perturbative counting scheme in poweig of
where in order to identify contributions of different order. In the

QCD gap equation there are also logarithms of the form
g B o |52 w244 In(u/ o), which are~1/g due to Eq(1) and thus may cancel
— 4 [
, b=256r" ——| , by=expg — .
3\2m N¢g? 8

simple powers ofg. A detailed discussion of the resulting,
modified power-counting scheme was given in the introduc-
(2)  tion of Ref.[8] and need not be repeated here. In short,
leading-order contributions in the QCD gap equation are due
The term in the exponent of E¢l) was first computed by to the exchange of almost static magnetic gluons and are
Son|[6]. It arises frgm the exchange of almost static mag”eticproportional tog2 boIn?(w/ o) ~ o. They determine the argu-
gluons. The factob in front of the exponential originates ment of the exponential in Eql). Subleading-order contri-
butions are due to the exchange of static electric and non-
static magnetic gluons and areg?goIn(u/¢o)~gpo. They

*Email address: aschmitt@th.physik.uni-frankfurt.de determine the prefactor of the exponential in Eq. Finally,
"Email address: qwang@th.physik.uni-frankfurt.de sub-subleading contributions arise from a variety of sources
*Email address: drischke@th.physik.uni-frankfurt.de and, at present, cannot be systematically calculated. They are
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TABLE I. The constants\g, as, d, the ratiog, /¢3¢, and the ratiol ./ ¢, normalized to its BCS value. In casei), ¥ is the angle
between the direction of the spin-one condensate and the 3-momentum of the quarks in the Cooper pair. The approximations leading to this
result will be discussed in Sec. Il G. In ca@8, the factors in parentheses do not occusif is replaced by the true gagph; ¢,.

A Ao a a d bol $5>° Tcl(e¥¢g ! )
(i) 2SC 1 0 1 0 0 1 1
(i) CFL 4 1 1/3 2/3 0 > 13 213
(iii) CSL (transv:+long) 4 1 2/3 1/3 5 223 228
(iv) CSL (long) 1 0 1 0 6 e d 1
V) CSL (transv) 2 0 1 0 9/2 (21 (2¥9)1
(vi) polar 1 0 1 0 3(3+co) e d 1

proportional tog?¢, and constitutéd(g) corrections to the flavors of massless quarks afid) three flavors of massless
prefactor in Eq(1). It was argued that also gauge-dependengjuarks in the CFL phase. The other four cases deal with one
terms enter at this ord¢t1]. This is, of course, an artifact of massless quark flavor. In this case, the condensate has spin
the mean-field approximation which was used to derive thene[14]. Similar to helium-3[15], this allows for a multi-
QCD gap equatiopl2]. On the quasiparticle mass shell, the tude of different phases, distinguished by the symmetries of
true gap parameter is in principle a physical observable anthe order parametdrl0]. We only focus on(iii) the CSL

thus cannot be gauge dependent. phase with longitudinal and transverse gafig) the CSL
In color superconductors, the mass shell of a quasiparticlphase with a longitudinal gap onlfy) the CSL phase with a
is determined by its excitation energy transverse gap only, an(gi) the polar phase. In this context,
5 o1/ “longitudinal” and “transverse” refers to pairing of quarks

eir(P)=[(k—u)?+ N\ (e, K)|*1M (3 with the same or different chiralities, respectiveb). Cases

(iv) and(v) can be considered separately because, as we shall
siparticle, ands( e, , ,k) is the gap function on the quasipar- show below, Iongitydinal and transverse gaps do not induge
] ' h "kva’h dex_ label ibl itati each other. In all six cases we only consider condensation in
ticle mass shel. € Index labels possibie excitation ven-parity channels because these are favored by effects
branches in the superconductor, which differ by the value o hich explicitly break theJ (1), symmetry of the QCD La-
ﬂ}e consta_nt\,._ 'IA‘t the Fe_rm| _SL:rfa;]cell,(—,u_, the excitation rangian. We also neglect color-sextet gaps which are possi-
of a quasiparticle—quasiparticie-hole pair CO.StS an energ ly induced by condensation in the color-antitriplet channel
Zf&,(qb)=2 W\r¢o. The true energy gap is therefore [16]. These gaps presumably lead to sub-subleading contri-
Ao . _ butions.

At first sight the introduction of the constant appears We show that in all six cases the gap equation has the

somewhat awkward. The advantage is that it allows us {Qeneral form

generalize Eq.3) to different color-superconducting sys-
tems. For example, in a two-flavor color superconductor, — [?
quarks of two colors form Cooper pairs with total spin zero, (e .K)=9 fo d(q—M)z asZ(€qs)

wherek=|k| is the modulus of the 3-momentum of the qua-

¢(€q,5,9)
€

while the third color remains unpairgd]. Consequently, s
there are two different excitation energieg, ande, ,. Four e 1 b22
. : o B L ' . q,s H
quasiparticle excitations have;=1, with gap ¢q, while xtani‘(ﬁ Eln(ﬁ . 4)
two have N,=0, corresponding to the unpaired quarks. |€q,s_ €l

These are so-called “ungapped” excitations. At the Fermi o o
surface, it costs no energy to excite them. In a three-flavof "€ Sum oves runs over all distinct branches of fermionic
color superconductor, with color-flavor lockifGFL) [13], excitations with energyq s in the color superconductor. For
all nine quark colors and flavors form Cooper pairs, but therdn® Systems considered here, there are only two such
are still two distinct branches of fermionic excitations. ThePranches, such that=1 or 2. The coefficients are posi-
first, with A;,=4, occurs with degeneracy one, while the fiveé numbers, obeying the constraint
other, with N\,=1, has degeneracy eight. The gap corre- 2
sponding to the first excitation has magnitudg,2 while for 2 a=1 5)
the other eight the size of the gapdg. A similar two-gap &
structure also appears in the color-spin lock€&L) phase
of a one-flavor color superconduc{drO]. However, here the In the first four columns of Table | we display the values of
first excitation, with\ ;= 4, has a fourfold degeneracy, while A5 andag for the six cases studied here. There are ungapped
the second, with\,=1, has an eightfold degeneracy. excitations §=0) in the case$i), (iv), (v), and(vi), while

In this paper we aim to clarify the similarities and differ- all excitations are gapped in the cas@$ and (iii). For un-
ences between various color-superconducting systems. Tgapped excitations, the correspondimgvanishes, and thus
this end we systematically study six different cases. The firsthese do not appear in the gap equation. This is natural, be-
two cases are spin-zero color superconductors @Wthwo  cause ungapped excitations should not affect the value of the
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color-superconducting gap. The constants are identical folorse™ 4°=10"2to e 6=2.5x 103 relative to the spin-zero
the casesii) and(iii), \;=4 and\,=1. The coefficiente;  gap[7,10]. In contrast to the value af, the additional factor
also assume the same values, 1/3 and 2/3, but the associatip{fil)\gZ)—U? in Eq. (8) cannot be simply read off from the
of these values with the corresponding constangss re-  sypleading contributions in the gap equation, but only fol-
versed in casgiii) as compared to case). o lows from the explicit solution. It is different from 1 for
The occurrence of the wave function renormalization fac-color superconductors with two distinct branchesgapped
tor Z(eq,s) in @ gap equation of the type) was first dis-  quasiparticle excitations. In this case, this factor further re-
cussed in Ref[8]. The constanb in Eq. (4) is defined as ducesg, as compared to the 2SC case.
The factor §5*\5?) " *2is also different from 1 in cas@)
where\;=2. However, according to E¢3) the “true” gap
is VN1 do= 2o, and note,. Therefore, the ratio of the
true gap to the gap in the 2SC case is just ex@)( In order

b=bexp(—d), (6)

with b from Eq. (2), andd a constant of order one. The
constantd originates f_rom subleading contributions to the , i qicote this, in Table | we put the factor ¥2 arising
gap equation. For spin-zero condensatks,0, due to an from Eq. (8) in parentheses

accidental cancellation of some of the subleading terms aris- Finallly we discuss the t.ransition temperatiie, where
ing from static e[ectnc and non-statlc magn.etlc gluon Xthe color-,superconducting condensate melts. We find
change. In the spin-one cases, this cancellation does not oc-

cur and, consequentlg#0.

In this paper we present a simple method to extract the T. &
value of the constard without actually solving a gap equa- = (\I\P)M2=0571\303)12, 9
tion. This method utilizes the fact that, to subleading order, bo T

the integration over gluon momenta in the QCD gap equation

can be written as a sum of a few integrals multiplied by h 0577 is the Euler-Masch . tant. In th
constants. Only these constants depend on the detailed coldfere y="9. dls the h u er-h asc erolnl constant. dn €
flavor, and Dirac structure of the order parameter. The imegases(l), (iv), and(vi), where there is only one gapped qua-

. . i ; itati agy axn1/2__
grals are generic for all cases studied here and have to @Particle excitation, X;"A,%) =1, and we recover the re-

computed only once. The precise numerical valuesdfare  lation T¢/¢,=0.57 well known from BCS theory17]. Its
listed in the fifth column of Table I. validity for QCD with N¢=2 flavors of massless quarks was
The fact that we can write the gap equation in all six casesirst demonstrated in Refg5,8]. In case(v), (\}*A5?2)%2
in the form (4) is nontrivial. It means that the leading con- = /2 put this factor is absent if we rescatg in Eq. (9) by
tribution to the gap equation isnique If it were not, then  /\" o obtain the true gap. Therefore, also in this case the
the prefactor of the gap integral would be different for eachgcs relation between the zero-temperature gap and the criti-
case. In other words, the contribution of almost static mageg) temperature is valid. In the casé9 and (iii) there are
netic gluons to the gap equation is universal in the sense thako distinct gapped quasiparticle excitations, and conse-

it is independent of the detailed color, flavor, and Dirac Struc'quently two gaps,Jh—lcﬁo:Zd)o and \/)\—2%: bo. The BCS

ture of the color-superconducting order parameter. Differyqation T./do=e"l is violated by the additional factor
ences between the six cases studied here occur at subleadg}\gal}\az) V2- 1
order. Only at this order the specific structure of the order™1 "2 '

parameter is important and leads to different values for the In order to elucidate the deviations from the BCS re!atlon,
constand in Eq. (6). in the last column of Table | we present our resultsTeiin

We solve the gap equatiof#) at zero temperature and units of the critical temperature expected from BCS theory.

compute the value of the gap function at the Fermi surface/\PParently, the two-gap structure in the cagiesand(iii ) is
0. In all cases studied here, we can write the result in théesponsmle for the observed deviations. It would be interest-

form ing to observe similar behavior in other weak-coupling su-
perconductors with more than one gapped excitation branch.
- Note that, althougIT./¢, is different than in BCS theory,
do=2bbju exp( — __) ()\i‘l)\?)—l/% (7) the absolute values @f. do not change. If the energy scale is
2 set by ¢35, then T./¢$3>°=exp(—d), because the factor
(AT]N52)"Y2in Eq. (8) simply cancels the factom{*r5%)Y2
in Eq. (9).
The remainder of this paper is organized as follows. In

(Remember that ©=1.) From this equation and E¢l) one
immediately determineg, in units of the gap in the 2SC

phase, Sec. Il we show that the gap equations for all six cases con-
sidered in this paper is of the fortd). We explain the origin
bo —exp(—d)(\21\32) 12 (8) of the constanta  as eigenvalues of an operator constructed
2SC 172 . . .
b0 from the color-superconducting gap matrix. We also present

a simple method to compute subleading corrections to the
This ratio is given in the sixth column of Table I. For spin- gap arising from the integration over gluon momenta in the
one color superconductord,is positive, and the exponential gap equation, leading to the suppression factor €xip(in
factor leads to a tremendous suppression of the gap by faé&q. (6). In Sec. Ill we solve the gap equatigd) at zero
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temperature and explain the occurrence of the additional fac- .
tor \*A5%) " ¥2in Eq. (7). Finally, in Sec. IV we compute EZl(K):e§+ PRI MA, (16)
the critical temperatures,.

Our convention for the metric tensor g¢'"=diagl1,—1,  where¢®(K) is the gap functionM, is a matrix defined by
—1,—1}. Our units areh=c=Kkg=1. Four-vectors are de- the symmetries of the color-superconducting condensate, and
noted by capital letterK =K"= (ko,k), andk=|k|, while  Ae=(1+eyyy-k)/2, e=+, are projectors onto states of
k=k/k. We work in the imaginary-time formalism, i.e., positive or negative energy. In generalf, is a matrix in
TIVE(=TZ2,fd3k/(2m)3, where n labels the Matsubara color, flavor, and Dirac space, and is constructed such that
frequenciesw,=iky. For bosonsw,=2n=T, for fermions,

w,=(2n+1)7T. [My,AF]1=0. (17)
Il. GAP EQUATIONS ]\c/(\)/:trrrw] the gap matrix(16), the operatorC(K) assumes the
A. General derivation
In fermionic systems at non-zero density, it is advanta- C(K):Ee | 5(K)PLiA ©, (18)

geous to treat fermions and charge-conjugate fermions as
independent degrees of freedom and to work in the so-calleghere
Nambu-Gorkov basis. In this basis, the full inverse fermion

propagator is defined as L= yoM IMkyo. (29
-1 —1 0—1
g 1= Sit S _ Sty 21 Note that alsdL,,A¢]=0. SincelL, is Hermitian, it has real
St Sy S S +35,)" eigenvalues and can be expanded in terms of a complete set

(10 of orthogonal projector®, ,

whereS?,; is the propagator for free fermions asd,, the
propagator for free charge-conjugate fermions. In momen-
tum space and for massless quarks,

_ou -1 0 Bk -1 where\, are the eigenvalues &f, . Our choice of the sym-
Su)=(rKutuy) ™ SaK)=(¥K,—p y(’)(li) bol \, is judicial: it will turn out that they are identical with

the constant&, appearing in the quasiparticle excitation en-

where y* are the Dirac matrices. The 11 component of theergy (3) and which are listed in Table I. In Appendix A we
self-energy? ,, is the standard one-loop self-energy for fer- determine the eigenvalues bf and their degeneracy for the
mions; similarly,>,, is the self-energy for charge-conjugate Six color-superconducting systems studied here.
fermions. In Ref[8] it was shown that, in order to solve the  In all cases considered in this paper, there are only two
gap equation to subleading order, it is permissible to approxidistinct eigenvalues, so that one can easily express the two

Le=> AP, (20)
r

mate these self-energies by corresponding projectors in terms bof,
_ M2 12 Lk_)\z 1
— — — 2 e—__ "
2 (K)=213(K) =2 2(K)= 09 kom—k2 , (12) P N2 Aas (21

0

Obviously, these projectors also commute with the energy
projectors| Pr?,A]=0.

The next step is to compute the full quasiparticle propa-
gatorS,;;. The inversion of the term in brackets in E¢3) is
particularly simple, because the four projectm%?/\,f are
orthogonal and form a complete set in color, flavor, and
Dirac space. With Eqq12), (13), (18), and(20) we obtain

whereM?= (377/4)m§; the zero-temperature gluon mass pa-
rameter(squaredlis m=Ng?u?/(67%). The 21 component
of the self-energy},;, which was denoted " in [5], is the
gap matrix in a superconductor, whi¥,= yo3 11 7o.

Inverting Eq.(10) one obtains the full fermion propagator
S The 11 component,

S11= (S5 +2 ) [(SP 1 + 2 1) (825, + 29 —C 7Y,
13 Su(K)=[8%, (K +224K) 12 PlAL®

is the full quasiparticle propagator, where we defined

=S A 43 (S Y. (19 x - . @
[ko/Z(ko)1*—[ € (¢%)]°
The 21 component is the so-called “anomalous” propagator.
It is given by where
Sp=— (S5 +320) 12 iSus. (15 — Mz)_l
Z(ko)=| 1+g°In— (23
In all cases considered here, the gap matrix can be written as ko
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is the wave function renormalization factor introduced in A®P)=A,(P), A%P)=0,
Ref.[18] and

ef (%) =[(k—eu)?+\,| 42112 (24)
with the longitudinal and transverse propagatdrs, and
are the exci.tatio.n en_ergies for quasipartickes,+, see EqQ. P=K—Q. Consequently, we only need the 00-component,
(3), or quasi-antiparticless= —. 755 “(k,q), and the transverse projection of thecompo-
In order to compute the anomalous propage#er, we [ ants
insert Eq.(22) into Eq.(15) and employ Eq(16). The result ’ ) o ,
is T:¢ (k) =— (8" —p'p) T *(k,Q), (30

AT (P)=(81-p'p)A(P), (29)

?%(K) of the tensor(28). (The extra minus sign is included for the
sake of notational conveniengdt will turn out that in all

cases studied here the quantiti%gt's(k,q) are related in the
following way:
Tes Aka)  TE¥A(k,q)
78 ke TEE ko)

-
221(K):92v % AL(K=Q) ¥ T382(Q) ¥ T, The right-hand side of Eq(28) depends ork, g, and

(26)  k-q. The latter can be replaced by the square of the gluon
3-momentump? via k-q=(k?®+q?—p?)/(2kq). Thus, the
relevant components can be written in terms of a power se-
ries in p?,

K)=— MiyoPil :
S1(K) 62:4 YoMk Yo Pk [kOIZ(ko)]z—[Eﬁ,r(¢e)]z

(29

In the mean-field approximatiofl2], %,, obeys the gap
equation[8]

=const. (31

whereT, are the Gell-Mann matricegimes a factor 1/pand
Aff; is the gluon propagator.

To derive the gap equation for the gap functigfi(K), .
we insert Eq(25) into Eq.(26), multiply both sides from the , , p=\™
right with M {A§ and trace over color, flavor, and Dirac oo 'S(k,q)=asm;_1 Mol ee 'k’Q)(k_q> . (329
space. To subleading order in the gap equation, it is permis-
sible to use the gluon propagator in the hard-dense-loop ¢ s - . . m
(HDL) approximation[19], where it is diagonal in adjoint ghae (k'Q):asm;1 72m(€€.K,Q) kgl - (32b)
color spaceAL, = ,pA*". We obtain

2

2

Here, the coeﬁicients;g;,ﬁ(ee’,k,q) no longer depend on

)=~ S $°(Q) s on account of Eq(31). The overall normalization on the
V Q& [Uo/Z(9o)12—[ €8 (¢2)]> right-hand side of Eq(32) is still free, and we choose it such
’ s that Eq.(5) is fulfilled. This uniquely determines the values
XAMV(K_Q)TZ(z’xS(k,q), (27) of the dimensionless coefficiemé;;(ee’,k,q).
We now perform the Matsubara sum in E@g7), which
where does not depend on the detailed structure of the tensor
- T PSA- o, T ALTAE Qﬁey"s(k,q). This calculation is similar to that of Ref5].
7°¢ 5(k,q) = — MyuTa¥oMqyoPehq~ v TaMi k]_ The difference is the appearance of the wave function renor-
pr A T MM AL malization factor Z(qy) [8]. To subleading order, this

(28)  amounts to an extra factdr(egfs) in the gap equation. Since

) _, there are two different excitation energigs, ande, , on the
The form(27) of the gap equation holds for all cases CO”S'd'right-hand side of the gap equation, we can put the gap func-

ered in this paper. What is different in each case is the strugjon on the left-hand side on either one of the two possible
ture of the term775 °(k,q). Our computation will be done quasiparticle mass shelkg= €, 1 or ko= €,,. One then ob-
in pure Coulomb gauge, where tains

2 e, e e’ 2\ m
g2 (uto % (€,0) V(e . kia [p
e k)= f d ag Z(e& )—25" tanH —=2 dpp| —
ek k) 1672k J u—s qqgs s Z(€qs) € 2T %" lk—q| PP kq

4

p p* )
p8+M*4( €qst el pt M4(eg,s— € )2

2
= O(p~M)+6(M-p)
p

t
772m] :

X 2 ¢+
p?+3m; Tam

(33
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The first term in braces arises from static electric gluonsantiparticles the logarithm from almost static magnetic glu-
while the two terms in brackets originate from non-static andons is also only of order 1 and, furthermore, there is no large
almost static magnetic gluons, respectively. Various othetogarithm from thep integrals. Therefore, the antiparticles
terms which yield sub-subleading contributions to the gapcontribute at most to sub-subleading order to the gap equa-
equation[5] have been omitted. In deriving E€B3) we as- tion and can be neglected. In the following, we may thus set
sumed that the gap function does not depend on the directios=e’ =+ and omit this superscript for the sake of simplic-
of k. This is true in all cases considered here, except for thiy. Then, the gap equation for the quasiparticle gap function
polar phase, where we neglect this dependence, cf. Sec. Il Geads

Although the coeff|C|ent37 depend ork andq, to sub- & 9
leading order in the gap equation we may approximate €q,s>
k=qg=pu. This can be easily proven by power counting. To Hlewr k=9 f dla- M)Z aZ(eqs)—c T €q.s
this end, it is sufficient to tak&= w, and writeq= u+ &,
where é=g—u. In weak coupling, the gap function is 3, b%u?
sharply peaked around the Fermi surface, and thus the range xtan 21— 4 oln 2 — | (39
of integration in the gap equation can be restricted to a small Cas™ Sk
region of size & around the Fermi surface. All that is nec- where
essary is thats is parametrically much larger thag,, but
still mu'ch smaller t'ham, ¢0< 5<<.,u [5]. It'turns out that 64
é6~my is a convenient choice. Since the integral o¥eis b?= 2
symmetric around =0, terms proportional to odd powers of M
& vanish by symmetry. Thus, corrections to the leading-order .
terms are at most (&/u)?. As long asé is parametrically of with
the order ofmgy, £<my, and these corrections areg?, i.e 6
suppressed by two powers of the coupling constant. Even for d=— —[75+ mo+ 2(n4+ ny)]. (37)
the leading terms in the gap equation the correction due to 70
terms~ (&/ u)? is then only of sub-subleading order and thus
negligible. In all cases considered in this papef,= 75, so thatb as-

Since the coefficients’;! are dimensionless, with the ap- sumes the value quoted in E@). The expressioii37) is a
prox|mat|onk q=pu they become pure numbers WhICh as general formula to Compute the constanfrom the coeffi-
we shall see in the following, are directly related to the con—CIents n5m- We also find that, for all cases considered here,
stantd discussed in the Introduct|on and listed in Table I. In 770 2/3. This is the uniqueness of the leading-order contri-

2\ 376/ 7
4p
) exp—2d), (36)

2
3mg

all cases considered herg,! =0 for m=3, and the series in butlon to the gap equation mentioned before. With this value
Eq. (32) terminate after the first few terms. Moreove;t[+2 of 770, the gap _equatlon has the generel fadn
always vanishes and, to subleading order, aj5g=0. For In the following, we shall discuss spin-zero color super-

the remainingm, the p integral in Eq.(33) can be performed conductors in the 2SC and CFL phases, as well as spin-one

exactly. The details of this calculation are deferred to Appencolor superconductors in the CSL phase with both longitudi-
dix B. We obtain nal and transverse gaps, the CSL phase with a longitudinal

gap only and with a transverse gap only, and the polar phase.
) o Each case is uniquely characterized by the matrix which
P, k)= 9 wr dqz aZ(e )¢ (e q s’q) is given by the sym_metries of_ the coIor—euperconducting con-
r 1672) u =\ €as densate. This matrix determines the eigenvalueand the

, q ° projectorsP; . Evaluating the traces in E€28) and compar-
€t 1 M?2 ing with Eq.(32), one reads off the coefficients,;', as well
Xtan 2-|- 7703 e \2 e 2 as the constants, . This completely specifies the gap equa-
|(eq.9)°~ (elr)’] tion in each case.
4 2 #2 . .
+ 7]0 In—s + 770 IN—— +4(n3+ 75) B. The 2SC phase
3m? M?

’ For N;=2, the spin-zero condensate is a singlet in flavor

and an antitriplet in color spacel]. The (antisymmetri¢
(34) singlet structure in flavor space can be represented by the
second Pauli matrix ;) ¢q=1ie€rg, f,g=1,2. The(antisym-
metric) antitriplet structure in color space restricts the gap
Note that the contribution from almost static magnetic glu-matrix to be a linear combination of the antisymmetric Gell-
ons only appears in the term proportional#p, while non-  Mann matrices\,, s, and\;. These form ar8O(3) sub-
static magnetic and static electric gluons contribute to algroup ofSU(3)., so that we can also choose the generators
other terms. (J) k="l 1,j,k=1,2,3, of SO(3). The gapmatrix is
The antiparticle contributiong( =—) does not have a thus a scalar in flavor space and a 3-vector in color space.
BCS logarithm, since, ;~q+ u. For the same reason, for Upon condensation, this vector points in an arbitrary, but

+8( 4yt 7y |
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fixed, direction which break§U(3). to SU(2).. For the M=J1ys, (45)
sake of convenience, we align this vector with Thus, the
matrix M, reads whereJ=(J1,J,,J3) represents the antitriplet in color space,
with (J;)jx= — 1€ as introduced above. The veclorepre-
My=33727s, (38  sents the antitriplet in flavor space and is defined analo-

h Kes i h _ di _ gously. Consequently,J¢ I)ifjg= - 5ifé?+ 6?5} . This conden-
whereys takes into account that we restrict our discussion to_ breakS U(3), X SU(3); to SU(3),. .

the even-parity channel. This matrix obviously fulfills the

" : From Eq.(19) we obtain the matri
condition (17). From Eq.(19) we construct the matrix q-(19) w ! X

fa_r3.nN2f9= 5759+ 5. 5™9
(L= (39)5(2)10= (8= 5562069 (39) (LOr=LO- DT a0y o% - (49
_ i . Asin the 2SC case, the operatgy is independent ok, and
In this caselx does not depend dx, and consists of a unit e omjtted its trivial Dirac structure. It can be expanded in
matrix in flavor space and a projector onto the first two col-iarms of its eigenvalues and projectors as in &), with
ors in color space. In principle, it also consists of a unit(cf_ Appendix A

matrix in Dirac space, which we disregard on account of the
spin-zero nature of the condensate. Ni=4 (1-fold), A,=1 (8-fold), (47)
The eigenvalues df, are (cf. Appendix A
and
AM=1 (4-fold), N,=0 (2-fold). (40 . L
(POi’=3880, (POi’=0;6"-384, (49

From Eq.(24) we conclude that there are four gapped and ij

two ungapped excitations.

The projectorsPy follow from Eq. (21): whereP} and P2 correspond to the singlet and octet projec-
. tor introduced in Ref[20].
Pe=Le, Pe=1-Ly. (41) We now compute the relevant components of the tensor

1_ _ i Ti‘i's(k,q). Since the Dirac structure 0¥, is the same as
They have the property thatPi=J; andJsP=0. Conse in the 2SC case, the dependenceamdq is identical to the

”2 . - _ N A i
quently, the tenso};5“(k,q) vanishes trivially. Fors=1 e in Eq.(42). However, since the color-flavor structure is
we obtain different, we obtain a non-trivial result both fe=1 and
s=2, with different prefactors,

, 1 PN
Tos (k.q) = 3(1+eek-q), (423 , 1 1 B
Too (k@) =5Tg5 “(k,q)= g(1+ee’k-q), (493
, 1 . . (ek—e'qg)? Lo
T:° 'l(k,Q)=§ 3—ee’k~q—%(l+ee’k~q) . , 1
P T2k, Q) =575 (k)
(42b
We now m.atch thei§2result to the expansion in termgof _ E 3—eek G- (ek— e,q)2(1+ee’R~E1) .
Eq. (32. SinceT}; “(k,q)=0 and because of Eq5), we 9 p?
have (a9b)
3-1:1! a2:O (43)

Obviously, the condition31) is fulfilled. The coefficients

0t - . . S
This uniquely fixes the coefficientsghﬂ(ee’,k,q). To sub-  72m f€Main the same as in E@44), which again yields

leading order we only require their values fore’ =+ and d=0. However, the two-gap structure leads to the constants

k=q=u, 1 2
=, a=5. (50
.2 1 2 1 BERE
=3 2=~ g M=0, m=3, m=g, 74=0.
(44) In our treatment we have so far neglected the color-sextet,

flavor-sextet gap which is induced by condensation in the
color-antitriplet, flavor-antitriplet channgl6]. Such a color-
flavor symmetric structure is generated in the anomalous
propagatolS,,, even for the completely antisymmetric order
parameter of Eq(45). (This does not happen in the 2SC
case, where the color-flavor structure $f; remains com-
C. The CFL phase pletely antisymmetrig.Consequently, it also appears on the
In the CFL phase, the spin-zero condensate is a flavatight-hand side of the gap equation. The reason why it dis-
antitriplet locked with a color antitriplgtL3], appeared in our calculation is that we projected exclusively

This result implies that the contributions from static electric
and non-static magnetic gluons to the consthudiefined in
Eq. (37) cancel, and consequenity=0.
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onto the antisymmetric color-flavor channel when we multi- . N 1 .. , N )

plied both sides of Eq(26) with M fAE and traced over (Pi)ap= 9" Sap— §[k' Syt V0 ay (KK 85— ¥ 5(K)].
color, flavor, and Dirac space. To be consistent, one should (55b)
have started with an order parameter which includes both the

symmetric and the antisymmetric color-flavor structures. Inlnserting these projectors antt, from Eq. (52) into Eq.
weak coupling, however, the symmetric gap is suppressed b{28) we obtain

an extra power of the strong coupling constgrt9]. This

fact by itself is not sufficient to neglect the symmetric gap in Tree 1 _qe€ 2

the weak-coupling solution of the gap equation because, as Too (ko) =70 “(k,@)

explained in the Introduction, this could still lead to a sub- 1

leading correction which modifies the prefactor of taeti- = —(1+eek-q)[1+(1+ee)k-q],
symmetrig gap. One way to avoid this is a cancellation of 27

the leading terms involving the symmetric gap in the gap (569
equation for the antisymmetric gap. A more detailed investi-

gation of this problem, however, is outside the scope of the 1 o1 o2
present paper. ST (k) =T (k,q)
D. The CSL ph 1 .. " A
€ LoL phase = [2k-§(1—e€'k-q) (56b)
For condensation in the even-parity, spin-one channel the 27
gap matrix readscf. Appendix C, see also Ref5])
(ek—e’q)? .
R t1-———|(1+e€k-q)
2a(K)= 2 GFK) [kt (OIAL, (5D P
X[1+(1+e€)k-q]}. (560

wherey, (k)= y— y-kk andy=(y*,9?,7%). This most gen- _ ,
eral form for the gap matrix in the spin-one case differs fromComparing this to ch"’/g)’ the prefactor 1/2 now accompa-
the one in Ref[10] by the appearance of, (k) instead ofy. ~ nies 755, " instead of7g5,>. Consequently, the constards
From the discussion in Appendix C it is obvious that bothanda, exchange their roles compared to the CFL case, Eq.
forms are equivalent. (50),
The spin-one condensate is 8k(2) triplet, and thus the

order paramete®(K) is a 3-vector. In the CSL phase, each :E ZE

. . . . ot FO =5, A=z, (57
spatial component of this vector is assigned a direction in 3 3
color space, X,y,z)—(r,g,b). This breaks colorSU(3),
and spatialSQ(3) to anSO(3) subgroup of joint color and
spatial rotations. The matrix1, reads , 2 . 7 .1
7]o:§a M= 18’ 4= 18’

and to subleading order,

Mi=3-[k+y.(K)]. (52)
. : , . 2 5
This matrix fulfills the condition17) due to the fact thad; M=%, My=—7=5, 73=0. (58)
commutes withy, (k). Had we usedy in Eqg. (51), like in 3 18
Ref. [10], this condition would have been violated and theAccording to Eq.(37), this yieldsd=5.
general discussion pres_ented in Sec. Il Awould not apply 10 aq in the CFL case, another condensate with a symmetric
the subsequent calculation. color structure is induced. This condensate belongs to the
From Egs.(19) and(52) we compute color-sextet representation and, fl§=1, necessarily car-
o . A . A ' ries spin zero. To identify this induced condensate, one has to
ij _ | — A
(Lidap= 0" 8apt [K 0ayt 71 ay(K) K 6,5 71 ,5(K)]. explicitly analyze the color structure &y,. By analogy to
(53 the CFL case, we expect this condensate to be suppressed by
In contrast to the 2SC and CFL cases, thisc12 matrix in & FSW?Z of gdcomptarelc: to tf;gbp:]mat[y Eﬁ)ln-one, coIc;r-
color and Dirac space now explicitly depends lkanNever- antitriplet condensate. [ts contribution 1o the gap equation

o : could be of sub-subleading order, if there is a cancellation of
theless, its eigenvalues are pure numitefsAppendix A, the leading terms involving the spin-zero gap in the gap

N,=4 (4-fold), N,=1 (8-fold). (54)  equation for the spin-one gap. A more detailed investigation,
however, is beyond the scope of the present paper.
The projectors follow from Eq(21): In the following two sections we study two special cases

of the CSL color superconductor. The firstid,~J-k, and

the second is\,~J- y, (k). In the first case, the gap matrix

commutes with the chirality projectd?, ,= (1= ys)/2, and
(559 consequently only quarks of the same chirality form Cooper

o1 . A~ .
(Pap=3 LK Suyt 1 0y (KIIK 8,5= YL 5(K)],
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pairs. The ensuing gap was termedgitudinal gapin Ref.  see Eq(43), this factor substantially changes the coefficients
[5]. (It corresponds to the LL and RR gaps of Ref0].) In ngng
the second case, commuting the gap matrix with the chirality

projector flips the sign of chirality, which indicates that the 2 1
quarks in the Cooper pair have opposite chirality. This leads n8=§, ng= —5 M1y
to the so-calledransverse gap5] (the LR and RL gaps of

Ref.[10]). The reason why we study both cases separately is

that a purely longitudinal gap matrix on the right-hand side . 2 ; 1 ¢
does not induce a transverse gap on the left-hand side of the M=z M2T T g MaT T o (64)
gap equation and vice versa. This will be explained in more
detail below. This leads tad=6.
We finally comment on why it is impossible that a purely
E. The longitudinal CSL phase longitudinal order parameter induces a transverse gap. Insert-
In the CSL phase with longitudinal gaps only, the matrixing the matrix M, from Eq. (59) into the anomalous propa-
M, reads gator S,; from Eq. (25), and the result into the right-hand
side of the gap equatio(26), we realize that the resulting
M, =3 k. (59 Dirac structure still commutes withs and thus preserves the

chirality. This is the characteristic feature of a longitudinal
The condition(17) is trivially fulfilled. Inserting EqQ.(59)  gap. Therefore, the ansatz9) does not induce a transverse
into Eq. (19), we obtain gap on the right-hand side of the gap equation.
il & it
(Lk)“B_ (81 =Kk )5"‘3' (60 F. The transverse CSL phase
This matrix is a projector onto the subspace orthogonél to For transverse gaps,
However, due to color-spin locking, the indice$ run over
fundamental colors and not over spatial dimensions, and M=y, (K). (65
thus, amusingly, this projection actually occurs in color
space. Sincé, is a projector, we find the eigenvaluésf.  The condition(17) is fulfilled becausey, (k) commutes with
Appendix A the energy projectoA . For the matrixL, we obtain

A=1 (8-fold), A,=0 (4-fold). (61) o . _
' : (L idp=2KK 8,5~ YL oy(K) YL (k). (66)

The projectorSP&'2 follow from Eq. (22),

The eigenvalues of this matrix afef. Appendix A

Pe=Li, Pe=1-Ly, (62) ? PP

similar to the 2SC case, cf. E11). The peculiar feature of A=2 (8fold), \,=0 (4-fold). (67)

Eqg. (62) is that the prOjectorP1 belongs to the eigenvalue _
corresponding to quasiparticle excitations with a longitudinalThe pfOJeCtOVSP are given by
gap, but it actually projects onto the subspace orthogonal to
k. This is, however, not a contradiction, since the projection 1 i~
occurs in color space, while the gap is longitudifzdrallel k™
to k) in real space.
The similarity to the 2SC case carries over to the quantithough J- v, (K)P#0 for boths=1 ands=2, the final

ties 7go, °(k, ). Fors=2, these quantities again vanish be- regyt for oo 2(k,q) is nevertheless zero. To see this, how-

causel-kP2=0. Fors=1, we obtain ever, one has to explicitly perform the trace in E28). For
s=1, we obtain

1
5 k- (68)

. 1. . .
TS ’1(k,q)=§k-q(1+ee’k-q), (63a L
Tk, q)= = (1+eek-0)? (693
) 1. . . . (ek—e'g)? °
Te® '1(k,q)=§k-q 3-eek-q—————
p ’ 2
. 1 ~on k—
T8¢ '1(k,q)=€(1+ee’k-q)2{1—w .
><(1+ee’|2-6])], (63b) (69b)

which only differ by an overall factok- q from those of Eq.  The constants, are the same as in the 2SC and longitudinal
(42). While the constanta, are the same as in the 2SC case,CSL phases, see E¢3). The coeff|C|ents;72m are
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p 2 ¢ 1 1
7]0—51 772——5, 7l4zﬂv
) 2 ‘ 1 1
770:§, 772:_51 774221r (70)

This givesd=9/2.

For the same reasons as explained at the end of Sec. Il
it is impossible to induce a longitudinal gap with the matrix

M, of Eq. (65) on the right-hand side of the gap equation.

G. The polar phase

PHYSICAL REVIEW D66, 114010 (2002

two independent, fixed spatial directions, that of the order
parameter and that of the vector Since we already aligned
the order parameter with thedirection, we are no longer
free to choose&k=(0,0k) for the d3q integration. Without
loss of generality, however, we may assuki® lie in thexz
plane, i.e.,k=k(sind,0,cosd), where 9 is the angle be-
tween the order parameter akdin spherical coordinates for
t‘l:qe d3q integration, the azimuthal angtis no longer iden-
tical with the angle betweek and g. Or in other words,

k-q no longer depends solely ofy but also on the polar
anglee. This has the consequence that also the modulus of
the gluon 3-momenturp depends onp. Sincep enters the
gluon spectral densities in a complicated fashion, it appears

In contrast to the CSL phase, in the polar phase the veciqppossible to perform the integration analytically in this
¢°(K) in Eq. (51) does not couple to color space. Instead, it,y5/

simply points into a fixed spatial direction, which we choose  The solution is to rotate the coordinate frame for e

to be thez axis. Consequently, the matrix1, in Eq. (16)
reads
Mi=35[K*+ o (K)]. (71)

As in the 2SC case, the condensate is aligned witliahé-)

integration by the angle} around they axis, such that the
rotatedz direction aligns withk. The quantitiek-q, g% and

k? appearing in Eqs(74) are expressed in terms of the new
spherical coordinateqy(6’,¢’) and the rotation angle as
follows:

blue direction in color space. Thus, condensation spontane-

ously breaks the coloBU(3). and spatialSO(3) symme-
tries toSU(2), and SO(2), respectively.

Due to the identity k*+y?)(k?~y?)=1, the Dirac
structure of the matrik , is trivial, and it looks rather similar
as in the 2SC case, E9),

(L2s=(33)10,5=(8"=6%8%8,5. (72
This similarity is also apparent in the eigenvalued gf(cf.

Appendix A,
N=1 (8-fold), A,=0 (4-fold), (73
where the degeneracy refers to the combined color and Dir

spaces. The projectors are the same as in(&£L). For this

reason, we again immediately conclude tﬁi&‘i{z(k,q)=0.
Fors=1 we obtain

, 1 . o
Tos (k. a)=3z{(1+eek-g)[1+(1+ee)k7q’]

—(ek+e'gy)?}, (743
, 1 .. . k—e'q)?
T:* ’1(k,q)=§(2kzqz(l—ee’k~q)+ - E 2O p(za >
x{(1+eek-q)[1+(1+ee)k*q?]
—(elé+ e'aZ)Z}) . (74b)

From this it is obvious thad;=1 anda,=0 as in the 2S5C
case, cf. Eq(43).

ac

k-q=cos#’,

g*=cosf’cosd—sinf’sind cose’,

k?=cosd. (75)

In the new coordinates the angle betwdéesndq is identical
with the azimuthal angle®’, and thusp becomes indepen-
dent of¢’. Still, the ¢’ integral is not trivial because of the
potentialg’ dependence of the gap function. At this point we
can only proceed by assuming the gap function to be inde-
pendent ofp’. With this assumption, the’ integration be-
comes elementary, and we are finally able to read off the

coefficientsz5;., which now depend o,

, 2, 2+cosy , 1l+cosH
77025’ 7]2:_ 6 l 7]4: 24 [}

. 2 ,  2-co$® , 1-3cosV
770:§1 772:_ 6 ’ 774: 24 . (76)

From this and Eq(37) we computed=3(3+ cos9)/2.

Let us now comment on our assumption that the gap func-
tion is independent of’. As mentioned in the Introduction
and as will be shown in the next section, the value of the gap
function at the Fermi surfaceg,, is proportional to
exp(—d), cf. also Table I. The angular dependenceldfien
implies a similar dependence of the gap itselfk [points in
the same direction as the order paramete+,0, we findd
=6, while for k being orthogonal to the order parameter,
Jd=m/2, one obtaingd=9/2. In the first case, the gap is
longitudinal in the sense introduced in Sec. Il D, while in the
second it is transverse. These two cases have also been dis-

There is, however, a marked difference between the exeussed in Refd.7,10], with the same results for the constant
pressiong74) and the corresponding ones for all previously d. Our results surpass the previous ones in that they interpo-
discussed cases. In contrast with the other cases, there dage between these two limiting cases.
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However, the angular dependence ¢f causes the fol- 1 b2 2 b

. . . . m M
lowing problem. The gap functiog(e, 1,k) is proportional 5inl — > | =O(€q,s— ek’r)ln<6—)
to ¢, cf. the next section, and thus also dependsdon |€,s™ €icrl a.s

Under thed3q integral on the right-hand side of the gap bu
equation, this dependence translates inig alependence of + O (e, — eqys)ln( 6—) . (77
#(€q1,0). Our previous assumption, which was necessary kor

in order to perform thep’ integral, precisely neglected this ) o ,

dependence. Therefore, this approximation is in principle inWVith this approximation and the new variables
consistent. Nevertheless, the agreement of our results with

the ones of Refg.7,10] suggest that the’ dependence of — ( 2bp

2bu
the gap function could be a sub-subleading effect. X:=gln K—pu+ e,

q—utegs

: y;@n( ) . (79

to subleading order the gap equati@) transforms intd 8]
I1l. SOLUTION OF THE GAP EQUATION

In this section we solve the gap equati@h. Let us first . J’xg P €(Ys)
distinguish between the cases whesge=1, a,=0, and ¢(Xf)_25 as) Xr X; dys(1~2gys)tan 2T ¢(ys)
where botha; anda, are nonzero. The former are the 2SC (vo

. . Xp — €
phase, Sec. Il B, the longitudinal and transverse CSL phases, " J'X dysys(l—ZQyS)tanr{ Ys }Qb(ys)]- (79
0

Secs. Il E and 1l F, and the polar phase, Sec. Il G. The latter 2T

are the CFL phase, Sec. Il C, and the CSL phase with both

longitudinal and transverse gaps, Sec. |1 D. __ Here we denoted the value xf at the Fermi surface, i.e., for
In the former cases, there is only one gapped quasmartmlgzﬂ ande .=¢, ., by

excitation and the solution of the gap equati@h is well ’ e

known. It was discussed in detail in RéB]. In the 2SC

phase, the longitudinal CSL phase, and the polar phase, all

one has to do is replace the constarin the calculation of

Ref.[8] by the constanb=Dbexp(—d), cf. Eq.(6). The result
for the value of the gap function at the Fermi surface is Eqwhere ¢, = ¢(x%) is the value of the functio(xs) at the
(7), but without the factor X7*\5?) ~ Y2 However, one im- Fermi surface. The single poiikt= 4 in momentum space
mediately reads off Table | that in the respective cases thifius corresponds to two different pointg ,x3 , xi #x3 in
factor trivially equals one. In the 2SC phase; 0, and con- the new variablesx. Since we expectéos to be
sequentlyb:B, such that the result coincides with Ed). ~e?<p(—1/g), X% is a constant of order one. Furthermore, we
In the other phases, whede>0, the gap is reduced as com- defined
pared to the 2SC phase by a factor exg), cf. Table I.
There is a slight subtlety when solving the gap equation in — [bu

the transverse CSL phase. The value of the nonvanishing XOEQI”(?)' (8D)
eigenvalue is\; =2, not 1. One has to multiply both sides of
Eq. (4) with A, in order to obtain a gap equation for which
the solution of Ref[8] applies. This rescaling is appropriate,
as in this case the gap in the quasiparticle excitation spe
trum is indeed 2/\;¢,, and not simply 2,. The factor
()\61‘1)\22)*1’2 in Eq. (7) precisely accounts for this rescaling

e(y9) =bu exp( - =)

x*=gln , (80)

2bu
V\sos

This constant is parametrically of ord@l(g). To subleading
order, the relation between the new variapleand the exci-
Tation energy is given bis]

of the gap function, such that this equation is also valid in the
transverse CSL phase.
In the CFL phase and the CSL phase with both longitudi-

nal and transverse gaps, there are two gapped quasipartideconsequence of the transformation of varialié® and of
excitations, which renders the solution of E4) somewhat neglecting sub-subleading corrections is that the two equa-
more complicatedA priori, one has to solve two gap equa- tions (79) for r=1 andr=2 become identical. The only
tions, one for each quasiparticle mass shkjl=¢€,, and difference is the notation for the argument of the functifn
ko= €k 2. Therefore, as a function of momentiknthere are  which in both cases we may simply callTherefore, instead
in principle two different gap functionsp, (k)= ¢ (e, ,K), of two separate equations, we only have to consider a single
r=1,2. equation which determines the functigi{x). Moreover,y,

In order to proceed with the solution, to subleading ordelis merely an integration variable, and we may ggty in
we may approximate the logarithm in E@) in a way first  the following.
proposed by Sof6], With Eq. (5), we rewrite Eq.(79) in the form

(82

114010-11



SCHMITT, WANG, AND RISCHKE PHYSICAL REVIEW D66, 114010 (2002

& — e(y) The subleading correctio(86) modifies the solution of
2 . . . . .
¢(X):Xf dy(1- Zgy)tan"{ﬁ} oY) the differential equatiofi84b) from the one given in Ref8].
X Again, we fix the two unknown constants in the general so-
x _ e(y) lution of the second-order differential equatiof84hb)
+f dYY(l—ZQY)tan"{W} #(y) by matching the solution and its derivative to the right-
Xo hand sides of Eq¢83) and (843 at the pointx=x3 . Intro-

ducing the variables z=—(2g) ?31-2gx) and

B x5 = e(y) ot alk
alex dy(1 Zgy)tanr{ o1 | PW)- (83 7*=—(29) #3%(1-2gx3), the solution reads

1
One can also write this equation in a form whete is re- M(|z]) sine(|z¥|)—6(|z])] . s
placed byx] anda, by a,, respectively. Equatiof83) is an P(2)= o M(|z*]) sinl¢(|z*]) - 6(|2* )] +a(x; —Xy)
integral equation for the functios(x), which is solved in
the standard manner by converting it into a set of differential M(|z|) sino(z*|)—6(|z])]

: og)- 13 ,
equationg6], *(29) N(|z*]) sifle(|z*])— 6(|z* )]
e(y)

d * _
d_¢= fXZ dy(l—Zgy)tanr{W} o(y) where the function®(|z|),N(|z]),#(|z]), andd(|z|) are re-
X Jx lated to the Airy functions Ai),Bi(z) and their derivatives
o o e(y) in the standard way21]. The derivatived¢(z)/dz can be
—alf*zdy(l—Zgy)tam’{?} #(y), (84g  obtained from Eq.(87) simply by replacingM(|z|) and
X1 6(|z]) by N(|z|) and ¢(|z|), respectively. The difference to
the solution for a single gapped quasiparticle excitation, cf.
— e(X) Eq. (27) of Ref.[8], is the term proportional ta;.
—— = (1=2gx)tan #(x). (84b) Finally, we have to determine the value ¢f,. To this
dx 2T ),
end, we rewrite Eq(83) at the pointx=x3 in the form

87

2

We now solve the second-order differential equati@fb) at

zero tgmperaturQT:O. One immediately obse(ves thqt this [zo+(25)‘2’3]d—¢(zo)= b(2o), (88)
equation is identical to Eq22¢) of Ref.[8], and its solution dz

proceeds along the same lines as outlined there. The only o .

difference compared to the previous calculation are the extravherezo=—(2g) ~ 31— 2gx,). Remarkably, this equation
terms~a; in Egs.(83) and (843. To subleading order, we holds in this form also in the case of a single gapped quasi-
expectey 1/ o =1 (we show below that this assumption is particle excitation, cf. Eq.29) of Ref.[8]. In weak coupling,
consistent with our final resyltsuch that the difference the dependence on the variatagis spurious. Inserting the
solution (87) and its derivative forz=z, and expanding

o —x* = 3N \/)\—1%,1 :gln A (85) M (|zo]),N(|Zo]), ©(|20|), and8(|z|) to orderO(g) as dem-
27%179 \/)\—2%2 27 \\, onstrated in Ref[8], one derives the condition
_ 2
is of orderO(g). Consequently, the extra termsa, are of x5 :ngEW 5 +ag(xs —x¥). (89)

subleading orde|O(§¢>0), and we may approximate

X3 _ o The second term is th®(g) correction originating from the
fx* dy(1—2gy) p(y)=(X; =XI)bo2. (86)  quark self-energy. It leads to the constagtin Eq. (1) and
! was first derived in Refd.7,8]. The last term~a, is the
; : correction arising from the two-gap structure in the CFL and
S;.n?:b\{veela)i\’/cva_yxs*c;rg?red the eigenvalues suchXgath, CSL phases to the resul83) of Ref._[8]. Because of Eq.
X —Xq . o . .
The subleading correctio(86) qualitatively changes the (89, this correction is also of ordéd(g). Using the defini-
behavior of the gap functios(x) near the Fermi surface. In tion (80) of X3 , as well as the conditiof5), we conclude
the absence of the terma, in Eq. (849, the derivative of ~that the expression fap, , is identical to the one fothg in
the gap function vanishes for=x% , and the gap function Eqg. (7). This is the value of the gap fu_nctlgn at thg F_erml
assumes its maximum at this po[i@. The subleading cor- surface,k=u, or x=x3, for the quasiparticle excitation
rection(86) induced by the two-gap structure in the CFL andbranche, . The additional suppression factor compared to
CSL phases causes the derivati@éa of the functiong(x)  the 2SC gapp3>° of Eq. (1), which originates from the two-
to be negativeat the Fermi surface. Consequently, since wegap structure, isN;*A3?) ~ 2 For the CFL phase, we obtain
still expect¢(x) to rapidly vanish away from the Fermi sur- the value 2 Y3, while for the CSL phase, we have 22

face, this function assumes its maximum not rigitthe We can also compute the gap function at the Fermi sur-
Fermi surface, but at a pointmax Which is close, but not face for the first excitation branck, ;, i.e., atx=x} . The
identical tox3 . We shall see that; — Xma—0(0)- difference ¢ ,— ¢ 1 can be obtained from E¢83) as
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$o2~ bo1= L)i; dyly—x§ —ay (x5 —x})1(1-2gy) é(y).
l (90)
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b(x,0)

B0 ©3

(X, T)=¢(T)

where ¢(T)= ¢(x5 ,T) is the value of the gap at the Fermi

An upper bound for the term in brackets is given by settingsurface at temperatui® ¢(x,0) is the zero-temperature gap

y=X3, where it assumes the valag(x5 —x}) on account

function ¢(x) computed in Sec. lll, cf. Eq(87), and

of Eq. (5). Pulling this factor out of the integral, the latter can ¢,= ¢, ,= ¢(x3,0). With this assumption, Eq83) reads at

be estimated with Eq86). This proves that the difference
bo2— b0 is only of orderO(g?¢,), which shows that our
above assumptiowb, 1/ ¢g =1 is consistent up to sublead-
ing order. To this order, we may therefore sg§ = ¢,

= ¢o.

We now determine the value &f,,,, where the gap func-

tion assumes its maximum, by setting the left-hand side of

Eq. (849 equal to zero. This leads to the condition

S ay(1-2gy) ()= [ S dy(1-20)0(y).
max 1 (91)

To order O(Eq&o), one may easily solve this equation for
Xmax, With the result

g, [M
Xmax=X3 — alz |I’]< )\_2) ) (92)

i.€., Xmax IS indeed smaller thar} by a term of ordeO(g),
as claimed above. Obviously, sinag<1, from Eq.(85) we
derive the inequalityx] <X;,<X5 , i.e., the gap function
assumes its maximum between the valygsand x5 . The
value of the gap function at,,,, can be estimated via a
calculation similar to the one for the differenef ,— ¢o 4
above. The result igh,4= ¢o[ 1+ O(g?)]. This means that

the gap function is fairly flat over a region of sigZg) (in
the variablex) in the vicinity of the Fermi surface.
IV. TRANSITION TEMPERATURE

In this section we compute the transition temperaflige
where the color-superconducting condensate melts. In t

2SC phase, in the CSL phase with longitudinal gap, and i

the polar phase, the calculation of RE8] applies, and we
obtain the BCS resultT./¢o=e?/m. In these cases,

(ATIN5A)Y2=1, cf. Table I, such that Eq9) is valid.

In the transverse CSL phase, we also obtain the BCS re-

sult for the relationship betweéh, and the zero-temperature
gap after a rescaling of the gap function by a facfar, cf.
the discussion in Sec. Ill. Since in this case]{\52)*?
=\, Eq.(9) also applies.

In the CFL phase and the CSL phase with both longitudi-

nal and transverse gaps, we have to comgutexplicitly.

The calculation follows the line of arguments presented in

Ref.[8], taking into account the additional terma, in Eq.

h
’?his estimate is similar to the one made in E86) of Ref.

the Fermi surface
#(y,0)
®o

¢(y,0)
bo

)] $(y.0
2T bo

X _ )
1= L dyy(1— Zgy)tank{eé—_ly_}

e(y)
2T

+ fxz dyy(1— Zay)tanr{

K

—ax3 f:j dy(1— 2§y)tam’{
1

Ezl+12+:[3, (94)
where we divided the second integral in E§3) into two
integrals: Z, which runs fromx, to x,, with x,=x3
—glIn(2«), k>1, andZ, which runs fromx, to x5 [5]. We
now compute the integrals;, throughZ; separately to sub-
leading accuracy, i.e., to ord€x(g).

In the first integralZ;, which runs over a region far from
the Fermi surfaceg(y)>T, and we may approximate the
tanh by 1. This integral can be formally solved by integration
by parts using the differential equatiéd@4b),

do

1
Il:_ ¢(XK7O) _XK&(XKWO) ’

95
where we exploited the conditiai®8). Expanding the func-
tions on the right-hand side arourd we obtain to sublead-
ing order

L=1-Zlgn2e-a ¢ —xD]. (99

8]. The main difference to that calculation is the tetna,
which appears because the first derivative of the gap function
no longer vanishes at the Fermi surface, cf. the discussion in
the preceding section.

In the second integral,, which only contributes to order

O(g) to the right-hand side of Eq94), to subleading order
we may setp(y,0)/po=1 andy=x3; =m/2. Reverting the
transformation of variable&/8) we obtain

m—(Waxdo d(q— u) €q,2
Iz—ngo 71:&[1 T/

97)

(83). As in Refs.[5,8] we assume that, to leading order, the The last integral in Eq(94), Z3, also contributes a term of
effect of temperature is a change of the magnitude of the gamrder O(g), and may thus be approximated by an argument

but not of the shape of the gap function,

similar to that leading to E(86),
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&(T) with longitudinal gap, and in the polar phase, this is particu-
Iy=a;%; (%3 —X’{)tam{ >T } (98)  larly simple, sinceL, is a projector, cf. Eqs(39), (60), and
(72), henceLy =L, . Counting color and flavor degrees of
At the critical temperaturd;, where ¢(T.)=0, this term freedom in the 2SC phase, and color and Dirac degrees of
vanishes. Putting everything together,Tat T, Eq. (94) be-  freedom in the longitudinal CSL and polar phases, the trace
comes of Ly is 4 in the former and 8 in the latter case, respectively.
Therefore, we obtain for the 2SC phase
_ /)\_2K¢O
g fo d(gq—w)

1
Nt e

where the term In(2) in Eq. (96) was expressed in terms of

an integral according to Eq96) of Ref.[5]. In the integral  Which leads to the eigenvalues of E¢81) and(73).

on the left-hand side, we may sere- [5]. This allows us The next simple case is the CSL phase with transverse
to perform it analytically, which vyields the result 9ap. In this casel. is not a projector, but since, -y, =
|n[ey\/)\_2¢o/(77-|-c)], where y=0.577 is the Euler- —2, it is still idempotent up to a fact0L§=2Lk. Because
Mascheroni constant. If the right-hand side of E®p) were  of Li=2""'L, and TrL,=16 we then obtain

zero, forx,=1 this would then lead to the BCS relation

T./po=e"lm. However, using Eq(85) we now obtain Eq. de(A1-L)=1*(\—2)%=0, (AB)
(9). The last factor on the right-hand side of this equation is

exactly the inverse of the additional factor in Eg). This  Tom which we read off the eigenvalues of H§7).
factor violates the BCS relatiofi,/¢o=e€”/7 in the CFL The CFL phase and the CSL phaseth both longitudinal
and CSL cases. In the first case, the transition temperature #d transverse gapare the only cases where the calculation
by a factor 23 larger than one would expect from BCS of Ly is slightly more involved. First, one proves the identity
theory and in the second case it is larger by a facf$t 2 Li=5Lk—41, which is valid in both cases. Repeated appli-

However in units of energy, this factor JUSt cancels the Oné:atlon of this relatlon allows to reduce an arbltrary.number
from ¢ in Eq. (7). of powers ofL, to a single power, plus a term proportional to
the unit matrix,

Ltanl-(q_'u =)\2 4_
i o7, de(A1—L,)=A?(A—1)*=0. (A4)

This yields the eigenvalues given in E40). For the longi-
a (x5 —x¥), (99 tudinal CSL and polar phases we analogously compute

de(A1-L,)=A*N—1)8=0, (A5)
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APPENDIX A: COMPUTING EIGENVALUES _ . .
for the coefficientsa,,, and the identity
The eigenvaluesa, of L, follow from the roots of
bny1=—4a, (A9)
de{A1-L,)=0. (A1)
for the coefficientsh,,. The recursion relatioitA8) can be
The left-hand side of this equation can be rewritten in thesolved with the Ansatza,=p", which yields a quadratic
form equation fomp with the solutiongp;=4 andp,=1. The gen-
eral solution of the recursion relation is them=ap}
de(N1-L)=exp{Tr{In(A1-L)]}. (A2)  +Bpl=a4"+B. The coefficientsa and B8 can be deter-

The logarithm of the matrid1—L, is formally defined in mined froma; =1 anda, =5, such that

terms of a power series, 41 4" 4

8y=—5— by=— : (A10)

T In(AN1-L)]=InNTr1+Tr

oot
A In the CFL phase, Tt =12 and Tr1=9, while in the CSL
w phase, Tt =24 and Trl=12. Consequently, in the CFL

1
=In\Tri— 2, ﬁ)\’”TrLE. (A3)  phase
n=1
dein1-L)=(A—4)(A—1)8=0, (A11)
In order to proceed, one needs to know the trace ofnthe
power of the matrixL, . In the 2SC phase, the CSL phase which leads to Eq(47), while in the CSL phase
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det(\ 1-L,)=(A—4)*(A—1)8=0, (A12) o (k+g)t=M*

P i ) (B29)
which yields Eq.(54). Y 2(kq)?

APPENDIX B: INTEGRATION OVER GLUON _ - _ _
MOMENTUM The approximate equalities on the right-hand sides hold to

) ] . subleading order in the gap equation. One obtains them em-
In this appendix we compute the integrals over gluonpjoying two approximations. First, terms proportional to at
3-momentunmp to subleading order in the gap equation. We|aast one power ofn? or M2 carry at least two additional

shall see that to this order it is consistent toleetq = u. powers ofg, which renders them sub-subleading and thus
After replacing k-q=(k?+q%—p?)/(2kq), the coeffi- negligible to the order we are computing. Second, one uti-
cients 75 (e€’ ,k,q) can be read off from Eq942), (49), lizes the fact that the integration in the gap equation is over

(56), (63), (69), and(74). One first observes that for all cases a region of size 3 around the Fermi surface, whei®
considered hereyy:'(e€ k,q)=0 for m=3. Next, one also ~my. To subleading order it is thus accurate to ketq

realizes thatr;fzzo, since there is no term i Ogﬁi propor- M (see thg discussion in Sec. I) AThis then yields the
tional to 1p2. Consequently, we have to compute the inte-fight-hand sides of EqsB2). o s 5.
grals Note that there is a term- u“/M~“~1/g° in Eq. (B2d).

This term is parametrically the largest and could in principle

K+q 2 p2\m give the dominant contribution to the gap equation. How-

I§m=f dppﬁ(k—) , m=0,1,2, (Blay  ever, in all cases considered here, it turns out that the
lk=al ~ p7+3mg LKA coefficient ', is proportional to at least one power of
(k—q)2. Performing also the integration in the gap equa-

for the contribution of static electric gluons to the gap equa-.
9 9ap €q tion, one then has terms of the form

tion,
- Jk+qd 2 (pz m Lotz (B1b sd( ) (k—q)?
2m= PPolkg + M=~ 10L2 ZJ q-n) (k—q
M p-\Kq 9], e VE P(eq,q)
for the contribution of non-static magnetic gluons, and ,
¢0 S dg 52 ¢0
p* pz\m ~92_2 \/ﬁ§2”92¢0_2+0 —
I‘z’fﬁf dpp—2<—> . m=-1,01.2, M2Jo &+ g5 M "
k—q  p®+M*w3 \Kq s

(Blo)

with wizegfst €e for the contribution of almost static

- . where for the purpose of power counting we have neglected
magnetic gluons. The result for the integréida) and(B1lb) purp P g g

the g dependence of the gap functiap(e,,q) ~ ¢, and we

IS have evaluated the integral on the left-hand sidekferw.
As long as 6~m,~M, the leading term in Eq(B3) is
2 2 2 g
Zt=In (k+q)—+3mg = 4u” , (B2a ~g2¢o, and thus it is only of sub-subleading order in the
(k—q)?+ 3m5 3myg gap equation. It is obvious that the constant teridv4 in Eq.
(B2d) is parametrically even smaller. The contribution to the
. 3mé (k+q)2+3m§ term ~77t_2 from non-static magnetic gluons is therefore
T,=4- 5| =4 (B2b)  negligible to subleading order.
ka | (k—q)%+3m 2
Y Finally, also the integralgtz*m can be computed analyti-
cally [22]. Defining a=(M*w?%)?, the result is
. k2+0?—3mg (3m3)\? | (k+q)?+3m; y[22] ga=(M02)
I,=4 + I 5| =
kq kq (k—0)%+3mj
(B2 k X+ a)?
It_’22= - —q In %
kq kq qu 1 12a X“—aX+a
pl=—- 2 B (B2d) L2
M2 (k+q)? M2 4 2x—a
—2/3arct N , (B4a)
t1_) (k+)? _ 4y’ B2 ka2
0 - vz | ™ vz ) (B2¢)
1 ME+ a3 1 2
(k+g)*—M? =21 ==
t1_ - n In , B4b
T kgt (B2 LR e o) [ ey R
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(x+ a)? M=(My, ... Mg)

t,2_
1-2 -

—(k-q)*> «a |
2kq _1Z<q :

2_ 2 Coa b " k
X2— ax+a =(1,9° -k, 7-ky%, v-ky°9%,9°95, v k95, 99).

m? (Cy
) J =0, (B40)

(k=0)? In the spin-1 case the order parameter has to be a three-
dimensional vector. BU¥ ,; has no vector structure. Thus the
Mé—(k—q)* o order parameter has to tle contracted with other vectors. The
IyP= - 7"%=0. (B4d)  only available vectors are andy, and each contraction can
4(kg)? (kg)® still multiply any element oM. Thus, we can write the gap
matrix in terms of 16 3-vector order parametegs, i

+23 arct< NP

Here, we used the short notatigf(x)}p=f(a)—f(b). In =1,...,16, as

order to obtain the approximate equalities on the right-hand

sides of Eqs(B4b), (B4c), and (B4d), one employs the fact 8 A 16

that typically k—q)>~w2<M?, such that parametrically E21(K)=i21 @i(K)-k Mi+i29 @(K)-yMi_g. (C2

(k—q)?<a<M?. This immediately yields the right-hand

side of Eq.(B4b). For Egs.(B4c) and (B4d), we use this  pecomposing théth vector order parametes; into a longi-
estimate in order to expand the logarithm occurring in Eqstudinal and a transverse part with respectkio ok
(B4a) and(B4c). One finds that the leading termisa/M?2. P P G @i

Similarly, one expands the inverse tangent occurring in thesg ¢ Whereg=¢;- (1- kk), the gap matrix becomes
equations, which leads to terms which are even of order 8 16
O(1). Bycollecting all prefactors, however, all terms in Egs. _ ¢ ¢ Lot
(B4c) and(B4d) are then suppressed by at least one power 01221(K B Z i (K)Mi+i29 [oi (K)y- K+ ¢i(K)- ¥IM;_g.
g2. These sub-subleading corrections are negligible to the (C3
order we are computing.

Somewhat more care is necessary in estimating the ternf¥ote that whenever a basis mathk is multiplied (from the
in Eq. (B4a). Again, one may expand the logarithm and theleft) by y-k one obtains, up to a minus sign, another basis
inverse tangent. Together with the prefactor, this leads to enatrix M; . Thus we can rearrange this expression such that
term ~1/M? for the logarithm, and a term-1/a for the  there are only eight different longitudinal coefficients. The
inverse tangent. The first term is harmless: together with theight longitudinal and sixtee(independenttransverse coef-
factor (k—q)? from 7', it leads to an integral of the form ficients can be combined into eight new 3-vector order pa-
(B3), which was already shown to give a sub-subleadingameterse, ,

contribution to the gap equation. The other term leads to the o

. | .

integra 221(K):i21 & (K)-[k+ v, (K)IM;, (CH
2f‘$d(q_/v€)( -2 2% F di¢?

o’ - #(€q,9) M4’3 0 (£2+ ¢2)5®’ where y, (k)=y-(1—kk). Now one can perform a basis

(B5)  transformation and write the gap matrix in terms of the pro-
jectors for energy, chirality and helicity. This is completely
where we used similar power-counting arguments as in Ecgnalogous to the spin-0 cask?]. In the ultrarelativistic limit
(B3). The last integral is finite even fap,=0, so that we two out of the three projectors are sufficient, for instance
can estimate |t to be- §*3. For §~mj this contribution is  those for energyAi, and chirality,P,=(1+hys)/2, h=*
then again~g2¢, and thus of sub- subleadlng order in the for right- or left-handed quarks, respectively. Then we are
gap equation. left with four 3-vector order parameters in terms of which the
In conclusion, also the contribution of almost static mag-gap matrix reads

netic gluons to the term- 7', is of sub-subleading order
and can be negltected. To subleadln_g c_)rder, it is therefore 221(K):2 ¢ﬁ(K)-[I2+yL(k)]PhA§. (C5)
consistent to seyy_,=0 from the beginning, provided one

choosess~mj . o .
For condensation in the even-parity channel, only two

3-vector order parameters are independent, becefisep;
= ¢° [5]. The sum over chirality projections can be immedi-
ately performed to give

APPENDIX C: DIRAC STRUCTURE OF THE SPIN-1 GAP
MATRIX

Since the gap matriX ,,(K) is a complex 44 matrix in
Dirac space, it can be written as a linear combination of 16 _ e C e

: ! > ) K)= K)-[k+ 9y, (K)JAL. C6
basis matrices. The gap matrix is a scalar in momentum oK)= 2 ¢°K) - [kt (1AL (C6)
space, which reduces this number to eipt]. We choose
this basis set to be This is Eq.(51).
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