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Pinch technique to all orders
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A generalization of the pinch technique to all orders in perturbation theory is presented. The effective
Green’s functions constructed with this procedure are singled out in a unique way through the full exploitation
of the underlying Becchi-Rouet-Stora-Tyutin symmetry. A simple all-order correspondence between the pinch
technique and the background field method in the Feynman gauge is established.
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It is well known that, to any finite order, the convention
perturbative expansion gives rise to expressions for phys
amplitudes which are endowed with crucial properti
S-matrix elements, for example, are independent of
gauge-fixing scheme and parameters chosen to quantiz
theory; they are gauge-invariant~current conservation!; they
are unitary~conservation of probability! and well behaved a
high energies. However, the above properties are in gen
not reflected by the individual off-shell Green’s function
which are the building blocks of the aforementioned pert
bative expansion. The latter depend on the gauge-fixing
rameters in a complicated way, grow much faster than ph
cal amplitudes at high energies, and display unphys
thresholds. Evidently, when combining unphysical Gree
functions to form a physical amplitude, subtle fiel
theoretical mechanisms are at work, which enforce nontri
cancellations among them at any given order.

There are considerable conceptual and phenomenolo
advantages in reformulating the perturbative expansion
terms of off-shell Green’s functions which display manifes
the same properties as the physical amplitudes. To b
with, the sharp difference between observables and Gre
functions suggests a great deal of redundancy in the con
tional diagrammatic formulation of gauge theories, in t
sense that extensive underlying cancellations beg to be m
manifest and be explicitly exploited as early within a calc
lation as possible. Implementing these cancellations a
early stage not only renders the bookkeeping aspects m
tractable@1#, but allows for theoretically safe reorganizatio
or resummations of the perturbative series. For exam
identifying and Dyson-resumming the correct subset
propagatorlike corrections gives rise to physically meani
ful Born-improved amplitudes@2#. In addition, the generali-
zation into a non-Abelian context of the characteristic pro
erties of the QED effective charge has a wide range
phenomenological applications@3#. Finally, n-point functions
free of unphysical artifacts could serve, at least in princip
as the new building blocks of manifestly gauge-invaria
Schwinger-Dyson equations@4#.

It would clearly be preferable to enforce the relevant c
cellations already at the level of the functional path integ
defining the theory, and obtain directly from it the desir
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Green’s functions; this is however beyond our powers at
moment. On the other hand, there exists adiagrammatic
method, called the pinch technique~PT! @4,5#, which system-
atically exploits the symmetries built into physical obser
ables, such asS-matrix elements, in order to construct of
shell subamplitudes that are kinematically akin
conventional Green’s functions, but, unlike the latter, are a
endowed with desirable properties. The basic observat
which essentially defines the PT, is that there exists a fun
mental cancellation between sets of diagrams with differ
kinematic properties, such as self-energies, vertices,
boxes. This cancellation is driven by the underlying Becc
Rouet-Stora-Tyutin symmetry@6#, and is triggered when lon
gitudinal momenta circulating inside vertex and box d
grams generate~by ‘‘pinching’’ out internal fermion lines!
propagatorlike terms. The latter are reassigned to conv
tional self-energy graphs in order to give rise to the afo
mentioned gauge-invariant effective Green’s functions. In
original one-@4,5# and two-loop@7# application, the PT boils
down to the study of the kinematic rearrangements produ
into individual Feynman diagrams when elementary tre
level Ward identities~WIs! are triggered.

One of the most pressing questions in this context
whether one can extend the PT algorithm to all orders
perturbation theory, thus achieving the systematic const
tion of effectiven-point functions displaying the aforemen
tioned characteristic features. To accomplish this it is cl
that one needs to abandon algebraic operations inside
vidual Feynman graphs, and resort to a more formal pro
dure. In this paper we will show that the PT algorithm can
successfully generalized toall orders in perturbation theory,
through the collective treatment of entire sets of diagram
This is accomplished through the judicious use of t
Slavnov-Taylor identity ~STI! @8# satisfied by a specia
Green’s function, which serves as a common kernel to
higher order self-energy and vertex diagrams.

We will consider for concreteness theS-matrix element
for the quark–anti-quark elastic scattering proce
q(r 1)q̄(r 2)→q(p1)q̄(p2) in QCD. We setq5r 12r 25p1
2p2, with s5q2 the square of the momentum transfer. T
longitudinal momenta responsible for the aforementioned
nematical rearrangements stem either from the bare g
propagators or from the pinching partGamn

P (q,k1 ,k2) ap-
pearing in the characteristic decomposition of the elemen
tree-level three-gluon vertexGamn

eab,[0]5g feabGamn
[0] into @4#
©2002 The American Physical Society01-1
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Gamn
[0] ~q,k1 ,k2!5Gamn

F ~q,k1 ,k2!1Gamn
P ~q,k1 ,k2!,

Gamn
F ~q,k1 ,k2!5~k12k2!agmn12qngam22qmgan ,

Gamn
P ~q,k1 ,k2!5k2ngam2k1mgan . ~1!

The above decomposition is to be carried out to ‘‘extern
three-gluon vertices only, i.e., the vertices where the phys
momentum transferq is entering@7#. In what follows we
work in the renormalizable Feynman gauge~RFG!; this
choice eliminates the longitudinal momenta from the b
propagators, and allows us to focus our attention on the
order study of the longitudinal momenta originating fro
Gamn

P . We will denote byA the subset of the graphs whic
will receive the action of the longitudinal momenta ste
ming from Gamn

P (q,k1 ,k2) ~see Fig. 1!. We have that

A5 ig2ū~r 1!
le

2
gav~r 2! f eabGP,amn~q,k1 ,k2!

3T mn
ab~k1 ,k2 ,p1 ,p2!, ~2!

wherele are the Gell-Mann matrices, andT mn
ab is the subam-

plitude gm
a (k1)gn

b(k2)→q(p1)q̄(p2), with the gluonsoff-
shell and the fermions on-shell; for the latte

v̄(p2)S21(p2)up” 25m5S21(p1)u(p1)up” 15m50, where S(p)
is the ~full ! quark propagator. In terms of Green’s functio
we have

T mn
ab5 v̄~p2!@C rs

ab~k1 ,k2 ,p1 ,p2!Dm
r ~k1!Dn

s~k2!#u~p1!.
~3!

Clearly, there is an equal contribution from theGP situated
on the right-hand side ofT.

FIG. 1. The subset of the graphs of the quark–anti-quark ela
scattering process which will receive the action of the longitudi
momenta stemming fromGP. Here D represents the full gluon
propagator.
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Let us focus on the STI satisfied by the amplitudeT mn
ab ; it

reads

k1
mCmn

ab1k2nG1
ab2 ig f bcdQ1n

acd2gX1n
ab1gX̄1n

ab50, ~4!

where the Green’s function appearing in it is defined in F
2. The termsX1n andX̄1n die on-shell, since they are missin
one fermion propagator. Thus, we arrive at the on-shell S
for T mn

ab

k1
mT mn

ab5S 1n
ab, ~5!

with

S 1n
ab5 v̄~p2!@ ig f bcdQ 1n

acd~k1 ,k2 ,p1 ,p2!D~k1!

2k2nG 1
ab~k1 ,k2 ,p1 ,p2!D~k1!D~k2!#u~p1!, ~6!

where we have defined

Q1n
acd~k1 ,k2 ,p1 ,p2!

5Q 1n
acd~k1 ,k2 ,p1 ,p2!D~k1!S~p1!S~p2!.

In perturbation theory bothT mn
ab and S 1n

ab are given by
Feynman diagrams, which can be separated into dist
classes, depending on their kinematic dependence and
geometrical properties. Graphs which do not contain inf
mation about the kinematical details of the incoming te
quarks are self-energy graphs, whereas those which disp
dependence on the test quarks are vertex graphs. The fo
depend only on the variables, whereas the latter depend o
both s and the massm of the test quarks; equivalently, w
will refer to them ass-channel ort-channel graphs, respec
tively. In addition to thes-t decomposition, Feynman dia
grams can be separated into one-particle irreducible~1PI!
and one-particle reducible~1PR! ones. The crucial point is
that the action of the momentak1

m or k2
n on T mn

ab doesnot
respect, in general, the originals-t and 1PI-1PR separatio
furnished by the Feynman diagrams~see the third paper o
@2#!. In other words, even though Eq.~5! holds for the entire
amplitude, it is not true for the individual subamplitudes, i.

k1
m@T mn

ab #x,YÞ@S 1n
ab#x,Y , x5s,t; Y5I,R, ~7!

ic
l

e

n

FIG. 2. Diagrammatic representation of th
Green’s function appearing in the STI of Eq.~4!.
HereD andSrepresent the full ghost and fermio
propagators respectively.
1-2
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where I~R! indicates the one-particleirreducible ~reducible!
parts of the amplitude involved. Evidently, whereas the ch
acterization of graphs as propagatorlike and vertexlike is
ambiguous in the absence of longitudinal momenta~e.g., in a
scalar theory!, their presence tends to mix-propagatorli
and vertexlike graphs. Similarly, 1PR graphs are effectiv
converted into 1PI ones~the opposite cannot happen!. The
reason for the inequality of Eq.~7! is precisely the propaga
torlike terms, such as those encountered in the one- and
loop calculations; they have the characteristic feature t
when depicted by means of Feynman diagrams they con
unphysical vertices, i.e., vertices which do not exist in
original Lagrangian~Fig. 3!. All such diagrams canceldia-
grammaticallyagainst each other. Thus, after the aforem
tioned rearrangements have taken place, for thet channel
irreducible part of the amplitude we will have the equality

@k1
mT mn

ab # t,I
PT[@S 1n

ab# t,I . ~8!

Equation~8! merits particular attention, because it is
central importance for the generalization of the PT to
orders. The superscript ‘‘PT’’ on the left-hand side deno
that the corresponding amplitude must be rearranged foll
ing the well-defined PT algorithm, as it has been explaine
the literature@7#. In particular, one tracks down the rearran
ments induced when the action of~virtual! longitudinal mo-
menta~k! on the bare vertices of diagrams trigger element
WIs. Eventually a WI of the formkmgm5S21(k”1p” )
2S21(p” ) will give rise to propagatorlike parts, by removin
~pinching out! the internal bare fermion propagatorS(k”
1p” ). Depending on the topology of the diagram under co
sideration this last WI may be activated immediately, or

FIG. 3. Diagrammatic representation of the tree-level inequ
ties of Eq.~7!. After the PTs-t channel cancellation occurs we a
left with the equality of Eq.~8!.
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the final outcome of a sequential triggering of intermedi
WIs. We emphasize that, in order to preserve the spe
unitarity and analyticity properties of the PT Green’s fun
tions, ‘‘internal’’ three-gluon vertices should not pinch, n
should one carry out subintegrations@7#.

The nontrivial step for generalizing the PT to all orders
then the following: Instead of going through the arduous ta
of manipulating the left-hand side of Eq.~8!, following the
aforementioned rules, in order to determine the pinch
parts and explicitly enforce their cancellation, use direc
the right-hand side, which already contains the answer.
deed, the right-hand side involves only conventional~ghost!
Green’s functions, expressed in terms of normal Feynm
rules, with no reference to unphysical vertices. That t
must be so follows from the same PT rules mentioned abo
due to the absence of external three-gluon vertices the ri
hand side cannot be pinched further, i.e. its separation
propagatorlike and vertexlike graphs is unambiguous, si
there is no possibility~without violating the PT rules! to
obtain further mixing. Thus, the right-hand side of Eq.~8!
serves as a practical definition of the PT to all orders.

After these observations, we proceed to the PT const
tion to all orders. Once the effective Green’s functions ha
been derived, they will be compared to the correspond
Green’s functions obtained in the Feynman gauge of
background field method~BFG for short! in order to estab-
lish whether the known correspondence persists to all ord
as we will see, this is indeed the case~for an extended list of
related references see@9#!.

To begin with, it is immediate to recognize that in th
RFG box diagrams of arbitrary ordern, to be denoted by
B[n] , coincide with the PT boxesB̂[n] , since all three-gluon
vertices are ‘‘internal,’’ i.e., they do not provide longitudin
momenta. Thus, they coincide with the BFG boxes,B̃[n] , i.e.,
B̂[n]5B[n]5B̃[n] for everyn.

We then continue with the construction of the 1PI P
gluon-quark–anti-quark vertexĜa

e . We start from the corre-
sponding vertex in the RFG, to be denoted byGa

e , and focus
only on the class of vertex diagrams containing anexternal
bare three-gluon vertex; we will denote this subset byGA3,a

e

@Fig. 4~a!#. All other types of graphs contributing toGa
e are

inert as far as the PT procedure is concerned, because
do not furnish pinching momenta@7#. The next step is to
carry out the vertex decomposition of Eq.~1! to the external

i-
e

-

FIG. 4. The Green’s functions identified in th

construction of the all order PT vertexĜa
e . The

Green’s functions~b! and ~c! receive a contribu-
tion from similar terms with the ghost arrows re
versed~not shown!.
1-3
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three-gluon vertexGamn
eab,[0] appearing inGA3,a

e . This will re-
sult in the obvious separationGA3,a

e
5GA3,a

F,e
1GA3,a

P,e . The part
GA3,a

F,e is also inert, and will be left untouched. Thus, the on
quantity to be further manipulated isGA3,a

P,e ; it reads

GA3,a
P,e

5g febaE @~k2q!mga
n 1knga

m#@T mn
ab # t,I , ~9!

where*[m2«*ddk/(2p)d, d5D22«, D is the space-time
dimension, andm is the ’t Hooft mass. Following the discus
sion presented above, the pinching action amounts to
replacement kn@T mn

ab # t,I→@knT mn
ab # t,I5@S 2m

ab(2k1q,k)# t,I

and similarly for the term coming from the momentumk
2q)m, i.e., @(k2q)mT mn

ab # t,I52@S 1n
ab(2k1q,k)# t,I , or,

equivalently,

GA3,a
P,e

~q!→g febaE ~@S 2a
ab# t,I2@S 1a

ab# t,I!. ~10!

At this point the construction of the effective PT vertexĜa
e

has been completed. The next important point is to study
connection betweenĜa

e and the vertexG̃a
e in the BFG. To

begin with, all ‘‘inert’’ terms contained in the originalGa
e

carry over to the same subgroups of graphs obtained in
BFG; most notably, theGA3,a

F, e is precisely theG̃ ÃA2,a
e part of

G̃a
e , whereÃ is the background gluon. The only exceptio

are the ghost-diagrams contributing toGa
e @Fig. 4~b!#; the

latter donot coincide with the corresponding ghost contrib
tions in the BFG.

The important step is to recognize that the BFG gh
sector is provided precisely by combining the RFG gho
with the right-hand side of Eq.~8!. Specifically, one arrives
at both thesymmetricvertexG̃ Ãc̄c

e , characteristic of the BFG

as well as at the four-particle ghost vertexG̃ ÃAc̄c
e , which is

totally absent in the conventional formalism@Fig. 4~c!#. In-
deed we find~omitting the spinors!

E @S 1a
ab# t,I5E D~2k1q!$2ka@G 1

ab~2k1q,k!# t,ID~k!

1 ig f bcd@Q 1a
acd~2k1q,k!# t,I%. ~11!

A similar equation, in which we have to trade theG 1
ab and

Q 1a
acd Green’s functions for their Bose symmetric onesG 2

ab

and Q 2a
acd , holds for theS2a term. It is then easy to show

that

G̃ Ãc̄c,a
e

~q![GAc̄c,a
e

~q!1g feba

E $ka@G 1
ab~2k1q,k!# t,I

1~k2q!a@G 2
ab~2k1q,k!# t,I%

3D~2k1q!D~k!,
11190
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G̃AÃc̄c,a
e

~q![ ig2f ebaE $ f acd@Q 2a
cdb~2k1q,k!# t,ID~k!

2 f bcd@Q 1a
acd~2k1q,k!# t,ID~2k1q!%.

~12!

This concludes the proof thatĜa
e[G̃a

e . We emphasize tha
the sole ingredient in the above construction has been
STI of Eq.~5!; in particular, at no point have we employeda
priori the background formalism. Instead, its special gh
sector has arisendynamically, once the PT rearrangemen
has taken place.

The final step is to construct the~all orders! PT gluon
self-energyP̂mn

ab . Notice that at this point one would expe

that it too coincides with the BFG gluon self-energyP̃mn
ab ,

since both the boxes as well as the vertex do coincide w
the corresponding quantities in BFG, and theS-matrix is
unique ~renormalization may be carried out order-by-ord
without any complications, see the second paper in@7#!. We
will carry out a proof based on the strong induction princip
which states that a given predicateP(n) on N is true ; n
PN, if P(k) is true wheneverP( j ) is true ; j PN with j
,k. We will use a schematic notation, suppressing Loren
color, and momentum indices. At one- and two-loop, w
know that the result is true@4,7#. Assuming then that the PT
construction has been successfully carried out up to the o
n21, we will show that the PT gluon self-energy is equal
the BFG gluon self-energy at ordern, hence proving that this
equality holds true at any givenn. From the inductive hy-
pothesis, we know thatP̂ [ ,][P̃ [ ,] , Ĝ [ ,][G̃ [ ,] , and B̂[ ,]

[B̃[ ,][B[ ,] , with ,51, . . . ,n21. Now, theS-matrix ele-
ment of ordern, to be denoted asS[n] , assumes the form
S[n]5$GDG% [n]1B[n] . Moreover, since it is unique, regard
less of whether it is written in the RFG, in the BFG, as w
as before and after the PT rearrangement, we have thatS[n]

[Ŝ[n][S̃[n] . Using then the fact thatB̂[ ,][B̃[ ,] holds true
even when ,5n, we find that $GDG% [n][$ĜD̂Ĝ% [n]

[$G̃D̃G̃% [n] . These amplitudes can then be split into 1P
and 1PI parts; in particular, the 1PR part after the PT re
rangement coincides with the 1PR part written in the BF
since$GDG%R

[n]5G [n1]D [n2]G [n3] with n1 ,n2 ,n3,n, andn1

1n21n35n. This implies in turn the equivalence of the 1P
parts, i.e.,

~ Ĝ [n]2G̃ [n] !D [0]G [0]1G [0]D [0]~ Ĝ [n]2G̃ [n] !

1G [0]D [0]~P̂ [n]2P̃ [n] !D [0]G [0][0. ~13!

At this point, by means of theexplicit construction pre-
sented for the vertex, we have thatĜ [n][G̃ [n] , so that one
immediately getsP̂ [n][P̃ [n] . Hence, by strong induction
the above relation is true for any given perturbative orden,
i.e., we haveP̂mn

ab[P̃mn
ab , QED.

In conclusion, we have shown that the use of the STI~5!
satisfied by the special Green’s function~3!, allows for the
1-4
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generalization of the PT procedure to all orders. It would
interesting to further explore the physical meaning of
n-point functions obtained@10#, and establish possible con
nections with related formalisms@11#.
e

ys
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