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Pinch technique to all orders
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A generalization of the pinch technique to all orders in perturbation theory is presented. The effective
Green’s functions constructed with this procedure are singled out in a unique way through the full exploitation
of the underlying Becchi-Rouet-Stora-Tyutin symmetry. A simple all-order correspondence between the pinch
technique and the background field method in the Feynman gauge is established.
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It is well known that, to any finite order, the conventional Green'’s functions; this is however beyond our powers at the

perturbative expansion gives rise to expressions for physicahoment. On the other hand, there existsliagrammatic
amplitudes which are endowed with crucial properties.method, called the pinch techniq(®eT) [4,5], which system-
Smatrix elements, for example, are independent of thetically exploits the symmetries built into physical observ-
gauge-fixing scheme and parameters chosen to quantize thbles, such a§matrix elements, in order to construct off-
theory; they are gauge-invaria@@urrent conservationthey  shell subamplitudes that are kinematically akin to
are unitary(conservation of probabilityand well behaved at conventional Green’s functions, but, unlike the latter, are also
high energies. However, the above properties are in generahdowed with desirable properties. The basic observation,
not reflected by the individual off-shell Green’s functions, which essentially defines the PT, is that there exists a funda-
which are the building blocks of the aforementioned perturmental cancellation between sets of diagrams with different
bative expansion. The latter depend on the gauge-fixing painematic properties, such as self-energies, vertices, and
rameters in a complicated way, grow much faster than physipoxes. This cancellation is driven by the underlying Becchi-
cal amplitudes at high energies, and display unphysicakget.Stora-Tyutin symmetii], and is triggered when lon-

thresholds. Evidently, when combining unphysical Green
functions to form a physical amplitude, subtle field-
theoretical mechanisms are at work, which enforce nontrivia
cancellations among them at any given order.

advantages in reformulating the perturbative expansion i
terms of off-shell Green’s functions which display manifestly
the same properties as the physical amplitudes. To begi)
with, the sharp difference between observables and Green
functions suggests a great deal of redundancy in the convetgv€! Ward
tional diagrammatic formulation of gauge theories, in the
sense that extensive underlying cancellations beg to be ma ,
manifest and be explicitly exploited as early within a calcu-Perturbation theory,
lation as possible. Implementing these cancellations at aH

Sgitudinal momenta circulating inside vertex and box dia-
Prams generatéby “pinching” out internal fermion lineg
propagatorlike terms. The latter are reassigned to conven-
anaI self-energy graphs in order to give rise to the afore-
entioned gauge-invariant effective Green’s functions. In its
original one-{4,5] and two-loop[ 7] application, the PT boils
own to the study of the kinematic rearrangements produced
iato individual Feynman diagrams when elementary tree-
identitiegWIs) are triggered.
One of the most pressing questions in this context is
ether one can extend the PT algorithm to all orders in
thus achieving the systematic construc-
on of effectiven-point functions displaying the aforemen-

There are considerable conceptual and phenomenologic

early stage not only renders the bookkeeping aspects mofioned characteristic features. To accomplish this it is clear

tractable[1], but allows for theoretically safe reorganizations
or resummations of the perturbative series. For example
identifying and Dyson-resumming the correct subset o
propagatorlike corrections gives rise to physically meaning:
ful Born-improved amplitudeg2]. In addition, the generali-

zation into a non-Abelian context of the characteristic prop

that one needs to abandon algebraic operations inside indi-
vidual Feynman graphs, and resort to a more formal proce-
,dure. In this paper we will show that the PT algorithm can be
successfully generalized @il ordersin perturbation theory,
through the collective treatment of entire sets of diagrams.
This is accomplished through the judicious use of the

erties of the QED effective charge has a wide range ofl@vnov-Taylor identity (STI) [8] satisfied by a special

phenomenological applicatiofi3]. Finally, n-point functions
free of unphysical artifacts could serve, at least in principle,
as the new building blocks of manifestly gauge-invariant
Schwinger-Dyson equatiorg].

Green'’s function, which serves as a common kernel to all
higher order self-energy and vertex diagrams.

We will consider for concreteness tf®matrix element
for the quark—anti-quark elastic scattering process

It would clearly be preferable to enforce the relevant cand(r1)d(r2)—d(p:)d(p,) in QCD. We setq=r;—r,=p;

cellations already at the level of the functional path integral— Pz, With s= q° the square of the momentum transfer. The
defining the theory, and obtain directly from it the desiredlongitudinal momenta responsible for the aforementioned ki-

nematical rearrangements stem either from the bare gluon
propagators or from the pinching paft, (q.k;.k,) ap-

oy
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n Pl Let us focus on the STI satisfied by the amplitt@éﬂ; it
Ki@2 reads
€
A= @ *@ b b bcdnacd b, ~~ab
a a H ac a a
1 @ p kfcﬂv—i_ kQVGl _Igf ¢ QlV _gX1y+gX1V:O: (4)
T2 P2

where the Green'’s function appearing in it is defined in Fig.

FIG. 1. The subset of the graphs of the quark—anti-quark elasti%_ The terms<, anle die on-shell, since they are missing

scattering process which will receive the action of the longitudinal . .
. P one fermion propagator. Thus, we arrive at the on-shell STI
momenta stemming fromd'™. Here A represents the full gluon

propagator. for T;‘ﬁ
P10, 0k ko) =T, (0K ko) + T, (0, ks o), KT,0=5%, ®)
Tk k2) = (k1= K2) oGt 20,90~ 20, with
L0(0 K1 ko) =Koy = Ka G (D S1=v(pa)ligf Q1 %Ky ko,P1,P2)D(ky)

The above decomposition is to be carried out to “external” —k2,G5°(ky1,Kz,p1,P2)D(k1)D(kp)Ju(py), (6)

three-gluon vertices only, i.e., the vertices where the physical '
momentum transfeq is entering[7]. In what follows we where we have defined

work in the renormalizable Feynman gau@eFG); this g
ac

choice eliminates the longitudinal momenta from the bare 10 (K1,Ko,p1,p2)
propagators, and allows us to focus our attention on the all- acd
order study of the longitudinal momenta originating from = Q1 (Ky,Kz,P1,p2) D (k) S(P1)S(P2)-

FZW. We will denote by.A the subset of the graphs which ) b ab .
will receive the action of the longitudinal momenta stem- N perturbation theory boti7} and S7, are given by

ming from " (q,k;,k,) (see Fig. 1 We have that Feynman diagrams, which can be .separated into distinct_
auv
classes, depending on their kinematic dependence and their
e A€ o geometrical properties. Graphs which do not contain infor-
A=ig U(f1)77av(rz)feabr “H(d ke, kz2) mation about the kinematical details of the incoming test-
quarks are self-energy graphs, whereas those which display a
X Too(Ky Ka,P1,P2), (2)  dependence on the test quarks are vertex graphs. The former

depend only on the variabk whereas the latter depend on
where\® are the Gell-Mann matrices, aﬁ@f; is the subam- both s and the massn of the test quarks; equivalently, we
plitude gi(kl)gﬁ(kz)eq(pl)a(pz), with the gluonsoff- will refer to them ass-channel ort-channel graphs, respec-
shell and the fermions on-shell: for the latter tively. In addition to thes-t decomposition, Feynman dia-
- - - rams can be separated into one-particle irreducibil
0(p)S H(P)lg,-m=S"UPU(PL)|p,-m=0, whereS(p) & P P olbR)

_ , . and one-particle reduciblelPR ones. The crucial point is
Liethhea(\tléll) quark propagator. In terms of Green’s functlonsthat the action of the momentd* or k% on Tiby doesnot

respect, in general, the originglt and 1PI-1PR separation
— furnished by the Feynman diagrartsee the third paper of
b__ ab o
TZV_U(DZ)[CW(kl’k2'pl’p2)AZ(k1)Av(k2)]u(pl)' [2]). In other words, even though E@) holds for the entire
amplitude, it is not true for the individual subamplitudes, i.e.,

Clearly, there is an equal contribution from th& situated

. . b b et _
on the right-hand side df- KT kv # STy, Xx=st; Y=LR,  (7)
ka LV 41
b@Qe O
ab _ d
Cu= G o=
a &P 6 FIG. 2. Diagrammatic representation of the
k1~ P2 Green’s function appearing in the STI of Bd).
HereD andSrepresent the full ghost and fermion
k2 .. p propagators respectively.
re, O
b b
ar= (@ Xiy =
o @ ©
k1 ~ p2
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k2 v the final outcome of a sequential triggering of intermediate
. Y » WIs. We emphasize that, in order to preserve the special
kY x =kj X 7 + . .. . ,
4 unitarity and analyticity properties of the PT Green’s func-
by Su tions, “internal” three-gluon vertices should not pinch, nor

should one carry out subintegrationd.

The nontrivial step for generalizing the PT to all orders is
Kb x( e ) = — then the following: Instead of going through the arduous task
of manipulating the left-hand side of EB), following the

aforementioned rules, in order to determine the pinching
FIG. 3. Diagrammatic representation of the tree-level inequalifparts and explicitly enforce their cancellation, use directly
ties of Eq.(7). After the PTs-t channel cancellation occurs we are the right-hand side, which already contains the answer. In-
left with the equality of Eq(8). deed, the right-hand side involves only conventiofglos)
Green’s functions, expressed in terms of normal Feynman
where I(R) indicates the one-particiereducible (reducible rules, with no reference to unphysical vertices. That this
parts of the amplitude involved. Evidently, whereas the charmust be so follows from the same PT rules mentioned above:
acterization of graphs as propagatorlike and vertexlike is undue to the absence of external three-gluon vertices the right-
ambiguous in the absence of longitudinal momeptg., ina hand side cannot be pinched further, i.e. its separation into
scalar theory, their presence tends to mix-propagatorlike propagatorlike and vertexlike graphs is unambiguous, since
and vertexlike graphs. Similarly, 1PR graphs are effectivelythere is no possibility(without violating the PT rulesto
converted into 1Pl one&he opposite cannot happehe  obtain further mixing. Thus, the right-hand side of Ef)
reason for the inequality of Eq7) is precisely the propaga- serves as a practical definition of the PT to all orders.
torlike terms, such as those encountered in the one- and two- After these observations, we proceed to the PT construc-
loop calculations; they have the characteristic feature thatjon to all orders. Once the effective Green’s functions have
when depicted by means of Feynman diagrams they contaibpeen derived, they will be compared to the corresponding
unphysical vertices, i.e., vertices which do not exist in theGreen’s functions obtained in the Feynman gauge of the
original Lagrangian(Fig. 3). All such diagrams cancalia-  background field methoBFG for shor} in order to estab-
grammaticallyagainst each other. Thus, after the aforemeniish whether the known correspondence persists to all orders;
tioned rearrangements have taken place, forttlehannel as we will see, this is indeed the cdéer an extended list of
irreducible part of the amplitude we will have the equality related references s¢g]).
To begin with, it is immediate to recognize that in the
[keT2 1P T=[835), . (8) RFG box diagrams of arbitrary order, to be denoted by

pvdt
BI", coincide with the PT boxeB[™, since all three-gluon

Equation(8) merits particular attention, because it is of vertices are “internal,” i.e., they do not provide longitudinal
central importance for the generalization of the PT to allmomenta. Thus, they coincide with the BEG box@i$!, i.e.,
orders. The superscript “PT” on the left-hand side denotesE[n]: n] _RIn
that the corresponding amplitude must be rearranged follow- B B for everyn.
) . . ; . . We then continue with the construction of the 1Pl PT
ing the well-defined PT algorithm, as it has been explained in ) e
the literaturg7]. In particular, one tracks down the rearrang- 9'u0n-guark—anti-quark vertek, . We start from the corre-
ments induced when the action @rtual) longitudinal mo-  sPonding vertex in the RFG, to be denotedlty, and focus
menta(k) on the bare vertices of diagrams trigger elementary?nly on the class of vertex diagrams containingeaternal
WIs. Eventually a WI of the formk”yﬂz5*1(|,(Jr b) bare three-gluon vertex; we will denote this subseﬂ"kﬁy’a
— S~ }(p) will give rise to propagatorlike parts, by removing [Fig. 4@]. All other types of graphs contributing 0 are
(pinching ou} the internal bare fermion propagat@(k inert as far as the PT procedure is concerned, because they
+p). Depending on the topology of the diagram under con-do not furnish pinching momentg/]. The next step is to
sideration this last WI may be activated immediately, or ascarry out the vertex decomposition of E@) to the external

n yal
R LN Ry ’.@.
e — € e _ &
Ada = Y Agco = MM
@M p *’@" FIG. 4. The Green’s functions identified in the
(a) 22 (b) p2 construction of the all order PT vertdi€ . The

Green’s functiongb) and (c) receive a contribu-
tion from similar terms with the ghost arrows re-
versed(not shown.
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three-gluon vertex $3%% appearing inl"3s . This will re-

apv

P (=072 [ {154 08—k, )], DK

sult in the obvious separatidiys  =T55 +T55 . The part
Fe . . ! ! ’
Lp3, Fs also inert, and will .be left untg;lch_ed. Thus, the only _ fbcd[Qzlizd( —k+q,k) ] D(—k+a)}.
quantity to be further manipulated 13,5, ; it reads 12
rhs =gfeba f [(k—a)#g,+k'g“[7%2],,, (9  This concludes the proof thdt=T";. We emphasize that

the sole ingredient in the above construction has been the
 perad 4 o ) . STI of Eq.(5); in particular, at no point have we employad
where [ = [d°k/(2m)", d=D—2¢, D is the space-time pyiori the background formalism. Instead, its special ghost
dimension, andl is the 't Hooft mass. Following the discus- gector has arisedynamically once the PT rearrangement
sion presented above, the pinching action amounts to thgas taken place.
replacement k[ 7201, \—[K"T5 ], =[ S50 (—k+a,K) ], The final step is to construct th@ll orders PT gluon
and similarly for the term coming from the momentuia ( self-energyf125, . Notice that at this point one would expect

) i _q)47eby — _r.cabr_ ~
eq?J)iv:':llelrﬁ.); (k=@ Tid=~[S1(=k+aR)]us On 4ot 100 coincides with the BFG gluon self-enerbij",
' since both the boxes as well as the vertex do coincide with
the corresponding quantities in BFG, and tBenatrix is
Ffif,a(q)—@febaf ([S82],,—[S30T, ). (10)  unique (renormalization may be carried out order-by-order
without any complications, see the second papégiin We
will carry out a proof based on the strong induction principle,
At this point the construction of the effective PT verte§  which states that a given predica®§n) on N is true V n
has been completed. The next important point is to study the N, if P(k) is true wheneveP(j) is trueV jeN with
connection betweeii® and the verteX'® in the BFG. To <:<oll(6rW§nv(\jlllln?jri:nfsgenggcegofp%nﬁesugﬁ;eizgﬁola%rew;’
e oW na h el 3 011, Acsuming hen it 1 PT
Fe . ) ~e construction has been successfully carried out up to the order
BFG; most notably, th&',s , is precisely thd'z,, , partof 1 we will show that the PT gluon self-energy is equal to
T, whereA is the background gluon. The only exception the BFG gluon self-energy at orderhence proving that this
are the ghost-diagrams contributing B, [Fig. 4(b)]; the  equality holds true at any given From the inductive hy-
latter donot coincide with the corresponding ghost contribu- pothesis, we know thafIl‘/=T1l1 T'I=TL and B!‘
tions in the BFG. , _ =BlI=Bl with ¢=1,...n—1. Now, the Smatrix ele-
The important step is to recognize that the BFG ghostnent of ordern, to be denoted asi™, assumes the form
sector is provided precisely by combining the RFG ghostss[n]:{FAF}[n]_l_B[n]_ Moreover, since it is unique, regard-
with the right-hand side of Ed8). Specifically, one arrives  |ess of whether it is written in the RFG, in the BFG, as well

at both thesymmetriovertexI 5. , characteristic of the BFG, as before and after the PT rearrangement, we haveSifat

as well as at the four-particle ghost verB%,-., which is  =S"=S". Using then the fact thal/=BL‘] holds true
totally absent in the conventional formaligfaig. 4c)]. In-  even when €=n, we find that {[AT}MN={TA}"
deed we findomitting the spinors ={T'ATI"l. These amplitudes can then be split into 1PR

and 1Pl parts; in particular, the 1PR part after the PT rear-
by b rangement coincides with the 1PR part written in the BFG,
f [Siﬂ]"'_f D(—k+a){-k[G1(—k+ak)]D(K) since{l AT }EV=TJAMITINEl with ny,n,,nz<n, andn,

) +n,+nz=n. This implies in turn the equivalence of the 1PI
+igfPe L Qe —k+a,k) ]y 1} 1D parts, ie.,

A similar equation, in which we have to trade t54” and
Q2% Green’s functions for their Bose symmetric ongg
and 95, holds for theS,, term. It is then easy to show

(T[T I AL [0 PIOTATON(In] TNy

that + IO 1)y — fIn) L0l (0l =, (13)
1%%;0 a(Q)EFz& a(q)+gfeba At this point, by means of the{plicitgonstruction pre-

’ ' sented for the vertex, we have tHat'=T[" so that one
j{k (G2~ K+ q.K)] immediately getsI["=TI["l. Hence, by strong induction,
a1 A the above relation is true for any given perturbative orer

B ‘fab_—_ t7ab
(k=) o[ G5°(—k+ Q)0 T, } e., we havell, =Il,,, QED.
In conclusion, we have shown that the use of the &JlI
XD(—k+q)D(k), satisfied by the special Green’s functi@g), allows for the

111901-4



RAPID COMMUNICATIONS

PINCH TECHNIQUE TO ALL ORDERS PHYSICAL REVIEW 6, 111901R) (2002

generalization of the PT procedure to all orders. It would be This work has been supported by the CICYT Grants
interesting to further explore the physical meaning of theAEN-99/0692 and BFM2001-0262. D.B. thanks the Theoret-
n-point functions obtained10], and establish possible con- ical Physics Department of the University of Trento, where

nections with related formalismjd.1]. part of this work has been carried out.
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