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Renormalization invariants of the neutrino mass matrix

Sanghyeon Chang* and T. K. Kuo†

Physics Department, Purdue University, West Lafayette, Indiana 47907
~Received 4 September 2002; published 31 December 2002!

The renormalization evolution of all parameters in the neutrino mass matrix depends only on one variable,
the energy scale. This fact, coupled with rephasing considerations, leads to a set of renormalization invariants,
correlating the evolution of physical parameters. We obtain these invariants explicitly and discuss their impli-
cations.
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Recent results from the atmospheric and solar exp
ments have shown strong evidence for neutrino oscillati
@1,2#. These observations indicate that neutrinos are
massless, and that two of the neutrino mixing angles
large, or even maximal. This is in contrast with the qua
mixing angles, which are all small. Even with our limite
knowledge, it seems clear that the neutrino mass matrix,
like their quark counterpart, has a rich structure, and i
urgent to have an understanding of its salient features
account for the minuscule neutrino masses, the seesaw m
@3# makes use of a heavy scale for the right-handed ne
nos. Thus, any theoretical understanding of the obser
neutrino parameters necessarily involves two vastly differ
energy scales. This means that renormalization effects m
be taken into account in any theoretical model of the n
trino mass matrix.

The renormalization of the neutrino mass matrix has b
extensively discussed in the literature@4–6#. Although dif-
ferent models, such as the standard model~SM! or minimal
supersymmetric standard model~MSSM!, give rise to nu-
merically distinct results for individual parameters, as
have shown for the two-flavor problem@6#, there are renor-
malization group equation~RGE! invariants, correlating the
evolution of the physical parameters. These invariants are
consequences of the general structure of the RGE, and
main the same for a class of models, including SM a
MSSM.

In general, RGE evolution implies that each physical p
rameter becomes a function of the energy scale. Thus
there aren independent parameters in the mass matrix,
might expect to have (n21) RGE invariants. However, th
mass matrices are also subject to arbitrary rephasing tr
formations. In addition, such phases are generated by
renormalization transformation. As a result, the physi
RGE invariants must also be rephasing invariants. For
three-flavor mass matrix, it turns out that there are th
~complex! RGE and rephasing invariants, among its eig
physical parameters. These invariants will be detailed late
this paper. Just as for the two-flavor problem, these inv
ants are the same for a class of models. As in earlier stu
on renormalization, only one-loop effects are considered
this work.
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In the study of a neutrino mass matrix, the importance
renormalization considerations is enhanced since the mix
angle exhibits sensitive resonance behavior. It would be m
interesting if the observed large neutrino mixing has its o
gin in renormalization@4–6#. In this scenario, the RGE in
variants can be used directly to tell us about neutrino mas
through their correlation with the mixing angles.

Before we embark on a detailed discussion of renorm
ization, it is useful to introduce a general parametrization
the mass matrix which will facilitate the analysis. In th
paper, we will consider the~symmetric! neutrino mass matrix
to originate from a dimension-5 term in the effective L
grangian, L5 f nTn^f&^f&5nTM n

0n. Here, ^f& is the
vacuum expectation value of the Higgs scalar,f is the cou-
pling constant,M n

0 is the neutrino mass matrix, andn is the
neutrino wave function in the flavor basis.

We can write, in general,

M n
05UMdiagUT, ~1!

Mdiag5S e2h1

e2h2

e2h3

D , ~2!

U5Pe2 i e7l7e2 i e5l5e2 i e3l3e2 i e2l2P8, ~3!

P5S eia1

eia2

eia3

D , P85S eig1

eig2

eig3

D .

~4!

Here, the mass eigenvalues are given by exp(2hi), a i are the
unphysical phases from the neutrino wave functio
(e2 ,e5 ,e7) are the physical neutrino mixing angles,e3 is a
CP violating phase, theg ’s are the intrinsicCP phases of the
mass eigenvalues, and thel ’s are the Gell-Mann matrices
To preserve the symmetry of the flavors, we will not use
diagonall ’s in Mdiag. Note also that, since neutrino oscilla
tions are governed by the effective Hamiltonian,H
5(M nM n

†)/2E, they are independent of the phasesg i .
It is convenient to factor out the determinant~the overall

scale! of M n
0 and define

M n5~detM n
0!21/3M n

0 , detM n51. ~5!

The condition detM n51 is obtained by imposing the follow
©2002 The American Physical Society02-1
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ing relations onM n
0 : (h i5(a i5(g i50. This corresponds

to the fact that, with detM n51, M n only depends on the
mass ratios (Dh) and the relative phases (Da and Dg).
Note that, with the parametrization in Eq.~2!, M n can be
analytically continued into anSU(3) matrix (h j→ ih j ), a
G
m

f
e
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.
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fact which will be used later. Also, rephasing of the neutri
wave functions changes onlya j , while leaving all other pa-
rameters invariant.

It is also useful to write down the symmetric matrixM n

explicitly:
M n5S c(5)
2 x̄11s(5)

2 e2h̄3
c(7)c(5)s2(2)D12

2s(7)s2(5)D13

s(7)c(5)s2(2)D12

1c(7)s2(5)D13

c(7)c(5)s2(2)D12

2s(7)s2(5)D13

c(7)
2 x̄22s2(7)s(5)s2(2)D12

1s(7)
2 ~s(5)

2 x̄11c(5)
2 e2h̄3!

s2(7)~ x̄22s(5)
2 x̄11c(5)

2 e2h̄3!/2

1c2(7)s(5)s2(2)D12

s(7)c(5)s2(2)D12

1c(7)s2(5)D13

s2(7)~ x̄22s(5)
2 x̄11c(5)

2 e2h̄3!/2

1c2(7)s(5)s2(2)D12

s(7)
2 x̄21s2(7)s(5)s2(2)D12

1c(7)
2 ~s(5)

2 x̄11c(5)
2 e2h̄3!

D , ~6!
re-
er-

-
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ua-
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h̄ i5h i1 ig i , ~7!

x15c(2)
2 e2h̄11s(2)

2 e2h̄2, x̄15e22i e3x1 , ~8!

x25s(2)
2 e2h̄11c(2)

2 e2h̄2, x̄25e2i e3x2 , ~9!

D125
1
2 ~e2h̄12e2h̄2!, ~10!

D135
1
2 ~ x̄12e2h̄3!. ~11!

Here, we use the notations(2)5sine2,s2(2)5sin 2e2, etc. We
have also seta i50, without loss of generality.

The RGE for the effective neutrino mass matrix,M n , has
been studied extensively. In the SM and MSSM, the R
were obtained explicitly and can be written in the for
@4–6#: dMn

0/dt5kM n
01$Q,M n

0%, wherek is a constant,Q is
a diagonal and traceless matrix trQ50, t is the scale vari-
able t5(1/16p2)ln(m/m0), with (m,m0)5energy scale. The
solution is given by

detM n
0~ t !5e3ktdetM n

0~0!, ~12!

M n~ t !5eQtM n~0!eQt. ~13!

The quantitiesk andQ were given explicitly in terms of the
leptonic Yukawa constants.

The effect of the operator,eQt, amounts to a change o
relative scale~rescaling! between the different flavors. Th
close relation between rescaling~renormalization! and
rephasing is revealed by considering pure imaginary va
for Q, which turns Eq.~13! into a rephasing transformation
If, in addition, we considerh j→ ih j in M n , then the equa-
tion becomes a rephasing transformation inSU(3).

Equation~13! is a formal solution of RGE, since it only
gives thet-dependence of the matrix elements ofM n . One
would really like to know thet-dependence of the physica
parameters. To this end, we must reexpressM n in Eq. ~13! in
the form of Eq.~1!,
E

s

M n~ t !5U~ t !Mdiag~ t !UT~ t !, ~14!

and one needs to relate the physical parameters at scalet to
those att50.

Mathematically, the RGE solution corresponds to the
lation connecting the parameters, known as the Bak
Campbell-Hausdorff~BCH! formula, between different rear
rangements@e.g. Eqs.~13! and ~14!# of the noncommuting
factors in an element ofSL(3,C). Since we are dealing with
only exponential functions which are free of singularitie
these relations should remain valid under analytic contin
tions. In particular, the BCH formulas forSL(3,C) are the
analytic continuation of those forSU(3). These ideas can b
implemented explicitly for the case of two flavors, which w
will study first before we take on the full analysis of th
three-flavor problem.

Consider a general symmetricSU(2) matrix ~with two
real parameters!, which can be written as

Ñ15e2 ibs2e2i g̃s3eibs2, ~15!

or

Ñ25ei ṽs3e2i t̃s1ei ṽs3. ~16!

The relations~BCH formula! between the two parametriza
tions Ñ1 andÑ2 can be read off from the matrix elements
given in Eqs.~15!,~16!,

cos 2g̃5cos 2t̃ cos 2ṽ, ~17!

sin 2g̃ cos 2b5cos 2t̃ sin 2ṽ, ~18!

sin 2g̃ sin 2b5sin 2t̃. ~19!

When Ñ is subject to a rephasing transformation,

Ñ→e2 i ãs3Ñe2 i ãs3, ~20!
2-2
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it is obvious that parametrization Eq.~16! makes it trivial,
resulting inṽ→ṽ2ã. But for Ñ1 in Eq. ~15!, it induces the
changeb→b8,g̃→g̃8, satisfying

cos 2g̃85cos 2t̃ cos 2~ṽ2ã !, ~21!

sin 2g̃8 cos 2b85cos 2t̃ sin 2~ṽ2ã !, ~22!

sin 2g̃8 sin 2b85sin 2t̃. ~23!

It follows that

tan 2b85
sin 2b/cos 2ã

cos 2b2tan 2ã/tan 2g̃
. ~24!

In addition,t̃ is invariant under rephasing. Thus, we have
rephasing invariant, in terms of the parametrization in E
~15!,

sin 2g̃ sin 2b5sin 2g̃8 sin 2b8. ~25!

Equations ~24! and ~25! are the solutions to theSU(2)
rephasing transformation, Eq.~20!.

The same results can be taken over for symmetric m
matrices, where all variables (b,g̃,ṽ,t̃) are complex, with
four real parameters. Let us first consider the case of
mass matrices, corresponding to pure imaginary (g̃,ṽ,t̃):

~ g̃,ṽ,t̃ !→~ ig,iv,i t!. ~26!

The resulting mass matrix can be written in two alternat
forms, N15e2 ibs2e22gs3eibs2, N25e2vs3e22ts1e2vs3.
With ã→ ia, the rephasing transformation onÑ becomes a
renormalization~rescaling! transformation onN:

N→eas3Neas3. ~27!

The solution to the RGE is obtained directly from the BC
formula of SU(2), Eq. ~24!, by analytic continuation:

tan 2b85
sin 2b/cosh 2a

cos 2b2tanh 2a/tanh 2g
. ~28!

This is the same relation obtained earlier for RGE evoluti
At the same time, we have an RGE invariant@6#:

sin 2b sinh 2g5sin 2b8 sinh 2g8. ~29!

Note that this is also automatically invariant under~relative!
rephasing on the mass matrixN. In addition, while the value
a in Eq. ~27! is model dependent, Eq.~29! is not.

In general, all parameters (b,g̃,ṽ,t̃) are complex, so tha
Ñ1 andÑ2 become complex mass matrices. As was shown
Ref. @7#, we can demand thatb and b8 be real by adding
rephasing factors toÑ1. The resulting generalization of Eq
~24! coincides with Eq.~15! of Ref. @6#. In this connection,
we emphasize that the renormalization transformation,
~27!, generates rephasing factors whenN is complex, as was
shown explicitly in Ref.@6#.
11130
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Schematically, solutions to the rescaling transformatio
on mass matrices are the BCH formulas inSL(2,C), which
can be obtained from the rephasing transformations
SU(2), by analytic continuation. We can represent this in
commutative diagram:

~30!

We now turn to the case of three flavors. A general sy
metric SU(3) matrix ~with five parameters! can be param-
etrized in either of two ways

W15VWdiag VT, ~31!

Wdiag5S ei2h1

ei2h2

ei2h3

D , ( h i50 ~32!

V5e2 i e7l7e2 i e5l5e2 i e2l2, ~33!

or

W25Pei (j1l11j4l41j6l6)P, ~34!

P5S eid1

eid2

eid3

D , ( d i50. ~35!

The order of the noncommuting matrix products is chosen
that W1 corresponds to the usual mass matrix parametr
tion, while W2 is most convenient for rephasing conside
ations.

The BCH formulas yield analytic relations between t
two sets of parameters (h i ,e j ) and (j i ,d j ). A rephasing
transformation would changed j→d j8 , and the corresponding
transformation on (h i ,e j ) can be calculated as in Eqs.~21!–
~24!. Also, the functionsj i in terms of (h i ,e j ) are rephasing
invariants. The functions for (h i ,e j ) obtained would have
provided explicit solutions to the RGE, as in Eq.~28!. Un-
fortunately, owing to the complexity of theSU(3) algebra,
so far we are unable to solve for these functions explicitl

When we let all parameters assume complex values,
matrix W turns into a symmetric mass matrix. A rescalin
~renormalization! transformation corresponds tod j→d j
1 iD j . Thus, the rescaling~RGE! invariants which are also
rephasing invariants are precisely (j1 ,j4 ,j6), as complex
functions of (h i ,e j ). Although we cannot obtain these func
tions explicitly, we can obtain the RGE invariants using t
matrix elements as the variables. As before, we can arriv
the results by first studying the rephasing invariants
SU(3).

Consider rephasing transformations on a generalSU(3)
matrix ~with eight parameters!, which can be written in the
form V5Pe2 i e7l7e2 i e5l5e2 i e3l3e2 i e2l2P8, where P is
2-3
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given in Eq.~35! andP8 is obtained fromP by the substitu-
tion d j→d j8 . This is precisely the parametrization for th
CKM matrix and (e2 ,e5 ,e3 ,e7) are rephasing invariants. I
terms of the matrix elements ofV, VIJ , rephasing transfor-

mation givesVIJ→ei (d I1dJ8)VIJ . Thus, the rephasing invari
ants areuVIJu2. When we let the parameters be complex,V
analytically continues intoM, the mass matrix. The repha
ing and rescaling invariants are now given byMIJ

21MIJ .
BesidesuVIJu2, another familiar form of the rephasing in

variant@8# is given byJIJKL5VIJVKLVIL* VKJ* . When we im-
pose the condition detV51, only relative rephasings, but n
overall phases, are admitted. The rephasing invariant tak
simpler form I s5eIJKeI 8J8K8VII 8VJJ8VKK8 . There are six
different ways to arrange the indices so that we may labI
by s, which is an element of the permutation groupS3,

s5S I J K

I 8 J8 K8
D , denoting~ I→I 8,J→J8,K→K8!.

Note that

(
s

I s5detV51. ~36!

Also, I s has a simple relation to the familiar rephasi
invariant JIJKL . For a unitaryV with det51, its minors
are just the complex conjugated elements. For
stance, V115V22* V33* 2V23* V32* or V11V22V335uV22u2uV33u2

2V22V33V23* V32* . When we let the indices take on differe
values, it is easy to show that all of the productsI s are
similarly related toJIJKL , with Im I S52Im(JIJKL), inde-
pendent of the indices.

The analytic continuation of the rephasing invariantsI s
turns them into rescaling and rephasing invariants for
mass matrices:

Js5eIJKeLMNMILMJMMKN . ~37!

As we discussed in the previous section, the physical R
invariants are the rephasing and rescaling invariants of
mass matrix. There are two equivalent forms of these inv
ants. ~i! MIJ

21MIJ ; ~ii ! eIJKeLMNMILMJMMKN . When we
convert these into physical variables, it turns out that
former is more convenient, which will be presented in t
following.

Let us defineI IJ5MIJ
21MIJ . These invariants are not in

dependent, sinceMIJ5MJI , and

(
I

I IJ5(
J

I IJ51. ~38!

So there are altogether three independent~complex! invari-
ants, which we can take to be

I 15I 1121, I 25I 122I 13 and I 35I 23. ~39!

Explicitly, we find
11130
s a

-

e

E
e
i-

e

I 15M11M11
21215c(5)

4 s2(2)
2 sinh2~ h̄12h̄2!

1s2(5)
2 c(2)

2 sinh2~ h̄12 h̄̄3!1s2(5)
2 s(2)

2 sinh2~ h̄22 h̄̄3!,

I 25M12
21M122M13

21M135s2(2)s2(5)c(5)s2(7)~D13D12
2

1D13
2 D12!1c2(7)~s2(2)

2 c(5)
2 D12D12

2 2s2(5)
2 D13D13

2 !,

~40!

I 35M23M23
215Fs2(7)

2
~ x̄22s(5)

2 x̄12c(5)
2 e2h̄3!

1s2(2)s(5)c2(7)D12GFs2(7)

2
~ x̄2

22s(5)
2 x̄1

22c(5)
2 e22h̄3!

1s2(2)s(5)c2(7)D12
2 G .

Here we have used the notations in Eqs.~6!–~11!. In addi-

tion, h̄̄35e2i e3h̄3 , D12
2 5 1

2 (e22h̄12e22h̄2), D13
2 5 1

2 (x̄1
2

2D13
2 5 1

2 12 (x̄1
22D13

2 5 1
2 12 (x̄1

22D13
2 5 1

2 12 (x̄1
22D13

2

5 1
2 12 (x̄1

22e22h̄3),

x̄1
25e2i e3~c(2)

2 e22h̄11s(2)
2 e22h̄2!, ~41!

x̄2
25e22i e3~s(2)

2 e22h̄11c(2)
2 e22h̄2!. ~42!

These invariants show that the physical parameters
intricately correlated during the RGE evolution. In gener
we cannot single out one or two variables which evolve
dependently of the others. However, in limited regions wh
certain conditions are satisfied, we do get simplified relatio
between a subset of the parameters. We will highlight so
of these relations in the following.

~i! Real mass matrix. In this case, all physical phases v
ish, e35g i50. The RGE invariantsI 1,2,3 are all real so that
renormalization does not generate any physical phases
expected from Eq.~13!.

~ii ! Two-flavor solutions. The three-flavor problem r
duces to that of two flavor under certain conditions. Th
happens when two of the three mixing angles vanish. Thu
s(5)5s(7)50, we find thatI 15I 25s2(2)

2 sinh2(h̄12h̄2),I350.
Note that the conditions(5)5s(7)50 is RGE stable. Simi-
larly, if s(2)5s(7)50, or if s(2)5s(5)50, the result is genu-
ine two-flavor solutions.

~iii ! In regions when one angle is small. It may happ
that, in a certain range oft, one of the mixing angles can b
small. In general, such conditions can only be fulfilled in
limited region. There will then be approximate invaria
combinations from a reduced set of parameters. For insta

in a region wheres(2)→0, we find (h̄̄15h̄12 i e3 ,h̄̄25h̄2
1 i e3)
2-4
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I 1→s2(5)
2 sinh2~ h̄12h̄3!, I 2→2c2(7)s2(5)

2 sinh2~ h̄̄12h̄3!

I 3→s2(7)
2 @2s(5)

2 sinh2~ h̄̄22 h̄̄1!2c(5)
2 sinh2~ h̄̄22h̄3!

1s(5)
2 c(5)

2 sinh2~ h̄̄12h̄3!#. ~43!

This means that, in the limits(2)→0, the (123) sector be-
haves like a two-flavor problem. At the same time, there i
correlation between the mixing anglee7 and theCP phase,
e3. However, if e350, then the approximations(2)→0 is
consistent only ife7→0. Similar conclusions can be reache
for the cases(5)→0 ands(7)→0. In addition, the cases whe
two masses are nearly degenerate, or when one mass
dominates, can also be analyzed along these lines.

In this paper, we have studied the properties of the thr
flavor neutrino mass matrix under RGE evolution. Unlike t
two-flavor problem, where we obtained exact analytic so
tions, the algebra of the 333 matrices is formidable, and w
are only able to find three~complex! RGE invariants which
correlate the evolutions of the many physical parameters

The RGE evolution of a~symmetric! mass matrix with
detM51, for a class of theories~including the SM and
MSSM!, is given in the formM→eQMeQ, Q5 real diago-
nal and trQ50. That is, renormalization amounts to a re
tive rescaling between the different flavors. At the same tim
M is subject to arbitrary rephasing transformations, wh
correspond to takingQ to be an arbitrary pure imaginar
matrix. The combined rescaling and rephasing transfor
tion is thus given byM→eQ̄MeQ̄, Q̄5complex. SinceQ̄
contains only two~complex! variables, we expect RGE in
th
A

11130
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lue

e-

-

,
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a-

variants formed from the many physical variables inM. By
means of an analytic continuation, these considerations
the same as those used in obtaining rephasing invarian
the CKM matrix. We can thus write down three~complex!
RGE and rephasing invariants explicitly. Our arguments a
make it clear that these invariants are independent of
specific values ofQ, and are the same for the SM an
MSSM.

Since exact solutions for the three-flavor problem are
available, a number of approximate solutions have been c
sidered in the literature@5#. The RGE invariants can be use
to check the consistency of these approximations and to
gest viable new ones. The structure of these invariants
shows that, while the two-flavor approximation is natural
a number of situations, their validity can only be establish
for a limited range oft. For larget, when the parameters als
vary considerably, the two-flavor approximation is viab
only under very stringent conditions.

With minor changes, most of the arguments in this wo
can be adapted to the study of quark mass matrices. In
@6#, it was shown that the infrared fixed point for two-flavo
RGE evolution corresponds tob→0,m2 /m1→`. The ap-
proach to the fixed point, however, is governed by Eq.~36!,
giving bAm2 /m1→const. This suggests that the quark ma
matrices are the results of large RGE evolution, and that
well-known empirical relations between mixing angle a
mass rations,u i j ;Ami /mj , may have a dynamical origin
We plan to apply our analysis to a detailed study of the qu
sector in the future.
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