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Renormalization invariants of the neutrino mass matrix
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The renormalization evolution of all parameters in the neutrino mass matrix depends only on one variable,
the energy scale. This fact, coupled with rephasing considerations, leads to a set of renormalization invariants,
correlating the evolution of physical parameters. We obtain these invariants explicitly and discuss their impli-
cations.
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Recent results from the atmospheric and solar experi- In the study of a neutrino mass matrix, the importance of
ments have shown strong evidence for neutrino oscillationgenormalization considerations is enhanced since the mixing
[1,2]. These observations indicate that neutrinos are noangle exhibits sensitive resonance behavior. It would be most
massless, and that two of the neutrino mixing angles aréteresting if the observed large neutrino mixing has its ori-
large, or even maximal. This is in contrast with the quarkgin in renormalizatior{4—6]. In this scenario, the RGE in-
mixing angles, which are all small. Even with our limited variants can be used directly to tell us about neutrino masses

knowledge, it seems clear that the neutrino mass matrix, jugfirough their correlation with the mixing angles.
like their quark counterpart, has a rich structure, and it is  Before we embark on a detailed discussion of renormal-
urgent to have an understanding of its salient features. Tigation, it is useful to introduce a general parametrization of

account for the minuscule neutrino masses, the seesaw moc}BP mass ”?at“x V‘.’h'Ch will famhtgte the.analy5|s. In t.h|s
[3] makes use of a heavy scale for the right-handed neutr3Pe": W€ will consider thesymmetrig neutrino mass matrix

. . originate from a dimension-5 term in the effective La-
. Th h | f th - i
nos us, any theoretical understanding of the Observeg)rangmn, L=fvTv(¢><¢)=vTM8v. Here, (4) is the

neutrino parameters necessarily involves two vastly differen . . g
P y y vacuum expectation value of the Higgs scafas the cou-

energy scales. This means that renormalization effects musﬁn constantM? is the neutrino mass matrix, andis the
be taken into account in any theoretical model of the neuP"N9. L . '
tfino mass matrix neutrino wave function in the flavor basis.

The renormalization of the neutrino mass matrix has been We can write, in general,
extensively discussed in the literatyd—6]. Although dif- MO=UMdiagyT, 1)
ferent models, such as the standard md&all) or minimal
supersymmetric standard mod@iSSM), give rise to nu- e2m
merically distinct results for individual parameters, as we
have shown for the two-flavor problef6], there are renor-
malization group equatiofRGE) invariants, correlating the
evolution of the physical parameters. These invariants are the . . . .
consequences of the general structure of the RGE, and re- U=Pe e shseIeshag I 2h2pY, 3)
main the same for a class of models, including SM and »
MSSM. e
In general, RGE evolution implies that each physical pa- p= el p'= el
rameter becomes a function of the energy scale. Thus, if el el 73
there aren independent parameters in the mass matrix, we (4)
might expect to haven—1) RGE invariants. However, the
mass matrices are also subject to arbitrary rephasing tranktere, the mass eigenvalues are given by exp(2y; are the
formations. In addition, such phases are generated by thenphysical phases from the neutrino wave functions,
renormalization transformation. As a result, the physical(e,,e5,€;) are the physical neutrino mixing angles, is a
RGE invariants must also be rephasing invariants. For th€P violating phase, the's are the intrinsicCP phases of the
three-flavor mass matrix, it turns out that there are threenass eigenvalues, and thés are the Gell-Mann matrices.
(complex RGE and rephasing invariants, among its eightTo preserve the symmetry of the flavors, we will not use the
physical parameters. These invariants will be detailed later imliagonal\’s in M%9, Note also that, since neutrino oscilla-
this paper. Just as for the two-flavor problem, these invaritions are governed by the effective Hamiltoniaki
ants are the same for a class of models. As in earlier studies (M ,M I)/ZE they are independent of the phases
on renormalization, only one-loop effects are considered in |t is convenient to factor out the determinattie overall
this work. scalg of M° and define

M diag— e2m2 2
e2 73

ei 71

M,=(detM% "M%, detM,=1. (5)
*Email address: schang@physics.purdue.edu
"Email address: tkkuo@physics.purdue.edu The condition deM ,=1 is obtained by imposing the follow-
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ing relations orM®: 3 7,=3a;=X7,=0. This corresponds fact which will be used later. Also, rephasing of the neutrino
to the fact that, with devl,=1, M, only depends on the wave functions changes only;, while leaving all other pa-
mass ratios £ ») and the relative phased\¢ and Avy). rameters invariant.

Note that, with the parametrization in E), M, can be It is also useful to write down the symmetric matihk,
analytically continued into asU(3) matrix (7;—i»;), a  explicitly:

_ —  C(7\C(5)S2(2)A S(7C(5)S2(2)A
C(25)X1+S(25)82’73 (1C(5)52(2)R 12 (7)C(5)52(2)R 12
—S(7)S2(5)A 13 TC7)S2(5A13
, — - o _
g CrCESa@Biz  CinXe™S2n)Ss)S22)A 12 Sa(7)(X2~ S{spX1+ C{5)€° ™) /2 ©
vl SnS2(sA13 +s(27)(s(25))(1+c(25)ez’73) + Co7)S(5)S2(2)A 12 ’
_ _ — , —
S(7)C(5)52(2)A 12 32(7)(X2—S(25)X1+ 0(25)82”3)/2 S(nyX2t S2(7yS(5)S2(2)A 12
TenSaspi3 +CmSeS22iie + ¢y (S X1t Cl5)E7 ™)
|
m=mtiv, 7) M,(t)=U(t)MTt)UT(t), (14
0 oy T2 and one needs to relate the physical parameters at strale
X1:C(22)92”1+S(22)92772, x1=e 2, (8) those att=0. phy P
L2 2ma 2 2 T o2ies Mathematically, the RGE solution corresponds to the re-
X2=S(2)€ T C2)€ 2, x2= €7 )2, (9 Jation connecting the parameters, known as the Baker-
L Campbell-HausdorftBCH) formula, between different rear-
App=3(e—e"), (100 rangementge.g. Eqs.(13) and (14)] of the noncommuting
- _ factors in an element &L(3,C). Since we are dealing with
A= 3(x,—€%73). (11 only exponential functions which are free of singularities,

these relations should remain valid under analytic continua-

Here, we use the notatios),)=sine,,S;»)=Ssin 2, etc. We  tions. In particular, the BCH formulas f@&L(3,C) are the
have also set;=0, without loss of generality. analytic continuation of those f&U(3). These ideas can be

The RGE for the effective neutrino mass matiik,, has  implemented explicitly for the case of two flavors, which we
been studied extensively. In the SM and MSSM, the RGEwill study first before we take on the full analysis of the
were obtained explicitly and can be written in the form three-flavor problem.
[4—6]: dMYdt=kM°+{Q,M%}, wherex is a constantQ is Consider a general symmetr8U(2) matrix (with two
a diagonal and traceless matrixr=0, t is the scale vari- real parametejswhich can be written as
able t=(1/167%)In(u/ug), with (u, o) =energy scale. The

solution is given by N,=e 18022 v03gibo2, (15)
detM?(t) =e3*tdetM%(0), (120  or
M ,(t)=eM ,(0)e?t. (13) N,= el @rag2iTo1giors, (16)

The quantitiesc andQ were given explicitly in terms of the The relations(BCH formulg between the two parametriza-

leptonic Yukawa constants. tionsN; andN, can be read off from the matrix elements as
The effect of the operatog?!, amounts to a change of given in Eqs.(15),(16),

relative scale(rescaling between the different flavors. The

close relation between rescalingenormalization and

rephasing is revealed by considering pure imaginary values

for Q, which turns Eq(13) into a rephasing transformation.

If, in addition, we considem;—iy; in M, then the equa-

tion becomes a rephasing transformatiorsid(3). - -
Equation(13) is a formal solution of RGE, since it only sin 2y sin 28=sin 27. (19

gives thet-dependence of the matrix elementshf,. One _

would really like to know thet-dependence of the physical WhenN is subject to a rephasing transformation,

parameters. To this end, we must reexpidssn Eq. (13) in _ -

the form of Eq.(1), N—e '*73Ne %73, (20

COS 2y=C0S 27 COS 2, (17)

sin 2y cos 28= cos 2r sin 2w, (18)
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it is obvious that parametrization E¢L6) makes it trivial, Schematically, solutions to the rescaling transformations
resulting inw— w— . But for N, in Eq. (15), it induces the 0N mass matrices are the BCH formulasSh(2,C), which
can be obtained from the rephasing transformations in

change, ' y—7', satisfyin : e e
98By =y fying SU(2), by analytic continuation. We can represent this in a

cos 2;,/ = cos Jr cos 2(;) ~a), (21) commutative diagram:
sin 2y’ cos 28’ =cos 2rsin 2(w—a), (22) N, BCH sU(2) N,
SinZy sin2'=sinZ:. 3 o | [
It follows that N, BCH SL(2,C) N, (30)
sin 2B/ cos 2u We now turn to the case of three flavors. A general sym-
tan 28’ = (24 metric SU(3) matrix (with five parametedscan be param-

cos 28—tan Zaltan 2y ik oM
% Y etrized in either of two ways

In addition, 7 is invariant under rephasing. Thus, we have the W, =V Wdiag /T (31)
rephasing invariant, in terms of the parametrization in Eq. ’
(15)1 ei2771
sin 2y sin2B=sin 2y’ sin28’. (25) wiao— e'?72 . > 7=0 (32
ei2773

Equations(24) and (25 are the solutions to th&U(2)

rephasing transformation, E¢O). V=g i€\ rg-iesksg i, (33)
The same results can be taken over for symmetric mass ’

matrices, where all variable3(y,w,7) are complex, with  or

four real parameters. Let us first consider the case of real

~ o~ ~ = Pl (é1h1tE4h gt EgNg)
mass matrices, corresponding to pure imagingryw( 7): Wp=Peittitetatiete’p, (34)
~ L el o1
(y,0,7)—=(iy,iw,iT). (26)
_ _ o _ p= e'%2 . 2 6=0. (35)
The resulting mass matrix can be written in two alternative ol %

forms, N;=e P2 2773¢lfo2  N,=g “73g 2771~ “3,
With a—ia, the rephasing transformation dhbecomes a  The order of the noncommuting matrix products is chosen so

renormalization(rescaling transformation or\: that W, corresponds to the usual mass matrix parametriza-
N 693N 6273 27 gggh;/vhlle W, is most convenient for rephasing consider-
The solution to the RGE is obtained directly from the BCH  The BCH formulas yield analytic relations between the
formula of SU(2), Eq.(24), by analytic continuation: two sets of parametersy(,¢;) and (,4;). A rephasing
transformation would changg—ﬁj’ , and the corresponding
- sin 2B/cosh 2w transformation on 4 ,€;) can be calculated as in Eq21)—
tan 26’ = cos 28— tanh 2a/tanh 2y~ (28) (24). Also, the functions; in terms of (; ,€;) are rephasing

invariants. The functions fors;,¢;) obtained would have
This is the same relation obtained earlier for RGE evolutionprovided explicit solutions to the RGE, as in E§8). Un-

At the same time, we have an RGE invarigét fortunately, owing to the complexity of thBU(3) algebra,
. . _ . , so far we are unable to solve for these functions explicitly.
sin 2B sinh 2y=sin 28" sinh 2y". (29) When we let all parameters assume complex values, the

matrix W turns into a symmetric mass matrix. A rescaling
(renormalization transformation corresponds t&;— 6,
+iA;j. Thus, the rescalingRGE) invariants which are also

Note that this is also automatically invariant undexiative
rephasing on the mass matfik In addition, while the value

a in Eq. (27) is model dependent, E¢R9) is not. o ; -

-~ rephasing invariants are precisel§,(¢4,&5), as complex
_ Ingeneral, all parameterg(y,w,7) are complex, so that g,netigns of (7, ,€;). Although we cannot obtain these func-
N; andN, become complex mass matrices. As was shown iitions explicitly, we can obtain the RGE invariants using the
Ref. [7], we can demand thgt and g8’ be real by adding matrix elements as the variables. As before, we can arrive at
rephasing factors tbl;. The resulting generalization of Eq. the results by first studying the rephasing invariants in
(24) coincides with Eq(15) of Ref.[6]. In this connection, SU(3).
we emphasize that the renormalization transformation, Eq. Consider rephasing transformations on a gengia(3)
(27), generates rephasing factors whéis complex, as was matrix (with eight parametejs which can be written in the
shown explicitly in Ref[6]. form V=Pe Mg leshsgieshsgT i P! where P is
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given in Eq.(35) andP’ is obtained fronP by the substitu-
tion 5]-—>5j’. This is precisely the parametrization for the
CKM matrix and (-, €5, €3,€7) are rephasing invariants. In
terms of the matrix elements &, V,;, rephasing transfor-
mation givesV,;—e (%" 9)V, ;. Thus, the rephasing invari-
ants argV,;|2. When we let the parameters be complex,
analytically continues intd/, the mass matrix. The rephas-
ing and rescaling invariants are now given I‘;zly_JlM,J .
BesidedV,;|2, another familiar form of the rephasing in-
variant[8] is given by J;x. =V ;VkL Vi Vi, . When we im-
pose the condition d&t=1, only relative rephasings, but no

overall phases, are admitted. The rephasing invariant takes a| ;=M ;M 2731:

simpler form Ig=e;¢€, 37k V)1' V33 Vkk: . There are six
different ways to arrange the indices so that we may label
by s, which is an element of the permutation gro8f

-

Note that

I
I !

J
J/

K

K’)’ denoting(l—1",J—J" ,K—K').

> le=detv=1. (36)

Also, | has a simple relation to the familiar rephasing
invariant J,;x. . For a unitaryV with det=1, its minors
are just the complex conjugated elements. For
stance, V1,=V3,Vi— V3V, or Vi3VaVa3=|Vpyl*|Vag?
—V,V33V3:V3,. When we let the indices take on different
values, it is easy to show that all of the produttsare
similarly related t07,;x, , with Imlg=—Im(Jk.), inde-
pendent of the indices.

The analytic continuation of the rephasing invariahis

in-
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—1 4 2 a2
l1=MyM i = 1=c{5S;)SintF (71— 772)

+555)CoSINP( 71— 73) + 555502 SINMF( 17— 773),

=M Ile 12— M IslM 13= 52(2)S2(5)C(5)S2(7)(A13A 15
+A A1) + C2(7)(35(2)0(25)A 128 o~ 33(5)A 13813),
(40)

+52(2)S(5)C2(1)A 12”

So(7y, — — —
> (X2~ 5(25))(1_ C(zs)e‘2 3)

S2(7),—

S 2 - a2 a2
— (X2 =Sis)x1 ~C5€ ")

+S2(2)S(5)C2(1)A 1_2} .

Here we have used the notations in E@.—(ll). In addi-

tion, 7s=e?<y,, Ap=3%(e ?—e 2%), A=1i(xs

—Ap=312 (y(~A=312 (x; ~Ap=312 (x; —AL
112 (x; —e 27,

-2
X1 =€%3(che it s 7), (41)
X2 =€ Ae(shye 2 ey e 2m). (42)

These invariants show that the physical parameters are

turns them into rescaling and rephasing invariants for thentricately correlated during the RGE evolution. In general,

mass matrices:

(37

Js=ekeLmunM LM juMyy -

we cannot single out one or two variables which evolve in-
dependently of the others. However, in limited regions when
certain conditions are satisfied, we do get simplified relations

As we discussed in the previous section, the physical RGPetween a subset of the parameters. We will highlight some

invariants are the rephasing and rescaling invariants of th
mass matrix. There are two equivalent forms of these invari
ants. (i) MﬁlM,J; (i) eykeLmnM LM ;uMyn - When we
convert these into physical variables, it turns out that th
former is more convenient, which will be presented in the
following.

Let us defind ;= Ml‘JlM,J. These invariants are not in-
dependent, sinchl ;=Mj,, and

E| |.J=§ l,=1.

(39

So there are altogether three independenmplex invari-
ants, which we can take to be

Ilzlll_l, |2:|12_|13 and |3:|23. (39)

Explicitly, we find

gf these relations in the following.
_ (i) Real mass matrix. In this case, all physical phases van-
ish, e3=y;=0. The RGE invariants, , ; are all real so that

e(enormalization does not generate any physical phases, as

expected from Eq(13).

(i) Two-flavor solutions. The three-flavor problem re-
duces to that of two flavor under certain conditions. This
happens when two of the three mixing angles vanish. Thus, if
S(5)=S(7y=0, we find thatl ;=1 ,= 5 sint(7,— 7,),13=0.
Note that the conditiors;sy=s7)=0 is RGE stable. Simi-
larly, if soy=s(7y=0, or if s;2)=s(5=0, the result is genu-
ine two-flavor solutions.

(iii) In regions when one angle is small. It may happen
that, in a certain range @f one of the mixing angles can be
small. In general, such conditions can only be fulfilled in a
limited region. There will then be approximate invariant
combinations from a reduced set of parameters. For instance,

in a region wheres;;)—0, we find (7,= 71— ie€s, 7= 7,
+i€3)
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variants formed from the many physical variablesMn By
means of an analytic continuation, these considerations are
the same as those used in obtaining rephasing invariants of

11— S55)SINE( 71— 13), 15— = Co7)S5(5)SINME( 71— 73)

I3—>S§(7)[—s(zs)sinI’F(jz—?l)—c(zs)sinhz(z—;s) the CKM matrix. We can thus write down thréeomplex
o RGE and rephasing invariants explicitly. Our arguments also
+ 8%5,Co5,SINF( 73— 773) 1. (43  make it clear that these invariants are independent of the

specific values ofQ, and are the same for the SM and

This means that, in the limig;—0, the (1-3) sector be- MSSM. _

haves like a two-flavor problem. At the same time, there is a Since exact solutions for the three-flavor problem are not
correlation between the mixing angte and theCP phase, ~available, a number of approximate solutions have been con-
es. However, if e;=0, then the approximatios,—0 is sidered in the Ilter_aturE]. The RGE invariants can be used
consistent only ife,—0. Similar conclusions can be reached 1 ¢heck the consistency of these approximations and to sug-
for the casess)—0 ands;)— 0. In addition, the cases when gest viable new ones. The structure of these invariants also

tWo masses are nearly degenerate. or when one mass vaIShOWS that, while the two-flavor approximation is natural in
. y deg ' . 4humber of situations, their validity can only be established
dominates, can also be analyzed along these lines.

In this paper, we have studied the properties of the threef-or a limited range ot. For larget, when the parameters also

flavor neutrino mass matrix under RGE evolution. Unlike thevary conS|derany,_the two-flaypr approximation is viable
. : only under very stringent conditions.
two—flavor problem, where we o_btam.ed exact analylic solu- With minor changes, most of the arguments in this work
tions, tlhe algllgetbraf'ogt?he%é matlr gengéo.rmdgblf, anr? vgl/e can be adapted to the study of quark mass matrices. In fact
are only able 1o Tind threccomple invariants whic [6], it was shown that the infrared fixed point for two-flavor
correlate the evolutions of the many physical parameters. RGE evolution corresponds t6—0,m,/m,—. The ap
n 12 1 . -

The RGE evolution of gsymmetri¢ mass matrix with : ; .
detM=1, for a class of fﬁleyorieéinc?uding the SM and prqach to the fixed point, hqwever, is governed by &),
MSSM) i,s given in the formM—eMe?, Q= real diago- giving Bym,/m;—const. This suggests that the quark mass
nal and, 10=0. That is renormalization’ amounts to a rela- matrices are the results of large RGE evolution, and that the
e ' well-known empirical relations between mixing angle and

tive rescaling between the different flavors. At the same timemass rations g, ~ i 7, may have a dynamical origin
M is subject to arbitrary rephasing transformations, whick\N . e y Y gmn.

correspond to takingD to be an arbitrary pure imaginary e plan to apply our analysis to a detailed study of the quark

matrix. The combined rescaling and rephasing transforma2cctor I the future.

tion is thus given byM —e*Me®, Q=complex. SinceQ This work is supported in part by DOE grant No. DE-
contains only two(complex variables, we expect RGE in- FG02-91ER40681.
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