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New approach to the complex-action problem and its application to a nonperturbative study
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Monte Carlo simulations of a system whose action has an imaginary part are considered to be extremely
difficult. We propose a new approach to this “complex-action problem,” which utilizes a factorization property
of distribution functions. The basic idea is quite general, and it removes the so-called overlap problem com-
pletely. Here we apply the method to a nonperturbative study of superstring theory using its matrix formula-
tion. In this particular example, the distribution function turns out to be positive definite, which allows us to
reduce the problem even further. Our numerical results suggest an intuitive explanation for the dynamical
generation of 4D space-time.
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[. INTRODUCTION completely. This should be contrasted with the meron-cluster
algorithm[1], with which one can study a special class of
It occurs in many interesting systems ranging from con-complex-action systems by computer efforts increasing at
densed matter physics to high-energy physics that their agnost by some power of the system size. The factorization
tion has an imaginary part. Some examples for instance imethod eliminates the overlap problem, which composes
high-energy physics are the finite density QCD, Chernssome portion of the complex action problem, but not the
Simons theories, systems with topological teiisisch as the whole. However, the resolution of the overlap problem is in
6 term in QCD, and systems with chiral fermions. While fact a substantial progress. For instance, Réfsdeveloped
this is not a conceptual problem, it poses a technical problerd new method to weaken the same problem in finite density
when one attempts to Study these Systems by Monte Car'@CD, and the critical pOint was SUCCESSfU”y identified.
simulations, which would otherwise provide a powerful tool Therefore we expect that trempleteresolution of the over-
to understand their properties from first principlese Refs. 1ap problem allows us to address various interesting ques-
[1-3] for recent works tions related to compl.ex-actlon systems with the present
In this paper we propose a new approach to thi<computer resourcgs._Sm_ce our methoq is based on t.he gen-
scomplex-action problem.” Suppose we want to obtain an eral property of distribution functions, it can be applied to

expectation value of some observable. Then, as a more fuY corr_1p|ex-_action systems. . .
q : . TR . In this article we are concerned with a nonperturbative
amental object, we consider the distribution function assoétudy of superstring theory using its matrix formulatief]

giated with that opseryable. n generallthe distribut'ion funC'Eventually we would like to examine the possibility that'our
tion has a factorization property, which relates it to the4—dimensional space time appears dynamically in 10-
distribution function associated with the same observable by§;ensional string theoris—10]. Monte Carlo simulation of
calculatedomitting the imaginary part of the action. The ef- {he matrix model suffers from the complex action problem,
fect of the imaginary part is represented by a correction facyng there are evidences that the imaginary part of the action
tor which can be obtained by a constrained Monte Carlgyjays a crucial role in the dynamical reduction of the space-
simulation. One of the virtues of this method is that it re-tjme dimensionality{ 7]. We will discuss how we can study

moves the so-called overlap problem completely. This probsych an issue by Monte Carlo simulation using the new ap-
lem comes from the fact that the two distribution functions—proach.

one for the full model and the other for the model omitting
the imaginary part—have little overlap in general. The
method avoids this problem by “forcing” the simulation to

sample the important region for the full model.

The determination of the correction factor becomes in- As a nonperturbative definition of type IIB superstring
creasingly difficult as the system size increases. In this senstheory in 10 dimensions, Ishibashi, Kawai, Kitazawa and
our approach does not solve the complex action problenTsuchiya[4] proposed a matrix model, which can be for-

mally obtained by the zero-volume limit & =10, N=1,

pure super Yang-Mills theory. The partition function of the
*Electronic address: konstant@physics.uoc.gr type 1IB matrix model(and its obvious generalizations to
TElectronic address: nisimura@eken.phys.nagoya-u.ac.jp D=4,6) can be written as

II. THE SUPERSTRING MATRIX MODEL
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The VEV (), can be evaluated by standard Monte Carlo
Z:J dAe SZ{A], (1) simulations. Howevere'"), is nothing but the ratio of the
two partition functionszZ,/Z, and therefore it behaves as
whereA,, (x=1,... D) areD bosonicNx N traceless Her- e~N“AF at JargeN, whereAF >0 is the difference of the free

mitian matrices, andS,=— (1/4g2)Tr([A,L ,A,]%) is the energy density of the corresponding two systems. This enor-
bosonic part of the action. The fact@{ A] represents the mous cancellatiofnote thafe''|=1 for each configuration
quantity obtained by integration over the fermionic matrices,s caused by the fluctuation of the phae which grows
and its explicit form is given for example in Refg,11]. The  linearly with the number of fermionic degrees of freedom,
convergence of the integrél) for arbitrary N=2 was first  which is of O(N?). As a result the number of configurations
conjectured12] and proved recentlf/13]. The only param-  required to obtain the VEVe'"), with sufficient accuracy
eter g in the model can be absorbed by rescalinggroys asecmsiN*, The same is true for the numerator
A,~gA, , which means thag is merely a scale parameter (\i€'")g in Eq. (5). This is the notorious “complex action
rather than a coupling constant. Therefore, one can determlrﬁomemu (or rather the “sign problem,” as we see belpw
the g dependence of any quantities on dimensional groundghich occurs also in many other interesting systems.

[16]. Throughout this paper, we make our statements in such |, fact we may simplify the expressiofb) by using a

a way that they do not depend on the choiceof symmetry. We note that under parity transformation:
In this model space-time is representedAyy, and hence
treated dynamically5]. It is Euclidean as a result of the Af=—A1 AP=A  for 2<i<D @)
1 i i === 1

Wick rotation, which is always necessary in path integral
formalisms. Its dimensionality is dynamically determined

and can be probed by the moment of inertia tensor defined b he fermion integral{ A] becomes complex conjugafe],

hile the bosonic actiof$, is invariant. Since the observable
\; is also invariant, we can rewrite E(p) as

1
Tu=gTr(AA,). i) (\cosl)g
N _
<)\i>_ <COSF>0 . (8)

SinceT,, is aDXD real symmetric matrix, it ha® real
eigenvalues corresponding to the principal moments of inerNote, however, that the problem still remains, since Itos

tia, which we denote ax; (i=1,... D) with the ordering  flips its sign violently as a function oA, .
AN>Np> - >Np>0. (3
IV. THE NEW METHOD
Let us define the vacuum expectation valW&V) (O) with A. The factorization property of distributions
respect to the partition functiofd). If we find that(\;) with

i=1,... dis much larger than the others, we may conclude 1he model(6) omitting the phasd’ was studied up to

that the dimensionality of the dynamical space-timel.is N=768 andN =512 forD=6 andD =10 respectively using
the low-energy effective theoiys]. There it was found that

(\)o/(gN*¥?) approaches a universal constant independent
of i asN increases. This means that the dynamical space-time
The fermion integraZ [ A] in the partition function1) is ~ becomes isotropic il dimensions aN=c, and hence the
complex in general foD=10, N>4 and forD=6, N>=3  absence of spontaneous symmetry break8tB of SO(D)

[7]. Let us restrict ourselves to these cases in what followssymmetry,if one omits the phask.
Parameterizing the fermion integral a&{A]=exp(x We normalize the principal moments of inerha as
+iI"), the partition function(1) may be written as

Ill. THE COMPLEX ACTION PROBLEM

~ def N
) }\i: ll .
sz dAe Soe'l, (4) (Mo

(C)

Then the deviation ofX;) from 1 represents the effects of
the phase. The relevant question is whether the deviation
depends on at largeN. In order to obtain the expectation

where Sy=S,—I'r is real. According to the standard re-
weighting method, one evaluates the VEN,) as

()\ieir>o value(Xi>, we consider the distribution associated with the
()= (@), G observabléy,:
where the symbol(- ), denotes a VEV with respect to the def -
partition function pi(X)=(S(X=N\)). (10)
_ As an important property of the distributign(x), it factor-
= So
Zo f dAe™™. 6) izes as
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1 0) def 5
pi(X)= P (X)Wi(x), (12) fi(O)(x):&m pO(x). (19)
whereC is a normalization constant given by This implies that\;)oV' ((\;)oX,) gives the value Ofi(O)(X)
def atx=x,. Since we takey sufficiently large, the distribution
C:<eiF> = (cosT') (12) pi v(X) has a sharp peak, and we can safely replace the po-
° ° sition of the peakk, by the expectation valug\;); y. Once
The real positive functiop(?(x) is defined by we obtainf(®)(x), we can obtaip(?(x) by
©)or ~ O)(x)=ex fxdzf-(o)(z)Jrcons (20)
pi (X)=(3(X=N\i))o, (13 P o '

which is nothing but the distribution of; in the model(6) where the integration constant can be determined by the nor-
withoutT". The functionp{®)(x) is peaked ax=1 due to the malization ofp{®)(x).
chosen normalizatiof®). The functionw;(x) in Eq.(11) can
be regarded as the correction factor representing the effect of C. Resolution of the overlap problem
I', and it is given explicitly as -
From p{%(x) andw;(x), we may obtain the VE\(X;) by
def

w;(x)=(e'"); x=(cosI); 4, (14 fwdx xp{O(x)w;(x)
~ * 0
where the symbo(-); , denotes a VEV with respect to yet <)\i>=f dx xpi(X) = —— (22)
another partition function 0 J dx p{D(x)w;(x)
0
Zi,x:f dAe S5(x—X;). (19  Actually this simply amounts to using the reweighting for-

mula (8) but calculating the VEVs on the right-hand side
Given all these definitions, it is straightforward to prove the(RHS) by

relation (11).
(XicosT)o= f dx xpP(x)w;(x) (22)
B. Monte Carlo evaluation of p{®(x) and w;(x) 0
In order to obtain the functiow;(x), we have to simulate "
Eqg. (15). In practice we simulate instead the system <COSF>o:J pri(o)(X)Wi(X). (23
0
Ziy= f dAe S~ VO, (160 This reveals one of the virtues of our approach as compared

with the standard reweighting method using the form@)a

whereV(\;) is some potential introduced only for thigh  directly. Suppose we are to obtain the LHS of E@®?) and
principal moment of inertia. The explicit form of the poten- (23) by simulating the syster(6). Then for most of the time,
tial we used in the study ¥(z) = 3 y(z— §)?, wherey andé  \; takes the value at the peak pf’)(x). However, in order
are real parameters. The results are insensitive @s far as  to obtain the VEVs accurately we have to sample configura-
it is sufficiently Ie_lrge and_ we took= 1.0.00.0. Let. us denote tions whoser, takes a value Wherb)i(o)(x)wi(x)l becomes
the VEV associated with the partition functiofi6) as |5ge. In general the overlap of the two functions becomes
(O)iv- Then the expectation valugosl'),y provides the  gynonentially small with the system size, and this makes the
value ofw;(x) atx=(\;)iy. important sampling ineffective. Therefore, this “overlap

The functionp{?(x) can be obtained from the same simu- problem” composes some portion of the complex-action
lation (16). Note that the distribution function fox; in the  problem. The new approach eliminates this problem by
system(16) is given by “forcing” the simulation to sample the important region.

def ; ;
o V(X):<5(X_Xi)>i VOCpi(O)(X)e_V(O‘i)OX). (17 D. Further |mprovem.ent in t.he casew;(x)>0 .
' ' So far, we have been discussing the general properties of
The position of the peak, is given by the solution to the new method. In the case at hand, we can actually further
reduce the problem by using the fact that the correction fac-
d 0) ) tors w;(x) are actuallypositive definite and so is the full
0=—Inpiv()=F70)=(Ni)oV'((Ni)oX),  (18)  distribution functionp;(x). (Note that this is not guaranteed
in general) This allows us to obtain the VE‘((Xi) by mini-
where we have defined mizing the “free energy densityF;(x)= — (1/N?)log p;(x),
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FIG. 1. The function (ZMZ)In W4(X) is plotted for FIG. 2. The function (JMZ)fgo)(x) is plOtted fOfN:64,128.

N=12,16,18,20. Fox<1 we also plot data foN=4,8 to clarify The solid line represents ®,(x), which we calculate from the
the convergence. We extract the scaling functios(x) by fiting ~ Scaling functiond,(x) extracted in Fig. 1.
the data to some analytic function, which is represented by the solid

line. The dashed line re_presemg(x), which is obtained similarly tational effort becomes @(3)_ For the definition of the low-
from the scaling behavior of (W) In we(x) energy effective theory as well as all the technical details
including parameters used in the simulations, we follow Ref.
[8]. The validity of the low-energy effective theory in study-
ing the extent of the dynamical space time is discussed in
Ref.[11]. We also note that the complex-action problem sur-
(24)  vives in passing from the full theory to the low-energy effec-
tive theory, and hence we expect that the effects of the phase
on the reduction of space-time dimensionality should be vis-
ible also in the low-energy effective theory, if it is there at
all. Here we study th® =6 case(instead ofD =10, which

1 corresponds to the type IIB matrix modeb decrease the
—2In Wi (X)—D;(X). (25 computational efforts further.

N In Fig. 1, we plot (1IN?)Inw,(X). The correction factor
w,(X) has a minimum at~1 and it becomes larger for both
x<1 andx>1. This can be understood as follows. Let us
recall again thatv;(x) is the expectation value @' in the
system(15), where\; is constrained to a given value xfAt
x=1, the systenil5) is almost equivalent to the systgi),

becausex; would be close to 1 even without the constraint.
[From this, it also follows thatv;(1) takes almost the same
value for alli.] Therefore, the dominant configurations of the
system(15) atx=1 is isotropic at largeN [8]. On the other

instead of using Eq(21). For that we simply need to solve
F/(x)=0, which is equivalent to

—f<0>(x)——i NELAIIE

The function in the brackdt-] is expected to approach a
well-defined function ad increases:

Let us note thatv;(x) is nothing but the expectation value of
"in the systen{15). According to the argument below Eq.

(6), w;j(x) for fixed x decreases as~ N at largeN. The
constante may depend on, hence the assertion. Indeed our
numerical results in Fig. lalthough the achieved values of
N are not very largeseem to support this argument. Once we
extract the scaling functiof;(x), we may use it instead of
(1N?)Inwi(x) in Eq. (24) for largerN. Thus we are able to

obtain the VEV(X;) for much largem than those allowing . ' .
the direct Monte Carlo evaluation of the correction factorhand’ the dominant configurations of the systas) at small

w;(x) x are (—1)-dimensional, since the constraint foréeso be
i(x).

The positive definiteness of;(x) is crucial for such an small, and due to the orderin@), all theX; with j=i be-
extrapolation technique to work. If we were to calculate thecome small. Similarly the dominant configurations of the

VEV <)\ ) by Eq. (21), we would need to calculate the cor- system(15) at largex are almosti-dimensional, since the
rection factor for largemM by w; (X)_eN () where the constraint forced.; to be large, and due to the orderit®),
I ]

multiplication by N2 and the exponentiation would magnify all theX; with j<i become large. Now let us recall that the
the errors in®;(x) considerably. This doesot occur when ~phasel’ vanishes when the configuratignhas the dimen-
we obtain the VEV(XQ by solving Eq.(24). sionality d=d.,, whered,=4,6 for D=6,_10, respectively

[7]. As a consequencey,(x) gets larger in bottlx<1 and
x>1 regimes.

As mentioned already, Fig. 1 supports the scaling behav-
Monte Carlo simulation of Eq(16) can be performed by ior (25) with increasingN. The scaling functionP,(x) can
using the algorithm developed for the mod@l in Ref.[11]. be extracted by fitting the data to some analytic function. We
The required computational effort is ®f). In this work, we ~ find that ®,(x) approaches 0 linearly as—0, and it ap-
use instead the low-energy effective theory proposed in Reforoaches some negative constant exponentialk-as. We
[5] and further developed in Reff8]. The required compu- observe a similar scaling behavior for KE)Inws(x). The

V. RESULTS
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FIG. 3. The function (IM?)f{®)(x) is plotted for N=64,128. FIG. 4. The function (M)f(x) is plotted for N

The solid line represents- ®;(x), which we calculate from the =16,32,64,128. A clear scaling behavior is observed.
scaling function®g(x) shown in Fig. 1.

corresponding scaling functichg(x) is plotted in Fig. 1 for IarggN limit. AtN=128, we observe that the peakat 1 is
comparison. _dqmlnant for botho4(>.<) and pg(x). We note, however, that
Figure 2 represents a graphical solution of Ezf) for i It IS much more dominant fop,(x) than for ps(x). ,
=4. The open and closed circles describe the function Frzorrzo)Flgs. 2 and 3, we observe that the function
(LN?)FO(x) for N=64,128 respectively. It is positive at ~ (LN9)fi'(x) changes drastically as we go frol=64 to
<1 and tums negative at>1, which reflects the fact that N=128. In fact we find that (N)f{?(x) scalegnotice the
pi(O)(X) is peaked atx=1. The solid line represents normalization factor (M)], as shown in Fig. 4 foi =4.
—®}(x). The intersections of the two curves provide the The scaling region extends from~1, where (1N)f{”(x)
solutions to Eq(24). At N=128, we find that the distribu- crosses zero, namely the place whef®(x) has a peak. A
tion p4(x) has two peaks; one at=x,<1 and the other at similar scaling behavior is observed fo5. This scaling
x=x,>1. The ratio of the peak heigRR= p4(Xs)/pa(X;) can  behavior is understandable if we recall that the long-distance
be written aR=exp{N%(As— A}, whereAs and A, are the  property of the system is controlled by a branched-polymer-
area of the regions surrounded by the two curves. We obtailike system[5], which is essentially a system witthdegrees
As~5.0<10"* and A;~4.5x10°3, from which we con-  of freedom. If wenaivelyextrapolate this scaling behavior of
clude that the peak at>1 is dominant. In Fig. 3 we show (1/N)fi(0)(x) to largerN, the LHS of Eq.(24) becomes neg-
the results of a similar analysis f@g(x). We find that the jigiple. It follows that the peak at<1 eventually dominates
distribution p5(x) at N=128 also has two peaks; onexat for poth i =4,5, considering the asymptotic behaviors of
<1 and E@e other ak>1. However, here we obtails ¢, (x) asx—0 andx—o. This means that the space-time
~2.0<10"" and A, ~3.8x 10", which are comparable.  ginensionality becomes<3. However, it is well-known
that the Hausdorff dimension of a branched polymed,s
=4, which implies that such a system is not easy to collapse
We have proposed a new method to study complex-actiofto @ configuration with dimensions 3. The consequence
systems by Monte Carlo simulations. In particular we dis-would be thap!)(x) is much more suppressed in the small
cussed how we can use the method to investigate the possi-regime tharpgo)(x) at largeN. We consider that this pre-
bility that four-dimensional space time is dynamically gener-vents the peak at<1 from dominating forp,(x), and as a
ated in the type IIB matrix model. The space-time result we obtain 4D space-time. Since the above argument is
dimensionality is probed by the eigenvaluesof the mo-  pased only on the scaling behaviors and the branched poly-
ment of inertia tensor and we study the distribution of eachyer description, it is expected to be valid also in the
eigenvalue. The distributiop{®)(x) obtained without the —1g case(While this paper was being revised, an analytic
phasel’ has a single peak, which is locatedxat1. The evidence for the dominance of 4D space-time was also re-
effect of the phasd’ on the distribution function is repre- ported[14].)
sented by the multiplication of the correction factal(x) as Our new approach to complex-action systems is based on
stated in Eq(11). the factorization property(11) of distribution functions,
Our results for the 4-th and 5-th eigenvalueés-4,5) in  which is quite general. As we discussed in Sec. IV C, it re-
theD =6 case show that the correction factg(x) strongly  solves the overlap problem completely. In a separate paper
suppresses the peak f”)(x) at x=1 and favorsboth  we will report on a test of the new method in a random
smallerx and largerx. As a result, we observe that the dis- matrix theory for finite density QCD, where exact results in
tribution p;(x) including the effects of the phase, in fact, hasthe thermodynamic limit are successfully obtainég]. We
a double peak structureMoreover, the two peaks tend to hope that the “factorization method” allows us to study in-
move away fromx=1 asN is increased. It is important to teresting complex-action systems in various branches of
determine which of the two peaks becomes dominant in th@hysics.

VI. SUMMARY AND DISCUSSIONS
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