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Hierarchies from fluxes in string compactifications
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Warped compactifications with significant warping provide one of the few known mechanisms for naturally
generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string
theory, and give examples involving orientifold compactifications of type-IIB string theory andF-theory
compactifications on Calabi-Yau fourfolds. In each case, the hierarchy of scales is fixed by a choice of
Ramond-Ramond and Neveu-Schwarz fluxes in the compact manifold. Our solutions involve compactifications
of the Klebanov-Strassler gravity dual to a confiningN51 supersymmetric gauge theory, and the hierarchy
reflects the small scale of chiral symmetry breaking in the dual gauge theory.
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I. INTRODUCTION

The origin of the small ratioMweak/MPlanck is a great
puzzle. There are several known mechanisms for produ
an exponentially small ratio of scales. One is dimensio
transmutation, which nature employs in many contexts. A
other is nonperturbative effects, such as instantons, which
exponentially small in the inverse coupling. A third possib
ity has recently come to the fore. In a warped spacetim
one where the normalization of the four-dimensional me
varies in the transverse dimensions—a given invariant
ergy scale can give rise to many four-dimensional sca
depending on the position-dependent gravitational redshi
the transverse space. This mechanism has in partic
played a role in the Randall-Sundrum~RS! models@1,2#.

Such generation of a hierarchy via redshift has a num
of interesting potential consequences. For example, one
reach thresholds to produce Kaluza-Klein modes at low
ergies, perhaps in the TeV range, with interesting phen
enological consequences. Moreover, in such scenarios,
tering at apparently low energies can actually reach
fundamental Planck scale, due to the relative redshift, rais
the prospect of experimental probes of Planck- or stri
scale physics at energies far below the apparent fo
dimensional Planck scale; an example is the possibility
producing black holes at relatively low energy scales@3#.

Warped metrics are quite natural in string theory, wh
D-branes generically provide sources for the warping. Wit
the context of string compactifications, a particularly simp
realization was described by Verlinde@4#: simply takeN D3-
branes to be coincident on a Calabi-Yau~CY! space. As is
familiar from the AdS/conformal field theory~CFT! duality
@5#, the spacetime near the D3-branes is of the form Ad5
3S5. It is well known that AdS5 can be represented as
Poincare´-invariant four-dimensional space plus a radial
rection, with a varying warp factor that vanishes at the ho
zon of its Poincare´ parametrization.

The RS models, and the warped compactifications of V
linde, allow a large hierarchy but do not explain it. There
a moduli space of solutions, and the size of the hierarchy
function of the moduli. These moduli correspond, for e
0556-2821/2002/66~10!/106006~16!/$20.00 66 1060
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ample, to the separations of various branes. Goldberger
Wise @6# have shown that additional dynamics can fix t
moduli and produce a calculable large hierarchy. Their ana
sis was phenomenological; the goal of our paper is to ex
ine this issue in string theory, in the framework suggested
Verlinde. In particular, as has been exhibited in the work
Ref. @7# ~see also Refs.@8,9#!, a natural mechanism to gen
erate such a hierarchy is to consider warped compactifi
tions with both RR and NS fluxes present.

One way to understand this arises from a picture wh
branes are placed at a singularity. The low energy physic
D3-branes on a CY manifold is conformally invariant an
N54 supersymmetric. In order to fix the moduli it is nece
sary to break the conformal invariance and most of the
persymmetry. Precisely this same issue arises in the con
of Maldacena duality. String theory on AdS53S5 is dual to
N54 supersymmetric Yang-Mills theory. To find string du
als of gauge theories with confinement and chiral symme
breaking one must reduce the symmetry; in the supergra
context this generates potentials which can fix some of
moduli and stabilize a hierarchy.

A simple means of reducing the symmetry is to place
D3-branes not at a smooth point of the transverse space
at a singularity@10–13#. Indeed, placing them at a gener
CY singularity, a conifold point@14#, reduces the supersym
metry to N51. This does not break the conformal invar
ance, so it is also necessary to add additional ‘‘fraction
branes localized at the conifold singularity@15–17#. In the
final analysis these branes dissolve into flux, and result
nonsingular solution that has recently been found by K
banov and Strassler~KS! @7#. So while the picture of brane
and fractional branes at a conifold is used to motivate
construction, the net result is that one ends up with a str
background with Ramond-Ramond~RR! and Neveu-
Schwarz~NS! fluxes, which lead to a smooth string solutio
with a large hierarchy.

The KS solution is, however, noncompact and theref
not suitable as a means of reducing string theory to f
dimensions; in particular it would produce an infinite fou
dimensional~4D! Planck scale. Thus, our goal is to find tru
string compactifications, with a finite 4D Planck scale and
©2002 The American Physical Society06-1
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local region of the KS form which generates a large but fin
hierarchy. This hierarchy will be determined by the qua
tized values of the fluxes on the compact manifold.~For
another discussion of compactifications with fluxes, see R
@18#.!

The outline of our paper is as follows. In Sec. II we co
sider global constraints on warped type-IIB solutions. Su
constraints have been used in the past to exclude wa
solutions of type-IIB supergravity, but in the context of strin
theory their effect is to require the presence of objects
negative tension such as O3 planes and wrapped D7-bra
Further, when the localized sources satisfy a cert
Bogomol’nyi-Prasad-Sommerfield-~BPS-!like bound, we are
able from the global constraints to find the general soluti
We find that, in the classical approximation in which w
work, the radial modulus is a flat direction with zero cosm
logical constant. This is the case even though supersymm
is generically broken at a scale that depends on the ra
modulus. Thus, these are no-scale models@19#.

In Sec. III we focus on the local structure of the compa
tifications, beginning with a review of the Verlinde solutio
and its generalizations. In particular, in the presence of
tain fluxes on a compact manifold, together with the requi
O3 planes or D7-branes, we show that compact smo
string solutions exist with the hierarchy fixed by the fluxe
in a limit of large fluxes. However, as noted above, the ov
all radius of the compact dimensions is always left unfix
This reflects the familiar feature of string compactification
that it is very difficult to stabilize all moduli, though w
should note that in classical type-IIB compactifications w
fluxes the dilaton genericallyis stabilized.1 In fact the effec-
tive theories that we find are very similar to those whi
arise in heterotic string compactifications@21,22#. We also
outline the dual, gauge theory, description of these solutio
Section IV is devoted to constructing explicit examples, fi
as orientifolds of CY compactifications, and then asF-theory
compactifications~which allow larger fluxes and hierar
chies!.

II. WARPED COMPACTIFICATIONS: GLOBAL
CONSTRAINTS

We begin by working in the approximation of low energ
type-IIB supergravity, with such localized sources as arise
string theory. In pure supergravity, the integrated field eq
tions rule out warped compactifications under broad con
tions @23,24#. In Sec. II A we revisit this argument with lo
calized sources included, and show that a warp
compactification is possible if sources with negative tens
are present; such objects do exist in string theory.

With the constraint thus weakened, it does not appear p
sible to give a simple description of the general warped
lution. In Sec. II B we show that when the localized sourc
satisfy a certain BPS-like bound involving their energ

1More general compactifications with fluxes will be discussed
Ref. @20#. In particular, some of these have no moduli, and
reliably studied in a regime where low-energy supergravity is va
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momentum tensor and their D3-brane charge, then the gl
constraints do determine the general solution. The locali
sources that we consider—D3-branes, wrapped D7-bra
and O3-planes—all satisfy this bound. We discuss vari
special properties of these solutions, in particular the eff
tive action for their moduli, and we relate them to solutio
recently considered in the literature.

A. Action, equations of motion, and constraints

Our starting point is the effective action2

SIIB5
1

2k10
2E d10xA2gsH e22f@Rs14~¹f!2#2

F (1)
2

2

2
1

2•3!
G(3)•Ḡ(3)2

F̃ (5)
2

4•5!J
1

1

8ik10
2E efC(4)∧G(3)∧Ḡ(3)1Sloc . ~2.1!

Heregs denotes the string metric. We have also defined
combined three-flux,G(3)5F (3)2tH (3) , where as usualt
5C(0)1 ie2f, and

F̃ (5)5F (5)2
1
2 C(2)∧H (3)1

1
2 B(2)∧F (3) . ~2.2!

The term Sloc is the action of localized objects, such a
branes, which will become important shortly. The conditi
F̃ (5)5* F̃ (5) must as usual be imposed by hand on the eq
tions of motion.

We will be considering compactifications arising fro
F-theory, so it is particularly useful to reformulate the acti
in an SL(2,Z) invariant form by defining the Einstein metri
gMN5e2f/2gsMN , whence the action becomes

SIIB5
1

2k10
2E d10xA2gH R2

]Mt]M t̄

2~ Imt!2
2

G(3)•Ḡ(3)

12 Imt

2
F̃ (5)

2

4•5!J 1
1

8ik10
2E C(4)∧G(3)∧Ḡ(3)

Imt
1Sloc .

~2.3!

Henceforth we use the Einstein metric throughout. Inva
ance under the SL(2,Z) transform

t→ at1b

ct1d
, ~2.4!

together with the transformation

G(3)→
G(3)

ct1d
~2.5!

is readily checked.

e
. 2We use the conventions of Ref.@25#.
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Our interest is in warped metrics maintaining fou
dimensional Poincare´ symmetry, with convenient parametr
zation

ds10
2 5e2A(y)hmndxmdxn1e22A(y)g̃mndymdyn ~2.6!

in terms of four-dimensional coordinatesxm and coordinates
ym on the compact manifoldM6. The axion/dilaton will be
allowed to vary over the compact manifold

t5t~y!, ~2.7!

and since we will consider D7-branes, monodromies of
form ~2.4! will be allowed. To maintain Poincare´ invariance
only compact components ofG(3) are present, and further
more, with monodromies~2.5!, these will transform in a non
trivial bundle overM6:

G(3)Ps~V3
^ L!, ~2.8!

where V denotes the canonical bundle, andL is the line
bundle defined by the transformation law~2.5!. Finally, Poin-
caré invariance and the Bianchi identity allows a five-for
flux of the form

F̃ (5)5~11* !@da∧dx0∧dx1∧dx2∧dx3#, ~2.9!

with a a function on the compact space. Also, in accord w
Poincare´ invariance, we will allow some number of D3
branes along the noncompact directions, as well as
branes filling the noncompact directions and wrapping c
tain four-cycles inM6.

Einstein’s equation, trace reversed, is

RMN5k10
2S TMN2

1

8
gMNTD , ~2.10!

whereTMN5TMN
sugra1TMN

loc is the total stress tensor of the s
pergravity fields and the localized objects. In particular,
latter contribution is

TMN
loc 52

2

A2g

dSloc

dgMN
. ~2.11!

The noncompact components take the form

Rmn52gmnS GmnpḠ
mnp

48 Imt
1

e28A

4
]ma]ma D

1k10
2S Tmn

loc2
1

8
gmnTlocD . ~2.12!

From the metric ansatz~2.6!, one computes the Ricci com
ponents

Rmn52hmne4A¹̃2A52 1
4 hmn~¹̃2e4A2e24A]me4A]m̃e4A!.

~2.13!

~A tilde denotes use of the metricg̃mn .) Using this and trac-
ing Eq. ~2.12! gives
10600
e
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e

¹̃2A5e22A
GmnpḠ

mnp

48 Imt
1

e26A

4
]ma]ma

1
k10

2

8
e22A~Tm

m2Tm
m! loc ~2.14!

or

¹̃2e4A5e2A
GmnpḠ

mnp

12 Imt
1e26A@]ma]ma1]me4A]me4A#

1
k10

2

2
e2A~Tm

m2Tm
m! loc. ~2.15!

These equations serve as stringent constraints on
brane configurations that can lead to warped solutions
compactmanifolds.3 To see this, note that the integrals
their left sides over a compact manifoldM6 vanish, whereas
the flux and warp terms on the right-hand side are posi
definite. Thus, in the absence of localized sources there
no-go theorem@23,24#: the fluxes must vanish and the wa
factor must be constant. For a warped solution the str
terms on the right-hand side~RHS! must be negative, which
can only be true under certain circumstances.

For example, consider ap-brane wrapped on a (p23)
cycle S of the manifoldM6. To leading order ina8 ~and in
the case of vanishing fluxes along the brane! this contributes
a source action

Sloc52E
R43S

dp11jTpA2 g1mpE
R43S

Cp11 ;

~2.16!

for positive tension objects the Einstein frame tension is

Tp5umpue(p23)f/4. ~2.17!

Equation~2.16! gives a stress tensor

Tmn
loc52Tpe2Ahmnd~S!, Tmn

loc52TpPmn
S d~S!,

~2.18!

whered(S) andPS denote the delta function and project
on the cycleS, respectively. From this we find

~Tm
m2Tm

m! loc5~72p!Tpd~S!. ~2.19!

Equation~2.19! tells us that forp,7, in order to have the
required negative stress on the RHS of the constraint~2.15!,
the compactification must involvenegativetension objects.

String theory does have such objects, and so evades
no-go theorem of Refs.@23,24#. O3 planes are a simple ex
ample. TheT6/Z2 orientifold, which isT-dual to the type I
theory, is a compact Minkowski solution with 16 D3-bran

3One reaches the same conclusions by considering¹2ekA for any
positive k, but k54 is the value that will be useful in the nex
subsection.
6-3
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GIDDINGS, KACHRU, AND POLCHINSKI PHYSICAL REVIEW D66, 106006 ~2002!
and 64 O3-planes@25#. This implies that the O3 tension i
2 1

4 T3. This orientifold was discussed in Ref.@4# as an
example of a warped string solution.

Note thatF-theory compactifications, despite having D
branes, dilaton gradients, and RR 1-form fluxes, satisfy
constraint~2.15! without negative tension. This is becaus
terms involvingt gradients do not enter the constraint, a
the D7 brane stress tensor contributions vanish by Eq.~2.19!.

To be precise, this is true only to leading order ina8. It is
necessary to include also the firsta8 corrections to the D7
action Sloc ~we will explain this expansion below!. In the
Chern-Simons action the correction is@26#

2m3E
R43S

C(4)∧
p1~R!

48

5
m7

96
~2pa8!2E

R43S
C(4)∧Tr~R(2)∧R(2)!.

~2.20!

This Chern-Simons coupling captures the induced D3 cha
on the wrapped D7-brane. In the DBI action it is@27#

2
m7

96
~2pa8!2E

R43S
d4xA2gTr~R(2)∧* R(2)!.

~2.21!

This term computes the firsta8 correction to the wrapped
D7-brane tension.4 The Chern-Simons coupling has the e
fect, for example, that a D7-brane wrapped on K3 has21
unit of D3 charge@26#. This state is still BPS, with the sam
supersymmetry as the D3-brane, so the Dirac-Born-Inf
~DBI! coupling must contribute2T3 to the tension. In
F-theory, this background charge is given in terms of
Euler number of the corresponding fourfold by

Q3
D752

x~X!

24
, ~2.22!

andN51 supersymmetry implies the corresponding tens
Q3

locT3. This can be thought of as coming from the summ
contribution of all 7-branes wrapping four-cycles in the ba
of the elliptic fibration X. To directly derive this tension
along the lines discussed above, one should use the gen
zation of Eq.~2.21! which is applicable to branes wrappin
divisors in the~non-CY! base ofX; the result is guarantee
by the supersymmetry of the configuration, and the dir
calculation is beyond the scope of our work.

We have been discussing constraints from the integra
Einstein equation. The Bianchi identity/equations of moti
for the 5-form flux is5

4For simplicity we are considering in Eqs.~2.20!,~2.21! the case
of a trivial normal bundle; the full form is given in Ref.@28#. The
F-theory result~2.22! is general.

5Recall that 2k10
25(2p)7a84, m35(2p)23a822, m7

5(2p)27a824, and, in Einstein frame,T35m3 @25#.
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dF̃(5)5H (3)∧F (3)12k10
2T3r3

loc, ~2.23!

where r3
loc is the D3 charge density form from localize

sources; this includes the contributions of the D7-branes
O3 planes, and also of mobile D3-branes that may
present.6 The integrated Bianchi identity

1

2k10
2T3

E
M6

H (3)∧F (3)1Q3
loc50 ~2.24!

states that the total D3 charge from supergravity ba
grounds and localized sources vanishes. In the next sub
tion, we will analyze the constraints~2.15!,~2.24! further.

Finally, let us discuss the nature of thea8 expansion. The
localized source in the Bianchi identity~2.23! is of order
Na82, whereN is the characteristic D3 charge. It is not po
sible to takeN to be parametrically large, because the ne
tive contributions to the Bianchi identity are determined
the topology of the manifold. However, the Euler numb
~2.22! can be quite large in a given example, and so we w
treatN as an effective large parameter as in Ref.@4#. We will
then treatNa82 as being of order one, but drop ordera8
effects such as the string corrections to the supergravity
tion. This is why we needed to keep the curvature terms
the D7-brane action. The Bianchi identity then implies th
G(3)5O(N1/2a8); the factor of a8 is consistent with the
quantization

1

2pa8
E F (3)P2pZ,

1

2pa8
E H (3)P2pZ, ~2.25!

and the number of 3-form flux units then scales asN1/2.

B. Special solutions

1. A BPS-like condition

With general negative tension sources, the constra
from the integrated field equations appear to be rather we
However, in the special case that

1
4 ~Tm

m2Tm
m! loc>T3r3

loc ~2.26!

for all localized sources, the global constraints determine
form of the solution completely.

6In deriving this field equation there is an annoying subtlety due
the self-dual flux. The electric coupling ofC(4) must actually be
half of what we have written in Eqs.~2.16!,~2.20!, in order to obtain
Eq. ~2.23!. However, any object carrying D3 charge also has
magnetic coupling toC(4) ; in a self-dual background the action fo
a probe is then obtained by doubling the electric coupling as
have done. An alternative approach to the self-dual flux is to us
Lorentz-noninvariant action: double theF (5)

2 and Chern-Simons
terms in the actions~2.1!,~2.3! but restrict to terms in whichF (5) or
C(4) has a 1-component. This action, derived byT-duality from the
type-IIA action, is well-suited to the study of compactification
the type-IIB theory.
6-4
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In fact, the inequality~2.26! holds for all of the localized
sources considered in this paper. For D3-branes and
planes, whose integratedr3 is respectively11 and2 1

4 , the
stress tensor is

T0
05T1

15T2
25T3

352T3r3 , Tm
m50, ~2.27!

and so the inequality is actually saturated. Anti-D3-bran
satisfy the inequality but do not saturate it. D5-bran
wrapped on collapsed cycles also satisfy the inequality
their tension comes entirely from their induced D3 charg

For D7-branes, the nonvanishing contributions to the t
sides of the inequality come from the curvature terms~2.20!,
~2.21!. In the simple case of D7-branes wrapped on K3,
property *R(2)5R(2) implies that the inequality is saturate
If a nontrivial gauge bundle is introduced, the inequality
still respected as a consequence ofFmnFmn>Fmn(* F)mn.
For the more general wrappings that arise inF-theory, we
argue below that the inequality is saturated.

There are objects that do violate the inequality~2.26!. O5
planes make a negative contribution to the LHS and z
contribution to the RHS. Anti-O3 planes make a negat
contribution to the LHS and a positive contribution to t
RHS.

The inequality~2.26! resembles a BPS condition. Indee
the underlying type-IIB supersymmetry algebra implies th

H>T3Q3 . ~2.28!

If this holds locally, as might be expected classically, then
applying Lorentz invariance we get2T0

052T1
152T2

2

5 2T3
3>T3r3. When the inequality~2.28! is saturated, the

pressureTm
m should vanish by analogy to the no-force con

tion. Away from extremalityTm
m2Tm

m generally increases, b
analogy to the weak energy condition, so the inequa
~2.26! follows. The O planes that do not satisfy the bou
~2.26! are able to evade it because the necessary su
charges do not exist: they are projected out by the orie
fold. The D7-branes that arise inF-theory compactifications
saturate the bound because they preserve anN51 supersym-
metry that is also preserved by D3-branes.

2. Solution of the constraints

In terms of the potentiala the Bianchi identity~2.23!
becomes

¹̃2a5 ie2A
Gmnp~* 6Ḡmnp!

12 Imt
12e26A]ma]me4A

12k10
2e2AT3r3

loc, ~2.29!

where* 6 is the dual in the transverse directions. Subtract
this from the Einstein equation constraint~2.15! gives

¹̃2~e4A2a!5
e2A

6 Imt
u iG (3)2* 6G(3)u21e26Au]~e4A2a!u2

12k10
2e2A@ 1

4 ~Tm
m2Tm

m! loc2T3r3
loc# .

~2.30!
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The LHS integrates to zero, while under the assumpt
~2.26! the RHS is nonnegative. Thus, if the inequality~2.26!
holds, then the 3-form field strength is imaginary self-dua

* 6G(3)5 iG (3) , ~2.31!

the warp-factor and 4-form potential are related

e4A5a, ~2.32!

and the inequality~2.26! is actually saturated.
Assuming this form, let use review the full set of fie

equations and Bianchi identities. The 5-form field streng
~2.9! is self-dual by construction. Its field strength or Bianc
identity ~2.29! is consistent and determinesa and A, pro-
vided that the total D3 charge~2.24! vanishes. The 3-form
Bianchi identities

dF(3)5dH(3)50 ~2.33!

must be imposed. Using these, the equation of motion t
takes the form

dL1
i

Im t
dt∧ReL50, L5e4A* 6G(3)2 iaG(3) ,

~2.34!

and so is satisfied as a consequence of Eqs.~2.31!,~2.32!.
The Rmn equation also follows from these conditions. F
nally, the remaining field equations reduce to

R̃mn5k10
2
]mt]nt̄1]nt]mt̄

4~ Im t!2
1k10

2S T̃mn
D72

1

8
g̃mnT̃

D7D ,

~2.35!

¹̃2t5
¹̃t•¹̃t

i Im t
2

4k10
2 ~ Im t!2

A2g

dS̃D7

dt̄
. ~2.36!

These are the equations determining a solution toF-theory in
the supergravity approximation.

In summary, assuming that the localized sources sat
Eq. ~2.26!, the necessary and sufficient conditions for a s
lution are an underlying manifoldM̃6[(g̃mn ,t) satisfying
Eqs. ~2.35!,~2.36!, closed 3-form fluxesF (3) and H (3) such
that G(3) is imaginary self-dual, and vanishing total D
charge.

3. Supersymmetry and relation to previous solutions

The conditions forN51 supersymmetry of such a solu
tion have recently been considered in Refs.@29,30# for con-
stant dilaton, and in Ref.@31# more generally. The underlying
manifold must be Ka¨hler and the connectionD̃m2 ( i /2)Qm
must lie in SU~3!, whereQm is constructed fromt as in Ref.
@32#. The fluxG(3) must be a~2,1! form and primitive, mean-
ing that the index structure isı̄ jk and the contraction with
the Kähler form Jı̄ j vanishes. The condition* 6G(3)5 iG (3)
6-5
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allows a primitive (2,1) piece and a~0,3! piece.7 Thus our
general solution is supersymmetric if and only if the~0,3!
part vanishes.

In general, supersymmetric and nonsupersymmetric s
tions are both possible, though the latter are more gen
Consider for example theT6/Z2 orientifold. This is some-
what special because it hasN54 supersymmetry in the ab
sence ofG flux, but it serves for illustration. In terms of thre
complex coordinates, the primitive fluxesG1̄23, G12̄3, and
G123̄ can be turned on consistent with the quantization c
ditions ~2.25! ~these fixt and some of the Ka¨hler moduli!,
leavingN51 supersymmetry. If the additional fluxG1̄2̄3̄ is
nonzero then all supersymmetry is broken.

Noncompact solutions of this form have previously be
described in Ref.@29# in the special case of constant dilato
The supersymmetric solutions are dual@8,33# to the
M-theory solutions of Ref.@34#. As emphasized in Ref.@31#
these solutions are special, in the sense that theN51 super-
symmetry lies in anN54 subgroup of the fullN58 type-
IIB supersymmetry. In type-IIB form, this is the subgrou
preserved by a space-filling D3-brane; inM-theory form it is
the subgroup preserved by a space-filling M2-bra
F-theory compactifications on CY fourfolds preserveN51
supersymmetry in the presence of D3 branes~and in fact are
limits of the M-theory solutions of Ref.@34#!. Therefore, we
can infer that they are solutions of this special form, thou
we have not displayed this by computing and explicitly co
paring the contributions of~the fully generalized forms of!
Eqs.~2.21! and ~2.20! for the wrapped 7-branes.

4. Moduli and effective actions

The necessary and sufficient conditions~2.24!,~2.31!,
~2.33!,~2.35!,~2.36! are all invariant under rescalingg̃mn

→l2g̃mn . Thus, all special solutions have a radial modul
Thus our goal of fixing the moduli in a warped compa

tification is limited in this class of solutions to leaving
least this one. On the other hand, there is no dilaton modu
because the dilaton couples differently to the NS-NS a
R-R 3-form fluxes and so has a nontrivial potential. Th
suggests that it may be an interesting exercise to look
solutions having no classical moduli by introducing sourc
not satisfying the inequality~2.26! @20#.

This is slightly subtle, because the solution itself does
scale simply. In the field equation~2.15!, the terms involving
derivatives ofA scale asl22, and the flux source term scale
asl26. It follows that at large radiuse4A511O(l24) and
so the warp factor approaches a constant. At radii less
O(N1/4a81/2) the warping becomes significant.

The properties of the nonsupersymmetric solutions
vanishing four-dimensional cosmological constant and a
dial modulus in spite of the absence of supersymmetr

7It also allows a~1,2! piece of the formK (2)∧v (1) whereK (2) is
the Kähler form andv (1) is a nontrivial closed~0,1!-form. A com-
pact Calabi-Yau manifold has no such~0,1!-form, and neither do the
Calabi-Yau orientifolds orF-theory compactifications we conside
Note that in our conventions for the complex basise123

12352 i .
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identifies them as no-scale models @19,21,22#. The
combination of broken supersymmetry with vanishing co
mological constant is intriguing, but there is no known re
son that it should survive quantum corrections, from inst
tons and even perturbative loops. Even at string tree levela8
corrections to the supergravity field equations presuma
spoil the no-scale structure.

Let us also consider the effective four-dimensional acti
Before turning on fluxes, there will be massless fields cor
sponding to the Ka¨hler and complex structure moduli; w
denote the latterza. Furthermore, for orientifold models, th
dilaton fieldt is massless, whereas in generalF-theory mod-
els it is fixed in terms of the complex structure moduli by E
~2.36!. For the moment we consider the case of a sin
Kähler modulus, the radial modulus, in a four-dimension
superfieldr.

For a large-radius CY or orientifold, the Ka¨hler potential
follows by dimensionally reducing the 10D action.8 For the
radius we find

K~r!523ln@2 i ~r2 r̄ !#, ~2.37!

and for the dilaton and complex structure moduli

K~t,za!52 ln@2 i ~t2 t̄ !#2 lnS 2 i E
M

V∧V̄ D , ~2.38!

whereV is the holomorphic~3,0! form. The latter expression
follows from the Weil-Petersson metric, and is discussed
Ref. @35#. An obvious conjecture for theF-theory generali-
zation of Eq.~2.38! is

K52 lnS E
X
V4∧V̄4D , ~2.39!

whereX andV4 denote the CY fourfold and its holomorphi
~4,0! form, respectively.

The fluxes generate a superpotential, which takes the f
@8#

W5E
M

V∧G(3) . ~2.40!

This is independent ofr. The expectedF-theory generaliza-
tion of this formula takes the form@8#

W5E
X
V4∧G(4) . ~2.41!

In Eq. ~2.41!, G(4) denotes the four-form flux one would ge
in M-theory by compactifying theF-theory on a circle; it can
be expressed in terms of type-IIB quantities in theF-theory
limit. If the one works with a local trivialization of the ellip-
tic fibration, for example in the vicinity of the conifold poin
with fiber coordinatew, the four formG(4) takes the form

8For further discussion see the Appendix.
6-6
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G(4)52
G(3)dw̄

t2 t̄
1H.c. ~2.42!

We will further discuss issues surrounding use of suc
trivialization in Sec. IV.

Under these conditions theN51 supergravity potentia
simplifies @19#,

V5
1

2k10
2

eK~Gab̄DaWDbW23uWu2!

→ 1

2k10
2

eK~Gi j̄ DiWD jW!, ~2.43!

whereDaW5]aW1W]aK and Gab̄5]a] b̄K, and the indi-
cesa,b are summed over superfields, withi , j labeling indi-
ces excludingr. In no-scale models theuDrWu2 term cancels
the negative term, leaving a nonnegative potential. W
DaW50 the potential vanishes; this condition is independ
of r, so if there aren superfields in addition tor it represents
n equations onn moduli and leavesr undetermined. Generi
cally at these solutionsWÞ0, so DrW523W/(r2 r̄) is
nonzero and supersymmetry is broken.

A useful check on these expressions comes by compa
the 4D and 10D equations. In the CY/orientifold case, o
readily finds~see the Appendix!

05DaW[]aW1~]aK!W5E
M

G(3)∧xa ,

05DtW[]tW1~]tK!W5
1

t̄2t
E

M
Ḡ(3)∧V,

~2.44!

wherexa is a basis of (2,1) forms onM. These equations
imply that G(3) is imaginary self-dual, in correspondence
the 10D condition~2.31!. For F-theory, define a basis o
(3,1) forms xA on X; the expected generalization of E
~2.44! is

05DAW5E
X
G(4)∧xA . ~2.45!

While our discussion so far has focused on the case w
there is only one Ka¨hler modulus,r, a general model may
have several Ka¨hler modulir i . The required modification o
this discussion is quite simple. The superpotential is indep
dent of all of ther i . It should then follow that the Ka¨hler
metric for the Kähler deformations produces an analogue
the simplification~2.43!, where now the greek indices su
over moduli excluding ther i . One way to see this is from
the 10D picture—the condition~2.31!, whose correspon
dence with the 4D potentials was just seen, is independen
the Kähler moduli. So the no-scale structure survives, w
each of the Ka¨hler moduli persisting as a flat direction at th
order. Because it is not difficult to find models with only
single Kähler modulusr, we will assume that this is the cas
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in the rest of the paper. In the Appendix we discuss furt
the derivation of the four-dimensional action by dimension
reduction and the correspondence between the fo
dimensional and ten-dimensional pictures.

III. WARPED SOLUTIONS AND HIERARCHIES

In Sec. II we discussed various global features of type-
compactifications with a nontrivial warp factor. We now tu
to the local structure of the warped region.

We begin by reviewing the solutions of Verlinde@4#, cor-
responding to D3 branes on a compact manifold. IfN D3-
branes are coincident, the warp factor in their vicinity is

e24A'
4 pgsN

r̃ 4
, ~3.1!

with r̃ the distance from the D3-branes in theg̃mn metric.
Near the D3-branes the geometry is thus AdS53S5, produc-
ing a large warp factor@4#. At larger values ofr̃ , the product
structure breaks down due to the curvature ofM6, and even-
tually r̃ ceases to be a good coordinate@36#: M6 is not
globally the product of a five-sphere and one-dimensio
space. This is similar to the RS2 model@2#, though is a
bona-fide compactification, with the compact manifold pla
ing a role roughly analogous to the so-called ‘‘Planck bran
of Ref. @2#, and yielding a finite four-dimensional Planc
scale. The warp factor of course diverges asr̃→0, which is
at infinite spatial distance.

If such a model is realized on an orientifold, the dilaton
a constant,ef5gs, but in the more general context of a
F-theory compactification it varies holomorphically as det
mined by Eq.~2.36! or equivalently by the eight-dimensiona
construction. As we will discuss in Sec. IV B, the physi
near the D3-branes is essentially the same, and the effe
value ofgs is determined by the value oft at the D3-branes.

To get a large but finite hierarchy, one or more D3-bran
must be separated from the rest by a small distancer̃ . These
might be the branes on which the standard model fields l
or they might be associated with some symmetry break
that couples to the standard model through the bulk. Ho
ever, the D3-brane coordinates have no potential. Thus in
present model there is nothing that fixesr̃ and so the size of
the hierarchy.

In order to find a warped solution that produces a la
but stable hierarchy, we now add fluxes. Our motivati
stems from the work of Klebanov-Strassler@7#. The basic
idea is that locally in the vicinity of a conifold point, KS
have found solutions with fluxes that generate smooth su
gravity solutions with large relative warpings. Here we w
extend this work to the compact context.

CY manifolds are generically nonsingular, but at spec
values of the parameters they can develop singularities.
most generic singular space is aconifold @14#. Locally this
can be described as the submanifold ofC4 defined by

w1
21w2

21w3
21w4

250. ~3.2!
6-7
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This submanifold is singular at (w1 ,w2 ,w3 ,w4)50. The ge-
ometry of this space, including its Calabi-Yau metric, is d
scribed in Ref.@14#. It is important that this is a good singu
larity, meaning that string theory makes sense in such a s
@37#. Although the compactification spaceM̃6 we are using
is either the base of a nontrivial elliptic fibration, or is a
orientifold of a Calabi-Yau, the local structure of a singula
ity such as Eq.~3.2! will not be affected by these globa
details, so we can use local facts about CY singularities
the ensuing discussion.

The conifold singularity can be regarded as a cone wh
base has the topology S33S2. At the singular point, both the
S3 and the S2 shrink to zero size. The conifold can b
smoothed into a nonsingular CY manifold in two ways.
the small resolution of the conifold, the S2 is blown up to
finite size. In the deformed conifold, the S3 is expanded to
finite size; it is this that will be relevant for us. The deform
conifold has a simple description as the submanifold

w1
21w2

21w3
21w4

25z. ~3.3!

Here the complex parameterz is the modulus which controls
the size of the S3.

We now consider adding fluxes to this geometry, and fi
the resulting potential for the moduli. Consider a comp
manifold with moduliz, r, andt ~we explain at the end o
this subsection how additional complex structure moduliui
can be incorporated, without substantially modifying t
results!.9 Dirac quantization implies that these fluxes, int
grated over all of the three-cycles of the CY, be integers a
Eq. ~2.25!. In the vicinity of the conifold, there are two re
evant cycles. Examining Eq.~3.3!, and takingz to be real and
positive for convenience, the three-cycle which vanishes
z→0 ~denotedA) can be taken to be the S3 on which all of
the wi are real. In general compact examples, there also
ists a dualB-cycle which intersectsA exactly once. An ex-
ample of such a cycle in this noncompact case can be
structed by takingw1,2,3 to be imaginary andw4 real and
positive. The KS solution corresponds toM units of F (3) on
the A cycle. The field equation in KS requires thatH (3) be
supported on the dual cycle toF (3) , so let there be2K units
on theB cycle:

1

2 pa8
E

A
F (3)52 pM ,

~3.4!

1

2 pa8
E

B
H (3)522 pK.

This can also be understood by requiring D3 charge con
vation as in Eq.~2.24!:

9More generally, in the case of anF-theory compactification, the
following should be generalized using sections as outlined in E
~2.8!,~2.42!.
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H (3)∧F (3)5MK. ~3.5!

Thus, in the sense of Poincare´ duality, we can write

F (3)5~2 p!2a8M @B#, H (3)5~2 p!2a8K@A#. ~3.6!

This gives

W5E
M

G(3)∧V5~2p!2a8S ME
B
V2KtE

A
V D .

~3.7!

The integrals appearing here are theperiodsdefining the
complex structure of the conifold. In particular, the compl
coordinate for the collapsing cycleA is defined by

z5E
A
V. ~3.8!

It is a standard result that on the dual cycle

E
B
V[G~z!5

z

2 p i
lnz1holomorphic. ~3.9!

The superpotential is then

W5~2 p!2a8@MG~z!2Ktz#. ~3.10!

Such a superpotential has been obtained previously by V
@9#.

Let us consider first theDzW condition

05DzW}M]zG2Kt1]zK~MG2Ktz!. ~3.11!

In order to obtain a large hierarchy we will takeK/gs to be
large: this will result inz being exponentially small. This ha
a simple interpretation in the dual gauge theory, as we w
discuss later in this section. In this regime, the domin
terms inDzW are

DzW}
M

2 p i
lnz2 i

K

gs
1O~1!. ~3.12!

It follows that for K/Mgs@1, z is indeed exponentially
small,

z;exp~22pK/Mgs!. ~3.13!

Thus, we obtain a large hierarchy of scales if, for examp
M51 andK/gs is of order 5.

As things stand, theDt equation

05DtW}
1

t̄2t
~2Kzt̄1MG! ~3.14!

cannot be satisfied. The first term in parentheses is expo
tially small, while the second is not because the holomorp
part in Eq. ~3.9! is generically nonvanishing,G(0)5O(1).
Note that this is a property of the compact case. In the n

s.
6-8
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compact case of interest in KS, the bulk modulust is frozen
and there is no correspondingDtW equation to impose.

The problem arises because atz50 the superpotentia
~3.10! is independent oft, and the remedy is to consider
configuration with additionalt dependence. With sucht de-
pendence, one can generically find a solution to Eq.~3.14!
with z'0, though additional structure may be required
ensure that this minimum is at weak coupling. To give o
example,t can be stabilized by turning on additional fluxe
Keeping for simplicity the case of a single complex structu
modulusz, there are 212b2,154 3-cycles, namely, the pai
(A,B) and an additional pair (A8,B8). Turning on2K8 units
of H (3) on theB8 cycle gives

W5~2 p!2a8@MG~z!2t~Kz1K8z8!#, ~3.15!

wherez8 is a function ofz which is generically nonvanishing
at z50, z8(z)5O(1). Then if we fix z50, theDtW equa-
tion is

05DtW}
1

t̄2t
@2K8z8~0!t̄1MG~0!#, ~3.16!

thus fixing the dilaton at

t̄5
MG~0!

K8z8~0!
. ~3.17!

The hierarchy becomes

z;expS 2 pK

K8
Im@G~0!/z8~0!# D . ~3.18!

Thus, by appropriate choices ofK, K8, andM one obtains an
exponential hierarchy with the dilaton fixed at an interest
value.

The hierarchy is determined in terms of integer fluxes a
the Calabi-Yau geometry. To obtain the actual warp fac
requires solving the differential equation~2.14!, but one can
estimate it as follows. The D3-brane warp factor~3.1! is
e4A; r̃ 4. The resolution of the conifold cuts this off atwi

2

;z. According to Ref.@14#, the conic coordinater̃ ~which is
r in the notation of that paper! is r̃}w2/3}z1/3, and so the
hierarchy of energy scales is

eAmin;z1/3;exp~22pK/3Mgs!. ~3.19!

In effect the fluxes produce a model similar to RS1@1#, in
which the warp factor does not go to zero but to a sm
positive value.10

The large hierarchy~3.13! has a simple interpretation i
terms of a dual gauge theory. The KS solution is the sup
gravity dual to a nonconformalN51 gauge theory, with

10We should note that, unlike RS1, there is no negative tens
brane at the low-energy end; rather, there is a KS space. The n
tive tension objects that we require are elsewhere on the com
space, in the region that replaces the RS Planck brane.
10600
e
.
e

g

d
r

ll

r-

confinement and chiral symmetry breaking at a dynamica
generated scale@7#. In the spirit of the Verlinde model@4#,
the low-energy physics of our supergravity solutions
equivalent to this gauge theory coupled to the massless
fields of the compactification. The KS solution begins withN
whole D3-branes andM fractional D3-branes at a conifold
singularity. In the end all of these branes are replaced
flux; their moduli disappear, which is in accord with confin
ment in the dual gauge theory. In particular, withM units of
F (3) on theA cycle andK units of H (3) on the dualB cycle,
the total D3 charge isN5MK.11

The formula ~3.19! then corresponds precisely to th
renormalization group analysis of KS@7#. Using the
b-function in their Eq.~23!, one cascade takes place on
ratio of scalese2 p/3Mgs ~during which the LHS of that equa
tion changes from22 p/gs to 12 p/gs). The total number
of cascades isN/M5K, becauseM units of D3 charge dis-
appear at each cascade, giving the total hierarchy~3.19!.
Thus the four-dimensional effective action correctly rep
duces the physics of the KS gauge theory.

In the gauge theory, the parameterz is the scale of gluino
condensation. The instability noted in Eq.~3.14! is the famil-
iar fact that a gluino condensate generates a dilaton pote
@22#. The stabilization~3.16! does not have a gauge theo
origin; rather, it is a bulk effect in the type-IIB theory.

There is an effect which might have been expected
destabilize the large hierarchy, but does not do so. The d
gauge theory has various relevant perturbations; for exam
the N51 supersymmetry allows a superpotential. Th
would produce a mass gap which is of order the perturbat
rather than exponentially small. This perturbation is absen
our solution: in supergravity language it is a 3-form flux, b
it is not of the form* 6G(3)5 iG (3) , as one sees from th
explicit expressions in Sec. III C of Ref.@38#. The reason for
its absence appears to be holomorphy: the gauge theory
turbation corresponds to a growing~nonnormalizable! mode
as one move away from the origin, and evidently this can
be extended to the full compact space.

So far, we have assumed that there is a single comp
structure parameterz. Suppose there are other complex stru
ture deformations, controlled by moduliui . In such a case
theui enter in the regular terms in the period~3.9!, soG(z) is
really G(z,ui). Generically, assuming thatz has been suc-
cessfully stabilized near the conifold point in moduli spa
as above, the equations

Dui
Wuz5050 ~3.20!

can be solved to yield fixed~order 1! values for the other
moduli ui . So we see that the presence of background
and NS fluxes generically serves to fix all of the compl
moduli and the dilaton, while leaving the Ka¨hler modulusr
unfixed.

n
ga-
ct

11In order to obtain an interesting low-energy spectrum, one m
need additional ‘‘mobile’’ D3-branes in the warped region, but th
is beyond our present focus.
6-9
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IV. EXAMPLES

In order to make our discussion of warped compactifi
tions with fluxes more explicit and concrete, and in particu
check our ability to build consistent solutions with bo
negative D3 charge or tension and the above flux config
tions, we now turn to the construction of some explicit mo
els. We briefly describe models based on O3-folds, and t
discussF-theory compactifications in detail.

A. O3 models

Models in which the negative tension objects are
planes are easily described. Begin with a CY manifold wit
conifold singularity and aZ2 symmetry that has isolate
fixed points, and orientifold on this symmetry. Since we
suming that the O3 planes are distant from the singula
the initial CY must actually have two conifold singularitie
which are images of one another. The D3 charge of the
planes is then2 1

4 times the number of fixed points. In orde
that the supergravity description be good, we needgsN to be
somewhat greater than one. To work in perturbative str
theory we should also assume thatgs<1. Therefore, we need
N, and hence the number of fixed points, to be large.

We will not present explicit examples, deferring an e
plicit example to the discussion ofF-theory, but we will
present some details of the orientifold construction and
low energy spectrum.

Let us first determine which of the RR fields survive t
orientifolding byRV, whereR is theZ2 with isolated fixed
points, andV is world-sheet parity. First, consider aTk/Z2
orientifold, where we can useT-duality to relate this toV in
type-IIB string @25#

RV5T21VT. ~4.1!

Consider a Ramond field withr indices in the direction of the
k-torus ands in the orthogonal directions. In type-IIB string
the operatorV acts asi r 1s22 on RR potentials andi r 1s23

on RR fluxes; thus, for example, the RR two-form poten
survives the projection to the type-I string. TheT-duality
takesr to k2r . Thus,VR acts asi 2r 1s1k22 or i 2r 1s1k23,
respectively. We can also phrase this as the statement tha
intrinsic VR of these fields is, respectively,i n1k22 or
i n1k23, wheren is the total number of indices. This intrinsi
parity must be combined with (21)r , from the explicit ac-
tion of theR on the indices. For the valuek56 relevant here,
the intrinsic parities are respectivelyi n and i n21.

Thus, the Ramond scalarC has even intrinsic parity, a
expected because it is the superpartner of the dilaton. S
larly amn , the axionic part ofr, has even intrinsic parity:

Cmnpq5amnJ̃pq , ~4.2!

whereJ̃ is the Kähler form.
The orientifolding requires that theZ2 symmetry hold

throughout the moduli space and so only complex struc
moduli that are even survive. The R-R fluxFmnp has odd
intrinsic parity, as does the NS-NS fluxHmnp ~from the ac-
tion of V). Thus these must be proportional to 3-forms
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odd intrinsic parity to survive the projection. Note that th
3-form V ~not to be confused with the world-sheet pari
operator! also has odd intrinsic parity. This is because it
nowhere vanishing and so in particular is nonzero at
fixed points; at the fixed points theZ2 gives an explicit
21 from the indices and this must be offset by the intrin
parity. It follows that the superpotential

E V∧G(3) ~4.3!

is well-defined on the covering space. Also, the even co
plex structure deformations generate, by contraction withV,
odd (2,1) forms, so these are the appropriate fluxes to ex

Models of this class can be analyzed exactly as in Sec.
One can choose fluxes through theA and B cycles of the
conifold ~with the D3 charge being canceled by the O
planes!, and obtain precisely the effective field theory forz,r
andt described there.

B. F-theory models

Another general class of warped models arises fr
F-theory compactifications to four dimensions. In such mo
els the possible configurations of branes and fluxes are
strained by the topology of the elliptic Calabi-Yau fourfo
X→M, via the equation

x~X!

24
5ND31

1

2 k10
2 T3

E
M

H3∧F3 . ~4.4!

The left-hand side of this equation arises from the induc
D3 brane charge on the wrapped D7 branes, and this ch
must be compensated by introducing either wandering
branes or appropriate fluxes in the baseM of the elliptic
fibration. In general one could also introduce nontriv
gauge bundles in the wrapped D7 branes@which would yield
another term on the right-hand side of Eq.~4.4!, correspond-
ing to the instanton number in each D7-brane gauge theo#,
but we will not need to use this freedom. Becausex@1 is
attainable for Calabi-Yau fourfolds, this class of mode
should allow a great deal of freedom in choosing appropr
flux and brane configurations for model building. Earlier d
cussions of fourfold compactifications with nontrivial fluxe
can be found in Refs.@8,33,34,39#.

Because of SL(2,Z) monodromies around the (p,q)
7-branes wrapping surfaces inM, the fluxes should really be
viewed as transforming as sections of a nontrivial bundle~as
detailed in Sec. II A!. However, we will focus our attention
on a local region around a conifold singularity in the ba
M, and will write our formulas in terms of a local trivializa
tion of this bundle. This is particularly simple in orientifol
limits of F-theory vacua, and we will be most explicit ther
Since the most generalF-theory model does have an orien
tifold locus in its moduli space@40#, this does not constitute
a serious loss of generality.
6-10
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1. The fourfold

To embed the Klebanov-Strassler system into anF-theory
compactification, we need to exhibit an elliptically fibere
Calabi-Yau fourfoldX which admits a conifold singularity in
its baseM. A simple example can be designed as follo
~the generalization to construct other examples is straight
ward!.

Consider forM the hypersurface given by a quartic equ
tion in P4

P5z5
2S (

i 51

4

zi
2D 2t2z5

41(
i 51

4

zi
450, ~4.5!

wherezi are the homogeneous coordinates onP4, andt is for
convenience taken to be a real parameter. One can cons
a fourfoldX overM by specifying a Weierstrass model~see,
e.g., Ref.@41#!

y25x31x f~zi !1g~zi !, ~4.6!

whereyP3L, xP2L, f PH0(4L) andgPH0(6L); hereL is
the line bundle given byL52KM in terms of the canonica
bundle ofM. In practice for this model, we can think off
andg as being polynomials of degree 4 and 6 in the hom
geneous coordinateszi ~restricted toM).

In type-IIB language, one should think of the model~4.6!
as corresponding to a compactification of type-IIB stri
theory on the quartic inP4, with various (p,q) 7-branes
appearing at the loci where the elliptic fibration degenera
i.e., where the discriminant

D54 f 3127g2 ~4.7!

vanishes. The physics associated with such degeneration
volves enhanced gauge symmetry and more exotic phen
ena, and is described for many cases which arise in com
tification on CY threefolds in Refs.@42–44#. However, for
our interests we want a degeneration of the base whic
unrelated to the physics of the 7-branes, and we will sim
insure that the loci inM of interest to us do not intersect th
D50 discriminant locus. For later reference, the value of
type-IIB axion-dilatont is determined in terms of the Weie
strass data by the equation

j ~t!5
4~24f !3

4 f 3127g2 , ~4.8!

where j (t) is the modular invariant function oft, normal-
ized so thatj ( i )5(24)3.

Equation~2.22! gives the background D3 charge for th
configuration. For the model~4.6!, one can evaluatex by
using the formula in Ref.@41#, with the result that

2Q3
D75

x

24
512115E

M
c1~M!3572. ~4.9!

Inspection of Eq.~4.5! reveals thatM has a conifold
singularity ast→0 –one can solveP5dP50 at ~0,0,0,0,1!.
The collapsing three-cycle can in fact be exhibited explici
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as the fixed point locus of the involutionzi→ z̄i . On this
locus, thezi must be real. One can see from Eq.~4.5! that
without loss of generality on the real locusz5Þ0, so we can
takez551 and fix the projective symmetry. Denote the re
part of zi by xi . The equation becomes

(
i 51

4

~xi
41xi

2!5t2 ~4.10!

and by definingui5Axi
41xi

2, and choosing the branch of th
square root where sgn(ui)5sgn(xi), we get a 1-1 map onto
the locus

(
i 51

4

ui
25t2 ~4.11!

which describes an S3 that collapses ast→0. This is the
A-cycle of the conifold.

2. Orientifold limit

Following the work of Sen@40# we can presentX on a
locus in its moduli space where it has a particularly sim
description, as a type-IIB orientifold. Choosef andg so that
they satisfy

f 5Ch~zi !23h~zi !
2, g5h~zi !@Ch~zi !22h~zi !

2#
~4.12!

with h,h arbitrary functions of degrees 2 and 4. Sincef is
quartic this allows for a generic choice off, but is a special-
ization of the choice ofg. Then from Eq.~4.8! it is clear that
asC→0 with h andh fixed, j (t)→` wherever the numera
tor does not vanish. This meanst→ i` almost everywhere
on the base, i.e., we are at weak type-IIB coupling.

In fact in this limit, the model becomes an orientifold o
type-IIB on a Calabi-Yau threefoldM̂. M̂ is a double cover
of M, specified by Eq.~4.5! together with

j22h~zi !50, ~4.13!

wherej is a new coordinate~valued in the line bundleL).
We orientifoldM̂ by the action

j→2j ~4.14!

composed withV(21)FL which fixes the locusj50, yield-
ing an O7 plane localized ath(zi)50 in Eq. ~4.5!.

One must also introduceD7 branes to cancel the RR tad
pole generated by the orientifold. Inspecting the discrimin
D, which is

D5C2h2~4Ch29h2! ~4.15!

in the limit ~4.12!, one can see that there are a pair of D
branes located ath(zi)50 in M̂.

3. Embedding Klebanov-Strassler

We have now reducedF-theory onX to type-IIB string
theory on the orientifold ofM̂ by Eq. ~4.14!. Recall that as
6-11
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t→0, there is a conifold singularity inM, which survives in

the orientifold of type-IIB onM̂. We can chooseh andh to
be of the form

h~zi !5(
i 51

5

aizi
2 , h~zi !5(

i 51

5

bizi
4 ~4.16!

with ai andbi real and positive. With such a choice, the lo
h50 andh50 where the O7 and D7’s are located do n
intersect the real slice ofM. But the collapsing three-cycle
in M̂ as t2→0 lies on this real slice. Therefore, the D
branes and O7 plane do not lie near the conifold singula
and we can work in a local neighborhood of the conifold
the orientifold ofM̂ while ignoring these other branes.

At the conifold point there is a collapsingA cycle in M̂,
as well as a dualB cycle inM̂ which it intersects once. We
expect to be able to put flux through both of these, consis
with the orientifold projection. The background charge~4.9!
is still in force in the orientifold limit~the D3 charge come
from the induced charge on the wrapped branes!; and can be
cancelled by choosing appropriateH3 andF3 fluxes through
these cycles. If we choose to putM units of RR three-form
flux throughA andK units of NS three-form flux throughB,
with MK5N<72, then Eq.~4.4! can be satisfied@for N
,72, we should add wandering D3 branes or turn on ot
fluxes to saturate Eq.~4.4!#. This allows us to reproduce
locally, in a neighborhood of the conifold point in~the ori-
entifold of! M̂, the solution of Klebanov and Strassler@7#.
That is, the local geometry is the same as the gravity dua
the SU(N1M )3SU(N) gauge theory considered ther
Even with the values ofM andK which are possible in this
model~much larger values ofx, and thus larger values ofK,
are possible in other examples!, one can generate a larg
hierarchy from the RG cascade, as we have demonstrate
Sec. III.

Stabilizing the dilaton in such an orientifold require
some other generic addition to the low-energy superpoten
One way to accomplish this is to turn on additional fluxes,
discussed in Sec. III. An alternative is to work at gene
points in theF-theory moduli space, which we discuss b
low.

4. Deforming away from the orientifold limit

To understand the low-energy physics governing an
entifold model with a conifold singularity and appropria
fluxes, one should compute the effective field theory gove
ing ~at least! three different moduli, as described in Sec. I
These are the complex modulusz which controls the volume
of the collapsing three-cycle at the conifold, the dilatont,
and the overall volume of the spacer.

In our F-theory situation, however, we could consid
moving away from the limit of Sec. IV B 2, so that the mod
is not a perturbative type-IIB orientifold. Working away from
the orientifold limit while keeping theF3 and H3 fluxes as
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before, one achieves some simplification.12 While r ~the size
of the baseM) and z @here controlled byt2 in Eq. 4.5!#
remain moduli in theF-theory picture, the dilaton does no
remain an independent modulus. It is fixed in terms of
complex structure ofX by Eq. ~2.36!, with solution~4.8!.

This means that the naive problem with solving t
DtW50 equation in the vicinity of the conifold point
solved in Sec. III by for example turning on an addition
flux, will not occur here.t does not appear as an independe
mode in the low-energy effective field theory. The mod
controlling the complex structure ofX, which determinet
via Eq. ~4.8!, are frozen on general grounds by just t
Klebanov-Strassler fluxes, as described at the end of Sec
Although our discussion there was in terms of perturbat
type-IIB string theory, there is an alternative derivatio
which goes throughM-theory. One can viewF-theory onX
as being defined by a limit ofM-theory onX ~where one
shrinks the volume of the elliptic fiber in going from
M-theory toF-theory!. The superpotential for complex struc
ture moduli inM-theory onX is given by the formula~2.41!
where G(4) is the M-theory four-form flux andV4 is the
holomorphic~4,0! form onX. The formula~3.7! for the type-
IIB string theory superpotential follows from Eq.~2.41! in
the F-theory limit, for suitable choices ofG(4) ~those which
lift to G(3) flux in type-IIB language! and in the case thatX
is a Calabi-Yau threefold times a two-torus. In the more g
eral F-theory case,X is not such a product, but neverthele
the A and B cycle in M that we have been using lift to
4-cycles in X and allow use of the local decompositio
~2.42!. The statement that the complex moduli~and therefore
the value oft at the conifold point inM) are fixed then
follows from the fact that the period ofV4 over the lift of the
B cycle will have generic dependence on the complex str
ture moduli.

We saw in Sec. III that fixing the dilaton, either by th
mechanism or by turning on additional fluxes, allows one
solve for z. The exponentially small value ofz computed
from the superpotential of Ref.@9# independently confirms
the existence of a hierarchy for reasonable choices ofM and
N ~and represents the small, dynamically generated scal
chiral symmetry breaking in Ref.@7#!.

V. CONCLUSION

There has been a great deal of interest in finding str
theory constructions which produce large hierarchies thro
warping, and in particular reproduce, at long wavelengt
features of the RS1 model@1#. Building on the ideas of Ver-
linde and collaborators@4,36#, we have described orientifold
andF-theory models which accomplish this. The role of t
AdS throat and the infrared brane is played by~a finite radial
segment of! the gravity dual to a confining gauge theo
found by Klebanov and Strassler@7#, while the UV brane is

12Note that fluxes which were projected in by the orientifold a
tion are guaranteed to adiabatically deform to consistentG(4) fluxes
in the full CY fourfold geometry.
6-12
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replaced by the bulk of the string theory compactificati
manifold.

Our models are consistent, nonsingular string the
backgrounds. However, we expecta8 and string loop correc-
tions to generate a potential for the overall scaler of the
compactification manifold. An analogous problem also ari
in familiar classical heterotic string backgrounds@21,22#, and
in some ways our models are quite similar to those~with the
important difference that nonperturbative gauge theory
fects have already been incorporated in the classical gra
solution!. It would be very interesting to find mechanisms f
stabilizing r in these models; toy models where all of th
moduli are stabilized by fluxes can be constructed@20#.

The duality between gauge theories and compactificat
with flux extends beyond the single example@7# we have
used here. The results of Ref.@9# provide a more genera
construction of dualities between fluxes and gauge theo
and quantum gauge theory effects are again calculable u
classical geometry. It would be interesting to use other
amples of this gauge theory/flux duality to constructN51
string compactifications with moduli which are calculab
stabilized by nonperturbative gauge dynamics.

Finally, it has recently become clear that warped comp
tifications offer new mechanisms, distinct from AdS redsh
ing, of producing large hierarchies@45#. The relevant warped
models need to have two or more different brane thro
with fairly generic warping~so power-law warping is suffi-
cient!. Large hierarchies can then be produced by
tunneling-suppressed~and therefore weak! interactions be-
tween the IR modes localized down distinct throats. It sho
be possible to design string theory examples of such m
throat compactifications by generalizing the construction
our paper.
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APPENDIX: DIMENSIONAL REDUCTION

We now develop further the low energy effective actio
discussed in Sec. II. Before turning on fluxes, the underly
manifold M̃ generically has a large number of moduli a
corresponding massless supermultiplets in the fo
dimensional low-energy effective theory. Turning on flux
deforms the geometry of the compactification, and in
four-dimensional effective theory generates a potential
the massless moduli@8,33#.
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1. Kinetic terms and Kähler potential

The allowed moduli depend on the topology of the co
pactification, though one generically has the universal Ka¨hler
modulus corresponding to overall rescaling of the s
dimensional metric. This has partneramn , arising from

Cmnpq5amnJ̃pq , ~A1!

whereJ̃ is the Kähler form. We work in the approximation o
constant warp factor and vanishingF̃5; as discussed in Sec
II B 4 this is valid in the large-radius limit~although we ex-
pect our expressions to generalize beyond this!. The effective
action for this Kähler multiplet together with the 4D metric
and dilaton can be found by computing the action~2.3! with

ds25gmndxmdxn1e2u(x)g̃mndymdyn, ~A2!

whereg̃mn is the metric of the compactification. In doing s
we define the 4D Newton’s constantk4

25k10
2 /Ṽ where Ṽ

is the volume of M̃, and the Weyl rescaled metri
g45e26ug̃4. We also dualize,da(2)5e28u*̃ db, and define

r5b/A21 ie4u. The result is

S5
1

2 k4
2E d4x ~2g̃4!1/2S R̃422

]mt]mt̄

ut2 t̄u2
26

]mr]mr̄

ur2 r̄u2
D .

~A3!

The kinetic terms fort and r can thus be found from the
Kähler potential

K152 ln@2 i ~t2 t̄ !#23ln@2 i ~r2 r̄ !#. ~A4!

In the O3 case, botht andr survive the projection. In the
case of anF-theory compactification, the D7-brane mon
dromies generally removet from the 4D spectrum, although
t varies as other complex structure moduli, e.g., parame
ing the locations of the D7-branes, vary.

The remaining moduli are the other Ka¨hler and complex
structure deformations of the 6D compactification or, in t
F-theory context, of the eight-dimensional Calabi-Yau ma
fold. In the following, we imagine for definiteness thatM̃ is
a Calabi-Yau orientifold, and we discuss the complex str
ture moduli space of Calabi-Yau threefolds, but the relev
parts of the story carry over also to theF-theory examples.

As shown by Candelas and de la Ossa@35#, the effective
action for CY moduli is determined by the Weil-Peterss
metric on the moduli space, and one may derive a sim
expression for the corresponding Ka¨hler potential. First note
that on a general CY threefold there are the following h
monic forms:
6-13
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~1! One ~3,0! form V.
~2! b2,1 primitive ~2,1! forms xa .
~3! Their ~1,2! conjugatesx̄a.

~4! The ~0,3! conjugateV̄.

These satisfy

* 6V52 iV, * 6xa5 ixa . ~A5!

As discussed in Sec. IV B, only forms of odd intrinsic par
under theZ2 projection are relevant. This includesV and a
subset of thexa . In the subsequent analysisa is restricted to
this subset.

The metric for the complex structure deformations tak
the form

Gab̄52

E
M

xa∧x̄b

E
M

V∧V̄

. ~A6!

To find the corresponding Ka¨hler potential, letza be coordi-
nates on the complex structure moduli space. Then it ca
shown that]V/]za is (3,0)1(2,1), and more precisely tha
there is a basisxa such that

]V

]za
5ka~z,z̄!V1xa . ~A7!

Defining

K252 lnS 2 i E
M

V∧V̄ D , ~A8!

one may then show

]aK252ka , ~A9!

and the equation

]a]b̄K25Gab̄ ~A10!

gives the above metric. In the context of anF-theory com-
pactification, an obvious generalization of Eq.~A8! is

K52 lnS E
X
V4∧V̄4D . ~A11!
10600
s

be

2. The potential and superpotential

We now turn to the problem of finding the potential d
termined by the fluxes. From Eq.~2.3!, the potential is de-
termined by

SG52
1

24k10
2 EM

d6yg̃1/2
GmnpḠ

mnp̃

Im t
. ~A12!

Again, we are in a large-radius approximation where
warp factor is constant andF̃ (5)50. We define the imaginary
self-dual parts ofG(3) as

G(3)5G(3)
1 1G(3)

2 , G(3)
6 5

1

2
~G(3)6 i * 6G(3)!,

* 6G(3)
6 57 iG (3)

6 . ~A13!

The action can then be written as

SG52
1

12k10
2 Im t

E
M

d6x g̃1/2Gmnp
1 Ḡ1mnp̃

2
i

4 k10
2 Im t

E
M

G(3)∧Ḡ(3)

52V2
i

4 k10
2 Im t

E
M

G(3)∧Ḡ(3) , ~A14!

where we define the potential

V52
1

2 k10
2 Im t

E
M

G(3)
1 ∧* 6Ḡ(3)

1 . ~A15!

The second term in Eq.~A14! is proportional tom3Q3
G ,

wherem3 is the D3 tension andQ3
G is the D3 charge carried

by the three-form flux. This term is topological and does n
involve the moduli. It is canceled by the tension of the l
calized sources, because these have total D3 chargeQ3

loc

52Q3
G and saturate the inequality~2.26!.

Equation~A5! implies thatV only depends on the coeffi
cients ofV and xa when G(3) is expanded in the basis o
3-forms. In terms of the metric~A6!, we find
V5

i E
M

G(3)∧V̄E
M

Ḡ(3)∧V1Gab̄E
M

G(3)∧xaEM
Ḡ(3)∧x̄b

2 Imt k10
2 E

M
V∧V̄

. ~A16!
6-14
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This can be derived from a superpotential of the form d
cussed in Refs.@8,9,46#,

W5E
M

G(3)∧V. ~A17!

Indeed, from Eqs.~A7!,~A4! we find

DaW[]aW1~]aK!W5E
M

G(3)∧xa ,

~A18!

DtW[]tW1~]tK!W5
1

t̄2t
E

M
Ḡ(3)∧V,

whereK5K11K2. After a Weyl transformation to the four
dimensional Einstein frame, the potential takes the stand
N51 supergravity form@47#, as in Eq.~2.43!.

This potential has been discussed before@48#, but in
somewhat different contexts. In the first place, these ea
systems hadN52 low energy supersymmetry, even whe
the potential was written inN51 form. Here, the orienti-
folding or theF-theory D7 configuration explicitly reduce
the low-energy supersymmetry toN51. Second, objects
with negative D3 charge were not included, so the flux
were restricted to*MH (3)∧F (3)50.

The conditionsDaW5DtW50 imply thatG(3)
1 50. Thus

the effective four-dimensional action reproduces the t
dimensional conditions~2.31! for a solution. Unbroken su
persymmetry requires also thatDrW50, implying that the
(0,3) part of G(3) vanishes and so this flux is (2,1) an
primitive, again as argued directly in ten dimensions. T
latter condition is equivalent toW50; this will generically
not hold whenDaW5DtW50.
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TheF-theory generalization of this discussion readily fo
lows, with superpotential@8#

W5E
X
G(4)∧V4 , ~A19!

whereG(4) is the F-theory lift of the flux, locally given in
Eq. ~2.42!.

This dimensional reduction has been carried out in a li
that is rather orthogonal to the main concerns of this pa
in that the warp factor is constant rather than strongly va
ing, andF̃ (5)50. The detailed treatment of dimensional r
duction in the warped case is left for the future~see also Ref.
@39#!, but in the present case we can argue that the key
sults are unaffected. In particular, the ten-dimensional an
sis of Sec. II shows that the solutions found from the effe
tive action derived here remain solutions even when
warping is taken into account. The physical reason is tha
localized sources as well as the supergravity fields coupl
the warp factor and the 5-form flux in the same ratio, so t
there is no net force.

The superpotential derived in the large-radius limit is e
act in string perturbation theory. This is because the real
of r is an axion, obtained from the tensor field~A1!, and so
there is a Peccei-Quinn symmetry broken only
D-instanton effects. Thusr cannot appear in the superpote
tial @49#; the same will be true of all other Ka¨hler moduli.
Note that this is not true oft. The fieldC(0) appears in the
classical action through the definition ofG(3) , so there is no
Peccei-Quinn~PQ! symmetry andt does enter into the clas
sical superpotential~A17!.
.
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