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Warped compactifications with significant warping provide one of the few known mechanisms for naturally
generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string
theory, and give examples involving orientifold compactifications of type-1IB string theory Fatigeory
compactifications on Calabi-Yau fourfolds. In each case, the hierarchy of scales is fixed by a choice of
Ramond-Ramond and Neveu-Schwarz fluxes in the compact manifold. Our solutions involve compactifications
of the Klebanov-Strassler gravity dual to a confinihg=1 supersymmetric gauge theory, and the hierarchy
reflects the small scale of chiral symmetry breaking in the dual gauge theory.
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[. INTRODUCTION ample, to the separations of various branes. Goldberger and
Wise [6] have shown that additional dynamics can fix the
The origin of the small ratioM ea/Mpanck iS @ great  moduli and produce a calculable large hierarchy. Their analy-
puzzle. There are several known mechanisms for producingis was phenomenological; the goal of our paper is to exam-
an exponentially small ratio of scales. One is dimensionaine this issue in string theory, in the framework suggested by
transmutation, which nature employs in many contexts. AnVerlinde. In particular, as has been exhibited in the work of
other is nonperturbative effects, such as instantons, which afeef. [7] (see also Refd8,9]), a natural mechanism to gen-
exponentially small in the inverse coupling. A third possibil- erate such a hierarchy is to consider warped compactifica-
ity has recently come to the fore. In a warped spacetime—tions with both RR and NS fluxes present.
one where the normalization of the four-dimensional metric One way to understand this arises from a picture where
varies in the transverse dimensions—a given invariant enbranes are placed at a singularity. The low energy physics of
ergy scale can give rise to many four-dimensional scaled)3-branes on a CY manifold is conformally invariant and
depending on the position-dependent gravitational redshift it'=4 supersymmetric. In order to fix the moduli it is neces-
the transverse space. This mechanism has in particulsary to break the conformal invariance and most of the su-
played a role in the Randall-Sundrui®RS) models[1,2]. persymmetry. Precisely this same issue arises in the context
Such generation of a hierarchy via redshift has a numbeof Maldacena duality. String theory on Ag8S® is dual to
of interesting potential consequences. For example, one may=4 supersymmetric Yang-Mills theory. To find string du-
reach thresholds to produce Kaluza-Klein modes at low enals of gauge theories with confinement and chiral symmetry
ergies, perhaps in the TeV range, with interesting phenombreaking one must reduce the symmetry; in the supergravity
enological consequences. Moreover, in such scenarios, scawntext this generates potentials which can fix some of the
tering at apparently low energies can actually reach thenoduli and stabilize a hierarchy.
fundamental Planck scale, due to the relative redshift, raising A simple means of reducing the symmetry is to place the
the prospect of experimental probes of Planck- or stringD3-branes not at a smooth point of the transverse space but
scale physics at energies far below the apparent fourat a singularityf10—13. Indeed, placing them at a generic
dimensional Planck scale; an example is the possibility ofCY singularity, a conifold poinf14], reduces the supersym-
producing black holes at relatively low energy scdlgs metry to A/=1. This does not break the conformal invari-
Warped metrics are quite natural in string theory, whereance, so it is also necessary to add additional “fractional”
D-branes generically provide sources for the warping. Withinbranes localized at the conifold singularfty5—17. In the
the context of string compactifications, a particularly simplefinal analysis these branes dissolve into flux, and result in a
realization was described by Verlinfi¢]: simply takeN D3-  nonsingular solution that has recently been found by Kle-
branes to be coincident on a Calabi-Y&LY) space. As is banov and Strassl€KS) [7]. So while the picture of branes
familiar from the AdS/conformal field theofCFT) duality  and fractional branes at a conifold is used to motivate the
[5], the spacetime near the D3-branes is of the form j/AdS construction, the net result is that one ends up with a string
xS, It is well known that Ad§ can be represented as a background with Ramond-RamondRR) and Neveu-
Poincareinvariant four-dimensional space plus a radial di- Schwarz(NS) fluxes, which lead to a smooth string solution
rection, with a varying warp factor that vanishes at the hori-with a large hierarchy.
zon of its Poincargarametrization. The KS solution is, however, noncompact and therefore
The RS models, and the warped compactifications of Vernot suitable as a means of reducing string theory to four
linde, allow a large hierarchy but do not explain it. There isdimensions; in particular it would produce an infinite four-
a moduli space of solutions, and the size of the hierarchy is dimensional4D) Planck scale. Thus, our goal is to find true
function of the moduli. These moduli correspond, for ex-string compactifications, with a finite 4D Planck scale and a

0556-2821/2002/68.0)/10600616)/$20.00 66 106006-1 ©2002 The American Physical Society



GIDDINGS, KACHRU, AND POLCHINSKI PHYSICAL REVIEW D66, 106006 (2002

local region of the KS form which generates a large but finitemomentum tensor and their D3-brane charge, then the global

hierarchy. This hierarchy will be determined by the quan-constraints do determine the general solution. The localized

tized values of the fluxes on the compact manifalHor  sources that we consider—D3-branes, wrapped D7-branes,

another discussion of compactifications with fluxes, see Refand O3-planes—all satisfy this bound. We discuss various

[18].) special properties of these solutions, in particular the effec-
The outline of our paper is as follows. In Sec. Il we con-tive action for their moduli, and we relate them to solutions

sider global constraints on warped type-IIB solutions. Suchrecently considered in the literature.

constraints have been used in the past to exclude warped

solutions of type-11B supergravity, but in the context of string A. Action, equations of motion, and constraints

theory their effect is to require the presence of objects of

negative tension such as O3 planes and wrapped D7-branes.Our starting point is the effective actibn

Further, when the localized sources satisfy a certain 1 2
Bogomol'nyi-Prasad-SommerfielBPS,like bound, we are Sig= J dlox\/—_gs[ e 2R+ 4(V )] O
able from the global constraints to find the general solution. 2K, 2
We find that, in the classical approximation in which we -
work, the radial modulus is a flat direction with zero cosmo- 1 — F(25)
logical constant. This is the case even though supersymmetry B 2._3!6(3)' G 4-51
is generically broken at a scale that depends on the radial
modulus. Thus, these are no-scale modl&8. 1 R —
In Sec. Il we focus on the local structure of the compac- + 8i KlOZJ e”C(4)lIG 3G 3)* Spoc- 23

tifications, beginning with a review of the Verlinde solution

and its generalizations. In pa_rticular, in the presence of CelHere g, denotes the string metric. We have also defined the
tain fluxes on a compact manifold, together with the required.; mpined three-fluxG s)= F 3 — 7H 3y, Where as usuat
O3 planes or D7-branes, we show that compact smootl;c(o)ﬂe—qs and SR @)

string solutions exist with the hierarchy fixed by the fluxes,

in a limit of large fluxes. However, as noted above, the over- Fre=Frerme 2CrH mt L B OF an . 2.2

all radius of the compact dimensions is always left unfixed. G e 2@ 2P @)

This reflects the familiar feature of string compactifications,The term s, is the action of localized objects, such as

that it is very difficult to stabilize all moduli, though we pranes, which will become important shortly. The condition

should note that in classical type-IIB compactifications W|th|~:(5):* F(s) must as usual be imposed by hand on the equa-

fluxes the dilaton genericaliig stabilized! In fact the effec-  tions of motion.
tive theories that we find are very similar to those which e will be considering compactifications arising from
arise in heterotic string compactificatiofil,22. We also  F.theory, so it is particularly useful to reformulate the action

outline the dual, gauge theory, description of these solutiongy, 4y SL(27) invariant form by defining the Einstein metric
Section IV is devoted to constructing explicit examples, f|rstg —e %294\, whence the action becomes

as orientifolds of CY compactifications, and thenFatheory

compactifications(which allow larger fluxes and hierar- M ey
chies. Syp= 1 4% /g R—&M 79°7 G G
2K10° 2(Imr)?2  12Imr
Il. WARPED COMPACTIFICATIONS: GLOBAL F5s) 1 [ Cwu)IGsGs)
CONSTRAINTS "5 Tgie zf imr oc
: 10
We begin by working in the approximation of low energy 2.3

type-1I1B supergravity, with such localized sources as arise in

string theory. In pure supergravity, the integrated field equatHenceforth we use the Einstein metric throughout. Invari-
tions rule out warped compactifications under broad condiance under the SL(2) transform

tions [23,24]. In Sec. Il A we revisit this argument with lo-

calized sources included, and show that a warped ar+b
compactification is possible if sources with negative tension ™ ertd’ 24
are present; such objects do exist in string theory.

With the constraint thus weakened, it does not appear posegether with the transformation
sible to give a simple description of the general warped so-
lution. In Sec. Il B we show that when the localized sources G G(3) 2
satisfy a certain BPS-like bound involving their energy- ®7 cr+d 29

is readily checked.

IMore general compactifications with fluxes will be discussed in
Ref. [20]. In particular, some of these have no moduli, and are
reliably studied in a regime where low-energy supergravity is valid. ?We use the conventions of R¢R5].
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Our interest is in warped metrics maintaining four- _ G. GMNP g 6A
dimensional Poincarsymmetry, with convenient parametri- V2A=g 2A TP + Imad™a
zation 48 Imr 4
2
~ K
dsfozeZA(y)nluvdxp-dxv_,_e72A(y)gmndymdyn (2.6) +%e—2A(Tm_TZ)Ioc (2.14

in terms of four-dimensional coordinate$ and coordinates
y™ on the compact manifoldMg. The axion/dilaton will be
allowed to vary over the compact manifold —

- G Gmnp
V2etA=g2AZMNPT

—6A m 4A omL4A
r=1(y), (2.7) 21mr +e N opad"a+ d e ome ™

and since we will consider D7-branes, monodromies of the 10 o cm_ —pnloc
form (2.4) will be allowed. To maintain Poincaiavariance t—5e (Tm=TW)™ (2.19
only compact components @3, are present, and further-
more, with monodromie€.5), these will transforminanon-  These equations serve as stringent constraints on flux/
trivial bundle overMsg: brane configurations that can lead to warped solutions on
3 compactmanifolds® To see this, note that the integrals of
G e a(Q°® L), (2.8 their left sides over a compact manifaldg vanish, whereas
the flux and warp terms on the right-hand side are positive
definite. Thus, in the absence of localized sources there is a
no-go theoreni23,24): the fluxes must vanish and the warp
factor must be constant. For a warped solution the stress
terms on the right-hand sid®HS) must be negative, which
= 0rH V1M V2 o3 can only be true under certain circumstances.
Fs)= (1+*)[daldxHdx Tdx"0dx, 2.9 For example, consider p-brane wrapped on ap(-3)
with a a function on the compact space. Also, in accord withcycle X of the manifold M. To leading order iy (and in
Poincareinvariance, we will allow some number of D3- the case of vanishing fluxes along the bretheés contributes
branes along the noncompact directions, as well as D7a Source action
branes filling the noncompact directions and wrapping cer-

where ) denotes the canonical bundle, addis the line
bundle defined by the transformation 1&:5). Finally, Poin-
careinvariance and the Bianchi identity allows a five-form
flux of the form

tain four-cycles inMe. :_J dPHleT V= g+ J Cor:
Einstein’s equation, trace reversed, is St RO oV 0% myp Rixy PTY
(2.16
Run= K107 Tun— §9MNT), (2.10  for positive tension objects the Einstein frame tension is
. = (p—3)el4
whereTy=Thda: T, is the total stress tensor of the su- Tp=luple : (2.17

pergravity fields and the localized objects. In particular, th

e . .
latter contribution is Equation(2.16 gives a stress tensor

loc _ 2A loc _ s
2 5Suc T=—Tpe?7,,8(3), Tae=—T,l58(3),

loc _ _

To= —ﬁ 5g (2.11 (2.1

where 5(3) andIT* denote the delta function and projector
The noncompact components take the form on the cycleS, respectively. From this we find
GungG™P €% (TM—TH)oe= (7 p) T, 6(3). (2.19
= — I P
Ruv gw,( 28 Imr + 2 Imad"
Equation(2.19 tells us that forp<7, in order to have the
4 e 2 loc } Tloc (2.12 required negative stress on the RHS of the const(@idb),
10| Tur™ gYur ’ ' the compactification must involveegativetension objects.

String theory does have such objects, and so evades the
From the metric ansat2.6), one computes the Ricci com- no-go theorem of Ref§23,24. O3 planes are a simple ex-
ponents ample. TheT®/Z, orientifold, which isT-dual to the type |
~ - - theory, is a compact Minkowski solution with 16 D3-branes
Rpup=— nlwe“AVZA: -1 nlw(v284A_ef4A&me4A(9me4A)_
(2.13

~ 30ne reaches the same conclusions by considarij” for any
(A tilde denotes use of the metri;,,.) Using this and trac- positive k, but k=4 is the value that will be useful in the next
ing Eqg.(2.12 gives subsection.
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anl(jT64_|(_)r]3-plar_1e§2_5]. This |mplles that 'ghe O3 tension is dF(5):H(S)DF(3)+2K102T3PI??Cv 2.23
—3T3. This orientifold was discussed in Reff4] as an
example of a warped string solution.

Note thatF-theory compactifications, despite having D7-
branes, dilaton gradients, and RR 1-form fluxes, satisfy th
constraint(2.15 without negative tension. This is because
terms involvingr gradients do not enter the constraint, and
the D7 brane stress tensor contributions vanish by(E49.

where p'e?“ is the D3 charge density form from localized

sources; this includes the contributions of the D7-branes or
®3 planes, and also of mobile D3-branes that may be
presenf The integrated Bianchi identity

To be precise, this is true only to leading ordewih It is 1 j H (3)0F (3)+ Q=0 (2.24
necessary to include also the fiwt corrections to the D7 2K102T3 Mg
action S, (we will explain this expansion belgwIn the
Chern-Simons action the correction[R5] states that the total D3 charge from supergravity back-
grounds and localized sources vanishes. In the next subsec-
p1(R) tion, we will analyze the constraintg.15,(2.24) further.
_M3L4X2C(4)D4—8 Finally, let us discuss the nature of the expansion. The

localized source in the Bianchi identit{2.23 is of order
yres . Na'?, whereN is the characteristic D3 charge. It is not pos-
=927’ fR4X20(4)DTr(R(Z)DR(2))- sible to takeN to be parametrically large, because the nega-
tive contributions to the Bianchi identity are determined by
(220 the topology of the manifold. However, the Euler number

) _ ) ) (2.22 can be quite large in a given example, and so we will

on the wrapped D7-brane. In the DBI action i &7] then treatNe'? as being of order one, but drop ordet

effects such as the string corrections to the supergravity ac-
M7 "2 a, [~ * tion. This is why we needed to keep the curvature terms in
g6 2™’ f 4ng XV=gTH(Re)T* Rez). the D7-brane action. The Bianchi identity then implies that
(22)  G(3=0(N"2a’); the factor ofa’ is consistent with the

quantization

This term computes the firgt’ correction to the wrapped

D7-brane tensiof.The Chern-Simons coupling has the ef- 1 1

fect, for example, that a D7-brane wrapped on K3 hak ,f Fiaye2nz, ,J’ Haee2nz, (2.29

unit of D3 chargg 26]. This state is still BPS, with the same 2ma 2ma

supersymmetry as the D3-brane, so the Dirac-Born-Infeld !
(DBI) coupling must contribute-T; to the tension. In and the number of 3-form flux units then scalesNd&.

F-theory, this background charge is given in terms of the

Euler number of the corresponding fourfold by B. Special solutions
x) 1. A BPS-like condition
?7= - X2—4 (2.22 With general negative tension sources, the constraints

from the integrated field equations appear to be rather weak.

o ) . However, in the special case that

and A= 1 supersymmetry implies the corresponding tension

| . .

3oc1-_3. T_h|s can be thought of as coming from the summed %(Tm_Tﬁ)locszpgc (2.26
contribution of all 7-branes wrapping four-cycles in the base
of the elliptic fibration X. To directly derive this tension ¢, 5| |ocalized sources, the global constraints determine the
along the lines discussed above, one should use the genergliym of the solution completely.
zation of Eq.(2.21) which is applicable to branes wrapping

divisors in the(non-CY) base ofX; the result is guaranteed
by the ,SUP?rSymmetry of the configuration, and the direct 8In deriving this field equation there is an annoying subtlety due to
calculation is beyon.d the _scope of OW work. . the self-dual flux. The electric coupling @) must actually be
~We have been discussing constraints from the integrateght of what we have written in Eq€2.16),(2.20, in order to obtain
Einstein equation. _The Bianchi identity/equations of MOtiONEq, (2.23. However, any object carrying D3 charge also has a
for the 5-form flux i$ magnetic coupling t&€ 4 ; in a self-dual background the action for
a probe is then obtained by doubling the electric coupling as we
have done. An alternative approach to the self-dual flux is to use a
4For simplicity we are considering in Eq€.20),(2.21) the case  Lorentz-noninvariant action: double tHé(25) and Chern-Simons
of a trivial normal bundle; the full form is given in R€f28]. The terms in the action§2.1),(2.3) but restrict to terms in whick s or

F-theory result(2.22 is general. C(ay has a 1-component. This action, derivedTeguality from the
SRecall that 2;7=02m) a'® us=2m) %a’"% u; type-llA action, is well-suited to the study of compactification of
=(2m) "a’' "%, and, in Einstein frameTy= u3 [25]. the type-1IB theory.
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In fact, the inequality(2.26) holds for all of the localized The LHS integrates to zero, while under the assumption
sources considered in this paper. For D3-branes and OR.26) the RHS is nonnegative. Thus, if the inequaliy26
planes, whose integrated is respectively+ 1 and—3%, the  holds, then the 3-form field strength is imaginary self-dual
stress tensor is
* =
T9=Ti=T2=T}=—Teps, TI=0,  (2.27 Co=Ce =30
and so the inequality is actually saturated. Anti-D3- braneshe warp-factor and 4-form potential are related
satisfy the inequality but do not saturate it. D5-branes aA_

. . . e"=q, (2.32
wrapped on collapsed cycles also satisfy the inequality, as
their tension comes entirely from their induced D3 charge.

For D7-branes, the nonvanishing contributions to the two
sides of the inequality come from the curvature tef1g0),
(2.27). In the simple case of D7-branes wrapped on K3, th
property *R»)=R 2 implies that the inequality is saturated.
If a nontrivial gauge bundle is introduced, the inequality is
still respected as a consequence Rf, F*“"=F ,(*F)*".
For the more general wrappings that ariseFitheory, we
argue below that the inequality is saturated.

There are objects that do violate the inequaly26). O5
planes make a negative contribution to the LHS and zerg
contribution to the RHS. Anti-O3 planes make a negative
contribution to the LHS and a positive contribution to the
RHS. .

The inequality(2.26) resembles a BPS condition. Indeed, A + I—erReAzO, A=e"%,G3—iaGs),
the underlying type-11B supersymmetry algebra implies that Im 7 (234

H=T3Q;. (2.28

and so is satisfied as a consequence of E281),(2.32.
If this holds locally, as might be expected cIaSS|caIIy, then byThe R, equation also follows from these conditions. Fi-
applylng Lorentz invariance we get TO —T1 —T2 nally, the remaining field equations reduce to
= —T3 T3p3. When the inequality2.28 is saturated, the
pressurelm should vanish by analogy to the no-force condi- 23m73n7+ AnTdmT oy L =ps
tion. Away from extremalityTji—T# generally increases, by~ Rmn= K10 W+ K10 (Tmn_ g9mnl )
analogy to the weak energy condition, so the inequality T (2.35
(2.26) follows. The O planes that do not satisfy the bound '
(2.26) are able to evade it because the necessary super- -~ 5 ) =
charges do not exist: they are projected out by the orienti- =, V7-V7 4ki(Im7)” 65,
fold. The D7-branes that arise Frtheory compactifications “iimr \/—_g 5t
saturate the bound because they preserv&anl supersym-
metry that is also preserved by D3-branes.

and the inequality2.26) is actually saturated.

Assuming this form, let use review the full set of field
equations and Bianchi identities. The 5-form field strength
e(2.9) is self-dual by construction. Its field strength or Bianchi
identity (2.29 is consistent and determines and A, pro-
vided that the total D3 charg@.24) vanishes. The 3-form
Bianchi identities

must be imposed. Using these, the equation of motion then
takes the form

(2.36

These are the equations determining a solutiof-tbeory in
the supergravity approximation.

In summary, assuming that the localized sources satisfy
In terms of the potentiakk the Bianchi identity(2.23 Eqg. (2.26), the necessary and sufficient conditions for a so-

2. Solution of the constraints

becomes lution are an underlying manifolds= (g, 7) Satisfying
i Egs. (2.39,(2.36), closed 3-form fluxes= 3y andH 3y such
52a=ie2AGmnp(*GG ) +2e-6Ag qoMetA that Gy is imaginary self-dual, and vanishing total D3
12Im~ m charge.
2.2A |
+2k10°€" T3ps -, (2.29 3. Supersymmetry and relation to previous solutions

where= g is the dual in the transverse directions. Subtracting The conditions fotN=1 supersymmetry of such a solu-
this from the Einstein equation constrai@t15 gives tion have recently been considered in R¢29,3( for con-
stant dilaton, and in Ref31] more generally. The underlying
manifold must be Kaler and the connectioB ,— (i/2)Q,,
must lie in SU3), whereQ,, is constructed fromr as in Ref.
[32]. The fluxG 3y must be &2,1) form and primitive, mean-
ing that the index structure isjk and the contraction with

(2.30  the Kéhler form J'/ vanishes. The conditiongG 3=iG 3,

2A

V(e —a)=———iG(5—*¢G3)|*+ e *a(e* ~ o) |?

6Im~

+2K10 eZA 4(-l—m T,u)loc Tploc )
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allows a primitive (2,1) piece and @,3 piece’ Thus our identifies them asno-scale models[19,21,23. The

general solution is supersymmetric if and only if tt®3)  combination of broken supersymmetry with vanishing cos-

part vanishes. mological constant is intriguing, but there is no known rea-
In general, supersymmetric and nonsupersymmetric soluson that it should survive quantum corrections, from instan-

tions are both possible, though the latter are more generi¢ons and even perturbative loops. Even at string tree level,

Consider for example th&%/Z, orientifold. This is some- corrections to the supergravity field equations presumably

what special because it has=4 supersymmetry in the ab- spoil the no-scale structure.

sence ofG flux, but it serves for illustration. In terms of three  Let us also consider the effective four-dimensional action.

complex coordinates, the primitive fluxés,;, G,23, and  Before turning on fluxes, there will be massless fields corre-

G153 can be turned on consistent with the quantization consponding to the Kialer and complex structure moduli; we

ditions (2.295 (these fix7 and some of the Kaer modul), denote the lattex®. Furthermore, for orientifold models, the

leaving N'=1 supersymmetry. If the additional fll@15z is  dilaton field 7 is massless, whereas in gendfeheory mod-

nonzero then all supersymmetry is broken. els it is fixed in terms of the complex structure moduli by Eq.
Noncompact solutions of this form have previously been(2.36. For the moment we consider the case of a single

described in Refl29] in the special case of constant dilaton. Kahler modulus, the radial modulus, in a four-dimensional

The supersymmetric solutions are duf8,33] to the  superfieldp. )

M-theory solutions of Ref.34]. As emphasized in Ref31] For a large-radius CY or orientifold, the Ker potential

these solutions are special, in the sense thai\frel super-  follows by dimensionally reducing the 10D actibiiror the

symmetry lies in anV=4 subgroup of the ful\V/=8 type-  radius we find

[IB supersymmetry. In type-lIB form, this is the subgroup

preserved by a space-filling D3-brane;Nhtheory form it is K(p)=—-3In[—i(p—p)], (2.37

the subgroup preserved by a space-filling M2-brane.

F-theory compactifications on CY fourfolds presetvé=1  and for the dilaton and complex structure moduli

supersymmetry in the presence of D3 bratesl in fact are

limits of the M-theory solutions of Ref.34]). Therefore, we , — i —

can infer that they are solutions of this special form, though K(7.2%)==In[—i(7—7)]—- In( —1 fMQDQ)1 (2.38

we have not displayed this by computing and explicitly com-

paring the contributions ofthe fully generalized forms of

here() is the holomorphic¢3,0) form. The latter expression
Egs.(2.21) and(2.20 for the wrapped 7-branes. g ! phic3,0 xP !

follows from the Weil-Petersson metric, and is discussed in
Ref. [35]. An obvious conjecture for the-theory generali-

4. Moduli and effective actions zation of Eq.(2.38 is
The necessary and sufficient conditioli®.24),(2.31), .
(2.33,(2.35,(2.36 are all invariant under rescalingm, IC=—In( fXQ4DQ4), (2.39

—?g,,,. Thus, all special solutions have a radial modulus.

__Thus our goal of fixing the moduli in a warped compac-herex andQ, denote the CY fourfold and its holomorphic
tification is limited in this class of solutions to leaving at (4,0) form, respectively.

least this one. On the other hand, there is no dilaton modulus, 1ha fluxes generate a superpotential, which takes the form
because the dilaton couples differently to the NS-NS an(E8]
R-R 3-form fluxes and so has a nontrivial potential. This
suggests that it may be an interesting exercise to look for
solutions having no classical moduli by introducing sources W=f Q0G3). (2.40
not satisfying the inequality2.26) [20]. M
This is slightly subtle, because the solution itself does no
scale simply. In the field equatiq2.15), the terms involving
derivatives ofA scale as\ ~2, and the flux source term scales
as\~©. It follows that at large radius®*=1+0(x %) and
so the warp factor approaches a constant. At radii less than W= J Q,0G 4. (2.42
O(NY4a'Y?) the warping becomes significant. X
The properties of the nonsupersymmetric solutions—
vanishing four-dimensional cosmological constant and a raln Eq. (2.41), G4 denotes the four-form flux one would get

dial modulus in spite of the absence of supersymmetry—n M-theory by compactifying th&-theory on a circle; it can
be expressed in terms of type-lIB quantities in #¢heory

limit. If the one works with a local trivialization of the ellip-
It also allows a(1,2) piece of the forK ;)Tw(;y whereK 5 is  UC fibration, for example in the vicinity of the conifold point,
the Kzhler form andw s, is a nontrivial closed0,1)-form. A com-  With fiber coordinatew, the four formG,) takes the form
pact Calabi-Yau manifold has no su@2)-form, and neither do the
Calabi-Yau orientifolds oF-theory compactifications we consider.
Note that in our conventions for the complex basjss'?°= —i. 8For further discussion see the Appendix.

[I'his is independent gb. The expectedr-theory generaliza-
tion of this formula takes the forif8]
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Gs dw in the rest of the paper. In the Appendix we discuss further
Gay=-— & 4 He. (2.42  the derivation of the four-dimensional action by dimensional
TT reduction and the correspondence between the four-

. . . . dimensional and ten-dimensional pictures.
We will further discuss issues surrounding use of such a

trivialization in Sec. IV.
Under these conditions th&=1 supergravity potential IIl. WARPED SOLUTIONS AND HIERARCHIES

simplifies[19], In Sec. Il we discussed various global features of type-1IB

1 compactifications with a nontrivial warp factor. We now turn
V= eX(G3PD . WD . W— 3|WI2 to the Ioca_l structure o_f the warped_ region.
2 & alteh W1 We begin by reviewing the solutions of Verlinfi¢], cor-

K10
responding to D3 branes on a compact manifold\ID3-
1 _ branes are coincident, the warp factor in their vicinity is
— —€e4(G''D;WD;W), (2.43
K10 4 TgN
o AR Ay (3.1)
where D W= d W+ Wd,K and G ,=d,dp/kC, and the indi- r4

cesa,b are summed over superfields, with labeling indi-
ces excluding. In no-scale models tH@p\Mz term cancels  yith 7 the distance from the D3-branes in thg,, metric.
the negative term, leaving a nonnegative potential. Whelear the D3-branes the geometry is thus AdS®, produc-

D, W=0 the potential vanishes; this condition is independen}ng a large warp factof4]. At larger values of, the product

of p, so.|f there aren sup erfields in addition tp LTEPresents o cture breaks down due to the curvature\o§, and even-
n equations om moduli and leavep undetermined. Generi- ~ ) .
— tually r ceases to be a good coordind®6]: Mg is not

cally at these solution$V#0, so D,W=-=3W/(p=p) IS gi5nally the product of a five-sphere and one-dimensional

n0223;23?Shseliieg?‘ym;eetrgxlsré)g:(:r?s. comes by com arin?ace' This is similar to the RS2 moddl, though is a
P y P ona-fide compactification, with the compact manifold play-

thed‘}lD f‘f’mdd (lOD g}quzﬂons.d;n the CY/orientifold case, Onqng a role roughly analogous to the so-called “Planck brane”
readily finds(see the Appendix of Ref. [2], and yielding a finite four-dimensional Planck

scale. The warp factor of course divergesras0, which is
0=D W= f?aWJr(f?a’C)W:f Gz)Uxas at infinite spatial distance.
M If such a model is realized on an orientifold, the dilaton is
1 - a constante®?=g,, but in the more general context of an
0=D,W=9,W+(9,K)W== f G300, F-theory compactification it varies holomorphically as deter-
T—TJM mined by Eq(2.36) or equivalently by the eight-dimensional
(2.44 construction. As we will discuss in Sec. IV B, the physics
near the D3-branes is essentially the same, and the effective
value ofgg is determined by the value ofat the D3-branes.

where y, is a basis of (2,1) forms oM. These equations

imply that Gs) is imaginary self-dual, in correspondence to T tal but finite hi h D3-b
the 10D condition(2.31). For F-theory, define a basis of 0 get a large but finite hierarchy, ohe ormore ranes

. i must be separated from the rest by a small distandénese
gizl) :‘grms Xa on X; the expected generalization of Eq. might be the branes on which the standard model fields live,
or they might be associated with some symmetry breaking
that couples to the standard model through the bulk. How-
0=D W= fXG(4)DXA- (2495  ever, the D3-brane coordinates have no potential. Thus in the

present model there is nothing that fixeand so the size of

While our discussion so far has focused on the case whef@€ hierarchy. _
there is only one Kialer modulus,p, a general model may In order to find a warped solution that produces a large
have several Kiler modulip; . The required modification of but stable hierarchy, we now add fluxes. Our motivation
this discussion is quite simple. The superpotential is indeperstéms from the work of Klebanov-Strassléf]. The basic
dent of all of thep; . It should then follow that the Kaer idea is that Ioca_lly in t_he vicinity of a conifold point, KS
metric for the Kéler deformations produces an analogue ofh@ve found solutions with fluxes that generate smooth super-
the simplification(2.43, where now the greek indices sum gravity sqlutlons with large relative warpings. Here we will
over moduli excluding the; . One way to see this is from €xtend this work to the compact context. .
the 10D picture—the conditiorf2.31), whose correspon- CY manifolds are generically nonsingular, but at special
dence with the 4D potentials was just seen, is independent yglues of the parameters they can develop singularities. The
the Kzhler moduli. So the no-scale structure survives, withMoSt generic singular space iscanifold [14]. Locally this
each of the Khler moduli persisting as a flat direction at this ¢an be described as the submanifoldXf defined by
order. Because it is not difficult to find models with only a T T
single Kéler modulusp, we will assume that this is the case witwy+wz+wy=0. 3.2
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This submanifold is singular atv; ,w,,w3,w,)=0. The ge-
ometry of this space, including its Calabi-Yau metric, is de- TJ H3)0F 3= MK. (3.5
scribed in Ref[14]. It is important that this is a good singu- 2 kipl3/ M

larity, meaning that string theory makes sense in such a spac

[37]. Although the compactification spadels we are using T%us, In the sense of Poincateality, we can write
is.either the base of'a nontrivial elliptic fibration, or is an Fa=(2m2a'M[B], Hg=(2m)%a'K[A]. (3.6)
orientifold of a Calabi-Yau, the local structure of a singular-
ity such as Eq«(3.2) will not be affected by these global This gives
details, so we can use local facts about CY singularities in
the ensuing discussion. _ -~ 2 B

The conifold singularity can be regarded as a cone whose W= fMG@)DQ_(ZTr) @ (M fBQ KTIAQ)'
base has the topology’ 8 S?. At the singular point, both the (3.7)
S® and the & shrink to zero size. The conifold can be _ _ _ N
smoothed into a nonsingular CY manifold in two ways. In ~ The integrals appearing here are heriodsdefining the
the small resolution of the conifold, the? & blown up to  complex structure of the conifold. In particular, the complex
finite size. In the deformed conifold, the’ & expanded to coordinate for the collapsing cyckeis defined by
finite size; it is this that will be relevant for us. The deformed
conifold has a simple description as the submanifold Z:f Q. (3.9

A

2 2 2 2_
Wy Wot Wat Wy =2. @3 It is a standard result that on the dual cycle

Here the complex parameteis the modulus which controls B z _
the size of the & jBQ=g(z)— Z—Wilnz+ holomorphic. (3.9

We now consider adding fluxes to this geometry, and find
the resulting potential for the moduli. Consider a compactThe superpotential is then
manifold with moduliz, p, and 7 (we explain at the end of
this subsection how additional complex structure modyli W= (2 m)2a'[MG(2) —Krz]. (3.10
can be incorporated, without substantially modifying the . ) )
resulty.? Dirac quantization implies that these fluxes, inte-SUch a superpotential has been obtained previously by Vafa
grated over all of the three-cycles of the CY, be integers as in9]- ] ] N
Eq. (2.25. In the vicinity of the conifold, there are two rel-  Let us consider first th®,W condition
evant cycles. Examining E3.3), and takingz to be real and
positive for convenience, the three-cycle which vanishes as 0=D,W=Md,G—Kr+d,K(MG—Krz). (3.1)
z—0 (denotedA) can be taken to be the’* n which all of
thew; are real. In general compact examples, there also e
ists a dualB-cycle which intersect#\ exactly once. An ex-
ample of such a cycle in this noncompact case can be co
structed by takingw, , 3 to be imaginary andv, real and
positive. The KS solution correspondsibunits of F 3y on
the A cycle. The field equation in KS requires thdts) be M K
supported on the dual cycle B3y, so let there be-K units D, ,We ﬁlnz—i g—+O(1). (3.12
on theB cycle: s

In order to obtain a large hierarchy we will takdg, to be
)1érge: this will result inz being exponentially small. This has
a simple interpretation in the dual gauge theory, as we will
Yiscuss later in this section. In this regime, the dominant
terms inD,W are

It follows that for K/IMg¢>1, z is indeed exponentially

small,
; f F(3): 2 7TM )
2ma’ A z~exp(—2wK/IMgy). (3.13
(3.9
1 Thus, we obtain a large hierarchy of scales if, for example,
f Ha=—2 7K. M =1 andK/gs is of order 5.
27a'lB As things stand, th® . equation
Thi_s can e_llso be understood by requiring D3 charge conser- 0= DTWOC_l (—Kz7+MG) (3.14
vation as in Eq(2.24): T—T

cannot be satisfied. The first term in parentheses is exponen-
More generally, in the case of @htheory compactification, the tially small, while the second is not because the holomorphic
following should be generalized using sections as outlined in Eqspart in Eq.(3.9) is generically nonvanishingi(0)=0(1).
(2.9),(2.42. Note that this is a property of the compact case. In the non-
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compact case of interest in KS, the bulk modutus frozen  confinement and chiral symmetry breaking at a dynamically
and there is no correspondifiy, W equation to impose. generated scalg/]. In the spirit of the Verlinde moddH],

The problem arises because &t 0 the superpotential the low-energy physics of our supergravity solutions is
(3.10 is independent of-, and the remedy is to consider a equivalent to this gauge theory coupled to the massless bulk
configuration with additionar dependence. With suchde-  fields of the compactification. The KS solution begins with
pendence, one can generically find a solution to Bql4  whole D3-branes an¥ fractional D3-branes at a conifold
with z~0, though additional structure may be required tosingularity. In the end all of these branes are replaced by
ensure that this minimum is at weak coupling. To give oneflux; their moduli disappear, which is in accord with confine-
example,r can be stabilized by turning on additional fluxes. ment in the dual gauge theory. In particular, withunits of
Keeping for simplicity the case of a single complex structureF 3y on theA cycle andK units ofH 3y on the duaB cycle,
modulusz, there are 2-2b, ;=4 3-cycles, namely, the pair the total D3 charge &= MK .1
(A,B) and an additional pairX’,B’). Turning on—K’ units The formula (3.19 then corresponds precisely to the
of H) on theB’ cycle gives renormalization group analysis of K$7]. Using the

B-function in their Eq.(23), one cascade takes place on a
W=(2m)%a'[MG(2)—7(Kz+K'z')], (319 ratio of scale®? "3 (during which the LHS of that equa-
tion changes from-2 7/gs to +2 w/gy. The total number
of cascades i&/M =K, becauseM units of D3 charge dis-
appear at each cascade, giving the total hierarcg9.
Thus the four-dimensional effective action correctly repro-
1 . duces the physics of the KS gauge theory.
0=D Woex=——[-K'Z'(0)7+MG(0)], (3.16 In the gauge theory, the parametds the scale of gluino
T—T condensation. The instability noted in E§.14) is the famil-
iar fact that a gluino condensate generates a dilaton potential
[22]. The stabilization(3.16) does not have a gauge theory
MG(0) origin; rather, it is a bulk gffect _in the type-IIB theory.
= _ (3.17 There is an effect which might have been expected to
K'z'(0) destabilize the large hierarchy, but does not do so. The dual
) gauge theory has various relevant perturbations; for example,
The hierarchy becomes the N=1 supersymmetry allows a superpotential. This
> K would produce a mass gap which is of order the perturbation,
- ™ , rather than exponentially small. This perturbation is absent in
g exp( ! ImG(0)/2(0)] |- (313 our solution: in supergravity language it is a 3-form flux, but
it is not of the form*¢G3)=iG 3y, as one sees from the
Thus, by appropriate choices Kf K, andM one obtains an  explicit expressions in Sec. Il C of Rdf38]. The reason for
exponential hierarchy with the dilaton fixed at an interestingits absence appears to be holomorphy: the gauge theory per-
value. turbation corresponds to a growiigonnormalizablemode

The hierarchy is determined in terms of integer fluxes anchs one move away from the origin, and evidently this cannot
the Calabi-Yau geometry. To obtain the actual warp factobe extended to the full compact space.
requires solving the differential equatig®.14), but one can So far, we have assumed that there is a single complex
estimate it as follows. The D3-brane warp fact®1) is  structure parameter Suppose there are other complex struc-
e*»~T4 The resolution of the conifold cuts this off mf ture deformations, controlled by modulj. In such a case,
theu; enter in the regular terms in the peri®l9), soG(z) is
really G(z,u;). Generically, assuming that has been suc-
cessfully stabilized near the conifold point in moduli space
as above, the equations

wherez’ is a function ofz which is generically nonvanishing
atz=0, z'(2)=0(1). Then if we fixz=0, theD ;W equa-
tion is

thus fixing the dilaton at

~z. According to Ref[14], the conic coordinate (which is

p in the notation of that papgis rcw?3xz3 and so the
hierarchy of energy scales is

eAmin~ 21/3~ exq—ZWK/SM gs) (319)

D,W|,_,=0 3.2
In effect the fluxes produce a model similar to R®1, in y\Wlz=o0 (3.29

which the warp factor does not go to zero but to a small
positive value' can be solved to yield fixeorder 1 values for the other
The large hierarchy3.13 has a simple interpretation in moduli u;. So we see that the presence of background RR
terms of a dual gauge theory. The KS solution is the superand NS fluxes generically serves to fix all of the complex
gravity dual to a nonconformaN=1 gauge theory, with moduli and the dilaton, while leaving the Kler modulusp
unfixed.

1Owe should note that, unlike RS1, there is no negative tension
brane at the low-energy end:; rather, there is a KS space. The nega'in order to obtain an interesting low-energy spectrum, one may
tive tension objects that we require are elsewhere on the compaoeed additional “mobile” D3-branes in the warped region, but this
space, in the region that replaces the RS Planck brane. is beyond our present focus.
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IV. EXAMPLES odd intrinsic parity to survive the projection. Note that the
: . .. _3-form Q (not to be confused with the world-sheet parity
In order to make our discussion of warped compactifica- e . o .
. . o : : operatof also has odd intrinsic parity. This is because it is
tions with fluxes more explicit and concrete, and in particular - : . .
o . . . . nowhere vanishing and so in particular is nonzero at the
check our ability to build consistent solutions with both . o . : . .

. . . fixed points; at the fixed points th&, gives an explicit
negative D3 charge or tension and the above flux configura- 1 from the indices and this must be offset by the intrinsic
tions, we now turn to the construction of some explicit mod- aritv. It follows that the superpotential y
els. We briefly describe models based on O3-folds, and theR2MY- Perp

discussF-theory compactifications in detail.

A. O3 models f Q0G3) 4.3

Models in which the negative tension objects are O3
planes are easily described. Begin with a CY manifold with a _ )
conifold singularity and aZ, symmetry that has isolated S well-defined on the covering space. Also, the even com-
fixed points, and orientifold on this symmetry. Since we as-Plex structure deformations generate, by contraction Qith
suming that the O3 planes are distant from the singularityodd (2,1) forms, so these are the appropriate fluxes to excite.
the initial CY must actually have two conifold singularities _ Models of this class can be analyzed exactly as in Sec. IlI.
which are images of one another. The D3 charge of the 0%Nne can choose fluxes through theand B cycles of the
planes is then- $ times the number of fixed points. In order conifold (with the D3 charge being canceled by the O3
that the supergravity description be good, we nggdito be planes, and.obtam precisely the effective field theory fop
somewhat greater than one. To work in perturbative stringtnd 7 described there.
theory we should also assume thygt= 1. Therefore, we need
N, and hence the number of fixed points, to be large.

We will not present explicit examples, deferring an ex- B. F-theory models

plicit example to the discussion d¥-theory, but we will Another general class of warped models arises from
present some details of the orientifold construction and thé-theory compactifications to four dimensions. In such mod-
low energy spectrum. els the possible configurations of branes and fluxes are con-

Let us first determine which of the RR fields survive thestrained by the topology of the elliptic Calabi-Yau fourfold
orientifolding by RQ, whereR is the Z, with isolated fixed X— M, via the equation
points, and() is world-sheet parity. First, considerT&/Z,
orientifold, where we can usi-duality to relate this td2 in xX(X) _ 1
. D3t T3 H30OF 5. (4.4
type-11B string[25] 24 2 k1oT3) Mm

RQ=T 1QT. 4.1
_ i L i o The left-hand side of this equation arises from the induced
Consider a R_amond field Wmhln(_jlces_ in the direction of t_he D3 brane charge on the wrapped D7 branes, and this charge
k-torus ands in the orthogonal directions. In type-IB string, st he compensated by introducing either wandering D3
the operatof) acts as""*"? on RR potentials andf "% poneq o appropriate fluxes in the basé of the elliptic
on RR fluxes; thus, for example, the RR two-form potentialp aiion. In” general one could also introduce nontrivial

survives the projection to the type-l string. THeduality gauge bundles in the wrapped D7 brapekich would yield

Tortstk—2 oy -rtstk—3
takesr to k—r. Thus, QR acts as™""* or i, another term on the right-hand side of Ed.4), correspond-

respectively. We can also phrase this as the statement that tm”g to the instanton number in each D7-brane gauge tAeory

intrinsic QR of these fields is, respectively,""2 or bt we will not need to use this freedom Becaysel is

i"*k=%, wheren is the total number of indices. This intrinsic 4ttainable for Calabi-Yau fourfolds, this class of models

parity must be combined with(1)", from the explicit ac-  should allow a great deal of freedom in choosing appropriate

tion of theRon the indices. For the valle=6 rlelevant here,  flux and brane configurations for model building. Earlier dis-

the intrinsic parities are respectiveily andi™ - cussions of fourfold compactifications with nontrivial fluxes
Thus, the Ramond scal& has even intrinsic parity, as can pe found in Refd8,33,34,39.

expected because it is the superpartner of the dilaton. Simi- gecause of SL(Z) monodromies around thep(q)

larly a,,,, the axionic part op, has even intrinsic parity:  7_pranes wrapping surfaces., the fluxes should really be
- viewed as transforming as sections of a nontrivial buridie
Cvpg=audpgs (4.2 detailed in Sec. Il A However, we will focus our attention
_ on a local region around a conifold singularity in the base
whereJ is the Kaler form. M, and will write our formulas in terms of a local trivializa-

The orientifolding requires that th&, symmetry hold tion of this bundle. This is particularly simple in orientifold
throughout the moduli space and so only complex structuréimits of F-theory vacua, and we will be most explicit there.
moduli that are even survive. The R-R fll,,, has odd  Since the most gener&k-theory model does have an orien-
intrinsic parity, as does the NS-NS flik,,, (from the ac- tifold locus in its moduli spacg40], this does not constitute
tion of ()). Thus these must be proportional to 3-forms ofa serious loss of generality.
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1. The fourfold as the fixed point locus of the involution—z. On this
To embed the Klebanov-Strassler system intd-aheory  locus, thez; must be real. One can see from E4.5 that
compactification, we need to exhibit an elliptically fibered without loss of generality on the real locas# 0, so we can
Calabi-Yau fourfoldX which admits a conifold singularity in takezs=1 and fix the projective symmetry. Denote the real
its baseM. A simple example can be designed as followspart of z; by x;. The equation becomes
(the generalization to construct other examples is straightfor-

4
ward). 4,212
Consider forM the hypersurface given by a quartic equa- ,Zl (Xi+x7)=t (4.10
tion in P*
A . and by definings;= \/xzti +xi2, and choosing the branch of the
square root where sguy) =sgn(;), we get a 1-1 map onto
P=z§( 21 le) —t2Zg+ ;1 Z'=0, 4.5 e locus ' '
4
wherez; are the homogeneous coordinatesRdnandt is for 2 W2=12 4.11)
convenience taken to be a real parameter. One can construct = ! ’

a fourfold X over M by specifying a Weierstrass modske,
e.g., Ref[41]) which describes an®Sthat collapses as—0. This is the
A-cycle of the conifold.
y?=x*+xf(z)+9(z), (4.6)
2. Orientifold limit
wherey e 3L, xe 2L, f e H(4L) andge HO(6L); hereL is

the line bundie given by ==K in terms of the canonical locus in its moduli space where it has a particularly simple

bundle of M. In practice for this model, we can think &f . ) N
andg as being polynomials of degree 4 and 6 in the homo_descrlpnon, as a type-IIB orientifold. Choosandg so that

Following the work of Serj40] we can presenx on a

geneous coordinates (restricted toM). they satisfy
In type-1IB language, one should think of the mo¢#l6) f=Cn(z)—3h(z)% g=h(z)[Cn(z)—2h(z)?]
as corresponding to a compactification of type-lIB string (4.12

theory on the quartic irP*, with various @,q) 7-branes _ _ o
appearing at the loci where the elliptic fibration degenerategyith h,» arbitrary functions of degrees 2 and 4. Sirfcie

i.e., where the discriminant quartic this allows for a generic choice Hfbut is a special-
ization of the choice of.. Then from Eq(4.8) it is clear that
A=4f3+ 279> (4.7  asC—0 with » andh fixed, j () —o wherever the numera-

tor does not vanish. This means~ic almost everywhere
vanishes. The physics associated with such degenerations ign the base, i.e., we are at weak type-1IB coupling.

volves enhanced gauge symmetry and more exotic phenom- |n fact in this limit, the model becomes an orientifold of

ena, and is described for many cases which arise in compag; e-11B on a Calabi-Yau threefold4. A1 is a double cover
tification on CY threefolds in Refd42-44. However, for Elpr specified by Eq(4.5) together. with

our interests we want a degeneration of the base which is

unrelated to the physics of the 7-branes, and we will simply £—h(z)=0, (4.13
insure that the loci inM of interest to us do not intersect the

A =0 discriminant locus. For later reference, the value of thevhere ¢ is a new coordinatévalued in the line bundi¢.).
type-1IB axion-dilatonr is determined in terms of the Weier- We orientifold A by the action

strass data by the equation

E——¢ (4.19
, 4(24f)3
j(n)= 15 2797 (4.8)  composed with)(—1)Ft which fixes the locug=0, yield-
ing an O7 plane localized &i(z)=0 in Eq.(4.5).
wherej(7) is the modular invariant function of, normal- One must also introdude@ 7 branes to cancel the RR tad-
ized so thafj (i) = (24)%. pole generated by the orientifold. Inspecting the discriminant
Equation(2.22 gives the background D3 charge for this &, Which is

configuration. For the mod€l.6), one can evaluatg by 9 9  an2
using the formula in Ref.41], with the result that A=C"n"(4Cy—9h%) (4.19

X in the limit (4.12), one can see that there are a pair of D7-

—Q3D7=ﬂ=12+ 15JM01(M)3=72. (4.9  branes located af(z)=0 in M.

. . 3. Embedding Klebanov-Strassler
Inspection of Eq.(4.5 reveals thatM has a conifold g

singularity ast—0—one can solv®=dP=0 at(0,0,0,0,. We have now reduce#-theory onX to type-lIB string
The collapsing three-cycle can in fact be exhibited explicitly,theory on the orientifold oM by Eq. (4.14). Recall that as
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t—0, there is a conifold singularity i1, which survives in ~ before, one achieves some simplificatiéiwhile p (the size
of the baseM) and z [here controlled byt? in Eq. 4.5]
remain moduli in theF-theory picture, the dilaton does not
remain an independent modulus. It is fixed in terms of the
complex structure oK by Eq.(2.36), with solution(4.9).
5 5 This means that the naive problem with solving the
h(z)=2, a2, n(z)=2, b,z (4.16) D,W=0 equation in the vicinity of the conifold point,
i=1 =1 solved in Sec. lll by for example turning on an additional
flux, will not occur herer does not appear as an independent
mode in the low-energy effective field theory. The modes
with a; andb; real and positive. With such a choice, the loci controlling the complex structure of, which determiner
h=0 and »=0 where the O7 and D7’s are located do notvia Eq. (4.9, are frozen on general grounds by just the
intersect the real slice of1. But the collapsing three-cycle Klebanov-Strassler fluxes, as described at the end of Sec. Il.
in M ast?—0 lies on this real slice. Therefore, the D7- Although our discussion there was in terms of perturbative
branes and O7 plane do not lie near the conifold singularitytype-11B string theory, there is an alternative derivation
and we can work in a local neighborhood of the conifold inwhich goes througi-theory. One can vieviF-theory onX
the orientifold of A1 while ignoring these other branes. as being defined by a limit oM-theory onX (where one

. . . . S shrinks the volume of the elliptic fiber in going from

At the conifold point t_herAe IS 6_‘ co.IIa}psmfg cycle in M, M-theory toF-theory). The superpotential for complex struc-
as well as a duaB cycle in M which it intersects once. We  y,-a moduli inM-theory onX is given by the formula2.41)
expect to be able to put flux through both of these, consistenfqre G4 is the M-theory four-form flux andQ, is the

with the orientifold projection. The background chafge9) holomorphic(4,0) form onX. The formula(3.7) for the type-

is still in force in the orientifold limit(the D3 charge comes g string theory superpotential follows from E€2.41) in
from the induced charge on the wrapped branasd can be 6 F_theory limit, for suitable choices @B 4 (those which
cancelled by choosing appropridte and F3 fluxes through it 1o G 3, flux in type-IIB languaggand in the case that
these cycles. If we choose to pMt units of RR three-form s 5 cajabi-vau threefold times a two-torus. In the more gen-

flux throughA andK units of NS three-form flux througB, o5 F_theory caseX is not such a product, but nevertheless
with MK=N=<72, then Eq.(4.4) can be satisfiedfor N e A and B cycle in M that we have been using lift to
<72, we should add Wanderlng D3 branes or turn on Otheﬁ—cycles inX and allow use of the local decomposition
fluxes to saturate Eq4.4)]. This allows us to reproduce (5 45 The statement that the complex modaind therefore
locally, in a neighborhood of the conifold point ithe ori-  he yajue of at the conifold point inM) are fixed then
entifold of) M, the solution of Klebanov and Strass[él.  follows from the fact that the period &1, over the lift of the

That is, the local geometry is the same as the gravity dual o8 cycle will have generic dependence on the complex struc-
the SUN+M)XSU(N) gauge theory considered there. tyre moduli.

Even with the values oM andK which are possible in this ~ We saw in Sec. IlI that fixing the dilaton, either by this

model(much larger values of, and thus larger values &,  mechanism or by turning on additional fluxes, allows one to

are possible in other exampjeone can generate a large solve for z. The exponentially small value of computed

hierarchy from the RG cascade, as we have demonstrated ffom the superpotential of Ref9] independently confirms

Sec. Il the existence of a hierarchy for reasonable choiced ahd
Stabilizing the dilaton in such an orientifold requires N (and represents the small, dynamically generated scale of

some other generic addition to the low-energy superpotentiathiral symmetry breaking in Ref7]).

One way to accomplish this is to turn on additional fluxes, as

discussed in Sec. lll. An alternative is to work at generic

points in theF-theory moduli space, which we discuss be- V. CONCLUSION

low.

the orientifold of type-IIB onM. We can choosé and 7 to
be of the form

There has been a great deal of interest in finding string
theory constructions which produce large hierarchies through
warping, and in particular reproduce, at long wavelengths,

To understand the low-energy physics governing an orifeatures of the RS1 modEl]. Building on the ideas of Ver-
entifold model with a conifold singularity and appropriate linde and collaboratorf,36], we have described orientifold
fluxes, one should compute the effective field theory governand F-theory models which accomplish this. The role of the
ing (at least three different moduli, as described in Sec. lll. AdS throat and the infrared brane is played(hyinite radial
These are the complex modulzsvhich controls the volume segment of the gravity dual to a confining gauge theory
of the collapsing three-cycle at the conifold, the dilatan  found by Klebanov and Strasslgf], while the UV brane is
and the overall volume of the spape

In our F-theory situation, however, we could consider
moving away from the limit of Sec. IV B 2, so that the model 12Note that fluxes which were projected in by the orientifold ac-
is not a perturbative type-IIB orientifold. Working away from tion are guaranteed to adiabatically deform to consigggpy fluxes
the orientifold limit while keeping thé-3 andH; fluxes as in the full CY fourfold geometry.

4. Deforming away from the orientifold limit
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replaced by the bulk of the string theory compactification 1. Kinetic terms and Kahler potential

manifold. _ _ _ The allowed moduli depend on the topology of the com-
Our models are consistent, nonsingular string theorpactification, though one generically has the universilla

backgrounds. However, we expeet and string loop correc- modulus corresponding to overall rescaling of the six-

tions to generate a potential for the overall scal®f the  dimensional metric. This has partrey;, , arising from

compactification manifold. An analogous problem also arises

in familiar classical heterotic string backgrourj@4,22, and Cpg= a,wqu, (A1)

in some ways our models are quite similar to thosgh the

important difference that nonperturbative gauge theory ef-

fects have already been incorporated in the classical gravitwherel is the Kaler form. We work in the approximation of

solution. It would be very interesting to find mechanisms for constant warp factor and vanishifﬁg; as discussed in Sec.

stabilizing p in these models; toy models where all of the 11 B 4 this is valid in the large-radius limitalthough we ex-

moduli are stabilized by fluxes can be construdt2d. pect our expressions to generalize beyond tfiike effective
The duality between gauge theories and compactificationaction for this Kaler multiplet together with the 4D metric

with flux extends beyond the single exampd we have and dilaton can be found by computing the actigrB) with

used here. The results of RdB] provide a more general

construction of dualities between fluxes and gauge theories, _

and quantum gauge theory effects are again calculable using ds?=g,,, dx“dx"+e? g, dy™dy", (A2)

classical geometry. It would be interesting to use other ex-

amples of this gauge theory/flux duality to constrizét 1 _

string compactifications with moduli which are calculably whereg,,, is the metric of the compactification. In doing so,

stabilized by nonperturbative gauge dynamics. we define the 4D Newton’s constarf=«2/V whereV
Finally, it has recently become clear that warped compacis the volume of M, and the Weyl rescaled metric

fuflcanons offe_r new mec_hanlsm_s, distinct from AdS redshlft-g4:e—eu§4_ We also dualizeda(2)=e‘8“;db, and define

ing, of producing large hierarchi¢45]. The relevant warped ~~ . au .

models need to have two or more different brane thro::xts.’,)_b/‘/iJrle - The result is

with fairly generic warping(so power-law warping is suffi-

cieny. Large hierarchies can then be produced by the ( PR oy 0,p3"p

tunneling-suppressethnd therefore weakinteractions be- S:i d'% (-9 R,— 24— o
tween the IR modes localized down distinct throats. It should 2k3 |l7—7%  |p—pl?

be possible to design string theory examples of such multi- (A3)
throat compactifications by generalizing the construction in

our paper. o
pap The kinetic terms forr and p can thus be found from the

Kahler potential
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(1) One(3,0) form Q). 2. The potential and superpotential
(2) byy primitive (2,1) forms x, - We now turn to the problem of finding the potential de-
(3) Their (1,2) conjugatesy.,. termined by the fluxes. From E@.3), the potential is de-
(4) The (0,3 conjugate). termined by
These satisfy —
1 JUNEN CTNN €]
. . Se=——— f dbygP—r—.  (A12)
*eO=—iQ, *gx,=ix,. (A5) 24 k7I M Im 7

As discussed in Sec. IV B, only forms of odd intrinsic parity
under theZ, projection are relevant. This includés and a
subset of they,, . In the subsequent analysisis restricted to

Again, we are in a large-radius approximation where the

warp factor is constant arﬁj(5)= 0. We define the imaginary
self-dual parts of5 5 as

this subset.
The metric for the complex structure deformations takes
the form 1
+ — + ;
C3)=C3*C@): C@~35(Cw@**6C).
fMXaD;B + N+
f MQDQ The action can then be written as
To find the corresponding Kéer potential, lez* be coordi-
nates on the comp!ex structure moduli space. Th.en it can be Se=— 1 J dox GG G +mmp
shown that(}/d9z* is (3,0)+(2,1), and more precisely that 12Kf0Im gy mnp
there is a basiy, such that
Z10) — 42 j I Ol
 k(2,2)Q+ Xa. (A7) Km7
Jz“
Defining =-V | f G(30G, (A14)
4 Ki0|m TIM @==a@):
Ko=— In( =i JMQDQ), (A8)  where we define the potential
one may then show 1
V=- WJ' G(+3)D* 6G(+3). (A15)
9ukCo=—Kq, (A9) KoM 77 M
and the equation The second term in EqA14) is proportional tousQY,

whereu g is the D3 tension ancp‘s3 is the D3 charge carried

0 TK=G = (A10) by the three-form flux. This term is topological and does not
a®piem Sap involve the moduli. It is canceled by the tension of the lo-
gives the above metric. In the context of Brtheory com-  calized sources, because these have total D3 ch@ife
pactification, an obvious generalization of E48) is =—Q$ and saturate the inequalit2.26).
Equation(A5) implies that)’ only depends on the coeffi-
K= —In( f Q4D(_24>. (A11) cients of () and x, when G 3 is expanded in the basis of
X 3-forms. In terms of the metri¢A6), we find

|fMG(3)DQ MG(g)DQ‘l‘GaﬁfMG(g)Dxa MG(3)D;B
V= — _ (A16)
2|mTK§0J’ QoQ
M
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This can be derived from a superpotential of the form dis-
cussed in Refd.8,9,44,

The F-theory generalization of this discussion readily fol-
lows, with superpotentidlg]

W= f G3)0Q. (Al17)
M W= f G0y, (A19)
X
Indeed, from Eqs(A7),(A4) we find
D, W= aaW+(aa’C)W:J G WXa, where G, is the F-theory lift of the flux, locally given in
M Eq. (2.42.

(A18) This dimensional reduction has been carried out in a limit
_ . - that is rather orthogonal to the main concerns of this paper,
DW=6,W+ (W= — TJMG(s)DQ, in that the warp factor is constant rather than strongly vary-

ing, and|~:(5)=0. The detailed treatment of dimensional re-

whereC=IC; + KC,. After a Weyl transformation to the four- duction in the warped case is left for the futysee also Ref.
dimensional Einstein frame, the potential takes the standar@d9]), but in the present case we can argue that the key re-
N=1 supergravity fornj47], as in Eq.(2.43. sults are unaffected. In particular, the ten-dimensional analy-

This potential has been discussed befp4@], but in  sis of Sec. Il shows that the solutions found from the effec-
somewhat different contexts. In the first place, these earlietive action derived here remain solutions even when the
systems hadV=2 low energy supersymmetry, even when warping is taken into account. The physical reason is that all
the potential was written iV=1 form. Here, the orienti- localized sources as well as the supergravity fields couple to
folding or theF-theory D7 configuration explicitly reduces the warp factor and the 5-form flux in the same ratio, so that
the low-energy supersymmetry t&=1. Second, objects there is no net force.
with negative D3 charge were not included, so the fluxes The superpotential derived in the large-radius limit is ex-
were restricted td y,H 3)0F 3)=0. act in string perturbation theory. This is because the real part

The conditiondD ,W=D W=0 imply thatG(g)=0. Thus of p is an axion, obtained from the tensor fig¢lll), and so
the effective four-dimensional action reproduces the tenthere is a Peccei-Quinn symmetry broken only by
dimensional condition$2.31) for a solution. Unbroken su- D-instanton effects. Thus cannot appear in the superpoten-
persymmetry requires also thet,W=0, implying that the tial [49]; the same will be true of all other 'Kéer moduli.
(0,3) part of G5y vanishes and so this flux is (2,1) and Note that this is not true of. The fieldC , appears in the
primitive, again as argued directly in ten dimensions. Theclassical action through the definition Gfs,, so there is no

latter condition is equivalent toV/=0; this will generically
not hold whenD ,W=D W=0.

Peccei-Quin(PQ symmetry andr does enter into the clas-
sical superpotentidlA17).
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