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Quantum fields in a big-crunch–big-bang spacetime

Andrew J. Tolley and Neil Turok
DAMTP, CMS, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom

~Received 26 July 2002; published 22 November 2002!

We consider quantum field theory on a spacetime representing the big-crunch–big-bang transition postulated
in ekpyrotic or cyclic cosmologies. We show via several independent methods that an essentially unique
matching rule holds connecting the incoming state, in which a single extra dimension shrinks to zero, to the
outgoing state in which it reexpands at the same rate. For free fields in our construction there is no particle
production from the incoming adiabatic vacuum. When interactions are included the particle production for
fixed external momentum is finite at the tree level. We discuss a formal correspondence between our construc-
tion and quantum field theory on de Sitter spacetime.
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I. INTRODUCTION

Despite its overwhelming phenomenological success,
standard big bang cosmology is clearly incomplete. Its g
and paradoxes provide some of the most powerful clue
fundamental theory that we possess. Indeed, it is increasi
evident that the real measure of success for string theory
M theory will be how well they face up to the challeng
posed by cosmology. Perhaps the greatest challenge is th
describing the initial singularity, a moment of infinite dens
and curvature occurring some fifteen billion years ago in
past, a basic puzzle not resolved by cosmic inflation.

The initial singularity is often associated with the proble
of the ‘‘beginning of time.’’ But the only thing one can le
gitimately infer from the existence of the singularity is th
general relativity is incomplete. Rather than have time ‘‘b
gin,’’ which is a truly paradoxical notion, or to work with
imaginary time formulations, it seems reasonable to exp
the alternative possibility that time may be continued ba
through the singularity, and even arbitrarily far into the pa
Such a view is consistent with what is known so far in stri
and M theory. Spatial geometry and topology are only
proximate concepts, as evidenced by orbifold backgrou
@1#, and allowed topology changing processes@2#. However,
time is built in, in a fundamental role, and there is no e
dence so far that it is allowed to ‘‘begin’’ or ‘‘end.’’

Recent attempts to construct cosmological scenarios
ploying ‘‘brane world’’ constructions from M theory an
string theory have led to a reexamination of these issues.
‘‘ekpyrotic’’ scenario @3#, in which a brane collision is sup
posed to be the origin of the hot big bang, and its ‘‘cycli
version @4# in which such collisions occur periodically int
the infinite past and future, provide alternate approache
the classic cosmological puzzles conventionally addres
by inflation. In the cyclic model, the flatness, homogene
and isotropy of today’s Universe is explained as a con
quence of an epoch of vacuum energy domination in
previous cycle. And the density perturbations needed to s
structure formation were generated by an inter-brane att
tive force near the end of the last cycle. An important p
cursor of these ideas was the ‘‘pre-big-bang’’ model of Ve
ezianoet al. @5#.

The ekpyrotic and cyclic models rest for the most part
0556-2821/2002/66~10!/106005~16!/$20.00 66 1060
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conventional low energy effective field theory and gravi
One key event cannot be described within that approa
namely a collision between the two end-of-the-world boun
ary branes~or ‘‘orbifold planes’’!. In the four dimensional
effective description this event appears to be unavoida
since the four dimensional effective scale factor is initia
contracting. The four dimensional fields appearing in t
theory have positive~and growing! kinetic energy and this
means, through the Friedman equation that the contrac
cannot be reversed. Within a finite time one reaches a ‘‘
crunch’’ singularity dominated by scalar kinetic energy,
event which appears at first sight to be irredeemably singu
From the the higher dimensional viewpoint the situation
more optimistic. The geometries of the branes are regula
the collision and the density of matter on the branes is fin
The five dimensional Riemannian curvature is finite eve
where away from the singular point. In fact, the only sense
which the higher dimensional geometry is singular is that
fifth dimension shrinks away to zero size@6#.

It is crucial for the cyclic scenario, as currently formu
lated, that a satisfactory method be found for passing thro
the singularity corresponding to the collapse of the extra
mension. In particular, the issue of matching the density p
turbations across this singularity has been a matter of fie
debate@7#. A matching rule was proposed in Ref.@8#, accord-
ing to which the growing mode scale invariant density p
turbations developed in the pre-collapse phase are trans
ted across the singularity. But it is also possible@7# to match
in such a way that only the decaying mode is present in
final state. Interesting papers have subsequently appe
suggesting geometrical methods of regularizing the singu
ity @9#, or employing scalar fields with a negative kinet
term to do so@10#. However, none of these methods y
yields a completely unambiguous result for the case of in
est in the ekpyrotic or cyclic scenarios. We hope that
method developed here on more fundamental grounds, w
extended to include gravitational back reaction, will be a
plicable to the cosmological case.

Ultimately this issue must be dealt with by string or
theory. Indeed, regardless of the ekpyrotic or cyclic s
narios, there are good reasons for believing that this type
singularitymustbe resolved if string theory is to make sens
The shrinking of the extra dimension can be accurately
©2002 The American Physical Society05-1
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scribed using a slow motion~moduli space! approximation,
which remains valid all the way to zero size. The low ene
moduli of string theory and M theory are believed to
fundamental, more so even than the actions and Lagrang
they are derived from@12#. For example, these moduli ar
the parameters which interpolate from one corner of
theory to another. The shrinking away of one extra dim
sion, in finite time, seems to be perfectly allowed in stri
theory, either if it is one of the nine string theory dimensio
@11#, or if it is the tenth spatial dimension associated with
theory@6#. In the former case, the string coupling is consta
and may be taken to be arbitrarily small, so stringy inter
tions should be negligible. In the latter case, the string c
pling vanishes as the extra dimension shrinks away. N
perturbative effects should, in this case, vanish even m
rapidly than perturbative effects. Thus it is hard to see w
would prevent this process. The question which must then
faced is: What happens next?

The moduli space description, and the higher dimensio
picture, both lead to a natural continuation@6#, illustrated in
Fig. 1. The extra dimension contracts to zero at a certain
but immediately reappears at the same rate. In the b
picture, the two branes collide and pass through one ano
a behavior familiar from Bogomol’nyi-Prasad-Sommerfie
~BPS! solitons in other contexts. If the collision occurs
finite speed, one expects some associated particle produ
and consequent back reaction.

In this paper, we take modest steps towards our even
goal of a calculation of the consequences of a collision
tween boundary branes in M theory. There are signific
technicalities to be faced even at the level of quantum fie
which is all that we shall discuss here. We shall propos
method of obtaining a unitary quantum field theory on t
spacetime illustrated in Fig. 1. Within free field theory, in o
construction there is no particle production in passing fr
the big crunch to the big bang phase. However, once in

FIG. 1. The compactified Milne universe. On the left is tw
dimensional Minkowski space. The Lorentz invariant coordinatt
satisfying t25T22Y2 is constant on the dashed surfaces, wh
provide a spacelike foliation of the causal future and past of
origin. These surfaces are parametrized by a coordinatey. Identify-
ing y with y1L compactifies space to produce the spacetime on
right, consisting of two Lorentzian cones joined tip-to-tip att50. If
the circular sections of these cones are orbifolded by aZ2, then the
two fixed points of theZ2 are two tensionless branes which collid
and pass through one another att50.
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actions are included, particle production occurs. For fix
external momenta, the particle production at the big-crunc
big-bang transition which is well defined and finite at tr
level. It exhibits a power-law falloff at high momenta whic
we argue would likely be replaced by exponential falloff
string theory.

II. MILNE AND COMPACTIFIED MILNE

The spacetime we are interested in is a subspace od
11)-dimensional Minkowski space, a trivial solution of (d
11)-dimensional general relativity or supergravity. The li
element is

ds252dT21dY21dxW2, ~1!

where we adopt units in which the speed of light is unity. W
shall refer toY as the fifth coordinate, having in mind th
picture that three of thed21 coordinatesxW should provide
the spatial dimensions of everyday existence, with the
mainder compactified for example on a torus or orbifold. F
example in eleven dimensional M theory,d510 and six of
the xW dimensions would be taken to be compact.

The line element~1! may be rewritten in terms of new
coordinates defined byT5t cosh(H5y), Y5t sinh(H5y),
where 2`,t,` and 2`,y,` cover the causal future
(t.0) and past (t,0) of the originY5T50. We have here
introduced the parameterH5, with dimensions of inverse
time. In these coordinates, Eq.~1! becomes

ds252dt21H5
2t2dy21dxW2,

2`,t,`, 2`,y,`. ~2!

The space comprising the causal future and past of the
gin, and its light coneT56Y is what we shall define to be
the Milne universe M. The complement ofM in
Minkowski space comprises the two Rindler wedgesuTu
,uYu to the left and right of the origin in Fig. 1.

The second step in obtaining the compactified Milne u
verseMC is to compactify they coordinate into a circle.
BecauseM is invariant under translations, in the quantu
theory there exists a unitary operatorL(H5L) implementing
y→y1L, which is just a boost of the originalT,Y coordi-
nates on Minkowski space, with rapidityH5L. The coordi-
nate t, which is the time in the Milne universe, is invarian
under this operation. LetG(H5L) denote the discrete grou
generated by L(H5L). Then we define MC to be
M/G(H5L), i.e. the spacetime

ds252dt21H5
2t2dy21dxW2,

2`,t,`, 0,y<L, ~3!

wherey50 andy5L are identified. We see that the param
eter H5 is just the rate of expansion or contraction~or
‘‘Hubble constant’’! of the fifth dimension. The spaceMC is
not a manifold, since it is not Hausdorff att50. But of
course this is precisely the point of interest to us.
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QUANTUM FIELDS IN A BIG-CRUNCH–BIG-BANG SPACETIME PHYSICAL REVIEW D66, 106005 ~2002!
So far branes have not entered. We may however fur
reduce the circle 0,y<L, by identifying its upper and
lower halves under theZ2 symmetry y→L2y. Quantum
fields may be decomposed into components which are e
or odd under this operation. The two fixed points of theZ2
symmetry,y50 and y5L/2, can then be viewed as~zero
tension! orbifold planes, which collide and pass through o
another att50 ~Fig. 1!.

We shall also be interested in studying quantum fields
this background from the point of view of the dimensiona
reduced d-dimensional theory. Writing the
(d11)-dimensional line element as

ds25e2fA(d22)/(d21)dy21e22f/A(d22)(d21)gmn
(d)dxmdxn,

~4!

the (d11)-dimensional Einstein action reduces to that fod
dimensional gravity with a massless, minimally coupled s
lar field f. ~We adopt units in which the coefficient of th
Ricci scalar in thed dimensional Einstein action is12 .! The
solutionM C3Rd21 is now re-interpreted as a cosmologic
solution in which thed-dimensional Einstein-frame metri
gmn

(d)5a2hmn with scale factor a}utu1/(d22), and f
5A(d21)/(d22)lnuH5tu.

It is clear that gravitational waves travelling in the no
compact directions are minimally coupled both in t
(d11)-dimensional description, and in thed dimensional
description since the powers off in Eq. ~3! were chosen to
obtain Einstein-frame gravity in the reduced theory. It
straightforward to check that a scalar field which is mi
mally coupled in the (d11)-dimensional theory is also
minimally coupled in thed dimensional theory. This mean
that for the backgroundM C3Rd21, the dimensionally re-
duced action for a minimally coupled scalarw is
2 1

2 *A2g(d)g(d)mn]mw]nw52 1
2 *dtutuhmn]mw]nw, for any

d.

III. FREE FIELD BEHAVIOR ON MC

Let us now describe the behavior of free fields onM C

3Rd21. Expanding the fields in plane waveseikW•xW on Rd21,
modes of momentumkW aquire a mass squared ofkW2 in their
two dimensional (t,y) action or equations of motion. Th
two dimensional line element is just2dt21H5

2t2dy2, which
is conformally flat, with a conformal factor which vanishe
at t50. The two regionst,0 and t.0 of M are each
conformal to an infinite cylinder labeled by a conformal tim
t6 , defined byH5t56e6H5t6, in the two cases. The line
element in these coordinates is then

ds25e62H5t6~2dt6
2 1dy2!, ~5!

where2`,t6,` on each cylinder. The conformal facto
vanishes ast tends to zero. In two dimensions the kinet
term for a scalar field is conformally invariant, and hen
does not see the conformal zero. But a two dimensional m
term vanishes likeutu. Therefore, in the limitt→0, all field
modes behave as those of a massless two dimensional
on an infinite cylinder. Modes with nonzeroy-momentumky
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oscillate an infinite number of times, ase6 ikyt6 or utu iky /H5,
ast6 tends7`. On the other hand, modes withky50 in-
stead evolve linearly int6 , which means that they gener
cally diverge as logutu as t→0.

The problem of defining a quantum field onMC is that of
matching the modes acrosst50, from their asymptotic be-
haviors ast tends to zero from above or below. Since t
modes either undergo an infinite number of oscillations,
are logarithmically divergent, this matching is quite subt
Let us discuss theky50 modes in more detail. The gener
solution for theky50 modes behaves asw;A1B ln(uH5tu)
as t approaches zero, withA and B two arbitrary constants
As we approacht50 the scalar field diverges logarithm
cally but its canonically conjugate momentump5uH5tuẇ
tends to a finite valueH5B. Our problem is then to match
general incoming solutionw0(t)5A21B2ln(uH5tu), t,0, to
the corresponding solution for t.0, w0(t)5A1

1B1ln(uH5tu). A crude approach would be to simply cut th
spacetime off att56d, identify the field and its conjugate
momentum on the two surfaces, and take the limit of sm
d. Since the momentum is time-independent we obtainB1

52B2, independent ofd asd→0. But matching the field
yields the cutoff-dependent resultA15A212B2ln(H5d),
which implies that for any regular in state, the amplitude
the mode functions generically diverge logarithmically wi
the cutoff. If we were to accept this result at face value,
number of particles produced would diverge as the squar
the logarithm of the cutoff. It is tempting to think that this
a consequence of the unphysical sharp cutoff and tha
smoother regularization prescription might remove the div
gence. However, a smoother cutoff, such as replacingutu in
the action byAt21d2 ~geometrically, this amounts to replac
ing the singular spacetimeMC with an hourglass, whose
waist has circumferencedH5L), leads to exactly the sam
logarithmic divergence asd→0. More sophisticated meth
ods must be sought for making quantum field theory onMC
well defined, as we now explain.

IV. QUANTUM FIELD THEORY ON MC

We shall describe several different constructions for qu
tum fields onMC , which all yield an essentially unique
result.

The first method is based on Fig. 2. We use the emb
ding of MC in Minkowski spacetime to define the map fro
t502 to t501. This is possible as long as one or more
the xW directions are noncompact, because in this case,
corresponding momentakW are continuous andkW50 is a set of
measure zero. From the two dimensional standpoint,
means that all modes are effectively massive. And for m
sive fields, free field evolution provides a unitary map b
tween the past light cone of the origin (t502) and the future
light cone (t501), because no information can be carrie
off to null infinity J1. The coordinatet analytically contin-
ues to a spacelike coordinate in the Rindler wedges, an
one follows the trajectory plotted in Fig. 2, this coordina
runs from zero to a finite value then back to zero. So in eff
a ‘‘clock’’ measuringt makes no progress whilst the traje
5-3
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ANDREW J. TOLLEY AND NEIL TUROK PHYSICAL REVIEW D66, 106005 ~2002!
tory is outside the regionM of interest.
This first method may also be viewed as a certain anal

continuation in the complext-plane~Fig. 3!. The field equa-
tion is analytic in the original Minkowski coordinatesT and
Y so the global solution may be obtained unambigously
analytic continuation in those coordinates. We shall sh
that this corresponds to the continuation of the positive
negative frequency mode functionsC (1) and C (2) from
negative to positivet, illustrated in the diagram above. Th
positive frequency mode functions so defined are analyti
the lower half t-plane, and the negative frequency mo
functions are analytic in the upper halft-plane. The quantum
field, being a sum of the positive and negative frequen
modes, is continued in this mixed fashion acrosst50. This
analytic continuation method is actually more fundamen
than continuation across the Rindler wedges, because it
not involve those unphysical regions. This is an import
distinction when we introduce interactions. There is an a
biguity ~for example about what the mass used in the f
field propagation should be! in the Minkowski space con
tinuation, but no corresponding ambiguity in the method
lustrated in Fig. 3.

Nevertheless it is interesting to discuss in more detail h
the two methods correspond, for free fields. The coordinat
continues to a spacelike variablet56 is in the Rindler re-

FIG. 2. Our first method for constructing quantum fields onM,
illustrated in a conformal diagram of Minkowski space. The unita
map from the past light cone of the origin,t502, to the future light
cone t501 is defined by free field evolution across the Rind
wedges to the left and right of the origin. Using this rule we obt
a unitary theory on the Milne universeM, which may then be
compactified into the spaceMC shown in Fig. 1.

FIG. 3. Integration contours used to define the positive a
negative frequency modes on the entire Milne universeM.
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gions, where the line element isds22s2dy2, andy is now
timelike. So in the Rindler regions, the continuation acro
from t502 to t501 occurs via paths which run up~or
down! the imaginaryt axis and back again. On these pathsy
is also evolving from2` to 1`. Modes with nonzero mo-
mentumky in the Milne region undergo an infinite number o
oscillations as they approacht502 from above or below,
and an infinite number more as they cross the Rind
wedges. More subtle is the behavior of theky50 modes. As
we discussed, these modes generically diverge logarith
cally as one approachest502. By a choice of phase one ca
put this divergence into the imaginary part of the mode fu
tions. Then, as one circumnavigates the origin in the co
plex t-plane, the logarithm aquires an imaginary part
6 ip. This causes the real part of the mode functions
undergo a jump, of just the amount needed to reverse
sign. This is illustrated in Fig. 4.

The method described above is, we believe, comple
adequate for dealing with quantum fields onMC . However,
it is also interesting and important to develop the correspo
ing description of passage through the singularity in thed
dimensional effective theory. In this theory, a scalar field h
action

2E dtdd21xW utu
1

2
hmn]mw]nw, ~6!

with a specific time dependence in the kinetic term. O
approach here will be to regularize the theory by changingutu
to utu12e, with e a parameter analogous to that in dime
sional regularization, to be taken to zero after renormali
tion. It is then necessary to add counterterms to the Ham
tonian att50 in order to render the time evolution operat
well defined in thee→0 limit. These counterterms have th
effect of inducing a shift in the scalar field, proportional to
momentum, and analogous to the jump produced in the a
lytic continuation method illustrated in Fig. 4. This shift ca
cels divergences and renders the final state well defined.
shall show that within this method, demanding that the co
terterms be local inxW , and imposing time reversal symmetr
is enough to uniquely fix the vacuum state.

d

FIG. 4. Behavior of theky50 modes as they crosst50. With
our choice of phase, the imaginary part~Im! diverges logarithmi-
cally but the real part~Re! is finite. Analytic continuation along the
path shown in Fig. 3 causes the real part to be odd int whereas the
imaginary part is even.
5-4
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QUANTUM FIELDS IN A BIG-CRUNCH–BIG-BANG SPACETIME PHYSICAL REVIEW D66, 106005 ~2002!
Finally, we shall point out an intriguing mapping betwe
this problem and that of free fields on de Sitter spacetim
Under this mapping, the surfacet501 corresponds to the
past timelike infinity in de Sitter space, andt502 corre-
sponds to future timelike infinity. While these two surfac
are only connected at a point in the Milne universe, they
connected by a smooth bulk~comprising the entire space
time! in the de Sitter case. The matching in de Sitter spa
time is unambiguous and again we shall show it correspo
to the previously obtained results. There are holographic
ements of this correspondence. Holography is natur
framed in terms of null surfaces@13#, and our approach in
volves matching information located on the two null surfac
t502 and t501. However, when we map to de Sitte
spacetime, these two surfaces map to two spacelike surfa
future and past timelike infinity, which are those which ha
been employed in the proposed de Sitter conformal fi
theory ~CFT! correspondence@14#.

All of these methods yield the same result for the qu
tum vacuum state onMC . Because there is no mixing of th
positive and negative frequency modes, there is no par
production in the free field theory. However, once intera
tions are included, particle production occurs, and in Sec
we demonstrate that it is well defined. ThekyÞ0 modes are
produced with a density which tends to zero exponentially
H5 vanishes, suggesting an adiabatic limit in which the p
ticle production vanishes in the limit of slowly collidin
boundary branes. Theky50 modes do not show this beha
ior, but we shall discuss how within string theory we c
anticipate how an adiabatic limit may in fact emerge.

Finally, let us mention the connection between this wo
and other, more ambitious attempts to directly constr
string theory on the compactified Milne spacetime cons
ered here. Nekrasov@16# considered string theory on th
Lorentzian orbifold constructed by orbifolding Minkowsk
spacetime by a boost. In that construction, the two Rind
wedges become compactified in a timelike direction, prod
ing two extra cones projecting horizontally from the origi
which possess closed timelike curves. Additionally, line s
ments emanating from the origin are produced in each of
four null directions. Cornalba and Costa avoid these featu
by modding out by a boost combined with a translation,
placing them instead by a new region containing a na
timelike singularity @17#. Balasubramanianet al. @15# con-
sider other examples of time-dependent orbifold ba
grounds in string theory. Whilst free strings seem to be w
defined in these backgrounds, it is not yet clear whether
teractions can be consistently introduced.

The approach we suggest here does not amount to o
folding Minkowski space. Instead, we use free field evo
tion ~or, equivalently analytic continuation int) to define a
matching rule between the big crunch and the big bang. T
difference is unimportant in the free theory, since the o
difference in that case between our approach and the orb
approach is that we would declare that the extra region
the orbifold approaches do not exist. It is when we introdu
interactions that the difference becomes crucial. In our c
the interaction Lagrangian is only integrated over the phy
cal compactified Milne spacetime, whereas in the orbif
10600
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approaches it would be integrated over the additional regi
too, containing closed timelike curves or naked singulariti
We should stress that we have not attempted to const
string theory in our approach, therefore we cannot s
whether string theory will ultimately be consistent on com
pactified Milne. However the field theory results are sugg
tive and we hope they will be a guide to such a constructi

V. EMBEDDING MILNE IN MINKOWSKI

A. Positive and negative frequency modes

In this section we describe our first construction of qua
tum field theory onM C3Rd21. A Fourier mode of a mass
less field,w(t,y,xW )5w(t)ei (kW•xW1kyy), obeys the field equa
tion

ẅ1
1

t
ẇ1

ky
2

H5
2t2w1m2w50, ~7!

where dot denotes partial derivative with respect tot. We
have introduced the effective two dimensional massm2

[kW2, and henceforth thexW dependence shall play a pure
spectator role. Equation~7! is just Bessel’s equation, with
imaginary ordern5 iky /H5. It has a singular point att50.
The solutions which tend to positive and negative freque
WKB modes at late times are the Hankel functions, and
properly normalized outgoing positive and negative f
quency modes are

cky

1 5A p

4H5
epky/2H5Hiky /H5

(2) ~mt!eikyy,

cky

2 5A p

4H5
e2pky/2H5Hiky /H5

(1) ~mt!eikyy. ~8!

We would like to continue these modes to negative tim
The Hankel functions have the following integral represe
tations

Hn
(1)~z!5

e2 ipn/2

p i E
2`

`

du exp~ iz coshu2nu!, ~9!

which is analytic in the upper halfz-plane, and

Hn
(2)~z!52

eipn/2

p i E
2`

`

du exp~2 iz coshu2nu!, ~10!

which is analytic in the lower halfz-plane. Consequently the
Milne mode functions can be expressed as

cky

1 5
i

2
A 1

pH5
E

2`

`

du expS 2 imt coshu

2 i
ky

H5
~u2H5y! D ,

cky

2 5cky

1* . ~11!
5-5
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By shifting the integration variableu→u1yH5, we obtain

cky

1 5
i

2
A 1

pH5
E

2`

`

du expS 2 imt coshu coshH5y

2 imt sinhu sinhH5y2 i
ky

H5
uD . ~12!

Further changing variables toKY52m sinh(u) gives

cky

1 5
i

2
A 1

pH5
E

2`

` dKY

AKY
21m2

ei (ky /H5)sinh21(KY /m)

3exp~ iK YY2 iAKY
21m2T!, ~13!

whereT5t cosh(H5y) andY5t sinh(H5y) are the embedding
coordinates in Minkowski space. This is a superposition
positive frequency plane wave modes on Minkowski sp
with momentumKY . We note that the right hand side is a
oscillatory integral which can be defined fort,0 by insert-
ing a suitable convergence factor. Therefore the integral
resentation may be used as the definition of the mode fu
tions there.

The above integral representations of the Hankel fu
tions define a natural analytic continuation acrosst50. One
can read off from Eqs.~9! and ~10! the relations

Hn
(2)~e2 ipz!52eipnHn

(1)~z!,

Hn
(1)~eipz!52e2 ipnHn

(2)~z!. ~14!

To see what these imply for theky50 modes, recall that

H0
(1)~mt![J0~ t !1 iN0~ t !,

H0
(2)~mt![J0~ t !2 iN0~ t !. ~15!

The rule ~14! implies that the analytic continuation o
H0

(2)(mt) to negative values is2J0(2t)2 iN0(2t). There-
fore from Eq.~15! the real part ofH0

(2)(mt) is an odd func-
tion of t, with a discontinuity att50, and the imaginary par
is even, with a logarithmic divergence att50. The real and
imaginary parts are illustrated in Fig. 4.

From the integral representations~9! and ~10! one can
determine the behavior of the analytically continued Han
functions at large positive or negativet by performing the
integral via the stationary phase method, obtaining

Hiky /H5

(2) ~mt!;2
e2pky/2

ip
e2 imtA 2p

umtu
e7 ip/4

t→6`, ~16!

and similarly forHiky /H5

(1) (mt), with i→2 i and ky→2ky .

This continuation implies that there is no particle product
since positive frequency incoming modes are matched
only positive frequency outgoing modes.

It is important to stress that this choice of vacuum is pr
iledged. As we explained earlier if we cut off the singular
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in a crude way, then for a generic choice ofu in& and uout&
states, for eachkW we would obtain in theky50 mode a
particle production rate that diverges logarithmically with t
regulator. It is only for the special case in which we defi
uout.5u in& or at least some finite Bogoliubov transform
tion of the u in& state that we obtain a finite result. From th
d dimensional perspective this seems contrived, but from
(d11)-dimensional picture and the embedding
Minkowski space it is clearly the most natural choice.
later sections we shall also justify this matching from
purely d dimensional point of view.

Finally, let us mention that our definition of in and ou
vacuum modes isnot the same as that which has conventio
ally been used in treatments of quantum fields on Mi
spacetime~see, for example, Ref.@18#!. In previous work,
only the t.0 part of M was used, and the initial vacuum
was taken to be the ‘‘conformal vacuum’’ ast→01, defined
by the ‘‘positive frequency’’ modes behaving ase2 ikyt as the
conformal timet→2`. This is, of course, not an adiabat
vacuum state, and therefore a somewhat arbitrary choice
the conformal vacuum state, one finds particle product
occurs in passing from the big bangt→01 to the asymptotic
future, even in free field theory@18#.

B. Projection ontoMC

We have not yet distinguished between the Milne sp
M and its compactificationMC , which as we described
above Eq.~3! is justM/G(H5L), with G(H5L) the group of
boosts with rapidityH5L.

In Minkowski spacetime a particle is defined in a gro
theoretic sense as an irreducible projective representatio
the Poincare´ group. We can similarly define particles onMC
by using representations on the covering Minkowski sp
that are invariant under the action of the boostG(H5L). The
map from Milne to Minkowski introduced in the previou
section is inverted by means of a Fourier transform, to obt

CKY
~Y,T!5eiK YY2 iAKY

2
1m2T

5E
2`

` dky

2p
epky/2H5Hiky /H5

(2) ~mt!

3eiky„y2H5
21sinh21(KY /m)…. ~17!

The plane wavesCKY
(Y,T) form a representation of the tw

dimensional Poincare´ group, and the action of the boostL on
these modes can be expressed as

L:CKY
~Y,T!→CKY

~LY,LT! ~18!

where (LY,LT)5„t sinh@H5(y1L)#,t cosh@H5(y1L)#… is
simply a translation byL in y. A representation of the group
Poincaré/G(H5L) can be constructed by simply summin
over all boosts,
5-6
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C̃KY
~Y,T!5 (

n52`

`

CKY
„Ln~H5L !Y,Ln~H5L !T…

5 (
n52`

`

CKY
„L~nH5L !Y,L~nH5L !T…. ~19!

We shall only use these functions on the physical region
interest, namelyMC , where they are given by

C̃KY
~Y,T!5 (

n52`

` E
2`

` dky

2p
epky/2H5Hiky /H5

(2) ~mt!

3eiky„y1nL2H5
21sinh21(KY /m)…. ~20!

Now using the Poisson summation formu
(n52`

` *2`
` dte2p int f (t)5(m52`

` f (m), we obtain

C̃KY
~Y,T!5

1

L (
n52`

`

ep2n/H5LH2ipn/H5L
(2) ~mt!

3ei (2pn/L)„y2H5
21sinh21(KY /m)…. ~21!

This is just the expected result that summing over boo
projects out only those states that are translation invar
undery→y1L, and is equivalent to quantizing the mome
tum ky52pn/L. If we were to perform the further projec
tion onto the orbifoldS1 /Z2 mentioned in the Introduction
we would now consider separating theky modes into those
which are odd and even undery→L2y. In string theory,
this step introduces new states~‘‘twisted states’’! but for field
theory describing quantum mechanical particles, it has
such effect.

The Feynman propagator onM is obtained by simply
restricting the (d11)-dimensional Minkowski space propa
gator to the Milne region. Ind11 dimensions the Feynma
propagator is@19#

GF~x,x8!52 i
p

~4p i !(d11)/2S m2

s1 i e D (d21)/4

3H (d21)/2
(2)

„m~2s2 i e!1/2
…, ~22!

where x5(T,Y,xW ) and s5(xW2xW82)1(Y2Y8)22(T
2T8)2. Restricting the Feynman propagator to the Mil
patch simply requires writings in terms of the Milne coor-
dinates s(x,x8)5(xW2xW8)22(t2t8)224tt8sinh2

„H5(y
2y8)/2…. The Feynman propagator on the compactifi
Milne spacetime is obtained by projecting onto the bo
invariant states. This is given by

GF
MC~x,x8!5 (

n52`

`

GF
M
„Ln~H5L !x,x8…

5 (
n52`

`

2 i
p

~4p i !(d11)/2S m2

sn1 i e D (d21)/4

3H (d21)/2
(2)

„m~2sn2 i e!1/2
… ~23!
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wheresn(x,x8)5(xW2xW8)22(t2t8)224tt8sinh2
„H5(y1nL

2y8)/2…. The Feynman propagator, in addition to the inte
action vertices, is all one needs in order compute theS ma-
trix via perturbation theory onMC .

C. UV divergence behavior

It is important to understand whether compactifyin
Minkowski spacetime intoM C3Rd21 introduces any new
ultraviolet divergences. For the construction given above,
free field propagator onM is just the Minkowski space
propagator evaluated onM. Therefore it has just the usua
divergences. In this section we shall show that the sam
true for the propagator onMC , for all pointsx andx8 away
from t50. This is to be expected intuitively since the Gre
functions onMC are constructed by summing over boosts
one argumentx, and these boosts carryx further and further
from x8.

The difference between the Feynman propagator onMC
andM is given ind11 dimensions by

DGF~x,x8!5 (
n52`,Þ0

`

2 i
p

~4p i !(d11)/2S m2

sn1 i e D (d21)/4

3H (d21)/2
(2)

„m~2sn2 i e!1/2
…, ~24!

which in the coincidence limitx85x becomes

2(
n51

`

2 i
p

~4p i !(d11)/2S m2

24t2sinh2~H5nL/2!1 i e D (d21)/4

3H (d21)/2
(2)

„m@4t2sinh2~H5nL/2!2 i e#1/2
…. ~25!

The largeuzu asymptotic behavior of the Hankel function
Hn

(2)(z)→(2/pz)1/2e2 i „z2(1/2)np2(1/4)p… and so the sum is
rapidly convergent for nonzerot. Thus, at least away from
t50 the UV divergence behavior of the Green function
MC is just the same as that on Minkowski space. The
havior of the Green function att50 is a more delicate mat
ter, linked to the way in which interactions enter, which w
shall discuss below.

In the next section we shall see that if interactions
introduced onM as integrals over fields onM, there are
physical processes such as particle creation from the vac
that occur at tree level, and which have no counterpar
Minkowski spacetime. They arise because energy is
longer conserved when the interactions are time-depend

VI. INTERACTING FIELD THEORY

The prescription discussed above for matching the
crunch phase to the big bang phase in the Milne unive
relied on free field theory. That is, in the Minkowski spac
time within which the Milne universe is embedded, we a
propagating the fields according to the free field equati
from the past light cone~on which Milne time ist502) to
the future light cone~on which Milne time ist501). With
this prescription, as we have emphasized, there is no par
production. However, once interactions are included, p
5-7
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ANDREW J. TOLLEY AND NEIL TUROK PHYSICAL REVIEW D66, 106005 ~2002!
ticles are generically produced because the interaction te
in the Hamiltonian are time dependent. We shall calcul
this effect in this section, using a very simple toy model
the interactions. This is not intended to accurately repres
the actual interactions in string theory, but we hope will
lustrate the general behavior including the sensitivity to
frared and ultraviolet cutoffs. The former should come fro
cosmological evolution, since the growth of the extra dime
sion ceases when the universe becomes radiation domin
Ultraviolet divergences have to be controlled by string the
or M theory effects and we shall comment on the poss
form of these below. It is important to stress that we use
Minkowski embedding only to determine a matching con
tion in the free field theory. The interacting theory lives
the physical spacetimeMC . This is the sense in which ou
approach differs from one employing an interacting the
on a Lorentzian orbifold which is Minkowski space modu
a boost.

As a very simple example, consider an interaction of

form S52* 1
2 m2w2, where the integral runs only overMC .

For concreteness we shall taked54, so there are three non
compact dimensionsxW . The interaction is simply a mas
term, which from the point of view of the embedding theo
in Minkowski space, is turned off outside the future and p
light cones. We would like to compute the particle produ
tion due to this interaction. The quantum fieldw is expanded
in terms of creation and annihilation operators as

w5E d3kW

~2p!3 (
ky

@aky ,kWcky

1eikyy1 ikW .xW1H.c.#, ~26!

where the kW dependence of the modes is not explici
shown. The creation and annihilation operators are norm
ized to obey

@aky ,kW ,a
k

y8 ,k8W
†

#5dky ,k
y8
~2p!3d3~kW2k8W !. ~27!

We may now compute the transition amplitude between
incoming vacuum state and an outgoing state with two p
ticles, with equal and opposite momentaky andkW . The cal-
culation is straightforwardly performed by first integratin
over y to obtain the delta functiondky1k

y8,0 corresponding to

momentum conservation. Then we use the representatio
the Hankel functions given in Eq.~13!, evaluated atY50,
T5t, to obtain the interaction matrix element

2 im2

8H5pV
~2p!3d3~kW1kW8!E dtutu E E dudu8

3ei (u2u8)(ky /H5)e2 i (coshu1coshu8)mte2eutu, ~28!

where we have inserted a Lorentz invariant convergence
tor, and include the volume factor needed to normalize
final states @since (2p)3d3(0)5V]. The integrals are
straightforwardly performed using the identity
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dx
coskyx

cosh2~x/2!
5

4kyp

sinh~kyp/H5!
, ~29!

to give

^ky ,kW ,ky8 ,kW8,outu0,in&5
im2

2m2H5V
~2p!3d3~kW1kW8!dky1k

y8,0

3
~ky /H5!

m2sinh~kyp/H5!
. ~30!

The probability for a transition from the vacuum to two pa
ticles with momentaky562pn/L andkW within d3kW is there-
fore

m4

16
V

d3kW

~2p!2

1

ukW u4
~ky /H5!2

sinh2~kyp/H5!
. ~31!

Dividing by the volumeV one obtains the probability pe
unit volume for creating such particle pairs. At fixed extern
momentum, the final density of pairs is finite, as claime
Furthermore, thekyÞ0 modes which naively might be
thought to be the most dangerous, are strongly suppres
As the rateH5 of contraction of the extra dimension is de
creased, the production of these Kaluza-Klein modes
comes exponentially small, showing the existence of an a
batic limit. Theky50 modes do not however display such
limit, and in fact the result for particle creation for thes
modes is completely independent ofH5. We shall discuss
how this behavior is likely to be altered in string theor
below.

The integration overkW in Eq. ~31! is infrared divergent.
This is however an artifact of the fact that the interacti
term we introduced diverges ast→6`. In the situations of
interest for the cyclic and ekpyrotic models, the extra dime
sion tends to a maximum sizet!0 andt@0 and this would
introduce an infrared cutoff inukW u of orderTC

21 whereTC is
the characteristic time scale over which Milne-like behav
holds. The total number density of created particles with t
simplew2 interaction is ultraviolet finite. But the total energ
density is logarithmically divergent. This disease may
cured by introducing the dilatonf into the nonlinear field
interactions, which generically occurs in string theory. W
haveefA(d22)/(d21)}utu, and each extra power ofutu in the
interaction introduces an extra negative power ofukW u in the
matrix element, orukW u22 in the probability. Conversely, if we
introduce higher powers ofw in the interaction, e.g.w3, this
would boost the rate in the ultraviolet, just because m
particles are created in each process and the phase s
integral would involve a higher overall power ofkW . ~Recall,
there is no conservation of energy here since we have ex
itly broken time translation invariance.! Again, we can make
the produced number or energy density finite by introduc
sufficient powers of the dilaton coupling. However, as w
shall now explain, we believe there should be additional
fects suppressing the rate of production of particles with h
momentum in string theory.
5-8
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QUANTUM FIELDS IN A BIG-CRUNCH–BIG-BANG SPACETIME PHYSICAL REVIEW D66, 106005 ~2002!
The origin of the power law falloff in these calculation
may be traced to the sharpness in timet of the simple field
theory interaction term we have introduced, and the fact
this interaction cannot be correct for very high momenta
the external particles. The Fourier transform of a funct
with a sharp kink falls off only as a power law, so with th
field theory interaction, high energy energy-nonconserv
processes are only suppressed as a power law of the en
If interactions can be consistently introduced in string or
theory onMC , we believe they will not show this shar
behavior. Strings or membranes are never localized belo
minimal length scalel s , and one would expect them not t
see the extra dimension shrink below a minimal length sc
l s . One could model this by replacing the factorH5utuL,
which is the length of the extra dimension, wi
Al s

21H5
2L2t2, which never falls belowl s . If we make this

replacement in the particle production just computed, th
the final particle density is actually exponentially converg
in the ultraviolet. Returning to Eq.~28!, we see it is domi-
nated byu;u8;0. The effect of introducing the cutoffl s is
therefore roughly the replacement

E dtutue2 imt2eutu→E dtAt21d2e2 imt2eutu, ~32!

whered5 l s /(H5L). The left hand side equals22/m2 as e
→0. This exhibits the power law dependence of our ans
for the amplitude above. However, for largemd the right
hand side decays exponentially inmd. To see this, compute
the difference between the left and right-hand sides of
~32!, in which e may be set to zero from the outset. B
integrating by parts, one can reduce the difference to

2
2

m2 1E
0

` dt

m2 cos~mt!
d2

~ t21d2!3/2
. ~33!

It follows that the integral equals minus the right-hand s
of Eq. ~32!. The latter is a Hankel function of imaginar
argument, which decays exponentially, ase2md

5e2mls /(H5L), for large mls ~i.e. particle momenta wel
above the string scale!, or for smallH5L ~i.e. a small con-
traction speed of the extra dimension!.

Two important things occur in this model. First, the cuto
is not at the string scale, it is atukW u[m;(H5L)/ l s . More
importantly, for fixedukW u, the particle production become
exponentially small asH5L is lowered belowukW u l s . This
means that forH5L!1 and for modes of any fixed physica
wavelength in the non-compact direction, there is an ad
batic limit in which the extra dimension can disappear a
reappear with vanishingly small particle production. It r
mains to be seen whether these two desirable features
survive in a complete string theoretic calculation.

VII. THE d DIMENSIONAL PERSPECTIVE

The cyclic and ekpyrotic universe scenarios represen
tempts at consistent cosmologies based on M and st
theory. The resolution of what happens at big-bang–b
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crunch singularities must be found within those theories.
for example, the extra dimension involved is the eleve
dimension of M theory, as represented in the model
Horava and Witten, then when the two boundary branes
proach the theory reduces to weakly coupled heterotic st
theory. The full dynamics of the eleven dimensional theo
involves eleven dimensional supergravity and the associ
super-membrane. Nevertheless, one hopes that at leas
slow motions, the system evolves quasi-adiabatically an
small brane separations one is in the regime of ten dim
sional string theory. Furthermore, since the string coupl
constant vanishes as the extra dimension disappears, s
interactions should be suppressed at the singularity its
However, as noted in Ref.@6#, the description of the bounc
in string theory may not be straightforward, because the
dimensional string frame metric vanishes at the bound
brane collision.

In this section we shall attempt to describe not stri
theory but quantum field theory from a purelyd dimensional
perspective. As in the string theory case, thed dimensional
metric will vanish at the singularity. Nevertheless we sh
see that the singularity may be traversed in a reason
natural manner.

The d dimensional Einstein frame geometry correspon
ing to thed11 Milne geometry considered earlier is give
by

ds25uH5tu2/(d22)~2dt21dxW2!. ~34!

Note that the proper timet of thed11 geometry is identical
to the conformal timet of the d dimensional Einstein frame
geometry. The equation of motion of a massless scalar fi1

is

t2ẅ1tẇ1t2kW2w50, ~35!

just the equation for the ky50 mode of a
(d11)-dimensional massless scalar. Using the higher
mensional point of view as our guide we are lead to belie
that the natural ‘‘in’’ and ‘‘out’’ states are

cout,1~ t,x!5c in,1~ t,x!5A p

4H5
H0

(2)~ ukW tu!eikW•xW, ~36!

and the corresponding Wightman function is

G1~x,x8!5E ddkW

~2p!d

p

4H5
H0

(2)
„ukW u~ t2 i e!…

3H0
(1)
„ukW u~ t1 i e!…eikW•(xW2xW8). ~37!

How can we understand why this is natural purely from ad
dimensional point of view? As already discussed in Sec.
regulating the spacetime in the sense ofutu→At21d2 will
generically produce a particle production that diverges

1Near t50 massive particles behave like massless ones so
sufficient to consider the massless case.
5-9



h

he

i-
d

w
ke

hi

it

os

y,

-

-
ut
in
ia

ic
at
on

th

.
re

id
’s

re

ds

the

e

ross

ed

u-
ery-
at
the

ion

d the

pro-
h
nt

ANDREW J. TOLLEY AND NEIL TUROK PHYSICAL REVIEW D66, 106005 ~2002!
ln(H5d). The fact that this divergence is identical for eachkW

suggests that it may be removed by a counterterm whic
local in d dimensions.

A. What renormalization?

How should we remove the logarithmic divergence in t
scalar field as it approaches the singularity? From thed di-
mensional perspective, we would like to follow the trad
tional renormalization program: regularizing the theory, ad
ing counterterms and finally removing the regulator. But
need to discuss what form the renormalization should ta

As mentioned above, in the limit whent tends to zero, the
dynamics of the field are dominated by the kinetic term. T
term possesses a symmetryt→lt ~which is just a translation
in conformal time!. The scalar field tends tow;A
1B lnuH5tu, and its momentump tends toH5B. Rescaling
time as above has the effect of increasingw by B ln l, or
H5

21p ln l. Therefore it is very natural to seek to explo
such a shift in order to remove the divergence inw. Sincep
is asymptotically a constant, one can simply match it acr
t50. But to makew finite, we need to redefine it viaw
→w1Cp, across thet50 surface in the regulated theor
with the constantC chosen to obtain finite correlators forw
andp for t.0, as the regulator is removed.

The shiftw→w1Cp, p→p, is a canonical transforma
tion. It can be implemented by adding a a local counterterm
to the Hamiltonian, which acts att50 to produce an addi
tional unitary transformation taking the incoming to the o
going quantum state. We shall show below that demand
the vacuum be both Hadamard and time reversal invar
uniquely fixes the value of the constantC.

B. Dimensional regularization

Before we can renormalize thed-dimensional theory we
must first regularize it. We shall use a regularization wh
makes both the field and its canonical momentum finitet
50, but which allows the background to remain a soluti
of the field equations everywhere except att50.

The dimensional regularization we use relies upon
generalization of the (111)-dimensional Milne universe we
have so far studied to a (11n)-dimensional Milne universe
Like their (111)-dimensional cousin these are just a
writing of Minkowski spacetime, but in dimensionsn.1
their constant time slices are negatively curved hyperbolo
Hn . We therefore consider the following vacuum Einstein
equations ind11 dimensions,

ds252dt21H5
2t2dHn

21 (
i 51

d2n

dxi
2 , ~38!

wheredHn
2 is the line element onHn . This is a solution of

the (d11)-dimensional field equations if the curvatu
~Ricci! scalar of theHn is 2n(n21)H5

2/2. From the (d
2n)-dimensional point of view, we are considering fiel
which are constant on theHn , we have Einstein gravity plus
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a scalar fieldf representing the ‘‘scale factor’’ of theHn .2

The spatial curvature term in the (d11)-dimensional Ein-
stein action leads to a potential forf in the dimensionally
reduced (d2n)-dimensional action, proportional ton(n
21), and positive forn.1. The idea of the regularization
we use is to analytically continue this reduced theory inn,
and ultimately take the limit asn→1.

The action for a scalar field which is homogeneous on
Hn is just

2
1

2E dtuH5tunhmn]mw]nw. ~39!

For n512e, with e small and positive, it turns out that th
field w and its canonical momentump are both finite att
50 and therefore both can be simultaneously matched ac
t50. To see this, note that ast→0 the scalar field equation
is approximated by

t2ẅ1~12e!tẇ'0, ~40!

with general solutionw;A1B(H5t)e. The momentum con-
jugate tow is given byp5uH5tu12eẇ;eH5B, constant in
this limit. The remarkable feature is that for positivee, w is
also finite att50, enabling us to match acrosst50. @The
limiting casee50, which we studied before, can be obtain
by expanding (H5t)e'11e ln(H5t) for smalle, and redefin-
ing the constants.#

Whilst it is important that we have constructed the reg
larized backgrounds as solutions of the field equations ev
where except att50, for the purposes of this section all th
really matters is that we have regularized the action for
scalarw to Eq. ~39! for t,0 and for t.0 so that we can
matchw and p acrosst50, with the introduction of local
counterterms at that point.

C. Matching modes across the singularity

The regularized field equation for they-independent
modes is

t2ẅ1~12e!tẇ1m2t2w50, ~41!

with m2[kW2 as before. The general solution isw
5(mt)(e/2)x(mt), with x a Bessel function of ordere/2.

As t tends to zero, solutions to the regularized equat
tend to the formw;A1BukW tue, with A and B constants.
Thus as claimed above, bothw and p[uH5tu12eẇ tend to
constants ast tends to zero. Let (A2,B2) and (A1,B1) de-
note the values of these constants fort,0 andt.0. Match-

2Parenthetically, we remark that even thoughHn is noncompact,
there is a natural splitting between the homogeneous modes an
non-constant modes, because the Laplacian onHn has a smallest
nonzero eigenvalue equal to the space curvature. Therefore
vided we are considering (d2n)-dimensional energy scales muc
smaller thanH5, we may consistently neglect the non-consta
modes.
5-10
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ing w and p at t50 givesA15A2 and B152B2. Thus
the asymptotic solutions for smallukW tu are

w;A1B sgn~ t !ukW tue. ~42!

Using the asymptotic form of the Hankel functions for sm
argument and redefining the constants we find that the g
eral solution for allt is

w5ukW tue/2@C„ei ep/2He/2
(1)~ ukW tu!1e2 i ep/2He/2

(2)~ ukW tu!…

1D sgn~ t !„He/2
(1)~ ukW tu!1He/2

(2)~ ukW tu!…#. ~43!

As before defining the in and out states to bew in

5Ae/2ukW tue/2He/2
(1)(ukW tu) for t,0 and wout5Ae/2ukW tue/2

3He/2
(2)(ukW tu) for t.0 we find the following relation betwee

the in and out states:

w in5awout1bwout* , a52 i cosec~pe/2!e2 ipe/2,

b52 i cot~pe/2!. ~44!

Let us consider the limite→0. In this limit a→22i /(pe)
andb→22i /(pe). This implies infinite particle production
as we obtained before with the simple cutoff. In fact t
analogy is
o

an

n
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o
v

te
he
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' lnS 1

H5d D . ~45!

This relationship is similar to that obtained in ordinary reno
malization where 1/(d24) divergences in dimensional regu
larization corresponds to the ln(L) divergences obtained with
a UV cutoff.

D. Regularization independence

In the previous section we have seen that the logarith
divergences of the naive cutoff regularization used ear
manifest themselves as 1/e divergences in the dimensiona
regularization scheme. We now want to renormalize th
divergences, by absorbing the divergent pieces in local co
terterms added to the action.

In dimensional regularization the minimal subtractio
scheme is simply to throw away 1/e divergences. Here, on
must be more careful since there is a danger of violat
unitarity. We are able to perform the subtraction via a unita
transformation as follows. First write the Bogoliubov tran
formation in the form
S wout

wout* D 5S a b

b* a* D S w in

w in*
D 5S 2 i cosec~pe/2!e2 ipe/2 2 i cot~pe/2!

i cot~pe/2! i cosec~pe/2!eipe/2D S w in

w in*
D . ~46!
ll
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Now redefine the out state by means of the following Bog
liubov transformation:

S wout8

wout8 * D 5S 11
2i

pe

2i

pe

2
2i

pe
12

2i

pe

D S wout

wout* D . ~47!

Then in the limite→0 we find

S wout8

w8out* D 5S 21 0

0 21D S w in

w in*
D , ~48!

but since the 1/e divergences have been removed by me
of a Bogoliubov~unitary! transformation, unitarity is clearly
preserved.

The overall minus sign aquired by the mode functio
wout8 after passing throught50 is an unobservable phase
the quantum mechanical wave function. However, it is int
esting to compare what we have done here to what was d
in the earlier methods of analytic continuation. Here we ha
insisted thatp be continuous, and have found that, af
renormalization,w must change sign. Whereas there, t
continuation produced a divergent part of the field which w
-

s

s

-
ne
e
r

s

even with a corresponding momentump which was odd, and
had a jump att50. The two methods differ by an overa
minus sign but this is just a phase and is physically irr
evant.

In fact, we can easily compute the magnitude of the ju
in w in the regulated theory, using the small argument fo
for the Hankel functions. We find the result that after t
above renormalization the scalar field acquires a shift wh
divergent part is3

w~01!2w~02!52
2

eH5
p~0!. ~49!

But this is precisely a canonical transformation correspo
ing to the shift symmetry of the massless homogeneous
lar field described earlier. This justifies the conjecture th
the divergent piece can be removed by means of a canon
tranformation. The result is that this subtraction scheme p

3When one computes the canonical transformation in detail
finds an additional finite piece

Dw5
1

H5
S2

2

e
12g1lnU kW

4H5
UDp~02!

whereg is Euler’s constant.
5-11
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ANDREW J. TOLLEY AND NEIL TUROK PHYSICAL REVIEW D66, 106005 ~2002!
dicts no particle creation for a massless scalar field, exa
the result of the Minkowski embedding matching. So w
have reached the same conclusion from thed-dimensional
persepective.

E. Unitary evolution and regulating the Hamiltonian

The previous result is in a sense a trivial one. We c
always redefine the in state by means of a Bogoliubov tra
formation such thatuout&5u in&. However, the critical point
is that the Bogoliubov transformation we used was mom
tum independent and so corresponds to a local unitary tr
formation. Any canonical or Bogoliubov transformation c
be thought of as an instantaneous interaction term in
Hamiltonian. LetDS denote the ‘‘impulse’’~which has di-
mensions of action!, acting at timet, so the time dependen
Hamiltonian is

H5H01d~ t !DS. ~50!

Then the unitary evolution operatorUH(t,t8) for t8,0 and
t.0 may be expressed formally as

UH~ t,t8!5T expS 2 i E
t8

t

H~ t !dtD
5UH~ t,01!exp~2 iDS!UH~02,t8!, ~51!

in other words unitary evolution with HamiltonianH0 up
until time t502, a unitary transformation exp(2iDS) fol-
lowed by unitary evolution withH0 again. In particular ifDS
is quadratic in the fields and momenta then exp(2iDS) per-
forms a canonical transformation of the form described
Appendix A. Comparing with the result~49! above, we see
that the divergent part ofDS is the local counterterm

DS52
1

eH5
E d3xWp2~xW ,0!. ~52!

In principle we have freedom to add other local count
terms, a freedom leaving us with a 3 parameter family o
matching conditions. However, as we explain in Appendix
the above choice is the unique one that yields a Green fu
tion which is both of Hadamard form and time reversal
variant, i.e. such that the Wightman function transforms
der the time reversal operatorT by G1(Tx,Tx8)
5G2(x,x8).

Another way of seeing whyDSdiv given in Eq.~52! is the
correct counterterm is to consider the bare Hamiltonian
the dimensional regulation scheme. Near the singularity
leading contribution to the Hamiltonian is from the kinet
term. Computing from the action, Eq.~39!, we find the ki-
netic term contributesH5 1

2 *d3xWp2/uH5tu12e. The unitary
evolution operator depends on time ordered products of
tegrals of this Hamiltonian. Consider the contribution of t
region in the vicinity oft50, to *Hdt for utu,T. Using the
fact thatp is nearly constant, we may approximate this f
small T as
10600
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2E2T

T

uH5tu2(12e)dtE d3xWp2~xW ,0!

5
~H5T!e

eH5
E d3xWp2~xW ,0!. ~53!

Now taking the limit ase→0, we obtain a leading term o
precisely minusDSdiv given in Eq.~52!. Thus we see that the
counterterm we have introduced is just the minimal subtr
tion needed to obtain a well defined limit for the time ev
lution operator ase is taken to zero.

Let us briefly discuss the issue of general covariance
this paper we are working in a fixed background and
including gravitational effects. There is a preferred slicing
this background and therefore it is allowable to have a co
terterm which is explicitly t-dependent. However, whe
gravity is included, there should be no preferred coordina
How should we think of the countertermDS in that case?
The point is that from thed dimensional point of view, there
is a scalar field which yields a coordinate invariant tim
slicing of the geometry, namely the dilatonf which we have
mostly neglected. If we rewriteDS in terms of the dilaton
field, it is then coordinate invariant and can be used in
generally covariant treatment.

VIII. QUANTUM FIELDS IN de SITTER SPACE

In this section we want to discuss an interesting form
correspondence between quantum fields onMC and on
de Sitter space. The spacetimeM C3Rd21 is conformal to
the non-singular spacetimeS13dSd, as may immediately be
seen from the metric

ds25H5
2t2Fdy21

1

~H5t !2
~2dt21dxW2!G , ~54!

where the latter term is just the metric on de Sitter space
the flat slicing. The parameterH5 plays the role of the
Hubble constant of thed dimensional de Sitter space. Figu
5 shows the correspondence between the two halves o
Milne universe,L andU, and the two flat-sliced regions of d
Sitter space, one of which covers the region containing p

FIG. 5. The Milne spacetime is both locally flat~left diagram!
and conformallyS13 de Sitter~right diagram, with the 5th dimen-
sion suppressed!. In the de Sitter picture passing through the sing
larity corresponds to matching future timelike infinity in de Sitter
past timelike infinity.
5-12
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timelike infinity, t501 up to the coordinate horizon att5
1`, and the other which covers the region from the horiz
t52` to future timelike infinity t502. In the de Sitter
geometry, starting from a generic point in regionL, it takes
an infinite proper time to reacht502, but inM only a finite
proper time is needed. The key point in this corresponde
is that the two surfacest502 and t501 meeting at the
singularity ofMC are mapped to the two spacelike surfac
representing timelike past and future infinity in de Sit
space.

A peculiarity of this map is that the collapsing regionL of
the Milne geometry is mapped to the expanding regionL of
de Sitter space. Nevertheless the arrow of time always po
in the direction of increasingt.

de Sitter space can also be globally covered by the clo
slicing coordinates, so-called because the Cauchy surf
are spheresSd21. If d2VSd21 denotes the metric on anSd21

with radiusH5 then the de Sitter metric is

ds252dt21cosh2~H5t!d2VSd21. ~55!

There is no coordinate singularity in these coordinates wh
provide an unambiguous method for matching fields fr
I 2 to I 1. There exists a unitary operatorU(t1 ,t2) which
generates time evolution fromt2 to t1. This operator satis-
fies the Schro¨dinger equation

i
]

]t1
U~t1 ,t2!5H~t1!U~t1 ,t2! ~56!

whereH(t) is the time-dependent Hamiltonian. TheSmatrix
is defined as the unitary operator

S5 lim
t1→`,t2→2`

U~t1 ,t2!5Te2 i *2`
` H(t)dt, ~57!

which in the Milne picture corresponds to anSmatrix match-
ing from t501 to t502 or equivalently,

uc,t501&5S†uc,t502&. ~58!

Free field theory on de Sitter spacetime therefore provide
with yet another matching prescription for Milne spacetim

Since the spacetimeM C3Rd21 is locally flat then a
massless minimally coupled scalar field is identical to
massless conformally coupled scalar field. Ind11 dimen-
sions the conformal coupling term in the Lagrangian
2@(d21)/8d#Rw2. After a conformal transformation we
obtain a massless conformally coupled scalar field onS1

3dSd. The Ricci scalar onS13dSd is simply a constantR
5d(d21)H5

2 which means we may reinterpret the sca
field as a minimally coupled scalar field with massm25(d
21)2H5

2/4. On Kaluza-Klein compactification over theS1

we obtain a tower of scalar fields ondSd with massesm2

5(d21)2H5
2/41(2pn/L)2.

As we explained earlier the KK zero mode of a minima
coupled scalar onM C3Rd21 is identical to a minimally
coupled scalar on the lower dimensional Einstein frame
ometry. This in turn is equivalent to a scalar field of ma
m25(d21)2H5

2/4 ondSd. This result would seem surprisin
10600
n

ce

s
r

ts

ed
es

h

us
.

a

r

-
s

had we not used the higher dimensional geometry since
though thed dimensional geometry is conformal todSd, a
minimally coupled scalar field is not conformally invarian

In de Sitter space there is a one-parameter family of
Sitter invariant vacua@20#. A unique choice, known as th
Bunch-Davies vacuum@19#, is obtained if we also deman
that the Feynman propagator be of the Hadamard form~see
Appendix B!. A de Sitter invariant measure of the distan
between two points is provided by the variablez511@(t
2t8)22(xW2xW8)2#/2tt8. Although we have expressed it i
terms of flat slicing coordinates,z is globally defined and has
the same definition regardless of which patcht andt8 are in.
This means that the Feynman propagator in the Bun
Davies vacuum can be defined globally in terms of the
pergeometric function@19#

GF5H5
2 G„~d21!/21n…G„~d21!/22n…

8p2

3 2F1F ~d21!/22n,~d21!/21n;2,
1

2
~11z2 i e!G

~59!

where n depends on the Kaluza-Klein mode numbern, n
52p in/H5L.

We are interested in calculating theSmatrix to determine
the matching condition implied by the above propagator.
the free field level it is sufficient to consider how a sing
particle state evolves. The Feynman propagator allows u
evolve the positive frequency part of a scalar field from o
Cauchy surfacet85const, to any point in its causal future

w1~x,t !5 i E dd21xW8~Ht8!2dGF~x,t;x8,t8!

3~] t8
W2] t8

Q !w1~x8,t8!. ~60!

A simple calculation shows that a positive frequency WK
in state in the regiont→1` evolves to a positive frequenc
WKB state in the regiont→2`. The reason for this can b
seen immediately from the conformal diagram sinceI 1 and
I 2 are identified as the same coordinate horizon.

This result can be understood more clearly by realiz
that in analogy with Minkowski, we can define particles
de Sitter as representations of the de Sitter group. Since t
representations are globally defined and we choose a vac
that respects the de Sitter symmetry, then it is clear tha
the absence of interactions there can be no particle crea
in de Sitter spacetime.

At this point we should make clear that this is not
contradiction with the usual statement that there is a ther
distribution of particles in de Sitter space. This descripti
arises because of a different definition of particles, one wh
is more appropriate to the static patch surrounding an obs
er’s world line. The definition of particles in a curved spac
time is observer dependent, but the evolution of fields
observer independent. The Bunch-Davies vacuum is
vacuum in which globally there is no particle creation a
5-13
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ANDREW J. TOLLEY AND NEIL TUROK PHYSICAL REVIEW D66, 106005 ~2002!
cording to the representation theory definition, but where
cally an observer sees a thermal bath of particles.

In conclusion, we have reached the same results as be
for free field theory, using the de Sitter picture. When o
includes interactions, a careful track of the non-minimal co
plings must be taken into account. For instancelw4 theory
in the 4D Einstein frame geometry will correspond to ma
sive l8(t)w4 theory on de Sitter wherel8(t) is a new time-
dependent coupling constant. Ultimately, it is not clear to
that the Milne–de Sitter correspondence be a useful gu
because the problem of string theory on de Sitter spac
probably a harder problem than that of string theory on
Milne spacetime.

IX. CONCLUSION

In this paper we have shown that it is possible to defi
free quantum fields on the compactified Milne universe i
consistent and unambiguous manner. We have made lim
progress in studying interactions, and how these lead to
ticle production. The density of particles produced at fix
external momentum is finite at the tree level. The integra
density was also found to be finite provided the dilaton
pendence of couplings caused them to vanish sufficie
rapidly with t. We suggested how an adiabatic limit, in whic
particle production would be exponentially small for sm
H5L, might emerge in string theory. We also pointed o
connections with quantum field theory on de Sitter spa
time, which may well be interesting in their own right.

Certainly, much remains to be done to explore quant
fields on the Milne and compactified Milne universe. T
methods used here could be extended to include gravitati
backreaction, at least for linearised gravity, to follow cosm
logical perturbations through the singularity. We shall rep
on a study of loop diagrams for scalar field interactions
MC in the near future. A major challenge remaining is
extend these ideas to string theory and M theory.

Note added. Since this article was submitted to the a
chive a number of related articles considering fields
strings on backgrounds with cosmological singularities h
appeared@21#.
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APPENDIX A: THE RELATIONSHIP BETWEEN
CANONICAL AND BOGOLIUBOV TRANSFORMATIONS

The group of Bogoliubov transformations is identical
the group of linear canonical transformations. For a 2 dimen-
sional phase space these form the groupSp(2), i.e. those 2
32 matrices that satisfy

ATVA5V, ~A1!
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where

V5S 0 21

1 0 D .

Sp(2) is a real form ofSU(2) and consequently we ca
write any generatorA in terms of the Pauli matricess6

5 1
2 (s16s2), s3:

A5A1~a!A2~b!A3~c!5eas1ebs2ecs3. ~A2!

If

S q

pD
denotes an arbitrary vector in phase space then the tr
formed vector

S q8

p8
D 5AS q

pD
is given by

A1S q

pD 5S q1ap

p D
A2S q

pD 5S q

p1bqD
A3S q

pD 5S ecq

e2cpD . ~A3!

In quantum mechanicsq andp are replaced by operatorsQ
andP satisfying the Heisenberg algebra

@Q,Q#5@P,P#50, @Q,P#5 i . ~A4!

The canonical transformationsA1 , A2 and A3 can be rep-
resented by 3 unitary transformationsU1 , U2 andU3 given
by

U1~a!5expS 1

2
iaP2D ,

U2~b!5expS 2
1

2
ibQ2D ,

U3~c!5expS 1

2
ic~PQ1QP! D . ~A5!

These follow as a simple consequence of the Heisenb
algebra. We can define creation and annihilation operator
the usual waya5(1/A2)(Q1 iP), a†5(1/A2)(Q2 iP) and
consequently an arbitrary canonical transformation co
sponds to an arbitrary redefinition ofa anda†, i.e. a Bogo-
liubov transformation.

In field theory an operator valued field can be expres
in terms of creation and annihilation operators as
5-14
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w~x!5(
i

aic i~x!1ai
†c i* ~x!

5A2(
i

QiRe„c i~x!…2Pi Im„c i~x!… ~A6!

with c i(x) and c i* (x) the positive and negative frequenc
mode functions, normalized according to the Klein-Gord
inner product. It is usual to write a Bogoliubov transform
tion as a transformation acting on these modes:c i8(x)
5ac i(x)1bc i* (x), which preserves the Klein-Gordo
norm if uau22ubu251. Since the fieldw(x) is invariant un-
der this transformation, the creation and annihilation ope
tors must transform under the inverse Bogoliubov trans
mation,

ai85a* ai2b* ai
†

a8 i
†5aai

†2bai . ~A7!

If we rewrite this in terms of coordinates and momenta, th
in the above notation, the Boguliubov transformation cor
sponds to the linear canonical transformation on the op
tors (Qi ,Pi)

A5S Re~a2b! Im~a1b!

Im~b2a! Re~a1b!
D . ~A8!

It is simple to check that detA5uau22ubu251 as required.
This formula gives the precise map between canonical tra
formations and Bogoliubov transformations.

APPENDIX B: HADAMARD FORM OF THE PROPAGATOR

In the description of quantum fields on a curved spa
time, a natural and common restriction on the choice
vacuum is to impose that the Feynman propagator shoul
of Hadamard form. More precisely this means that in
coincidence limitx→x8, GF(x,x8) has the same singularit
structure as the Feynman propagator on flat space. A phy
motivation for this choice of vacuum is that two observe
located at nearby pointsx andx8 should not be able to tell if
they are on a curved space or Minkowski space by inform
tion sent between them. Since we are considering the c
cidence limitx→x8 the distinction between the various typ
of Green’s functions is not relevant and it is common to wo
exclusively with the Hadamard function defined by

GH~x,x8!5G1~x,x8!1G2~x,x8!

522 ImGF~x,x8!, ~B1!

where G1(x,x8) denotes the Wightman functio
^0uw(x)w(x8)u0& and G2(x,x8) is its complex conjugate
Now suppose we are interested in the Green’s functions
spacetime which is invariant under the discrete symmet
of time reversalT and parityP. This is true of all the space
times we have considered which can be seen by a sim
inspection of their metrics. In particular then the spacetim
are invariant under the combined symmetriesPT. This op-
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erator is anti-unitary and modesc i(x) may be decomposed
into its eigenstates, which with an appropriate choice
phase can be chosen to obey

c~PTx!5c* ~x!. ~B2!

Given one such eigenstate, let us construct an arbit
momentum-independent Bogoliubov transformation, to
mode function

c8~x!5ac~x!1bc* ~x!. ~B3!

Then we find that

c8~PTx!5ac* ~x!1bc~x!. ~B4!

If we demand thatc8(x) also be an eigenstate ofPT with
eigenvalueh ~which can be an arbitrary complex phase!,
then we must have

a* 5ha, b* 5hb, ~B5!

relations which can only be satisfied if Im(ab* ) is zero, a
result we shall use in a moment.

Given a particular set of positive frequency modesc i(x)
which are time reversal invariantc i(PTx)5c i(x)* and for
which the vacuum is Hadamard we can construct the H
amard function as

GH~x,x8!5(
i

c i~x!c i* ~x8!1c.c. ~B6!

Now define a new vacuum by means of a constant Bogo
bov transformation of the first vacuum

c i8~x!5ac i~x!1bc i* ~x!. ~B7!

The Hadamard function in the new vacuum is given by

GH8 ~x,x8!5~ uau21ubu2!GH~x,x8!

12 Re~ab* !GH~x,PTx8!

22 Im~ab* !D~x,PTx8!.

The commutator function

@w~x!,w~x8!#5G1~x,x8!2G2~x,x8!5 iD~x,x8!
~B8!

does not contribute to the Hadamard singularity struct
since it is vacuum independent. The singularity ofD(x,x8)
occurs for null separated points only. However, the comm
tatorGH8 (x,x8) in the new vacuum will have singular beha
ior in the coincidence limitx8→PTx. But one of the re-
quirements of the Hadamard vacuum is that the propag
only has a singularity asx→x8. Consequently if we demand
that the new vacuum is Hadamard then we must h
Re(ab* )50.

The conditions derived in the previous two paragrap
together imply thatb50. In other words, the requirement o
PT invariance and Hadamard form uniquely picks out t
vacuum. In fact all the vacua we have considered in t
5-15
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paper are triviallyP invariant, G1(Px,Px8)5G1(x,x8),
and so we only need to additionally impose the restriction
T invariance.

To put this in the more familiar setting of quantum fiel
on de Sitter space, the condition that the vacuum propag
s.

ys

ys

N

ys

10600
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be de Sitter invariant automatically picks out a vacuum
variant underPT sincePT is a discrete subgroup of the fu
de Sitter symmetry. Then, as is well known, the addition
requirement of Hadamard form uniquely picks the vacu
as the standard Euclidean, or Bunch-Davies vacuum.
ys.
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