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Quantum fields in a big-crunch-big-bang spacetime
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We consider quantum field theory on a spacetime representing the big-crunch—big-bang transition postulated
in ekpyrotic or cyclic cosmologies. We show via several independent methods that an essentially unique
matching rule holds connecting the incoming state, in which a single extra dimension shrinks to zero, to the
outgoing state in which it reexpands at the same rate. For free fields in our construction there is no particle
production from the incoming adiabatic vacuum. When interactions are included the particle production for
fixed external momentum is finite at the tree level. We discuss a formal correspondence between our construc-
tion and quantum field theory on de Sitter spacetime.
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[. INTRODUCTION conventional low energy effective field theory and gravity.
One key event cannot be described within that approach,
Despite its overwhelming phenomenological success, theamely a collision between the two end-of-the-world bound-
standard big bang cosmology is clearly incomplete. Its gapary branes(or “orbifold planes”). In the four dimensional
and paradoxes provide some of the most powerful clues teffective description this event appears to be unavoidable,
fundamental theory that we possess. Indeed, it is increasinglince the four dimensional effective scale factor is initially
evident that the real measure of success for string theory armbntracting. The four dimensional fields appearing in the
M theory will be how well they face up to the challenges theory have positivdand growing kinetic energy and this
posed by cosmology. Perhaps the greatest challenge is thatmeans, through the Friedman equation that the contraction
describing the initial singularity, a moment of infinite density cannot be reversed. Within a finite time one reaches a “big
and curvature occurring some fifteen billion years ago in ourcrunch” singularity dominated by scalar kinetic energy, an
past, a basic puzzle not resolved by cosmic inflation. event which appears at first sight to be irredeemably singular.
The initial singularity is often associated with the problem From the the higher dimensional viewpoint the situation is
of the “beginning of time.” But the only thing one can le- more optimistic. The geometries of the branes are regular at
gitimately infer from the existence of the singularity is that the collision and the density of matter on the branes is finite.
general relativity is incomplete. Rather than have time “be-The five dimensional Riemannian curvature is finite every-
gin,” which is a truly paradoxical notion, or to work with where away from the singular point. In fact, the only sense in
imaginary time formulations, it seems reasonable to explorevhich the higher dimensional geometry is singular is that the
the alternative possibility that time may be continued backifth dimension shrinks away to zero sig@.
through the singularity, and even arbitrarily far into the past. It is crucial for the cyclic scenario, as currently formu-
Such a view is consistent with what is known so far in stringlated, that a satisfactory method be found for passing through
and M theory. Spatial geometry and topology are only apthe singularity corresponding to the collapse of the extra di-
proximate concepts, as evidenced by orbifold backgroundmension. In particular, the issue of matching the density per-
[1], and allowed topology changing proces§2s However, turbations across this singularity has been a matter of fierce
time is built in, in a fundamental role, and there is no evi-debatd 7]. A matching rule was proposed in RE8], accord-
dence so far that it is allowed to “begin” or “end.” ing to which the growing mode scale invariant density per-
Recent attempts to construct cosmological scenarios enturbations developed in the pre-collapse phase are transmit-
ploying “brane world” constructions from M theory and ted across the singularity. But it is also possipi¢to match
string theory have led to a reexamination of these issues. ThHa such a way that only the decaying mode is present in the
“ekpyrotic” scenario[3], in which a brane collision is sup- final state. Interesting papers have subsequently appeared
posed to be the origin of the hot big bang, and its “cyclic” suggesting geometrical methods of regularizing the singular-
version[4] in which such collisions occur periodically into ity [9], or employing scalar fields with a negative kinetic
the infinite past and future, provide alternate approaches term to do so[10]. However, none of these methods yet
the classic cosmological puzzles conventionally addressegields a completely unambiguous result for the case of inter-
by inflation. In the cyclic model, the flathess, homogeneityest in the ekpyrotic or cyclic scenarios. We hope that the
and isotropy of today’s Universe is explained as a consemethod developed here on more fundamental grounds, when
guence of an epoch of vacuum energy domination in thextended to include gravitational back reaction, will be ap-
previous cycle. And the density perturbations needed to seqalicable to the cosmological case.
structure formation were generated by an inter-brane attrac- Ultimately this issue must be dealt with by string or M
tive force near the end of the last cycle. An important pre-theory. Indeed, regardless of the ekpyrotic or cyclic sce-
cursor of these ideas was the “pre-big-bang” model of Ven-narios, there are good reasons for believing that this type of
ezianoet al. [5]. singularitymustbe resolved if string theory is to make sense.
The ekpyrotic and cyclic models rest for the most part onThe shrinking of the extra dimension can be accurately de-
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T . actions are included, particle production occurs. For fixed

external momenta, the particle production at the big-crunch—
big-bang transition which is well defined and finite at tree
level. It exhibits a power-law falloff at high momenta which
we argue would likely be replaced by exponential falloff in
string theory.

II. MILNE AND COMPACTIFIED MILNE

The spacetime we are interested in is a subspaceal of (
+1)-dimensional Minkowski space, a trivial solution af (
+1)-dimensional general relativity or supergravity. The line

FIG. 1. The compactified Milne universe. On the left is two element is

dimensional Minkowski space. The Lorentz invariant coordinate 5 ) =y

satisfying t?=T2—Y?2 is constant on the dashed surfaces, which ds’=—dT?+dY?+dx’, ey
provide a spacelike foliation of the causal future and past of the o ) o )

origin. These surfaces are parametrized by a coordindtientify- ~ Where we adopt units in which the speed of light is unity. We
ing y with y+L compactifies space to produce the spacetime on théhall refer toY as the fifth coordinate, having in mind the
right, consisting of two Lorentzian cones joined tip-to-tigat0. If  picture that three of thel— 1 coordinatex should provide
the circular sections of these cones are orbifolded By,ahen the  the spatial dimensions of everyday existence, with the re-
two fixed points of theZ, are two tensionless branes which collide mainder compactified for example on a torus or orbifold. For

and pass through one anothertat0. example in eleven dimensional M theods=10 and six of
the x dimensions would be taken to be compact.
scribed using a slow motiomoduli spacg approximation, The line elemen{l) may be rewritten in terms of new

which remains valid all the way to zero size. The low energycoordinates defined byT=t cosh@sy), Y=t sinhHsy),
moduli of string theory and M theory are believed to bewhere —c<t<w and —<y<w cover the causal future
fundamental, more so even than the actions and Lagrangiaiig>0) and pastt{<0) of the originY=T=0. We have here
they are derived fronf12]. For example, these moduli are introduced the parametdds, with dimensions of inverse
the parameters which interpolate from one corner of Mtime. In these coordinates, E(.) becomes

theory to another. The shrinking away of one extra dimen-

sion, in finite time, seems to be perfectly allowed in string ds?= —dt?+H2t2dy?+ dx?,
theory, either if it is one of the nine string theory dimensions
[11], or if it is the tenth spatial dimension associated with M —oo<lt<o, —ooly<ono, (2

theory[6]. In the former case, the string coupling is constant
and may be taken to be arbitrarily small, so stringy interac-The space comprising the causal future and past of the ori-
tions should be negligible. In the latter case, the string cougin, and its light conél = =Y is what we shall define to be
pling vanishes as the extra dimension shrinks away. Nonthe Milne universe M. The complement of M in
perturbative effects should, in this case, vanish even mordlinkowski space comprises the two Rindler wedd@$
rapidly than perturbative effects. Thus it is hard to see what<|Y| to the left and right of the origin in Fig. 1.
would prevent this process. The question which must then be The second step in obtaining the compactified Milne uni-
faced is: What happens next? verse M. is to compactify they coordinate into a circle.
The moduli space description, and the higher dimensionaBecauseM is invariant under translations, in the quantum
picture, both lead to a natural continuatid, illustrated in  theory there exists a unitary operatb(HgL) implementing
Fig. 1. The extra dimension contracts to zero at a certain ratg—Yy+L, which is just a boost of the origindl,Y coordi-
but immediately reappears at the same rate. In the brangates on Minkowski space, with rapiditysL. The coordi-
picture, the two branes collide and pass through one anothanatet, which is the time in the Milne universe, is invariant
a behavior familiar from Bogomol’'nyi-Prasad-Sommerfield under this operation. Ldf(HsL) denote the discrete group
(BP9 solitons in other contexts. If the collision occurs at generated by A(HsL). Then we define M. to be
finite speed, one expects some associated particle production(/T"(HsL), i.e. the spacetime
and consequent back reaction.

In this paper, we take modest steps towards our eventual ds?= —dt?+ H2t2dy?+ dx?,
goal of a calculation of the consequences of a collision be-
tween boundary branes in M theory. There are significant —o<t<eo, 0<ysL, ©)

technicalities to be faced even at the level of quantum fields,

which is all that we shall discuss here. We shall propose avherey=0 andy=L are identified. We see that the param-
method of obtaining a unitary quantum field theory on theeter Hs is just the rate of expansion or contracti¢ar
spacetime illustrated in Fig. 1. Within free field theory, in our “Hubble constant’) of the fifth dimension. The space(. is
construction there is no particle production in passing fronnot a manifold, since it is not Hausdorff &&=0. But of
the big crunch to the big bang phase. However, once intereourse this is precisely the point of interest to us.
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So far branes have not entered. We may however furthesscillate an infinite number of times, as'™*y™= or |t|™ky/Hs,
reduce the circle &y<L, by identifying its upper and asr. tends=. On the other hand, modes wiky=0 in-
lower halves under th&, symmetryy—L—y. Quantum stead evolve linearly in—, which means that they generi-
fields may be decomposed into components which are everally diverge as lofgf ast—0.
or odd under this operation. The two fixed points of #ye The problem of defining a quantum field @vi is that of
symmetry,y=0 andy=L/2, can then be viewed &gero  matching the modes across 0, from their asymptotic be-
tension orbifold planes, which collide and pass through onehaviors ast tends to zero from above or below. Since the
another at=0 (Fig. 1). modes either undergo an infinite number of oscillations, or

We shall also be interested in studying quantum fields irare logarithmically divergent, this matching is quite subtle.
this background from the point of view of the dimensionally Let us discuss th&,=0 modes in more detail. The general
reduced  d-dimensional theory. Writing the solution for thek,=0 modes behaves as~A+B In(|Hst|)
(d+1)-dimensional line element as ast approaches zero, witA and B two arbitrary constants.

P EZTET 2 s o 20 EDETI () V As we approacht=0 the scalar field diverges logarithmi-
ds’=e?" dy+e =™ 9 dXHdx”, cally but its canonically conjugate momentum=|Hst|¢
(4 tends to a finite valuéisB. Our problem is then to match a

the (d+1)-dimensional Einstein action reduces to thatdor general mcommg_solutloao(t_)=A*+B*In(|H5t|), t=<0, t+0
the corresponding solution fort>0, ¢g(t)=A

dimensional gravity with a massless, minimally coupled sca- "~ g
lar field ¢. (We adopt units in which the coefficient of the +B7In(Hst]). A crude approach would be to simply cut the

Ricci scalar in thed dimensional Einstein action is.) The spacetime off at=x 4, identify the field and its _co_njugate
solution M X R4~1 is now re-interpreted as a cosmological momentum on the two surfaces, and take the limit of small

solution in which thed-dimensional Einstein-frame metric 6. Since the momentum is time-independent we obEin

(dy_ 52 ; 1/(d-2) =—B", independent ob as 6— 0. But matching the field
g’” da_f /dev;thln@ctTle factor a=|t » and ¢ yields the cutoff-dependent resut™=A~+ 2B In(Hs?),
= ) )InjHsf]. which implies that for any regular in state, the amplitude of

It is clear that gravitational waves travelling in the non-
compact directions are minimally coupled both in the
(d+1)-dimensional description, and in thke dimensional
description since the powers @f in Eq. (3) were chosen to
obtain Einstein-frame gravity in the reduced theory. It is
straightforward to check that a scalar field which is mini-
mally coupled in the @+ 1)-dimensional theory is also
minimally coupled in thed dimensional theory. This means

d—1 ; ;
:jhuactefgr g‘;i:r?cﬁg:ouand\%fnfmlqa"y’ g;(lejs:ergensclg?gly irse ing_ the singular spacetim@{. with an hourglass, whose
L Tg@g ey pa o= — 1 [dtlt| n4"a, 0d, e, for any waist has_ C|rpumferencéH5L), leads to ex_ac_tly the same
d 2 my oy 2 wrTv logarithmic divergence ag—0. More sophisticated meth-
' ods must be sought for making quantum field theory\dg
well defined, as we now explain.

the mode functions generically diverge logarithmically with
the cutoff. If we were to accept this result at face value, the
number of particles produced would diverge as the square of
the logarithm of the cutoff. It is tempting to think that this is

a consequence of the unphysical sharp cutoff and that a
smoother regularization prescription might remove the diver-
gence. However, a smoother cutoff, such as replafting

the action byy/t?+ &2 (geometrically, this amounts to replac-

Ill. FREE FIELD BEHAVIOR ON M

Let us now describe the behavior of free fields .bfic IV. QUANTUM FIELD THEORY ON M.
X R4~ Expanding the fields in plane wave * on R4,
modes of momenturk aquire a mass squared kf in their
two dimensional {,y) action or equations of motion. The
two dimensional line element is justdt?+ HZt?dy?, which
is conformally flat, with a conformal factor which vanishes di
at t=0. The two regiong<0 andt>0 of M are each
conformal to an infinite cylinder labeled by a conformal time
7., defined byHst=*e*Hs™= in the two cases. The line

We shall describe several different constructions for quan-
tum fields on M, which all yield an essentially unique
result.

The first method is based on Fig. 2. We use the embed-
ng of M in Minkowski spacetime to define the map from
t=0" tot=0". This is possible as long as one or more of

the x directions are noncompact, because in this case, the

element in these coordinates is then corresponding momentaare continuous ankl=0 is a set of
measure zero. From the two dimensional standpoint, this
ds?=e M5 (—d72 +dy?), (5) means that all modes are effectively massive. And for mas-

sive fields, free field evolution provides a unitary map be-
where —o <7, <o on each cylinder. The conformal factor tween the past light cone of the origit{0~) and the future
vanishes ag tends to zero. In two dimensions the kinetic light cone ¢=0"), because no information can be carried
term for a scalar field is conformally invariant, and henceoff to null infinity J*. The coordinate analytically contin-
does not see the conformal zero. But a two dimensional masses to a spacelike coordinate in the Rindler wedges, and as
term vanishes likgt|. Therefore, in the limit—O0, all field one follows the trajectory plotted in Fig. 2, this coordinate
modes behave as those of a massless two dimensional fieldns from zero to a finite value then back to zero. So in effect
on an infinite cylinder. Modes with nonzeyemomentunk,  a “clock” measuringt makes no progress whilst the trajec-
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FIG. 4. Behavior of the&,=0 modes as they cross=0. With
our choice of phase, the imaginary pér) diverges logarithmi-
cally but the real partRe) is finite. Analytic continuation along the
path shown in Fig. 3 causes the real part to be oddwhereas the
imaginary part is even.

FIG. 2. Our first method for constructing quantum fields/eh . ) ) 2.2 .

illustrated in a conformal diagram of Minkowski space. The unitary 9i0ns, where the line element is’— s’dy?, andy is now

map from the past light cone of the origin= 0", to the future light ~ timelike. So in the Rindler regions, the continuation across

conet=0" is defined by free field evolution across the Rindler from t=0" to t=0" occurs via paths which run ufor

wedges to the left and right of the origin. Using this rule we obtaindown) the imaginant axis and back again. On these paths,

a unitary theory on the Milne univers#1, which may then be is also evolving from—o to +. Modes with nonzero mo-

compactified into the spac&tc shown in Fig. 1. mentumk, in the Milne region undergo an infinite number of
oscillations as they approadhk=0~ from above or below,

tory is outside the regioi of interest. and an infinite number more as they cross the Rindler

This first method may also be viewed as a certain analyti?/edges. More subtle is the behavior of #he=0 modes. As
continuation in the complekplane(Fig. 3. The field equa- we discussed, these modes generically diverge logarithmi-

tion is analytic in the original Minkowski coordinat@sand ~ C@lly s one approachés 0. By a choice of phase one can
Y so the global solution may be obtained unambigously b)p_ut this divergence |nt(_) the imaginary part of_tr_le _mode func-
analytic continuation in those coordinates. We shall showf!ons- Then, as one circumnavigates the origin in the com-
that this corresponds to the continuation of the positive an®/€X t-plane, the logarithm aquires an imaginary part of
negative frequency mode functiong) and w(*) from +iq. This causes the real part of the mode functions to
negative to positive, illustrated in the diagram above. The UNdergo a jump, of just the amount needed to reverse its
positive frequency mode functions so defined are analytic i$'9": This is illustrated in Fig. 4. ,
the lower halft-plane, and the negative frequency mode The method d(_ascrlb_ed above is, we believe, completely
functions are analytic in the upper halplane. The quantum 2adequate for dealing with quantum fields ¢ . However,
field, being a sum of the positive and negative frequenc;!t is also |r_1te_rest|ng and important to develqp the gor(espond-
modes, is continued in this mixed fashion acros®. This N9 description of passage through the singularity in the
analytic continuation method is actually more fundamentap'mens'onal effective theory. In this theory, a scalar field has
than continuation across the Rindler wedges, because it do8§tonN
not involve those unphysical regions. This is an important
distinction when we introduce interactions. There is an am- _J dtdd‘liltﬁnwa ©d, ¢ 6)
biguity (for example about what the mass used in the free 2 prmvE
field propagation should bean the Minkowski space con-
tinuation, but no corresponding ambiguity in the method il-with a specific time dependence in the kinetic term. Our
lustrated in Fig. 3. approach here will be to regularize the theory by changfing
Nevertheless it is interesting to discuss in more detail howo |t|1 ¢, with ¢ a parameter analogous to that in dimen-
the two methods correspond, for free fields. The coordihate sional regularization, to be taken to zero after renormaliza-
continues to a spacelike varialle- *is in the Rindler re- tion. It is then necessary to add counterterms to the Hamil-
tonian att=0 in order to render the time evolution operator
well defined in thee—0 limit. These counterterms have the

\L effect of inducing a shift in the scalar field, proportional to its

"8 momentum, and analogous to the jump produced in the ana-
> > lytic continuation method illustrated in Fig. 4. This shift can-

\|’+ ‘f cels divergences and renders the final state well defined. We

shall show that within this method, demanding that the coun-

FIG. 3. Integration contours used to define the positive anderterms be local ix, and imposing time reversal symmetry
negative frequency modes on the entire Milne univetse is enough to uniquely fix the vacuum state.
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Finally, we shall point out an intriguing mapping between approaches it would be integrated over the additional regions
this problem and that of free fields on de Sitter spacetimetoo, containing closed timelike curves or naked singularities.
Under this mapping, the surfade=0" corresponds to the We should stress that we have not attempted to construct
past timelike infinity in de Sitter space, ane-0~ corre-  string theory in our approach, therefore we cannot say
sponds to future timelike infinity. While these two surfacesWhether string theory will ultimately be consistent on com-
are only connected at a point in the Milne universe, they aréactified Milne. However the field theory results are sugges-
connected by a smooth bulicomprising the entire space- tive and we hope they will be a guide to such a construction.
time) in the de Sitter case. The matching in de Sitter space-
time is unambiguous and again we shall show it corresponds V. EMBEDDING MILNE IN MINKOWSKI
to the previously obtained results. There are holographic el-
ements of this correspondence. Holography is naturally
framed in terms of null surfacd43], and our approach in- In this section we describe our first construction of quan-
volves matching information located on the two null surfacestum field theory onM ¢ X Rd:f. A Fourier mode of a mass-
t=0" andt=0". However, when we map to de Sitter |ess fie|d,¢(t,y,)_())=QD(t)ei(k'XJrkyy), obeys the field equa-
spacetime, these two surfaces map to two spacelike surfacegn
future and past timelike infinity, which are those which have
been employed in the proposed de Sitter conformal field . 1. y ,
theory (CFT) correspondencfl4]. ¢F et e tMie=0, )

All of these methods yield the same result for the quan- °
tum vacuum state oM . Because there is no mixing of the where dot denotes partial derivative with respect.taVe
positive and negative frequency modes, there is no particlfave introduced the effective two dimensional mas$
production in the free field theory. However, once interac-_ k2, and henceforth th& dependence shall play a purely
tions are included, pa_rt|_cle produquon occurs, and in Sec. Vgpectator role. Equatiofi) is just Bessel's equation, with
we demonstrate that it is well defined. Thg#0 modes are imaginary orderv=ik,/Hs. It has a singular point &t=0.
produced with a density which tends to zero exponentially agyq"g5|ytions which tend to positive and negative frequency
Hs vanishes, suggesting an adiabatic limit in which the paryy g modes at late times are the Hankel functions, and the

ticle production vanish_es in the limit of slowly _coIIiding properly normalized outgoing positive and negative fre-
boundary branes. The,=0 modes do not show this behav- quency modes are

ior, but we shall discuss how within string theory we can

A. Positive and negative frequency modes

2

anticipate how an adiabatic limit may in fact emerge. . _
Finally, let us mention the connection between this work P = me”ky’ZHSHi‘f),Hs(mt)e'kvy,
and other, more ambitious attempts to directly construct / 5 /
string theory on the compactified Milne spacetime consid-
ered here. Nekraso{16] considered string theory on the -_ . e~ ky/2Hs (D) (mi)elkyy 8
Lorentzian orbifold constructed by orbifolding Minkowski lpky 4Hsg 'kv/HS( ) ' ®

spacetime by a boost. In that construction, the two Rindler
wedges become compactified in a timelike direction, producY¥Ve would like to continue these modes to negative times.
ing two extra cones projecting horizontally from the origin, The Hankel functions have the following integral represen-
which possess closed timelike curves. Additionally, line segiations
ments emanating from the origin are produced in each of the
four null directions. Cornalba and Costa avoid these features HW(z)=
by modding out by a boost combined with a translation, re- v
placing them instead by a new region containing a naked
timelike singularity[17]. Balasubramaniaet al. [15] con-  which is analytic in the upper haiplane, and
sider other examples of time-dependent orbifold back-
grounds in string theory. Whilst free strings seem to be well @)
defined in these backgrounds, it is not yet clear whether in- y(D=——
teractions can be consistently introduced.

The approach we suggest here does not amount to orbjghich is analytic in the lower half-plane. Consequently the
folding Minkowski space. Instead, we use free field evolu-Milne mode functions can be expressed as
tion (or, equivalently analytic continuation i) to define a
matching rule between the big crunch and the big bang. This i [ 1 (e
difference is unimportant in the free theory, since the only I = >N 7A- duex
difference in that case between our approach and the orbifold
approach is that we would declare that the extra regions in Ky
the orbifold approaches do not exist. It is when we introduce —ig(u= H5Y)) :
. . . . 5
interactions that the difference becomes crucial. In our case,
the interaction Lagrangian is only integrated over the physi- o i
cal compactified Milne spacetime, whereas in the orbifold '/’ky_ ”/’ky ' 1D

e—i’JTV/Z

i

J duexpiz coshu—wu), 9)

eiwv/Z

J duexp(—iz coshu—wu), (10

;{—imtcoshu
n 5J -
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By shifting the integration variable—u+yHs, we obtain in a crude way, then for a generic choice|of) and|out)

, states, for eactk we would obtain in thek,=0 mode a
it = ! /Lfm du ex;{ —imt coshu coshHgy particle production rate that diverges logarithmically with the
Ky 2 VN mHg) ° regulator. It is only for the special case in which we define
lout>=in) or at least some finite Bogoliubov transforma-
—imtsinhu sinhHgy — i ﬁu) (12) tion of the|in) state that we obtain a finite result. From the
5 d dimensional perspective this seems contrived, but from the
(d+1)-dimensional picture and the embedding in

Further changing variables ty=—msinh() gives Minkowski space it is clearly the most natural choice. In
) later sections we shall also justify this matching from a

vt /1 fw dKy i (ky IHe)sinh~ HKy /m) purelyd dimensional point of view. .
K" 2 VaHg) _» VKZ+m? Finally, let us mention that our definition of in and out
vacuum modes inotthe same as that which has convention-
xexquYY—i\/K$+ m°T), (13 ally been used in treatments of quantum fields on Milne

spacetime(see, for example, Refl18]). In previous work,
whereT=t coshfisy) andY =t sinh(Hsy) are the embedding only thet>0 part of M was used, and the initial vacuum
coordinates in Minkowski space. This is a superposition ofwas taken to be the “conformal vacuum” &s-0", defined
positive frequency plane wave modes on Minkowski spacey the “positive frequency” modes behaving es'*y™ as the
with momentumKy . We note that the right hand side is an conformal timer— —. This is, of course, not an adiabatic
oscillatory integral which can be defined fo0 by insert-  vacuum state, and therefore a somewhat arbitrary choice. In
ing a suitable convergence factor. Therefore the integral repgthe conformal vacuum state, one finds particle production
resentation may be used as the definition of the mode funaccurs in passing from the big bahg:0* to the asymptotic
tions there. future, even in free field theoryl§g].

The above integral representations of the Hankel func-

tions define a natural analytic continuation acros®. One
can read off from Eqs(9) and (10) the relations B. Projection onto M

We have not yet distinguished between the Milne space
M and its compactificationM, which as we described
above Eq(3) is just M/T"(HsL), with I'(HsL) the group of
boosts with rapidityHsL.

In Minkowski spacetime a particle is defined in a group
theoretic sense as an irreducible projective representation of

H S}Z)(efiwz) — eiwa E}l)(z)’
H(N(e'"z)=—e "™H?)(z). (14)

To see what these imply for thg, =0 modes, recall that

Hgl)(mt)EJo(t) +iNo(t), the Poincargroup. We can similarly define particles ol
by using representations on the covering Minkowski space
HP(mt)=Jg(t) —iNg(t). (15  that are invariant under the action of the bobgHsL). The

map from Milne to Minkowski introduced in the previous
The rule (14) implies that the analytic continuation of section is inverted by means of a Fourier transform, to obtain
H{)(mt) to negative values is-Jo(—t) —iNg(—t). There-

. .o
fore from Eq.(15) the real part oH{?(mt) is an odd func- Wy, (Y, T)=e "t K+ meT
tion of t, with a discontinuity at=0, and the imaginary part
is even, with a logarithmic divergence tat 0. The real and - fm %ewky/ZHsH_(Z) (mt)
imaginary parts are illustrated in Fig. 4. —2m tky /Hs

From the integral representatiori8) and (10) one can _ P
determine the behavior of the analytically continued Hankel X @iky(y=Hsg “sini (K /m)) 17
functions at large positive or negatiteby performing the
integral via the stationary phase method, obtaining
The plane waveﬂfKY(Y,T) form a representation of the two

—mrky/2 . . o .
ey o-imt [2m pFimld dimensional Poincargroup, and the action of the boaston
i [mt| these modes can be expressed as

2
Hi(kJ/Hs(mt)N_

t— oo, (16)
) Ay (Y, T) =Wy (AY,AT) (18
and similarly forHi(ky),HS(mt), with i— —i andky— —K, .
This continuation implies that there is no particle production
since positive frequency incoming modes are matched twhere (AY,AT)=(tsinfHs(y+L)],tcoshiHs(y+L)]) is
only positive frequency outgoing modes. simply a translation by in y. A representation of the group
It is important to stress that this choice of vacuum is priv-Poincarél’ (HsL) can be constructed by simply summing
iledged. As we explained earlier if we cut off the singularity over all boosts,
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o0

_ where (X, x') = (x—x')?— (t—t")?—4tt’ sinf(Hs(y + nL
W (Y, T)= _E Wi (A"(HsL)Y,A"(HsL)T) —y')/2). The Feynman propagator, in addition to the inter-
S action vertices, is all one needs in order computeStmea-
* trix via perturbation theory otM .
= > W (A(NHsL)Y,A(NHsL)T).  (19)
o C. UV divergence behavior

We shall only use these functions on the physical region of |t js important to understand whether compactifying

interest, namelyMc, where they are given by Minkowski spacetime intoV o X R~ introduces any new
" dk ultraviolet divergences. For the construction given above, the

T (Y.T)= ZHY amkyl2Hs (2) mt free field propagator onM is just the_ Mlnkpwskl space

kel Yo T) nzz_oc 2me ey (MY propagator evaluated aii. Therefore it has just the usual

. P divergences. In this section we shall show that the same is
X elky(yFnL=Hg “sinh“(Ky /m)), (200  true for the propagator oM, for all pointsx andx’ away
from t=0. This is to be expected intuitively since the Green
Now using the Poisson summation formula functions onM. are constructed by summing over boosts on

oL f7.dteT M (1) =37 . f(m), we obtain one argumenx, and these boosts carryfurther and further
" from x’.
- 1 2 The difference between the Feynman pro toN o,
_ - a2niHgl 14 (2) Y propagatonog

VY= e Heimnimg (MY and M is given ind+1 dimensions by

5 el (2m/L)(y—Hg tsinh X(Ky /) 21 i _ - m2 | (d-1)/4

© @) AGE(X,x")= 2 =i - -
n=>%,+0 (47T|)(d+1)/2 0-n+|€

This is just the expected result that summing over boosts
projects out only those states that are translation invariant XHEg)—l)/Z(m(_Un_ie)l/z)i (24)
undery—y+L, and is equivalent to quantizing the momen-

tum k,=2mn/L. If we were to perform the further projec- which in the coincidence limix’ =x becomes

tion onto the orbifoldS; /Z, mentioned in the Introduction,

we would now consider separating thg modes into those ) S T ( m2 (d—1)/4
which are odd and even undgr—L—Yy. In string theory, =1 ) Ty : )

this step introduces new statgswisted states’) but for field n=1 (4ari) (T 12| — 4L sintf(HgnL/2)+ie

theory describing quantum mechanical particles, it has no XHEﬁ)_l),z(m[4tzsinhz(H5n L/2)—ie]Y?). (25)
such effect.

The Feynman propagator ol is obtained by simply  The |arge|z| asymptotic behavior of the Hankel function is
restricting the ¢+ 1)-dimensional Minkowski space propa- H(2)(2)*}(2/,”.2)1/2€—i(2—(1/2)v77—(1/4)77) and so the sum is
gator to the.MiIne region. Iml+1 dimensions the Feynman ra::)idly convergent for nonzero Thus, at least away from
propagator ig19] t=0 the UV divergence behavior of the Green function on
(d-1)/4 M is just the same as that on Minkowski space. The be-

havior of the Green function &t=0 is a more delicate mat-

ter, linked to the way in which interactions enter, which we
) Y shall discuss below.

XHE 1) (m(—o—ie)'?), (22 In the next section we shall see that if interactions are

R R introduced onM as integrals over fields o, there are
where x=(T,Y,x) and o=(x—x"?)+(Y=Y)>~(T  physical processes such as particle creation from the vacuum
—T')% Restricting the Feynman propagator to the Milnethat occur at tree level, and which have no counterpart in
patch simply requires writing in terms of the Milne coor-  Minkowski spacetime. They arise because energy is no

2

v m

(47Ti)(d+1)/2

Ge(x,x")=—i

otie

dinates o(x,x")=(x—x')2—(t—t')2—4tt’sinf’(H5(y  longer conserved when the interactions are time-dependent.
—y’)/2). The Feynman propagator on the compactified
Milne spacetime is obtained by projecting onto the boost VI. INTERACTING FIELD THEORY

invariant states. This is given by o ) ) _
The prescription discussed above for matching the big
crunch phase to the big bang phase in the Milne universe

©

Gre(x,x")= _E GH(A"(HsL)x,x") relied on free field theory. That is, in the Minkowski space-
e time within which the Milne universe is embedded, we are
® 2 | (-1 propagating the fields according to the free field equations
o

from the past light conéon which Milne time ist=0") to

n=—cw -l (47Ti)(d+l)/2

ontie the future light congon which Milne time ist=0"). With
@ o this prescription, as we have emphasized, there is no particle
XH{GL 1) (M(—on—ie)?) (23)  production. However, once interactions are included, par-
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fcicles are ge_neri_cally proQuced because the interaction terms o cosk,X 4k

in the Hamiltonian are time dependent. We shall calculate f X =— , (29
this effect in this section, using a very simple toy model of —=  coslf(x/2) sinh(kym/Hs)

the interactions. This is not intended to accurately represent .

the actual interactions in string theory, but we hope will il- to give

lustrate the general behavior including the sensitivity to in- i 12

frared and ultraviolet cutoffs. The former should come from (ky ,IZ,k)’, K, ouf0,in) ==—5——(2m)383(k+K') 8¢ 4k’ o
cosmological evolution, since the growth of the extra dimen- 2m°HsV v
sion ceases when the universe becomes radiation dominated. (k, /Hsg)

Ultraviolet divergences have to be controlled by string theory 2y— (30
or M theory effects and we shall comment on the possible mesinf(ky7/Hs)

form of these below. It is important to stress that we use thel_ . i,

Minkowski embedding only to determine a matching condi- | € Probability for a transition from the vacuum to two par-
tion in the free field theory. The interacting theory lives onticles with moment, = +27n/L andk within d*k is there-
the physical spacetima/ . This is the sense in which our fore

approach differs from one employing an interacting theory

on a Lorentzian orbifold which is Minkowski space modulo M—4V dc*k 1 (ky/Hs)? 31
a boost. _ , , . 16 (2m)2 [K|* sintP(k,7/Hs)
As a very simple example, consider an interaction of the
form S= —f%M2<P21 where the integra| runs 0n|y OVeVl; . D|V|d|ng by the volumeV one obtains the probablllty per

For concreteness we shall tate-4, so there are three non- Uit volume for creating such particle pairs. At fixed external

compact dimensions. The interaction is simply a mass momentum, the final density of pa_irs s fi.nite, as claimed.
term, which from the point of view of the embedding theory Furthermore, thek,#0 modes which naively might be

in Minkowski space, is turned off outside the future and pasfhought to be the most d_angerous, are str_ongly _sup_pressed.
light cones. We would like to compute the particle produc-AS the rateHs of contraction of the extra dimension is de-

tion due to this interaction. The quantum fietds expanded creased, the prqducuon of thes:e Kaqua_—KIeln modes b_e-
in terms of creation and annihilation operators as comes exponentially small, showing the existence of an adia-

batic limit. Thek,=0 modes do not however display such a
- limit, and in fact the result for particle creation for these
d°k +oikovtik modes is completely independent df. We shall discuss
— . y+ik.x :
¢ f (2m)3 kzy [aky'kl’bkye / tHcl, (29 how this behavior is likely to be altered in string theory,
below.

where theK dependence of the modes is not explicity ThThe integration ovek in Eq. (31) is infrared divergent.

shown. The creation and annihilation operators are normal. is is however an artifact of the fact that the interaction
ized to. obey P kerm we introduced diverges &s- =, In the situations of

interest for the cyclic and ekpyrotic models, the extra dimen-
. sion tends to a maximum size0 andt>0 and this would
) _ 331 7 . . e _ .
[ax, ko8, 1= bk w(2m) 5" (k=K"). (270 introduce an infrared cutoff itk| of orderTc® whereTe is
g the characteristic time scale over which Milne-like behavior
. . holds. The total number density of created particles with this
We may now compute the transition amplitude between the. Py o . .
Simple¢* interaction is ultraviolet finite. But the total energy

incoming vacuum state and an outgoing state with two parEiensity is logarithmically divergent. This disease may be

ticles, with equal and opposite momeréaandk. The cal-  ¢yred by introducing the dilatos into the nonlinear field
culation is straightforwardly performed by first integrating nteractions, which generically occurs in string theory. We
overy to obtain the delta funct|oﬂky+k;,o corresponding to havee‘”mfﬁocm and each extra power 0f| in the

mhomentErrll fCO”S,efva“Q”- Then we use ﬂ:e representation gfteraction introduces an extra negative powetkfin the
the Hankel functions given in Eq13), evaluated a¥=0, matrix element, otk| ~2 in the probability. Conversely, if we

T=t, 10 obtain the interaction matrix element introduce higher powers af in the interaction, e.ge®, this
- would boost the rate in the ultraviolet, just because more
—lu (27r)383(l2+ R,)j dt|t|f Jdudu’ particles are created in each process and the phase space

8HsmV integral would involve a higher overall power kf (Recall,
there is no conservation of energy here since we have explic-
itly broken time translation invariangeAgain, we can make
the produced number or energy density finite by introducing
where we have inserted a Lorentz invariant convergence fasufficient powers of the dilaton coupling. However, as we
tor, and include the volume factor needed to normalize thehall now explain, we believe there should be additional ef-
final states [since (27)36°(0)=V]. The integrals are fects suppressing the rate of production of particles with high
straightforwardly performed using the identity momentum in string theory.

X ei(ufu’)(ky/Hs)efi(coshu+coshu’)mtef €lt| (28)
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The origin of the power law falloff in these calculations crunch singularities must be found within those theories. If,
may be traced to the sharpness in timaf the simple field for example, the extra dimension involved is the eleventh
theory interaction term we have introduced, and the fact thatimension of M theory, as represented in the model of
this interaction cannot be correct for very high momenta ofHorava and Witten, then when the two boundary branes ap-
the external particles. The Fourier transform of a functionproach the theory reduces to weakly coupled heterotic string
with a sharp kink falls off only as a power law, so with this theory. The full dynamics of the eleven dimensional theory
field theory interaction, high energy energy-nonconservingnvolves eleven dimensional supergravity and the associated
processes are only suppressed as a power law of the energuper-membrane. Nevertheless, one hopes that at least for
If interactions can be consistently introduced in string or Mslow motions, the system evolves quasi-adiabatically and at
theory on M., we believe they will not show this sharp small brane separations one is in the regime of ten dimen-
behavior. Strings or membranes are never localized below sional string theory. Furthermore, since the string coupling
minimal length scalé;, and one would expect them not to constant vanishes as the extra dimension disappears, string
see the extra dimension shrink below a minimal length scalénteractions should be suppressed at the singularity itself.
ls. One could model this by replacing the factdg|t|L, However, as noted in Ref6], the description of the bounce
which is the length of the extra dimension, with in string theory may not be straightforward, because the ten
‘/|52+ H52L2t2, which never falls below,. If we make this dimensional string frame metric vanishes at the boundary
replacement in the particle production just computed, thefrane collision.
the final particle density is actually exponentially convergent In this section we shall attempt to describe not string
in the ultraviolet. Returning to Eq28), we see it is domi- theory but quantum field theory from a pureiydimensional

nated byu~u’~0. The effect of introducing the cutoff is ~ Perspective. As in the string theory case, thdimensional
therefore roughly the replacement metric will vanish at the singularity. Nevertheless we shall

see that the singularity may be traversed in a reasonably
. . natural manner.
f dt|t|e_'mt_sltlﬂf dtyt?+o%e M, (32 The d dimensional Einstein frame geometry correspond-
ing to thed+1 Milne geometry considered earlier is given
where 5=1¢/(HsL). The left hand side equals 2/m? ase by
—0. This exhibits the power law dependence of our answer R
for the amplitude above. However, for larges the right ds?=|Hgt|¥@"2(—dt?+dx?). (34)
hand side decays exponentiallyrimd. To see this, compute

the difference between the left and right-hand sides of EgiNote that the proper timeof thed+1 geometry is identical
(32), in which e may be set to zero from the outset. By t0 the conformal time of the d dimensional Einstein frame

integrating by parts, one can reduce the difference to geometry. The equation of motion of a massless scalar field
is
2 (=dt 5 .
2 212,
_W+foazcoqmt)(|f2+—52)3/2. (33 t“p+te+tkop=0, (39

just the equation for the k,=0 mode of a
It follows that the integral equals minus the right-hand side(d+ 1)-dimensional massless scalar. Using the higher di-
of Eg. (32). The latter is a Hankel function of imaginary mensional point of view as our guide we are lead to believe
argument, which decays exponentially, a® ™  that the natural “in” and “out” states are
=e Ms/MsL) - for large mlg (i.e. particle momenta well
above the string scaleor for smallHsL (i.e. a small con- out + in s T D ik x
traction speed of the extra dimensjon YL =g ()= g H (|kt)e"™, (36)

Two important things occur in this model. First, the cutoff

is not at the string scale, it is $E|Em~(H5L)/IS. More  and the corresponding Wightman function is
importantly, for fixed|I2|, the particle production becomes
exponentially small adisL is lowered below|k|ls. This G*(x X’):f
means that foHs;L <1 and for modes of any fixed physical ’
wavelength in the non-compact direction, there is an adia- _ R
batic limit in which the extra dimension can disappear and XHU(K|(t+ie))ek XD, (37)
reappear with vanishingly small particle production. It re-
mains to be seen whether these two desirable features witlow can we understand why this is natural purely from a

.
T @y .

i HE (K=
aa

survive in a complete string theoretic calculation. dimensional point of view? As already discussed in Sec. lll,
regulating the spacetime in the sense|tf- t?+ 52 will
VIl. THE d DIMENSIONAL PERSPECTIVE generically produce a particle production that diverges as

The cyclic and ekpyrotic universe scenarios represent at=——
tempts at consistent cosmologies based on M and stringNeart=0 massive particles behave like massless ones so it is
theory. The resolution of what happens at big-bang—bigsufficient to consider the massless case.
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In(Hs6). The fact that this divergence is identical for edch @ scalar fieldg representing the “scale factor” of thel, .?

suggests that it may be removed by a counterterm which ighe spatial curvature term in thel { 1)-dimensional Ein-
local in d dimensions. stein action leads to a potential fgr in the dimensionally

reduced @—n)-dimensional action, proportional ta(n
—1), and positive fom>1. The idea of the regularization
A. What renormalization? we use is to analytically continue this reduced theonn,in

o , and ultimately take the limit as—1.
How should we remove the logarithmic divergence in the e action for a scalar field which is homogeneous on the
scalar field as it approaches the singularity? Fromdlu- H, is just

mensional perspective, we would like to follow the tradi-
tional renormalization program: regularizing the theory, add- 1
ing counterterms and finally removing the regulator. But we - Ef dt|Hst|"7""d,¢d,¢. (39
need to discuss what form the renormalization should take.
As mentioned above, in the limit wheriends to zero, the Forn=1-¢, with € small and positive, it turns out that the
dynamics of the field are dominated by the kinetic term. Thissie|q ¢ and its canonical momentum are both finite at
term possesses a symmetry At (which is just a translation - and therefore both can be simultaneously matched across

in _conformal timg. The scalar field tends top~A  {—0 To see this, note that &s-0 the scalar field equation
+BIn[Hst|, and its momentumr tends toHsB. Rescaling g approximated by

time as above has the effect of increasindoy B In A, or

H: 'mIn\. Therefore it is very natural to seek to exploit 20+ (1— €)te~0, (40)
such a shift in order to remove the divergencepinSince

is asymptotically a constant, one can simply match it acroswith general solutionp~ A+ B(Hst)€. The momentum con-
t=0. But to makeﬁ f[ute, er negd Lo redefllne (;t \r/]@ jugate tog is given byw=|H5t|1*f£p~eH5B, constant in
—¢+Cm, across the=0 surface in the regulated theory, tns jimit. The remarkable feature is that for positigge is
with the constanC chosen to obtain finite correlators fer 550 finite att=0 enabling us to match across 0. [The
and 7 for t>0, as the regulator is removed. limiting casee=0, which we studied before, can be obtained

_ The Shift(p—_>g0+ Cm, m—m, is a_ canonical transforma- by expanding H5t)€%1+ eln(H5t) for small e, and redefin-
tion. It can be implemented by addjra a local counterterm ing the constants.

to the Hamiltonian, which acts &t=0 to produce an addi-  “whjist it is important that we have constructed the regu-

tional unitary transformation taking the incoming to the out-|5rized backgrounds as solutions of the field equations every-
going quantum state. We shall show below that demanding,here except at=0, for the purposes of this section all that

the vacuum be both Hadamard and time reversal invariangg|ly matters is that we have regularized the action for the

uniquely fixes the value of the constadt scalarg to Eq. (39) for t<0 and fort>0 so that we can
match ¢ and 7 acrosst=0, with the introduction of local
B. Dimensional regularization counterterms at that point.
Before we can renormalize ttiedimensional theory we
must first regularize it. We shall use a regularization which C. Matching modes across the singularity

makes both the field and its canonical momentum finite at
=0, but which allows the background to remain a solution
of the field equations everywhere exceptat0.

The dimensional regularization we use relies upon the 20+ (1— €)to+m?t2p=0, (41)
generalization of the (% 1)-dimensional Milne universe we
have so far studied to a (dn)-dimensional Milne universe. m=Kk2 as before. The general solution ig
Like their (1+1)-dimensional cousin these are just a re'z(mt)(f’z)x(mt), with y a Bessel function of ordes/2.

writing of Minkowski spacetime, but in dimensioms>1 = “Ag’ tends to zero, solutions to the regularized equation
their constant time slices are negatively curved hyperboloids

~ " € i
H,. We therefore consider the following vacuum Einstein’stenOI to the .form<p A+BJkt|, with A and B t_:onstants.
equations ird+1 dimensions, Thus as claimed above, both and 7=|Hst|*~€¢ tend to

constants astends to zero. LetA~,B~) and (A*,B™) de-
note the values of these constantstfar0 andt>0. Match-

The regularized field equation for thg-independent
modes is

d—n
ds?= —dt2+ H2t2dH2+ >, dx?, (39
i=1

2parenthetically, we remark that even though is noncompact,
2. . . . there is a natural splitting between the homogeneous modes and the
wheredHy 'S_the I|r_1e element Oif ;. _Th|s '_S a solution of non-constant modes, because the LaplaciaHgrhas a smallest
the (d+1)-dimensional field equations if the curvature ngnzerg eigenvalue equal to the space curvature. Therefore pro-
(Ricci) scalar of theH, is —n(n—1)HZ/2. From the @  vided we are consideringd- n)-dimensional energy scales much
—n)-dimensional point of view, we are considering fields smaller thanHs, we may consistently neglect the non-constant
which are constant on thd,,, we have Einstein gravity plus modes.
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ing ¢ and 7 att=0 givesA*=A" andB*=—B~. Thus 1 1
the asymptotic solutions for smakt| are ;”'”(H_Sé : (45
o~A+B sgn(t)|kt|e. (42)

Using the asymptotic form of the Hankel functions for smaIIThiS, rel'ationship is similar t.o that obtaihed'in ord'inary renor-
argument and redefining the constants we find that the gerf@lization where 14—4) divergences in dimensional regu-

eral solution for allt is larization corresponds to the k) divergences obtained with
a UV cutoff.
o=|kt| L C(e“PHG(kt)) +e~ ' HE)([Kt]))
+D sgr(t) (H3([kt]) + HE)(|kt|))]. (43 D. Regularization independence
As before defining the in and out states to ks, In the previous section we have seen that the logarithmic

=Al Et|f’2H(E}2)(|IZt|) for t<0 and @qu=A |Zt|f/2 divergences of the naive cutoff regularization used earlier

XH(fz)(“ztD for t>0 we find the following relation between manifest themselves aselflivergences in the dimensional

the in and out states: regularization scheme. We now want to renormalize these
divergences, by absorbing the divergent pieces in local coun-
Gin=a@out Bet,, a=—icose¢mel2)e 7, terterms added to the action.
In dimensional regularization the minimal subtraction
B=—icot(mel2). (44 scheme is simply to throw away elflivergences. Here, one

must be more careful since there is a danger of violating
unitarity. We are able to perform the subtraction via a unitary
transformation as follows. First write the Bogoliubov trans-
formation in the form

Let us consider the limie—0. In this limit a— —2i/(e€)
andB— —2i/(me). This implies infinite particle production,
as we obtained before with the simple cutoff. In fact the
analogy is

(46)

imel2

(qom) (—i cose¢mel2)e €2 —i cot( mel2)

Pout| [ & B @Pin
of \ B o)\ ef i cot( mel2) i cose¢mel2)e om/

Now redefine the out state by means of the following Bogo-even with a corresponding momentumwhich was odd, and

liubov transformation: had a jump at=0. The two methods differ by an overall
minus sign but this is just a phase and is physically irrel-
2i 2i evant.
@hut 1+ TE me Pout ~In _fact, we can easily compute the magnitude of the jump
S . . « |- (47 in ¢ in the regulated theory, using the small argument form
Pout _ ﬂ 1— ﬂ Pout for the Hankel functions. We find the result that after the

TE TE above renormalization the scalar field acquires a shift whose

divergent part i$
Then in the limite—0 we find

(‘Péut)_<_1 0
¢’ Sut 0 -1

but since the ¥ divergences have been removed by mean

2
@in <P(0+)—¢(0_)=—6T577(0). (49)

x| (48)
Pin

But this is precisely a canonical transformation correspond-
ing to the shift symmetry of the massless homogeneous sca-
. . . i ar field described earlier. This justifies the conjecture than
of a Bogoliubov(unitary) transformation, unitarity is clearly the divergent piece can be reméved by means cif 2 canonical

preserved. . ; ; . i
The overall minus sign aquired by the mode functionstranformanon. The result is that this subtraction scheme pre

¢4y after passing through=0 is an unobservable phase in

the quantum mechanical wave function. However, it is inter- 5 . L .
. When one computes the canonical transformation in detail one

esting to compare what we have done here to what was doqe . L

. . . - . Inds an additional finite piece

in the earlier methods of analytic continuation. Here we have

insisted thatw be continuous, and have found that, after

renormalization,¢ must change sign. Whereas there, the

continuation produced a divergent part of the field which waswvherey is Euler’s constant.

N

k

4Hg

2+2 +1
erern

1
A@D:H—S )77(0)

106005-11



ANDREW J. TOLLEY AND NEIL TUROK PHYSICAL REVIEW D66, 106005 (2002

dicts no particle creation for a massless scalar field, exactly I
the result of the Minkowski embedding matching. So we
have reached the same conclusion from dhdimensional
persepective.

=0

E. Unitary evolution and regulating the Hamiltonian

The previous result is in a sense a trivial one. We can U horizon

always redefine the in state by means of a Bogoliubov trans:
formation such thatout)=|in). However, the critical point

is that the Bogoliubov transformation we used was momen- r
tum independent and so corresponds to a local unitary trans- g1 5 The Milne spacetime is both locally fideft diagram
formation. Any canoni(_:al or BOgO"Ub(_)V trans_formation_ CaNand conformallyStx de Sitter(right diagram, with the 5th dimen-
be thought of as an instantaneous interaction term in thejon suppressedin the de Sitter picture passing through the singu-
Hamiltonian. LetAS denote the “impulse”(which has di-  |arity corresponds to matching future timelike infinity in de Sitter to
mensions of action acting at timet, so the time dependent past timelike infinity.

Hamiltonian is

t=0"

1T I
H=Ho+6(t)AS. (50) Ef |H5t|’(1’5)dtf d3xr?(x,0)
-T

Then the unitary evolution operattt,(t,t’) for t’<0 and (HsT)¢
t>0 may be expressed formally as =~
5

f d3xm2(x,0). (53)

N [t Now taking the limit ase—0, we obtain a leading term of
Un(tt)=T exp( ! LH(t)dt) precisely minug\ Sy;, given in Eq.(52). Thus we see that the
counterterm we have introduced is just the minimal subtrac-
=Uu(t,0")exp—iAS)UL(07,t"), (51  tion needed to obtain a well defined limit for the time evo-
lution operator a% is taken to zero.
in other words unitary evolution with HamiltoniaH, up Let us briefly discuss the issue of general covariance. In
until time t=0", a unitary transformation exp(AS fol- this paper we are working in a fixed background and not
lowed by unitary evolution witlid, again. In particular iAS ~ including gravitational effects. There is a preferred slicing of
is quadratic in the fields and momenta then exiS) per-  this background and therefore it is allowable to have a coun-
forms a canonical transformation of the form described interterm which is explicitly t-dependent. However, when
Appendix A. Comparing with the resu(#9) above, we see gravity is included, there should be no preferred coordinate.
that the divergent part ok S is the local counterterm How should we think of the countertertkS in that case?
The point is that from thel dimensional point of view, there
1 L is a scalar field which yields a coordinate invariant time-
AS=-— Tf d®x7?(x,0). (52)  slicing of the geometry, namely the dilatgnwhich we have
€Ms mostly neglected. If we rewritd S in terms of the dilaton

o field, it is then coordinate invariant and can be used in a
In principle we have freedom to add other local counter-generally covariant treatment.

terms, a freedom leaving us Wwita 3 parameter family of

matching cond_itions. However, as we expl_ain in Appendix B. VIIl. QUANTUM EIELDS IN de SITTER SPACE

the above choice is the unique one that yields a Green func-

tion which is both of Hadamard form and time reversal in- In this section we want to discuss an interesting formal

variant, i.e. such that the Wightman function transforms un<correspondence between quantum fields oty and on

der the time reversal operatom by G*(Tx,Tx') de Sitter space. The spacetimé -x R is conformal to

=G~ (x,x"). the non-singular spacetin® xd<, as may immediately be
Another way of seeing whj Sy, given in Eq.(52) is the  seen from the metric

correct counterterm is to consider the bare Hamiltonian in

the dimensional regulation scheme. Near the singularity the

leading contribution to the Hamiltonian is from the kinetic

term. Computing from the action, E¢39), we find the ki-

netic term contributedd = 3 [d®x7%/|Hst|* €. The unitary  where the latter term is just the metric on de Sitter space in
evolution operator depends on time ordered products of inthe flat slicing. The parametdds plays the role of the
tegrals of this Hamiltonian. Consider the contribution of theHubble constant of thd dimensional de Sitter space. Figure
region in the vicinity oft=0, to fHdt for [t|<T. Using the 5 shows the correspondence between the two halves of the
fact that# is nearly constant, we may approximate this for Milne universel andU, and the two flat-sliced regions of de
small T as Sitter space, one of which covers the region containing past

ds?=H3t? dy2+( (—d?+dx®) |, (59

Hst)?
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timelike infinity, t=0" up to the coordinate horizon at had we not used the higher dimensional geometry since al-
+ o, and the other which covers the region from the horizorthough thed dimensional geometry is conformal ", a
t=—o to future timelike infinityt=0". In the de Sitter minimally coupled scalar field is not conformally invariant.
geometry, starting from a generic point in regibpit takes In de Sitter space there is a one-parameter family of de
an infinite proper time to readh=0", butin M only a finite  Sitter invariant vacu@20]. A unique choice, known as the
proper time is needed. The key point in this correspondencBunch-Davies vacuurfil9], is obtained if we also demand
is that the two surfaces=0" andt=0" meeting at the that the Feynman propagator be of the Hadamard fsee
singularity of M are mapped to the two spacelike surfacesAppendix B. A de Sitter invariant measure of the distance
representing timelike past and future infinity in de Sitterbetween two points is provided by the varialde 1+[(t
space. —t')2—(x—x")?]/2tt’. Although we have expressed it in
A peculiarity of this map is that the collapsing regibf  terms of flat slicing coordinateg,is globally defined and has
the Milne geometry is mapped to the expanding redioof  the same definition regardless of which patendt’ are in.
de Sitter space. Nevertheless the arrow of time always pointshis means that the Feynman propagator in the Bunch-

in the direction of increasing Davies vacuum can be defined globally in terms of the hy-
de Sitter space can also be globally covered by the closegergeometric functiofi19]

slicing coordinates, so-called because the Cauchy surfaces

are sphere§®~1. If d?Q -1 denotes the metric on &8f ~* T((d—1)/2+ W) ((d— 1)/2— v)
with radiusHs then the de Sitter metric is Ge=H2 o7
aw
ds?=—d7r?+ cosif(Hs7)d?Qg-1. (55)

1 .
There is no coordinate singularity in these coordinates which X oFq| (d=D)/2=v,(d=1)/2+ v;25(1+2~i€)

provide an unambiguous method for matching fields from
I~ toZ". There exists a unitary operatbi(r;,7,) which
generates time evolution from, to 7;. This operator satis-
fies the Schrdinger equation

(59

where v depends on the Kaluza-Klein mode numlmery
=2min/HsL.
9 We are interested in calculating tamatrix to determine
i?U(Tl,TZ)ZH(Tl)U(Tl,TZ) (56)  the matching condition implied by the above propagator. At
! the free field level it is sufficient to consider how a single
whereH(7) is the time-dependent Hamiltonian. TBenatrix particle state eyplves. The Feynman propagator allows us to
is defined as the unitary operator evolve the positive frequency part of a scalar field from one
Cauchy surface’ =const, to any point in its causal future,

S=  lim  U(r,mp)=Te -H@d (57)
. cp+(x,t)=iJ d4 X/ (Ht') " 9Gr(x,t;x’ 1)
which in the Milne picture corresponds to &matrix match- o
ing fromt=0" to t=0" or equivalently, X (dp— )@t (X', t). (60)
|,t=0")=S"|y),t=07). (58) A simple calculation shows that a positive frequency WKB

. . . . in state in the region— + evolves to a positive frequency
Free field theory on de Sitter spacetime therefore provides UR/KB state in the regioi— — . The reason for this can be

with yet another matching presdc_rilpt_ion for Milne spacetime.geq, immediately from the conformal diagram sifice and
Since the spacetimeVfcxR™ - is locally flat then a = 7 5q jgenified as the same coordinate horizon.

massless minimally coupled scalar figld is ident'ical 00 & This result can be understood more clearly by realizing
massless conformally coupled scalar field.dw 1 dimen- 54 iy analogy with Minkowski, we can define particles in
sions the °°”f°2ma' coupling term in the Lagranguan 'Sde Sitter as representations of the de Sitter group. Since these
—[(d—1)/8d]Re". After a conformal transformation we onresentations are globally defined and we choose a vacuum
obtain a massless conforn;ally coupled scalar fieldSn respects the de Sitter symmetry, then it is clear that in
xds’. The 5'00'_ scalar o' x dS" is simply a constanR e apsence of interactions there can be no particle creation
=d(d—1)H5 which means we may reinterpret the scalarj, de Sitter spacetime.
field as a minimally coupled scalar field with mas=(d At this point we should make clear that this is not in
—1)?H3/4. On Kaluza-Klein compactification over &  contradiction with the usual statement that there is a thermal
we obtain a tower of scalar fields atS’ with massesn®  distribution of particles in de Sitter space. This description
=(d- 1)2H§/4+ (27n/L)2. arises because of a different definition of particles, one which
As we explained earlier the KK zero mode of a minimally is more appropriate to the static patch surrounding an observ-
coupled scalar onM ¢xR%"! is identical to a minimally er’s world line. The definition of particles in a curved space-
coupled scalar on the lower dimensional Einstein frame getime is observer dependent, but the evolution of fields is
ometry. This in turn is equivalent to a scalar field of massobserver independent. The Bunch-Davies vacuum is the
m?=(d—1)?HZ/4 ondS". This result would seem surprising vacuum in which globally there is no particle creation ac-
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cording to the representation theory definition, but where lowhere
cally an observer sees a thermal bath of particles.
In conclusion, we have reached the same results as before Q= ( 0 - 1)
for free field theory, using the de Sitter picture. When one 1 0
includes interactions, a careful track of the non-minimal cou-
plings must be taken into account. For instanes® theory Sp(2) is a real form ofSU(2) and consequently we can
in the 4D Einstein frame geometry will correspond to mas-write any generatoA in terms of the Pauli matrices .

sive A’ (t) ¢* theory on de Sitter wherk’ (t) is a new time- =3(01*0,), o3
dependent coupling constant. Ultimately, it is not clear to us a0 b co
that the Milne—de Sitter correspondence be a useful guide, A=A (a)A_(b)As(c)=€"re""-e"". (A2)

because the problem of string theory on de Sitter space i
probably a harder problem than that of string theory on the
Milne spacetime. (q)

IX. CONCLUSION P

In this paper we have shown that it is possible to defindlenotes an arbitrary vector in phase space then the trans-

free quantum fields on the compactified Milne universe in dormed vector
consistent and unambiguous manner. We have made limited ,
progress in studying interactions, and how these lead to par- (q ) (q)
ticle production. The density of particles produced at fixed

external momentum is finite at the tree level. The integrated .
density was also found to be finite provided the dilaton delS given by
pendence of couplings caused them to vanish sufficiently

rapidly witht. We suggested how an adiabatic limit, in which A+( q) — q+ap
particle production would be exponentially small for small p p
HsL, might emerge in string theory. We also pointed out
connections with quantum field theory on de Sitter space- q q
time, which may well be interesting in their own right. A- p - p+bq
Certainly, much remains to be done to explore quantum
fields on the Milne and compactified Milne universe. The q e°q
methods used here could be extended to include gravitational 3< 0 = ( ecp) . (A3)

backreaction, at least for linearised gravity, to follow cosmo-

logical perturbations through the singularity. We shall report, | quantum mechanicg andp are replaced by operato@
on a study of loop diagrams for scalar field interactions o, \dp satisfying the Heisenberg algebra
M in the near future. A major challenge remaining is to

extend these ideas to string theory and M theory. [Q,Q]=[P,P]=0, [Q,P]=i. (A4)
Note added Since this article was submitted to the ar-
chive a number of related articles considering fields orThe canonical transformations, , A_ andA; can be rep-
strings on backgrounds with cosmological singularities haveesented by 3 unitary transformatiods. , U_ andU; given
appeared?21]. by
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APPENDIX A: THE RELATIONSHIP BETWEEN

Th follow impl n n f the Heisenber
CANONICAL AND BOGOLIUBOV TRANSFORMATIONS ese follow as a simple consequence of the Heise be 9

algebra. We can define creation and annihilation operators in
The group of Bogoliubov transformations is identical to the usual waya=(1/y2)(Q+iP), a'=(1/y2)(Q—iP) and

the group of linear canonical transformationsr B® dimen-  consequently an arbitrary canonical transformation corre-

sional phase space these form the gréug2), i.e. those 2  sponds to an arbitrary redefinition afanda’, i.e. a Bogo-

X2 matrices that satisfy liubov transformation.
In field theory an operator valued field can be expressed
ATOA=0Q, (A1) in terms of creation and annihilation operators as
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erator is anti-unitary and modef(x) may be decomposed

e(x) =2 aigh(x)+af i (x) into its eigenstates, which with an appropriate choice of
' phase can be chosen to obey
= V220 QRelyi(x)=PiIm(yi(x)  (A6) YPTX) = (X). (B2)

. N ) Given one such eigenstate, let us construct an arbitrary
with 4i(x) and ¢ (x) the positive and negative frequency momentum-independent Bogoliubov transformation, to the
mode functions, normalized according to the Klein-Gordonmode function
inner product. It is usual to write a Bogoliubov transforma-
tion as a transformation acting on these modg$(x) ' (X)=ap(X)+ By (X). (B3)
=ai(X)+ B¢ (X), which preserves the Klein-Gordon
norm if |a|?—|B|2=1. Since the fieldp(x) is invariant un-
der this transformation, the creation and annihilation opera- & (PTX) = ag* (X)+ Bi(X). (B4)
tors must transform under the inverse Bogoliubov transfor-
mation, If we demand that)’(x) also be an eigenstate &T with

ok owit eigenvalueyn (which can be an arbitrary complex phase
a=a’a =L then we must have

Then we find that

a'l=aal— Ba;. (A7) a*=na, B*=np, (B5)

If we rewrite this in terms of coordinates and momenta, therrelations which can only be satisfied if laag*) is zero, a
in the above notation, the Boguliubov transformation correstesult we shall use in a moment.
sponds to the linear canonical transformation on the opera- Given a particular set of positive frequency modgéx)

tors (Q;,P;) which are time reversal invariant (P Tx) = ¢;(x)* and for
which the vacuum is Hadamard we can construct the Had-
A Re(a—p) Im(a+p) A8) amard function as
Im(B—a) Rela+p))
N . "= i *(x")+c.c.
It is simple to check that dét=|a|?—|B|?=1 as required. Gr(x,x") EI Fi(X) g7 (X')+c.c (B6)
This formula gives the precise map between canonical trans-
formations and Bogoliubov transformations. Now define a new vacuum by means of a constant Bogoliu-
bov transformation of the first vacuum
APPENDIX B: HADAMARD FORM OF THE PROPAGATOR ,
P (X)= aghi(x)+ By (X). (B7)

In the description of quantum fields on a curved space- o o
time, a natural and common restriction on the choice oflheé Hadamard function in the new vacuum is given by
vacuum is to impose that the Feynman propagator should be , " 5 2 ,
of Hadamard form. More precisely this means that in the Gl x")=(|al*+[B[H)Gu(x.X")

coincidence limitx—x’, Gg(x,x") has the same singularity +2 R aB*)Gy(x,PTX)
structure as the Feynman propagator on flat space. A physical
motivation for this choice of vacuum is that two observers =2 Im(aB*)A(X,PTX).

located at nearby pointsandx’ should not be able to tell if )

they are on a curved space or Minkowski space by informaJ hé commutator function

tion sent between them. Since we are considering the coin- PN~ , _ I ,
cidence limitx—x' the distinction between the various types [e(x),0(x")]=G7(x.x") =G~ (x,x") =1A(x,x")

, 2 = (B8)
of Green’s functions is not relevant and it is common to work
exclusively with the Hadamard function defined by does not contribute to the Hadamard singularity structure
, , _ , since it is vacuum independent. The singularityAqfx,x")

Gr(XX) =G (xx")+ G (x.X") occurs for null separated points only. However, the commu-

=—2ImGg(x,x), (B1)  tatorGy,(x,x") in the new vacuum will have singular behav-
ior in the coincidence limitx’—PTx. But one of the re-

where G*(x,x') denotes the Wightman function quirements of the Hadamard vacuum is that the propagator
(0]le(x) o(x")|0) and G~ (x,x’) is its complex conjugate. only has a singularity as—x’. Consequently if we demand
Now suppose we are interested in the Green'’s functions on that the new vacuum is Hadamard then we must have
spacetime which is invariant under the discrete symmetrieRe(a¢8*)=0.
of time reversall and parityP. This is true of all the space- The conditions derived in the previous two paragraphs
times we have considered which can be seen by a simpl@gether imply tha3=0. In other words, the requirement of
inspection of their metrics. In particular then the spacetime$ T invariance and Hadamard form uniquely picks out the
are invariant under the combined symmetri&s. This op- vacuum. In fact all the vacua we have considered in this
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paper are triviallyP invariant, G* (Px,Px')=G"(x,x’), be de Sitter invariant automatically picks out a vacuum in-
and so we only need to additionally impose the restriction ofvariant undePT sincePT is a discrete subgroup of the full
T invariance. de Sitter symmetry. Then, as is well known, the additional

To put this in the more familiar setting of quantum fields requirement of Hadamard form uniquely picks the vacuum
on de Sitter space, the condition that the vacuum propagatas the standard Euclidean, or Bunch-Davies vacuum.
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