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Space of signed points and the self-dual model
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We study a generalization of the group of loops that is based on sets of signed points, instead of paths or
loops. This geometrical setting incorporates the kinematical constraints of the sigma model, inasmuch as the
group of loops does with Bianchi identities of Yang-Mills theories. We employ an Abelian version of this
construction to quantize the self-dual model, which allows us to relate this theory with that of a massless scalar
field obeying nontrivial boundary conditions.
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I. INTRODUCTION

It is well known that there is no natural way of definin
non-Abelian theories ofp forms, for p.1. This is closely
related to the lack of the notion of order forp surfaces (p
.1). Therefore, in the non-Abelian case only two geome
representations can be considered: the well known p
space representation@1,2# and a 0-surface or point
representation. In this paper, we shall study this proble
Despite the fact that these ideas are motivated by cons
ations about non-Abelian theories, we find it convenient
present, as an example of their application, the ‘‘sign
points’’ representation of the self-dual model~SDM! @3#,
since it appears that certain properties of this Abelian mo
are conveniently displayed in this geometrical framewo
More preciselly, we find that the SDM can be seen as
theory of a massless scalar field that obeys anyonic boun
conditions. This agrees with an earlier result about
Maxwell-Chern-Simons theory~MCST! @4# ~which is dual to
the SDM@5#!, that was obtained by working in a path repr
sentation@6#. The latter representation has also been rece
used with the SDM in order to study the geometrical cont
of the duality symmetry between this model and t
Maxwell-Chern-Simons one@7#.

The construction that we present is related with a rec
proposal that introduces the concept of ‘‘point holonomie
which generalizes the ‘‘path holonomy’’~or Wilson loop! of
gauge theories in order to treat quantum Higgs fields on
same footing as gauge fields@14#.

In the next section we present general ideas about
signed-point space. In the last one we discuss their app
tion to the SDM, and present a brief discussion about
relationship between the ‘‘signed-point’’ representation a
the ‘‘point-holonomy’’ concept introduced in Ref.@14#.

II. THE SPACE OF SIGNED POINTS

Consider the space of ordered lists of points inRn ~the
extension to general manifolds is immediate!. We shall de-
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clare that there are two kinds of points, that we arbitrar
take as positive~or ‘‘points’’ ! and negative~‘‘antipoints’’ !. A
typical elementX of this space can be represented by

X5~x1
(s1) ,x2

(s2) ,x3
(s3) , . . . ,xr

(sr )!, ~1!

where the ‘‘sign’’sa56 of each pointxa has been explicitly
written. The number of pointsr is arbitrary. We define the
compositionXY of two lists as

XY5~x1
(s1) ,x2

(s2) , . . . ,xr
(sr ) ,y1

(t1) ,y2
(t2) , . . . ,yu

(tu)
!. ~2!

The space of lists, with the composition defined above,
be endowed with a group structure as follows. First, we
mand that pairs ‘‘point-antipoint’’ be annihilated if they me
at the same place and consecutively in a list. For instan
(x1

(1) ,x2
(1) ,x2

(2) ,x3
(1)) will be taken as (x1

(1) ,x3
(1)). Once all

the consecutive and equally located pairs inX have been
annihilated, we are left with a ‘‘reduced list’’~RL! of
‘‘signed points’’ R(X). The product of two RL’s is then de
fined as the RL associated to their composition

R~X1!LR~X2![R„R~X1!R~X2!…. ~3!

It can be seen that that the space of RL’s forms a group un
the multiplication defined by Eq.~3!. The identity element
results to be the empty list. The inverse elementR21(X) is
the reduction of the list built by inverting the order an
changing the signs of the points that appear inX:

R21~X!5R~xr
(2sr ) ,xr 21

(2sr 21) , . . . ,x1
(2s1)

!. ~4!

Next, we are going to consider functionalsC@R(X)# that
depend on RL’s. To simplify the notation, we shall lab
R(X) simply asX, and the group productL as the compo-
sition. This should not lead to confusion, since from now
we shall restrict ourselves to deal with RL’s. We define
operatora(Y) that appends a RLY to the left of the argumen
X of the RL-dependent functionalC(X)

a~Y!C~X![C~Y21X!. ~5!

Consistence demands that
©2002 The American Physical Society27-1
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a~X1!a~X2!C~X!5C~X2
21X1

21X!

5a~X1X2!C~X!; ~6!

hence,a(X) constitute a representation of the group of RL
acting on RL-dependent functionals. Furthermore, since

a~X!5a~x1
(s1)

!a~x2
(s2)

!•••a~xr
(sr )!, ~7!

the a’s depending on a single point generate the represe
tion. Observe that

a~x(1)!5a21~x(2)!; ~8!

thus, we can adopt the notationa(x)5a(x(1)) @anda21(x)
5a(x(2))] without ambiguity. It is worth observing that be
sides being RL-dependent operators, thea’s are ordinary
functions of the variablesxa , a51, . . . ,r , and can be, for
instance, derived with respect to them.

As in the group of loops case@1#, there exists a sort o
infinitesimal generators that we define as follows. Take
RL dY, consisting on a pair point-antipoint, separated by
infinitesimal vectoru

dY5„~x1u!(1),x(2)
…. ~9!

In the limit uuu→0, this ‘‘dipole list’’ reduces to the identity
In this sense it is an infinitesimal element of the group
RL’s. We definedm(x) as the operator that measures t
response ofC(X) when its argumentX is slightly changed
by appending the ‘‘dipole’’dY at x

C~dYX!2C~X![umdm~x!C~X!, ~10!

up to first order inu. From Eqs.~5!, ~8!, ~9!, ~10!, one has

@11umdm~x!#C~X!5a~x!a21~x1u!C~X!

5a~x!S a21~x!

1um
]

]xm
a21~x!D C~X!

5S 11uma~x!
]

]xm
a21~x!D C~X!;

~11!

thus, we obtain the identity

dm~x![a~x!
]

]xm
a21~x!, ~12!

and we see that the ‘‘dipole derivative’’dm(x) can be ana-
lyzed in terms of the elementary generatorsa(x). From Eq.
~12! it is immediate to obtain

]mdn~x!2]ndm~x!1@dm~x!,dn~x!#50, ~13!
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which is just the kinematical constraint obeyed by chi
fields. This should be compared with the Bianchi ident
obeyed by the area derivative in the loop-space formula
of Gambini-Trı́as @8,9#. There is a geometric constructio
underlying identity~13! that deserves to be pointed out. Ta
an infinitesimal parallelogram of sidesu,v, centered atx. At
each vertex, put a pair point-antipoint. The resulting config
ration is then equal to the empty list which in turn, is th
identity of the group. On the other hand, the same confi
ration can also be reached by a successive pasting of
poles,’’ the first one with its point at, say,x1u, and its an-
tipoint at x, the second one consisting of a point atx1u
1v and an antipoint atx1u, and so on. Since the two con
structions correspond to the same RL, namely, the identit
the group, one has

@11umdm~x!#@11vmdm~x1u!#@12umdm~x1u1v !#

3@12vmdm~x1v !#51, ~14!

and it is a trivial matter to see that this is the same as
~13!, up to first order in the area of the parallelogram e
panded byu andv.

Summarizing, we see that the RL’s or ‘‘signed-point
space encodes, through its infinitesimal generators, the k
matical properties of chiral~or sigma model! fields. This
results as a consequence of the group structure, and fol
strictly from geometrical considerations.

This construction, as with the very definition of the spa
of RL’s and its generators, is very close to the loop-spa
construction of Gambini and Trı´as @8,9#, which is the basis
for the present formulation.

III. AN APPLICATION: SELF-DUAL MODEL AND THE
ABELIAN GROUP OF SIGNED POINTS

In this section we present a simple application of the id
discussed above. In a recent article that deals with the qu
tization of the Maxwell-Chern-Simons theory~MCST! in a
geometric representation@3#, it was mentioned that an appro
priate geometrical setting that would serve to relate the
pological interaction provided by the Chern-Simons ter
with certain anyonic behavior of the wave functional of t
theory, should be one of ‘‘points and antipoints’’~in the sense
discussed before!, both for the~MCST! and its dual model
~which is the SDM!. This conclusion was reached after sol
ing the ‘‘Gauss constraint’’ of the MCST in a path represe
tation, and noticing that the feature of the paths that survi
in the reduced phase space is precisely the distribution
their ending points. These boundary points acquire a lo
range interaction due to the topological term. Now we a
dress this point in some detail, providing an example of h
the ideas of the preceding section could be useful in fi
theory. We shall restrict ourselves to the SDM~dual to the
MCST!, since it is in this model where the RL’s represen
tion can be implemented in a more natural and geometric
appealing form.

We start from the SD action in the Stueckelberg form
7-2
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S5E d3xS k

2
«abg]aAbAg1

1

2
~Aa1]aw!~Aa1]aw! D ,

~15!

which is invariant under the gauge transformations

Aa→Aa1]aL, ~16!

w→w2L. ~17!

The equations of motion that follow from varyingS with
respect tow are nothing but consistence equations for
true equations of motion, that result when varying with
spect toAa . This reflects the unphysical character of t
Stueckelberg fieldw, which could be set equal to zero by
gauge choice, accordingly with Eq.~17!. Instead, we are in-
terested in ‘‘gauging away’’ the Chern-Simons field, in
sense that will be clear soon, and within the spirit of wha
a common procedure in ordinary quantum mechanics of
ticles with Chern-Simons interactions@10#.

The quantization in the Dirac manner produces the
lowing results. The canonical commutators are

@w~xW !,P~yW !#5 id2~xW2yW !, ~18!

@Ai~xW !,Aj~yW !#5
i

k
« i j d

2~xW2yW !, ~19!

and the Hamiltonian is

H5E d2x
1

2
@P21~Ai1] iw!~Ai1] iw!#. ~20!

There is also a first class constraint

k« i j ] iAj1P50, ~21!

that generates the time-independent gauge transforma
on the canonical variables. At this point, it is worth comp
ing the SDM with the (211)-dimensional massless scal
field theory, whose action and Hamiltonian can be obtain
by putting Am50 in Eqs.~15! and ~20!, respectively. Also,
the canonical commutators of the scalar theory are just g
by Eq.~18!. Since in this case the gauge symmetry is abs
there are no constraints@it would be incorrect to setAi50 in
Eq. ~21! and to say thatP50 is a constraint in this case#. We
shall exploit these apparent simmilarities by working in
geometric representation based on the RL’s space and
ploying old ideas borrowed from the loop representation f
mulation of gauge theories. Since the theories we are con
ering are both Abelian, we need to ‘‘abelianize’’ the group
RL’s. To this end, we choose the following route. Given a R
@as in Eq.~1!#, we define its ‘‘form factor’’

r~xW ,X![ (
a51

r

sad2~xW2xWa!, ~22!

which allows us to group the RL’s accordingly with the fo
lowing rule: two RL’s are said to be equivalent if they sha
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the same form factor. It can be easily checked that this
deed defines an equivalence relation. Moreover, since

r~xW ,XY!5r~xW ,X!1r~xW ,Y!, ~23!

each equivalence class of RL’s defines an element of an A
lian group. What we have done is to relax the condition t
demanded points and antipoints to be consecutive~apart
from being at the same place! in order to annihilate each
other. In other words, with this further identification we a
not concerned about the order of the points in the list. Wit
this geometric setting the quantum algebra of the mass
scalar field theory can be realized as follows:

exp@2 iw~xW !#C~X!5exp@2 iw~xW !#C~xW1
(s1) ,xW2

(s2) , . . . ,xW r
(sr )!

5C~xW (1),xW1
(s1) ,xW2

(s2) , . . . ,xW r
(sr )!, ~24!

P~xWC~X!5r~xW ,X!C~X!, ~25!

as can be verified. Equation~24! is equivalent to set

] iw~xW !→ id i~xW !. ~26!

From Eqs.~24!, ~25! we see that in the space of functiona
that depend on Abelian RL’s, the operator exp@7iw(xW)# ap-
pends a ‘‘positive’’~‘‘negative’’! point to the listX, while
P(xW ) displays the form factor ofX. It should be observed
that it is the derivative of the field operator~and not the field
itself! which enters in the expressions for the observables
the theory. This is reminiscent of the invariance of the the
under the shiftw→w1const. This derivative is realized asi
times the ‘‘dipole’’ derivative discussed before, according
with Eq. ~26!. In terms of X-dependent functionals, th
Schrödinger equation of the massles scalar theory becom

i
]

]t
C~X,t !5E d2x

1

2
@r2~xW ,X!2d i~xW !d i~xW !#C~X,t !.

~27!

The Hamiltonian comprises a ‘‘dipole’’ Laplacian, togeth
with a potential termr2 which should be regularized, since
is essentially the square of Dirac’s delta functions.

At this point, we turn back to the SDM, and try to realiz
its quantum algebra in the RL’s representation. First of
notice that we dispense with realizing gauge-dependent
erators. Hence, we focus on the algebra of the basic ga
invariant ones

@P~xW !,~Ai1] iw!~yW !#52 i
]

]yi
d2~xW2yW !, ~28!

@~Ai1] iw!~xW !,~Aj1] jw!~yW !#5
i

k
« i j d

2~xW2yW !. ~29!

It can be seen that the prescriptions

P~xW !→r~xW ,X!, ~30!
7-3
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LORENZO LEAL PHYSICAL REVIEW D 66, 105027 ~2002!
~Ai1] iw!~xW !→ iD i~xW !

[ id i~xW !1
1

2pk (
a

sa« i j

~x2xa! j

uxW2xWau2
, ~31!

verify Eqs. ~28!,~29! when acting on ~Abelian! RL-
dependent wave functionalsC(X). It should be noticed tha
the second terms on the right-hand side of Eq.~31! is a
genuine RL-dependent quantity. This is mandatory in or
to have a consistent realization of the quantum algebra.
the other hand, it must be said that this term already app
in earlier discussions about anyons in ordinary quantum
chanics@10#.

Using the Abelian version of Eq.~13!

« i j ] id j~xW !50, ~32!

it can be shown that the gauge constraint~21! is automati-
cally satisfied. It could be interesting to compare this feat
with what occurs in other gauge theories. In the loop-sp
formulation of Maxwell theory@11#, it is found that the very
introduction of loops~i.e., closed Faradays lines! suffices to
solve the Gauss constraint. The introduction of point sour
demands that there must be open Faradays lines, startin
ending at points where charges~that must be quantized! are
placed @12#. A similar result holds when the Proca
Stueckelberg model is quantized in an appropriate geom
space@13#. In the MCSM ~that is dual to the SDM that we
are considering!, however, it was found that the quantizatio
in path space does not lead to convert the gauge constra
an identity@6#. Nevertheless, after solving this constraint
path space it was seen that the property of the paths
really matters is the winding number of the open curv
around their boundaries. Then, performing a certain unit
transformation, it was obtained that this dependence ca
rewritten as a functional dependence in the boundaries o
paths, together with the inclusion in the Hamiltonian of
term describing a long-range interaction between th
boundaries. This is precisely what we have obtained in
present approach, using a different way. In fact, substitu
Eqs. ~30! and ~31! into the Hamiltonian~20!, we can write
the Schro¨dinger equation of the SDM, in the RL’s represe
tation as

i
]

]t
C~X,t !5E d2x

1

2
@r2~xW ,X!2Di~xW !Di~xW !#C~X,t !,

~33!

which differs from Eq.~27! in the appearance of the covar
ant derivativeDi(xW ) that encodes the Chern-Simons intera
tion. As in the MCSM, one can perform the singular gau
transformation

C~X!→C̄~X![exp@ iL~X!#C~X!, ~34!

with
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L~X!5
1

4pkE d2xE d2yr~X,xW !u~xW2yW !r~X,yW !

5
1

4pk (
a

(
a8

sasa8u~xWa2xWa8!, ~35!

to convert the covariant derivativeDi(xW ) into an ordinary
‘‘dipole derivative’’ d i(xW ), as it appears in the Schro¨dinger
equation of the massless scalar field. In the last equat
u(xW ) is the angle thatxW makes with thex axis. The price for
this simplification is that the resulting wave functionalC̄(X)
is multivalued, due precisely to this dependence in the an
@In Eq. ~35! ‘‘self-interaction’’ terms appear proportional t
u(0W ), that are not well defined. We shall ignore these re
larization issues in this paper~for further details see Ref
@7#!.# Thus, we see that the SDM can be seen as the theo
a massless scalar field obeying anyonic boundary conditi
as happens with the MCST@6#.

It should be understood that despite the appearances,
is a fundamental difference between the two ‘‘gauges’’ th
admits the SDM. In the usual one, the Stueckelberg fieldw
are eliminated by means of a legitimate gauge transfor
tion. Instead, in the second one, the vector fieldAm is elimi-
nated, but by means of asingular gauge transformation
Nevertheless, there is nothing wrong with this last point
view, as long as we keep in mind that the wave function
become multivalued. It should be stressed that this sec
approach, which is well known for the case of particles
Chern-Simons interactions@10#, becomes quite natural in th
SDM thanks to the introduction of the RL’s formalism.

To conclude, let us make some remarks about the rela
between the ‘‘signed-points’’ representation and the ‘‘po
holonomies’’ of Ref.@14# that we briefly mentioned in the
Introduction. It is well known that starting from the Schro¨-
dinger representation of gauge theories, one can construc
loop representation by making a ‘‘generalized Fourier tra
form’’ ~the so-called loop transform@15,16#! on the
connection-dependendent functionalC(A) to obtain the
loop-dependent oneC(g):

C~g!5E DAWA~g!C~A!, ~36!

whereWA(g) is the Wilson loop or holonomy of the gaug
theory and plays the role of the ‘‘plane wave’’ basis th
relates the connection and loop representations. On the o
hand, in the Schro¨dinger representation of the scalar fieldw,
the basic operators] iw andP act as

] iwoperator→] iw, ~37!

P→2 i
d

dw
, ~38!

over the field-dependent functionalC(w). From these equa
tions it can be seen that one can turn to the RL represe
tion, characterized by the realization of the canonical alge
7-4
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given by Eqs.~25! and ~26!, if we define the X-dependen
wave functionalC(X) through the transformation

C~X!5E DwUw~X!C~w!, ~39!

where

Uw~X![expS 2 i (
a51

r

saw~xWa!D ~40!

is just the~Abelian! ‘‘point holonomy’’ of Ref. @14#. Thus we
see that these point holonomies are the bridge between
Schrödinger representation and the RL representation in
d
e,

ys

No

10502
he
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duced in this paper. Although we have restricted ourselve
discussing this relationship in the Abelian case, it seems
these considerations could also be extended to the n
Abelian one. It should be noticed that both the path and
loop holonomies are diffeomorphism invariant objects. T
is a nice property in order to deal with quantization in ge
eral space-times@14#.
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