PHYSICAL REVIEW D 66, 105027 (2002

Space of signed points and the self-dual model
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We study a generalization of the group of loops that is based on sets of signed points, instead of paths or
loops. This geometrical setting incorporates the kinematical constraints of the sigma model, inasmuch as the
group of loops does with Bianchi identities of Yang-Mills theories. We employ an Abelian version of this
construction to quantize the self-dual model, which allows us to relate this theory with that of a massless scalar
field obeying nontrivial boundary conditions.
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[. INTRODUCTION clare that there are two kinds of points, that we arbitrarily
take as positivéor “points”) and negative“antipoints”). A

It is well known that there is no natural way of defining typical elemeniX of this space can be represented by
non-Abelian theories op forms, for p>1. This is closely
related to the lack of the notion of order fprsurfaces X=(x(151) ,x(zsz) ,x(353), - ,xﬁsf)), D)
>1). Therefore, in the non-Abelian case only two geometric
representations can be considered: the well known pathwhere the “sign”s,= = of each poini, has been explicitly
space representationl,2] and a O-surface or point- written. The number of points is arbitrary. We define the
representation. In this paper, we shall study this problemcompositionXY of two lists as
Despite the fact that these ideas are motivated by consider-
ations about non-Abelian theories, we find it convenient to ~ XY=(x x{2, . X&)y )y ly )
present, as an example of their application, the “signed-
points” representation of the self-dual modedDM) [3], The space of lists, with the composition defined above, can
since it appears that certain properties of this Abelian modebe endowed with a group structure as follows. First, we de-
are conveniently displayed in this geometrical framework.mand that pairs “point-antipoint” be annihilated if they meet
More preciselly, we find that the SDM can be seen as thet the same place and consecutively in a list. For instance,
theory of a massless scalar field that obeys anyonic boundagx{*) ,x{™) x5, x{) will be taken as x{™,x§™). Once all
conditions. This agrees with an earlier result about thehe consecutive and equally located pairsXrhave been
Maxwell-Chern-Simons theofMCST) [4] (which is dual to  annihilated, we are left with a “reduced list{RL) of
the SDM[5]), that was obtained by working in a path repre- “signed points” R(X). The product of two RL's is then de-
sentatior{ 6]. The latter representation has also been recentlyined as the RL associated to their composition
used with the SDM in order to study the geometrical content
of the duality symmetry between this model and the R(X;) ¢ R(X5)=R(R(X;)R(X5)). 3
Maxwell-Chern-Simons ong7].

The construction that we present is related with a recenlt can be seen that that the space of RL’s forms a group under
proposal that introduces the concept of “point holonomies,”the multiplication defined by Eq3). The identity element
which generalizes the “path holonomybr Wilson loop of  results to be the empty list. The inverse elem@nt(X) is
gauge theories in order to treat quantum Higgs fields on théhe reduction of the list built by inverting the order and

same footing as gauge fiel{i$4]. changing the signs of the points that appeakKin
In the next section we present general ideas about the
signed-point space. In the last one we discuss their applica- R =R\ x50 x(70)), (4)

tion to the SDM, and present a brief discussion about the
relationship between the “signed-point” representation and Next, we are going to consider functional R(X)] that

the “point-holonomy” concept introduced in Reff14]. depend on RLs. To simplify the notation, we shall label
R(X) simply asX, and the group producd as the compo-
Il. THE SPACE OF SIGNED POINTS sition. This should not lead to confusion, since from now on

_ _ o we shall restrict ourselves to deal with RL's. We define an
Consider the space of ordered lists of pointsRf (the  operatora(Y) that appends a RY to the left of the argument
extension to general manifolds is immedjaté/e shall de- X of the RL-dependent functionalr (X)

a(Y)¥(X)=w(Y 1X). (5
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which is just the kinematical constraint obeyed by chiral
fields. This should be compared with the Bianchi identity
obeyed by the area derivative in the loop-space formulation
of Gambini-Tras [8,9]. There is a geometric construction
hencea(X) constitute a representation of the group of RL's, underlying identity(13) that deserves to be pointed out. Take
acting on RL-dependent functionals. Furthermore, since  an infinitesimal parallelogram of sidesv, centered ak. At
each vertex, put a pair point-antipoint. The resulting configu-
ration is then equal to the empty list which in turn, is the
identity of the group. On the other hand, the same configu-
the a’'s depending on a single point generate the representaation can also be reached by a successive pasting of “di-
tion. Observe that poles,” the first one with its point at, say+u, and its an-
tipoint at x, the second one consisting of a pointxat u

+v and an antipoint at+u, and so on. Since the two con-
structions correspond to the same RL, namely, the identity of
the group, one has

a(X1)a(Xp) W (X) =P (X, X, ' X)
=a(XX2) ¥ (X); (6)

a(X)=a(x)a(x{?)- - -a(x™), 7

a(xt)y=a"1(x)); 8

thus, we can adopt the notatiafx)=a(x(*)) [anda ()
=a(x(7))] without ambiguity. It is worth observing that be-
sides being RL-dependent operators, #is are ordinary
functions of the variableg,, a=1,...r, and can be, for
instance, derived with respect to them.

As in the group of loops cadd], there exists a sort of
infinitesimal generators that we define as follows. Take the
RL &Y, consisting on a pair point-antipoint, separated by arand it is a trivial matter to see that this is the same as Eq.

[1+u#6,(X)][1+v#5,(x+u)][1—-us,(Xx+u+v)]

X[1—v#8,(x+v)]=1, (14)

infinitesimal vectoru
SY=((x+u)(M) x()). 9)

In the limit [u|— 0, this “dipole list” reduces to the identity.

(13), up to first order in the area of the parallelogram ex-
panded byu andv.

Summarizing, we see that the RL's or “signed-points”
space encodes, through its infinitesimal generators, the kine-
matical properties of chiralor sigma modsl fields. This

In this sense it is an infinitesimal element of the group ofresults as a consequence of the group structure, and follows
RL's. We defined,(x) as the operator that measures thestrictly from geometrical considerations.

response ofl(X) when its argumenX is slightly changed
by appending the “dipole’sY at x

W(8YX)—W(X)=uk8,(x)¥(X), (10)
up to first order inu. From Eqgs.(5), (8), (9), (10), one has

[1+u#6, (X)W (X)= a(x)a " i(x+u)¥(X)

=a(x)< a 1(x)

J -1
+ut——a “(x)

V(X
o (X)

J
=| 1+ uta(x)—a (x) | ¥(X);
axH
(11)
thus, we obtain the identity
0,(X) ()0‘1() (12
x)=a(x)—a” *(x),
. axH

and we see that the “dipole derivativeJ, (x) can be ana-
lyzed in terms of the elementary generata(s). From Eq.
(12) it is immediate to obtain

a,u 51}()() -

9,0,(X) +[6,(x),8,(x)]=0, (13

This construction, as with the very definition of the space
of RL's and its generators, is very close to the loop-space
construction of Gambini and ‘&s[8,9], which is the basis
for the present formulation.

Ill. AN APPLICATION: SELF-DUAL MODEL AND THE
ABELIAN GROUP OF SIGNED POINTS

In this section we present a simple application of the ideas
discussed above. In a recent article that deals with the quan-
tization of the Maxwell-Chern-Simons theofiICST) in a
geometric representati¢B], it was mentioned that an appro-
priate geometrical setting that would serve to relate the to-
pological interaction provided by the Chern-Simons term,
with certain anyonic behavior of the wave functional of the
theory, should be one of “points and antipoin{&i the sense
discussed befojeboth for the(MCST) and its dual model
(which is the SDM. This conclusion was reached after solv-
ing the “Gauss constraint” of the MCST in a path represen-
tation, and noticing that the feature of the paths that survives
in the reduced phase space is precisely the distribution of
their ending points. These boundary points acquire a long-
range interaction due to the topological term. Now we ad-
dress this point in some detail, providing an example of how
the ideas of the preceding section could be useful in field
theory. We shall restrict ourselves to the SOWual to the
MCST), since it is in this model where the RL's representa-
tion can be implemented in a more natural and geometrically
appealing form.

We start from the SD action in the Stueckelberg form
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. k 1 the same form factor. It can be easily checked that this in-
S:f d°x EsaﬁyﬁaApA# 5 (Aot da@)(A%+ %) |, deed defines an equivalence relation. Moreover, since

(19

p(X,XY)=p(X,X)+p(X,Y), (23)

which is invariant under the gauge transformations _ ]
each equivalence class of RL's defines an element of an Abe-

A,—A,+d,A, (16)  lian group. What we have done is to relax the condition that
demanded points and antipoints to be consecutaeart
o—@—A. (170  from being at the same placén order to annihilate each

other. In other words, with this further identification we are
The equations of motion that follow from varying with not concerned about the order of the points in the list. Within
respect toe are nothing but consistence equations for thethis geometric setting the quantum algebra of the massless
true equations of motion, that result when varying with re-scalar field theory can be realized as follows:
spect toA,. This reflects the unphysical character of the

Stueckelberg fields, which could be set equal to zero by a exg —ie(X)]W (X)=ex —i p(x)]T (X X2, ... X))
gauge choice, accordingly with E(L7). Instead, we are in-

terested in “gauging away” the Chern-Simons field, in a = (xOx x5 xS (24
sense that will be clear soon, and within the spirit of what is

a common procedure in ordinary quantum mechanics of par- H()Z\P(X)Zp()z,X)\If(X), (25)

ticles with Chern-Simons interactiofi%0].

'I_'he guantization in the_ Dirac manner produces the fol-35 can be verified. Equatia@4) is equivalent to set
lowing results. The canonical commutators are

I 9 @(X)—i8(X). (26)

[e(x),II(y)]=i6*(x—Y), (18) ' '
) From Egs.(24), (25) we see that in the space of functionals

[A_(;),A_(;)]:'_S__52(;_}7), (19) that depend on Abelian RL's, the operator pitxp(i)] ap-

' ) k™! pends a “positive” (“negative”) point to the listX, while
II(x) displays the form factor oK. It should be observed
that it is the derivative of the field operat@nd not the field
1 itself) which enters in the expressions for the observables of
H= f d?x=[I12+ (A + 3;0) (Aj+ d;0) ]. (20) the theory. This is reminiscent of the invariance of the theory

2 under the shifip— ¢+ const. This derivative is realized as
times the “dipole” derivative discussed before, accordingly
with"Eq. (26). In terms of X-dependent functionals, the
ksij(?iAj-l-H:O, 1) Schralinger equation of the massles scalar theory becomes

and the Hamiltonian is

There is also a first class constraint

L . d 1 - -

that generates the time-independent gauge transformations i—‘I’(X,t)=f A2 [pA(X,X) — 8,(X) 8, (X) J¥ (X, 1).
on the canonical variables. At this point, it is worth compar- ot 2

ing the SDM with the (2+1)-dimensional massless scalar (27)
field theory, whose action and Hamiltonian can be obtaine
by putting A,=0 in Egs.(15) and(20), respectively. Also,
the canonical commutators of the scalar theory are just giv
by Eq.(18). Since in this case the gauge symmetry is absenf,s

there are no constraintg would be incorrect to se;=0 in

dI'he Hamiltonian comprises a “dipole” Laplacian, together

eWith a potential termp? which should be regularized, since it

essentially the square of Dirac’s delta functions.

At this point, we turn back to the SDM, and try to realize

Eq.(21) and to say thal =0 is a constraint in this caa/e its quantum alggbra in the_ RL's r_epresentation. First of all,

shall exploit these apparent simmilarities by working in ghotice that we dispense with realizing gauge-dependent op-
. ; ; erators. Hence, we focus on the algebra of the basic gauge-

geometric representation based on the RL's space and eni- _.

ploying old ideas borrowed from the loop representation for_mvanant ones

mulation of gauge theories. Since the theories we are consid-

ering are both Abelian, we need to “abelianize” the group of [H()?),(Ai +§i¢)(§)]= —j 152(;_9), (28)

RL’s. To this end, we choose the following route. Given a RL ay'

[as in Eq.(1)], we define its “form factor”

: [(A+00)(X) (A 0 (D] =1 ey 25-y). (29

PXX= 2 $30%(X—Xa), (22

It can be seen that the prescriptions
which allows us to group the RL's accordingly with the fol- R R
lowing rule: two RL's are said to be equivalent if they share I1(X)— p(x,X), (30
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45 ) —iD: (X 1 . e s -

(At a9 00 =1Di00 A0 = [ 0 [ dypx) 0= yp(x.)
(X_Xa)j

IENETL (31 1 L
x=%, = 2 S S48 0Xa—Xar), (35

a a’

s 1
=i5(x)+ 27K ; Sa€ij

verify Egs. (28),(299 when acting on (Abelian RL- _

dependent wave functionals(X). It should be noticed that to convert the covariant derivativ®;(x) into an ordinary
the second terms on the right-hand side of E2f) is a  “dipole derivative” &,(x), as it appears in the Schtinger
genuine RL-dependent quantity. This is mandatory in ordegequation of the massless scalar field. In the last equation,
to have a consistent realization of the quantum algebra. O@()Z) is the angle thak makes with thex axis. The price for

the other hand, it must be said that this term already appea{ﬁis simplification is that the resulting wave functionE(X)

in earlier di ion nyons in ordinar ntum me- . . . )
Chgﬁicse[lg]scuss ons about anyons in ordinary quantu Ells multivalued, due precisely to this dependence in the angle.

Using the Abelian version of Eq13) [In*Eq. (35) “self-interaction” terms appear proportional to
0(0), that are not well defined. We shall ignore these regu-
i - larization issues in this papéfor further details see Ref.
&'0;6(x)=0, (32 [7]).] Thus, we see that the SDM can be seen as the theory of
a massless scalar field obeying anyonic boundary conditions,
it can be shown that the gauge constrdi2tt) is automati- as happens with the MCHB].
cally satisfied. It could be interesting to compare this feature It should be understood that despite the appearances, there
with what occurs in other gauge theories. In the loop-spacé a fundamental difference between the two “gauges” that
formulation of Maxwell theonf11], it is found that the very admits the SDM. In the usual one, the Stueckelberg fields
introduction of loopg(i.e., closed Faradays linesuffices to  are eliminated by means of a legitimate gauge transforma-
solve the Gauss constraint. The introduction of point sourcegijon. Instead, in the second one, the vector fié|dis elimi-
demands that there must be open Faradays lines, starting mated, but by means of aingular gauge transformation.
ending at points where chargébat must be quantizeédire  Nevertheless, there is nothing wrong with this last point of
placed [12]. A similar result holds when the Proca- view, as long as we keep in mind that the wave functionals
Stueckelberg model is quantized in an appropriate geometrisecome multivalued. It should be stressed that this second
space[13]. In the MCSM (that is dual to the SDM that we approach, which is well known for the case of particles in
are considering however, it was found that the quantization Chern-Simons interactiori4 0], becomes quite natural in the
in path space does not lead to convert the gauge constraint 8DM thanks to the introduction of the RL's formalism.
an identity[6]. Nevertheless, after solving this constraint in ~ To conclude, let us make some remarks about the relation
path space it was seen that the property of the paths th&éetween the “signed-points” representation and the “point
really matters is the winding number of the open curvesholonomies” of Ref.[14] that we briefly mentioned in the
around their boundaries. Then, performing a certain unitaryntroduction. It is well known that starting from the Schro
transformation, it was obtained that this dependence can kainger representation of gauge theories, one can construct the
rewritten as a functional dependence in the boundaries of thieop representation by making a “generalized Fourier trans-
paths, together with the inclusion in the Hamiltonian of aform” (the so-called loop transforn{15,16) on the
term describing a long-range interaction between theseonnection-dependendent functiond#(A) to obtain the
boundaries. This is precisely what we have obtained in théoop-dependent on® (y):
present approach, using a different way. In fact, substituting
Egs. (30) and (31) into the Hamiltonian(20), we can write
the Schidinger equation of the SDM, in the RLs represen- ‘P(Y):f DAWA(Y) W (A), (36)
tation as

whereW,(y) is the Wilson loop or holonomy of the gauge
d , 1, - - theory and plays the role of the “plane wave” basis that
'ﬁ‘l’(x't):f d XE[P (X, X)=Di(x)Di(x) J¥(X,1), relates the connection and loop representations. On the other
(33  hand, in the Schidinger representation of the scalar fieid
the basic operatorg ¢ andIl act as

which differs from Eq.(27) in the appearance of the covari-

ant derivativeD;(x) that encodes the Chern-Simons interac-
tion. As in the MCSM, one can perform the singular gauge

. o
transformation M——-i— (39
S¢’

i Poperator Ji P (37)

W(X) =W (X)=exdiA(X)]¥(X), (34 over the field-dependent functiomdll(¢). From these equa-
tions it can be seen that one can turn to the RL representa-
with tion, characterized by the realization of the canonical algebra
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given by Egs.(25) and (26), if we define the X-dependent duced in this paper. Although we have restricted ourselves to
wave functionalV (X) through the transformation discussing this relationship in the Abelian case, it seems that
these considerations could also be extended to the non-

_ Abelian one. It should be noticed that both the path and the
T f DU (X)¥(e), (39 loop holonomies are diffeomorphism invariant objects. This
is a nice property in order to deal with quantization in gen-
where eral space-timegl4].
r
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