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Hydrogen atom in the gravitational fields of topological defects

Geusa de A. Marques* and Valdir B. Bezerra†
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We consider a hydrogen atom in the background spacetimes generated by an infinitely thin cosmic string and
by a pointlike global monopole. In both cases, we find the solutions of the corresponding Dirac equations and
we determine the energy levels of the atom. We investigate how the geometric and topological features of these
spacetimes lead to shifts in the energy levels as compared with the flat Minkowski spacetime.
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I. INTRODUCTION

The study of quantum systems in curved spacetimes g
back to the end of the 1920s and to the beginning of
1930s@1#, when the generalization of the Schro¨dinger and
Dirac equations to curved spaces was discussed, motiv
by the idea of constructing a theory which combines qu
tum physics and general relativity.

Spinor fields and particles interacting with gravitation
fields have been the subject of many investigations. Alo
this line of research, we can mention those concerning
determination of the renormalized vacuum expectation va
of the energy-momentum tensor and the problem of the
ation of particles in expanding universes@2#, and those con-
nected with quantum mechanics in different backgrou
spacetimes@3# and, in particular, the ones which consider t
hydrogen atom@4–8# in an arbitrary curved spacetime.

The study of the single-particle states which are ex
solutions of the generalized Dirac equation in curved spa
times constitutes an important element in constructing
theory that combines quantum physics and gravity, and,
this reason, the investigation of the behavior of relativis
particles in this context is of considerable interest.

It has been known that the energy levels of an at
placed in a gravitational field will be shifted as a result of t
interaction of the atom with spacetime curvature@4–8#.
These shifts in the energy levels, which would depend on
features of the spacetime, are different for each energy le
and thus are distinguishable from the Doppler effect a
from the gravitational and cosmological redshifts, in whi
cases these shifts would be the same for all spectral line
fact, it was already shown that in the Schwarzschild geo
etry, the shift in the energy level due to gravitational effe
is different from the Stark and Zeeman effects, and, the
fore, it would be possible, in principle, to separate the sh
in the energy levels caused by electromagnetic and gra
tional perturbations@7#. Thus, in these situations the ener
spectrum carries unambiguous information about the lo
features of the background spacetime in which the ato
system is located.

The general theory of relativity, as a metric theory, p
dicts that gravitation is manifested as a curvature of spa
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time. This curvature is characterized by the Riemann ten
On the other hand, we know that there are connections
tween topological properties of the space and local phys
laws in such a way that the local intrinsic geometry of t
space is not sufficient to describe completely the physics
given system. As an example of a gravitational effect of
pological origin, we can mention the fact that only when
particle is transported around a cosmic string along a clo
curve is the string noticed at all. This situation correspon
to the gravitational analogue@9# of the electromagnetic
Aharonov-Bohm effect@10#, in which electrons are beame
past a solenoid containing a magnetic field. These effects
of topological origin rather than local. In fact, the nontrivi
topology of spacetime, as well as its curvature, leads t
number of interesting gravitational effects. Thus, it is a
important to investigate the role played by a nontrivial top
ogy, for example on a quantum system. As examples of th
investigations, we can mention the study of topological sc
tering in the context of quantum mechanics on a cone@11#,
and the investigations on the interaction of a quantum sys
with conical singularities@12,13# and on quantum mechanic
on topological defects of spacetimes@14#.

Therefore, taking into account that we have to consi
the topology of spacetime in order to describe completel
given physical system, we want to address the question
how the nontrivial topology could affect the energy levels
shifting the atomic spectral lines. For the purpose of inve
gating this problem, a calculation of the energy-level sh
of the hydrogen atom is carried out in the spacetimes of
infinitely thin cosmic string@15# and of a pointlike global
monopole@16#.

Topological defects may arise in gauge models with sp
taneous symmetry breaking. They can be of various typ
such as monopoles, domain walls, cosmic strings, and t
hybrids @17#. They may have been formed during univer
expansion and their nature depends on the topology of
vacuum manifold of the theory under consideration@18#. The
richness of the new ideas they brought along to general r
tivity seems to justify the interest in the study of these str
tures, specifically the role played by their topological fe
tures at the atomic level.

The gravitational field of a cosmic string is quite remar
able; a particle placed at rest around a straight, infinite, st
cosmic string will not be attracted to it; there is no loc
gravity. The spacetime around a cosmic string is locally
but not globally. The external gravitational field due to
©2002 The American Physical Society11-1
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cosmic string may be approximately described by wha
commonly called conical geometry. The nontrivial topolo
of this spacetime leads to a number of interesting effe
such as, for example, gravitational lensing@19#, emission of
radiation by a freely moving particle@20#, electrostatic self-
force @21# on an electric charge at rest, and the so-cal
gravitational Aharonov-Bohm effect@9#, among others.

The spacetime of a pointlike global monopole also h
some unusual properties. It possesses a deficit solid a
D532p2Gh2, h being the energy scale of symmetry brea
ing. Test particles in this spacetime experience topolog
scattering by an anglepD/2 irrespective of their velocity and
their impact parameter. Also in this case, the nontrivial
pology of spacetime as well as its curvature, which are du
the deficit solid angle, lead to a number of interesting effe
@22,23# which are not present in flat Minkowski spacetime

In this paper, we deal with the interesting problem co
cerning the modifications of the energy levels of a hydrog
atom placed in the gravitational fields of a cosmic string a
of a global monopole. In order to investigate this proble
further, we determine the solutions of the correspond
Dirac equations and the energy levels of a hydrogen a
under the influence of these gravitational fields. To do th
calculations, we shall make the following assumptions.~i!
The atomic nucleus is not affected by the presence of
defect.~ii ! The atomic nucleus is located on the defect. W
these assumptions, doing our calculations accordingly wo
have been possible, and doing so affords an explicit dem
stration of the effects of spacetime topology on the shifts
the atomic spectral lines of the hydrogen atom.

A similar problem concerning the effects of gravitation
fields at atomic level has been considered before. As
amples of some works on this topic, we can mention@4–8#,
which obtained the expressions for the shifts in the ene
levels of an atom caused by its interaction with the curvat
of spacetime, and also a recent paper@24#, which calculated
the atomic energy-level shifts of atoms placed in stro
gravitational fields near collapsing spheroidal masses.

The results obtained in this paper are related to the pr
ous ones@4–8# connected with this topic in the sense that w
also study the effect of gravitational fields at the atom
level, however our calculation provides an interesting n
example of an effect at the atomic scale which can
thought of as a consequence of the nontrivial topology
spacetime, and this aspect was not taken into accoun
previous works@4,8#.

In the case of an infinitely thin cosmic string spacetim
the shifts in the energy levels depend on the angle defi
and for the global monopole spacetime these shifts dep
on the deficit solid angle. In both situations, these effe
vanish when these angle deficits vanish, as it should be.

This paper is organized as follows. In Sec. II, we obta
the solution of the Dirac equation and we calculate the
ergy shifts experienced by a hydrogen atom placed in
gravitational field of a cosmic string. In Sec. III, we als
obtain the solutions of the Dirac equation and we calcu
the modifications of the spectrum of a hydrogen atom in
gravitational field of a global monopole. Finally, in Sec. I
we draw some conclusions.
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II. RELATIVISTIC HYDROGEN ATOM IN THE
SPACETIME OF THE COSMIC STRING

In what follows, we will study the behavior of a hydroge
atom in the spacetime of a cosmic string. The line elem
corresponding to the cosmic string spacetime@15# is given,
in spherical coordinates, by

ds252c2dt21dr21r 2du21a2r 2 sin2 udf2. ~1!

The parametera512(4G/c2)m̄ runs in the interval~0,
1#, with m̄ being the linear mass density of the cosmic strin

Let us consider the generally covariant form of the Dir
equation, which is given by

F igm~x!S ]m1Gm~x!1 i
eAm

\c D2
mc

\ GC~x!50, ~2!

wherem is the mass of the particle,Am is an external elec-
tromagnetic potential, andGm(x) are the spinor affine con
nections, which can be expressed in terms of the set of te
fields e(a)

m (x) and the standard flat spacetimeg (a) Dirac ma-
trices as

Gm5
1

4
g~a!g~b!e~a!

n ~]me~b!n2Gmn
s e~b!s!. ~3!

The generalized Dirac matricesgm(x) satisfy the anti-
commutation relations

$gm~x!,gn~x!%52gmn~x!

and are defined by

gm~x!5e~a!
m ~x!g~a!, ~4!

wheree(a)
m (x) obeys the relationhabe(a)

m (x)e(b)
n (x)5gmn; m,

n50,1,2,3 are tensor indices anda, b50,1,2,3 are tetrad
indices.

In this paper, the following explicit forms of the consta
Dirac matrices will be taken:

g~0!5S 1 0

0 21D , g~ i !5S 0 s i

2s i 0 D , i 51,2,3, ~5!

wheres i are the usual Pauli matrices.
In order to write the Dirac equation in this spacetime,

us take the tetradse(a)
m (x) as

e~a!
m ~x!5S 1 0 0 0

0 sinu cosf sinu sinf cosu

0
cosu cosf

r

cosu sinf

r
2

sinu

r

0 2
sinf

ar sinu

cosf

ar sinu
0

D .

~6!

Thus using Eq.~6!, we obtain the following expression
for the generalized Dirac matricesgm(x):
1-2
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g0~x!5g~0!,

g1~x!5g~r !,

g2~x!5
g~u!

r
,

g3~x!5
g~f!

ar sinu
, ~7!

where

S g~r !

g~u!

g~f!
D 5S cosf sinu sinf sinu cosf

cosf cosu sinf cosu 2sinf

2sinf cosf 0
D S g~1!

g~2!

g~3!
D .

~8!

The covariant Dirac Eq.~2!, written in the spacetime of a
cosmic string, is then given by

F i\(r
] r1 i\

(u

r
]u1 i\

(f

ar sinu
]f

1 i\
1

2r S 12
1

a D S (r
1cotu(u D

2
eA0

c
2g~0!mc1

E

c
Gx~rW !50, ~9!

where( r , (u, and(f are defined by

(r
[g~0!g~r !, (u

[g~0!g~u!, (f
[g~0!g~f!,

~10!

and we have chosenC(x) as

C~x!5e2 i ~E/\!tx~rW !, ~11!

which comes from the fact that the spacetime under con
eration is static.

We must now turn our attention to the solution of t
equation forx(rW). Then, let us assume that the solutions
Eq. ~9! are of the form

x~rW !5r 21/2@12~1/a!#~sinu!21/2@12~1/a!#R~r !Q~u!F~f!.
~12!

Thus, substituting Eq.~12! into Eq. ~9!, we obtain the
following radial equation:

S c( 8r pr1 i\c
( 8r

r
g~0!k~a!1eA01mc2g~0!D R~r !

5ER~r !, ~13!

where
10501
d-

f

k~a!56S j ~a!1
1

2D56F j 1
1

2
1mS 1

a
21D G ~14!

are the eigenvalues of the generalized spin-orbit oper
K (a) in the spacetime of a cosmic string andj (a) corresponds
to the eigenvalues of the generalized total angular mom
tum operator. The operatorKa is given by

\g~0!K ~a!5SW •LW ~a!1\, ~15!

with SW 5(S r ,Su,Sf) and LW (a) is the generalized angula
momentum operator@13# in the spacetime of the cosmi
string, which is such thatLW (a)

2 Yl (a)

m(a)(u,f)5\2l (a)( l (a)11),

with Yl (a)

m(a)(u,f) being the generalized spherical harmon

in the sense thatm(a) and l (a) are not necessarily integers
The parametersm(a) and l (a) are given, respectively, by
m(a)[m/a and l (a)[n1m(a)5 l 1m@(1/a)21#, l
50,1,2,...,n21, l is the orbital angular momentum quantu
number,m is the magnetic quantum number, andn is the
principal quantum number.

Let us choose the following two-dimensional represen
tion for S r8 andg (0):

( 8r [S 0 2 i

i 0 D , g~0![S 1 0

0 21D . ~16!

Now, let us assume that the radial solution can be written

R~r !5
1

r S 2 iF ~r !

G~r ! D . ~17!

Then, Eq.~13! decomposes into the coupled equations

2 i ~\c!21FE2E01
e2

r GF~r !1
dG~r !

dr
1

k~a!

r
G~r !50

~18!

and

2 i ~\c!21FE1E01
e2

r GG~r !1
dF~r !

dr
2

k~a!

r
F~r !50,

~19!

whereE05mc2 is the rest energy of the electron. Note th
in obtaining these equations, use was made of the fact
A052e/r .

The solutions of these equations are given in terms of
confluent hypergeometric functionM (a,b;x) as
1-3
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F~r !52 iAQ

T

e2rD

2
~rD !g~a!21

3FM ~g~a!211 P̃,2g~a!21;2rD !

1
~g~a!211 P̃!

~k~a!1Q̃!
M ~g~a!1 P̃,2g~a!21;2rD !G

~20!

and

G~r !5
e2rD

2
~rD !g~a!21FM ~g~a!211 P̃,2g~a!21;2rD !

2
~g~a!211 P̃!

~k~a!1Q̃!
M ~g~a!1 P̃,2g~a!21;2rD !G ,

~21!

where T5(E02E)/\c; Q5(E01E)/\c, D5ATQ

5A(E0
22E2)/\c; g (a)511Ak(a)

2 2ã2; P̃[ã/2(AT/Q

2AQ/T); Q̃[ã/2(AT/Q1AQ/T), with ã5e2/\c'1/137
being the fine-structure constant.

The solutions given by Eqs.~20! and ~21! are divergent,
unless the following condition is fulfilled:

g~a!211 P̃52n,n50,1,2,..., ~22!

which means that

1

2
ãSAT

Q
2AQ

T D 52~n1g~a!21!. ~23!

From this equation we may infer that the energy eigenval
are given by

E5E0@11ã2~n1uk~a!uA12ã2k~a!
22!22#21/2. ~24!

This equation exhibits the angle deficit dependence of
energy levels. It is helpful to introduce the quantum num
n(a) that corresponds to the principal quantum number of
nonrelativistic theory whena51,

n~a!5n1 j ~a!1
1

2
. ~25!

Therefore, Eq.~24! may be cast in the form

En~a! j ~a!
5E0H 11ã2F S n~a!2 j ~a!2

1

2D
1S j ~a!1

1

2DA12ã2S j ~a!1
1

2D 22G22J 21/2

.

~26!
10501
s

e
r
e

This equation can be written in a way which is bett
suited to physical interpretation. Thus, asã!1, we can ex-
pand Eq.~26! in powers ofã, and as a result we get th
following leading terms:

En~a! , j ~a!
5E02E0

ã2

2n~a!
2 1E0

ã4

2n~a!
4 S 3

4
2

n~a!

j ~a!1
1

2
D .

~27!

The first term corresponds to the rest energy of the e
tron, the second one gives the energy of the bound state
the nonrelativistic approximation, and the third one cor
sponds to the relativistic correction. Note that these last
terms depend on the deficit angle. The further terms can
neglected in comparison with these first three terms.

Now, let us consider the total shift in the energy betwe
the states withj 5n21/2 andj 51/2 for a givenn. This shift
is given by

DEn~a! , j ~a!
5

me8

\4c2n~a!
3

3S n~a!21

2Fn~a!1mS 1

a
21D GF11mS 1

a
21D G D .

~28!

One important characteristic of Eq.~26! is that it contains a
dependence onn, j, anda. The dependence ona corresponds
to an analogue of the electromagnetic Aharonov-Bohm ef
for bound states, but now in the gravitational context. The
fore, the interaction with the topology~conical singularity!
causes the energy levels to change. Note that the presen
the cosmic string destroys the degeneracy of all the lev
corresponding tol 50 and l 51, and destroys partially this
degeneracy for the other sublevels. Therefore, as the oc
rence of degeneracy can often be ascribed to some symm
property of the physical system, the fact that the presenc
the cosmic string destroys the degeneracy means that the
a break of the original symmetry. Observe that fora51, the
results reduce to the flat Minkowski spacetime case as
pected.

As an estimation of the effect of the cosmic string on t
energy shift of the hydrogen atom, let us considera51
21026, which corresponds to grand unified theory~GUT!
cosmic strings. Using this value in Eq.~43!, we conclude that
the presence of the cosmic string reduces the energy of
level of the states 2P1/2(n52, l 51, j 5 l 21/251/2, m51)
to about 1024% in comparison with the flat spacetime valu
This decrease is of the order of the measurable Zeeman
fect in carbon atoms for 2P states when submitted, for ex
ample, to an external magnetic field with strength to ab
tens of tesla. Therefore, this shift in energy levels produ
by a cosmic string is measurable as well.

Finally, we can write down the general solution to Eq.~2!
corresponding to a hydrogen atom placed in the backgro
spacetime of a cosmic string. Thus, it reads
1-4
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C l ~a! , j ~a!5 l ~a!1~1/2!,m~a!
~x!

5e2 i ~Et/\!r 2~1/2!@12~1/a!#~sinu!21/2@12~1/a!#F ~a!~r !

3SAl ~a!1m~a!1
1

2

2l ~a!11
Yl ~a!

m~a!2~1/2!
~u,f!

Al ~a!2m~a!1
1

2

2l ~a!11
Yl ~a!

m~a!1~1/2!
~u,f!

D ,

~29!

and

C l ~a! , j ~a!5 l ~a!2~1/2!,m~a!
~x!

5e2 i ~Et/\!r 21/2@12~1/a!#~sinu!21/2@12~1/a!#G~a!~r !

3S 2
Al ~a!2m~a!1

1

2

2l ~a!11
Yl ~a!

m~a!2~1/2!
~u,f!

Al ~a!1m~a!1
1

2

2l ~a!11
Yl ~a!

m~a!1~1/2!
~u,f!

D ,

~30!

whereF (a)(r ) andG(a)(r ) are given by Eqs.~20! and ~21!,
respectively, and the indexa was introduced to emphasiz
the dependence of these functions on this parameter.

Note that the solutions depend on the topological featu
of the space time of a cosmic string whose influence app
codified in the parametera associated with the presence
the cosmic string, and this is the point at issue here.

III. RELATIVISTIC HYDROGEN ATOM IN THE
PRESENCE OF A GLOBAL MONOPOLE

In continuation of the preceding consideration, in this s
tion we shall be concerned with the study of the influence
a global monopole on the states of a hydrogen atom.

The solution corresponding to a global monopole in
O(3) broken symmetry model has been investigated by B
riola and Vilenkin@16#.

Far away from the global monopole core, we can neg
the mass term and as a consequence the main effect
produced by the solid deficit angle. The respective metric
the Einstein theory of gravity can be written as@16#

ds252c2dt21dr21b2r 2~du21sin2 udf2!, ~31!

where b25128pGh2, the parameterh being the energy
scale of symmetry breaking.

Now, let us choose the tetrad as
10501
s
rs

-
f

n
r-

ct
are
n

e~a!
m 5S 1 0 0 0

0 sinu cosf sinu sinf cosu

0
cosu cosf

br

cosu sinf

br
2

sinu

br

0 2
sinf

br sinu

cosf

br sinu
0

D .

~32!

Therefore, the generalized and flat spacetime Dirac matr
are related by

g0~x!5g~0!,

g1~x!5g~4!,

g2~x!5
g~u!

br
,

g3~x!5
g~f!

br sinu
, ~33!

where,g (r ), g (u), andg (f) were defined in the previous sec
tion.

Proceeding in analogy with Sec. II, we find that the ge
eralized Dirac equation can be written, in this backgrou
spacetime, as

F i\(r
] r1 i\

(u

br
]u1 i\

(f

br sinu
]f

1 i\
1

r S 12
1

bD S (r
1cotu(u D

1
e2

rc
2g~0!mc1

E

c
Gx~rW !50, ~34!

where Eq.~11! has been used in obtaining the above resu
Now, let us assume that the solution of Eq.~34! can be

written as

x~rW !5r 2@12~1/b!#R~r !Q~u!F~f!. ~35!

Using Eq.~35!, Eq. ~34! turns into the simple form

S c( 8r pr1 i\c
( 8r

r
g~0!k~b!2

e2

r
1mc2g~0!D

3R~r !5ER~r !, ~36!

where

k~b!56S j 2

b2 1
j

b2 1
1

4D 1/2

56F S j

b
1

1

2D 2

1
j

b S 1

b
21D G1/2

~37!
1-5



at
en

tu

fi

tions

n-

o

the
en

G. de A. MARQUES AND V. B. BEZERRA PHYSICAL REVIEW D66, 105011 ~2002!
are the eigenvalues of the generalized spin-orbit oper
K (b) in the spacetime of a global monopole, which is giv
by

\K ~b!5g~0!@SW 9•LW ~b!1\#,

whereS95(0 sW
sW 0).

In the present case, the generalized angular momen
will be denoted by L (b) . It is such that LW (b)

2 Yl
m(u,f)

5(\2/b2) l ( l 11), l 50,1,2,...,n21, andLW (b)5LW /b is the an-
gular momentum in the spacetime of a global monopole@22#.
Using the same procedure as in the previous section, we

F ~b!~r !52 iAQ

T

e2rD

2
~rD !g~b!21FM ~g~b!21

1 P̃,2g~b!21;2rD !

1
~g~b!211 P̃!

~k~b!1Q̃!
M ~g~b!1 P̃,2g~b!21;2rD !G

~38!

and

G~b!~r !5
e2rD

2
~rD !g~b!21FM ~g~b!211 P̃,2g~b!21;2rD !

2
~g~b!211 P̃!

~k~b!1Q̃!
M ~g~b!1 P̃,2g~b!21;2rD !G ,

~39!
tim

e
le
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tio
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10501
or
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whereg (b)511Ak(b)
2 2ã2; T, Q, M, P̃, andQ̃ are the same

as defined previously. The indexb in the functionsF andG
indicates their dependence on this parameter. These func
are, formally, the same used in the previous section.

By the use of condition~22! with the interchange ofg (a)
by g (b) , we obtain the following spectrum of energy eige
values:

En~b! , j ~b!
5E0$11ã2@n~b!2uk~b!u

1uk~b!uA12ã2k~b!
22#22%21/2, ~40!

in which we have definedn(b) as a number which reduces t
the principal quantum number whenb51 and is given by

n~b!5n1uk~b!u5n1F S j

b
1

1

2D 2

1
j

b S 1

b
21D G1/2

. ~41!

Then, expanding Eq.~40! in a series of powers ofã, we
have the following leading terms:

En~b! , j ~b!
5E02E0

ã2

2n~b!
2

1E0

ã4

2n~b!
4 S 3

4
2

n~b!

F S j

b
1

1

2D 2

1
j

b S 1

b
21D G1/2D ,

~42!

which tell us what the dependence of each term with
parameterb is. In this case, the shift in the energy betwe
the energy levels withj 5n21/2 andj 51/2, for a givenn, is
DEn~b! , j ~b!
5

me8

2\4c2n3 H H Fn~b!

b
2

1

2 S 1

b
21D G2

1S n~b!

b
2

1

2bD S 1

b
21D J 1/2

2F S 1

2b
1

1

2D 2

1
1

2b S 1

b
21D G1/2

F S 1

2b
1

1

2D 2

1
1

2b S 1

b
21D G1/2H Fn~b!

b
2

1

2 S 1

b
21D G2

1S n~b!

b
2

1

2bD S 1

b
21D J 1/2 J . ~43!
This equation reduces to the same result of the flat space
in the absence of the global monopole (b51).

It is worth noticing from Eq.~42! that the presence of th
monopole does not break the degeneracy of the energy
els, as in the case of a cosmic string.

As an estimation of the shift in the energy levels, let
consider a grand unified~GUT! monopole in whichb251
21026. Using this value in Eq.~42!, we conclude that the
presence of the monopole reduces the relativistic correc
of the energy of the level 2P1/2(n52, l 51, j 5 l 21/2
51/2,m51) in approximately 1024% as compared with the
result of the flat Minkowski spacetime.

Finally, let us write down the general solution for th
case. It reads
e

v-

s

n

C l , j 5 l 1~1/2!,m~x!5e2 i ~Et/\!r 2@12~1/b!#F ~b!~r !

3SAl 1m1
1

2

2l 11
Yl

m2~1/2!~u,f!

Al 2m1
1

2

2l 11
Yl

m1~1/2!~u,f!

D
~44!

and
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C l , j 5 l 2~1/2!,m~x!5e2 i ~Et/\!r 21/2@12~1/b!#G~b!~r !

3S 2
Al 2m1

1

2

2l 11
Yl

m2~1/2!~u,f!

Al 1m1
1

2

2l 11
Yl

m1~1/2!~u,f!

D ,

~45!

whereF (b)(r ) andG(b)(r ) are given by Eqs.~38! and ~39!,
respectively. It is important to call attention to the fact th
all these results depend on the geometrical and topolog
features of the global monopole spacetime.

IV. CONCLUSIONS

For the purpose of discussing the role of topology on
atomic system, we carried out the calculations of the shift
the energy levels of a hydrogen atom placed in the spa
times of a string and a monopole, adding, in this way, so
new results to the interesting problem considered in sem
papers by Parker and collaborators@4–8# about the effects of
gravitational fields at the atomic level, but now from th
geometrical and topological points of view, instead of loo
ing only for the local effects of the curvature as in tho
earlier papers@4–8#.

The presence of a cosmic string changes the solution
shifts the energy levels of a hydrogen atom as compared
the flat Minkowski spacetime result. It is interesting to o
serve that these shifts depend on the parameter that de
the angle deficit and vanish when the angle deficit vanish
These shifts arise from the topological features of the spa
time generated by this defect.

In the case of the hydrogen atom in the spacetime o
.

o,

d

10501
t
al

n
in
e-
e
al

-

nd
th
-
es
s.
e-

a

global monopole, the modifications in the solution and t
shifts in the energy levels are due to the combined effect
the curvature and the nontrivial topology determined by
deficit solid angle associated with this spacetime. Th
shifts also vanish when the deficit solid angle vanishes.

Both effects can be thought of as a consequence of
topological influence of the spacetime under considera
upon the hydrogen atom.

The decrease in energy for the situations considere
only two orders of magnitude less than the ratio between
fine-structure splitting and the energy of the ground state
the nonrelativistic hydrogen atom and is of the order of
Zeeman effect. Therefore, the modifications in the spectra
the hydrogen atom due to the presence of the gravitatio
fields of a string or a monopole are all measurable, in pr
ciple.

The obtained results show how the geometry and a n
trivial topology influence the energy spectrum as compa
with the flat spacetime case and how these quantities dep
on the surroundings and their characteristics. These res
also show how the solutions are modified.

Therefore, the problem of finding how the energy spe
trum of an atom placed in a gravitational field is perturbed
this background has to take into account not only the g
metrical but also the topological features of the spacetim
under consideration. In other words, the behavior of
atomic system is determined not only by the curvature at
position of the atom, but also by the topology of the bac
ground spacetime.
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