PHYSICAL REVIEW D 66, 105011 (2002

Hydrogen atom in the gravitational fields of topological defects
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We consider a hydrogen atom in the background spacetimes generated by an infinitely thin cosmic string and
by a pointlike global monopole. In both cases, we find the solutions of the corresponding Dirac equations and
we determine the energy levels of the atom. We investigate how the geometric and topological features of these
spacetimes lead to shifts in the energy levels as compared with the flat Minkowski spacetime.
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[. INTRODUCTION time. This curvature is characterized by the Riemann tensor.
On the other hand, we know that there are connections be-
The study of quantum systems in curved spacetimes godween topological properties of the space and local physical
back to the end of the 1920s and to the beginning of théaws in such a way that the local intrinsic geometry of the
1930s[1], when the generalization of the ScHioger and space is not sufficient to describe completely the physics of a
Dirac equations to curved spaces was discussed, motivatgfiven system. As an example of a gravitational effect of to-
by the idea of constructing a theory which combines quanpological origin, we can mention the fact that only when a
tum physics and general relativity. particle is transported around a cosmic string along a closed
Spinor fields and particles interacting with gravitational curve is the string noticed at all. This situation corresponds
fields have been the subject of many investigations. Alongo the gravitational analogug9] of the electromagnetic
this line of research, we can mention those concerning th@haronov-Bohm effecf10], in which electrons are beamed
determination of the renormalized vacuum expectation valu@ast a solenoid containing a magnetic field. These effects are
of the energy-momentum tensor and the problem of the cresf topological origin rather than local. In fact, the nontrivial
ation of particles in expanding universgd, and those con- topology of spacetime, as well as its curvature, leads to a
nected with quantum mechanics in different backgrounchumber of interesting gravitational effects. Thus, it is also
spacetime$3] and, in particular, the ones which consider theimportant to investigate the role played by a nontrivial topol-
hydrogen atoni4—8] in an arbitrary curved spacetime. ogy, for example on a quantum system. As examples of these
The study of the single-particle states which are exacinvestigations, we can mention the study of topological scat-
solutions of the generalized Dirac equation in curved spacetering in the context of qguantum mechanics on a cldig,
times constitutes an important element in constructing and the investigations on the interaction of a quantum system
theory that combines quantum physics and gravity, and, fowith conical singularitie$12,13 and on quantum mechanics
this reason, the investigation of the behavior of relativisticon topological defects of spacetimiist].
particles in this context is of considerable interest. Therefore, taking into account that we have to consider
It has been known that the energy levels of an atonthe topology of spacetime in order to describe completely a
placed in a gravitational field will be shifted as a result of thegiven physical system, we want to address the question of
interaction of the atom with spacetime curvatyre-8g|. how the nontrivial topology could affect the energy levels by
These shifts in the energy levels, which would depend on thehifting the atomic spectral lines. For the purpose of investi-
features of the spacetime, are different for each energy levegating this problem, a calculation of the energy-level shifts
and thus are distinguishable from the Doppler effect andf the hydrogen atom is carried out in the spacetimes of an
from the gravitational and cosmological redshifts, in whichinfinitely thin cosmic string[15] and of a pointlike global
cases these shifts would be the same for all spectral lines. imonopole[16].
fact, it was already shown that in the Schwarzschild geom- Topological defects may arise in gauge models with spon-
etry, the shift in the energy level due to gravitational effectstaneous symmetry breaking. They can be of various types,
is different from the Stark and Zeeman effects, and, theresuch as monopoles, domain walls, cosmic strings, and their
fore, it would be possible, in principle, to separate the shiftshybrids [17]. They may have been formed during universe
in the energy levels caused by electromagnetic and gravitaxpansion and their nature depends on the topology of the
tional perturbation$7]. Thus, in these situations the energy vacuum manifold of the theory under consideralfit8]. The
spectrum carries unambiguous information about the localichness of the new ideas they brought along to general rela-
features of the background spacetime in which the atomicivity seems to justify the interest in the study of these struc-
system is located. tures, specifically the role played by their topological fea-
The general theory of relativity, as a metric theory, pre-tures at the atomic level.
dicts that gravitation is manifested as a curvature of space- The gravitational field of a cosmic string is quite remark-
able; a particle placed at rest around a straight, infinite, static
cosmic string will not be attracted to it; there is no local
*Email address: gmarques@fisica.ufpb.br gravity. The spacetime around a cosmic string is locally flat
"Email address: valdir@fisica.ufpb.br but not globally. The external gravitational field due to a
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cosmic string may be approximately described by what is [l. RELATIVISTIC HYDROGEN ATOM IN THE
commonly called conical geometry. The nontrivial topology SPACETIME OF THE COSMIC STRING
of this spacetime leads to a number of interesting effects,

such as, for example, gravitational lensiig], emission of 54, i the spacetime of a cosmic string. The line element
radiation by a freely moving particlg20], electrostatic self- corresponding to the cosmic string spacetiftg] is given,
force [21] on an electric charge at rest, and the so-calledy, spherical coordinates, by

gravitational Aharonov-Bohm effe¢®], among others.

The spacetime of a pointlike global monopole also has ds?=—c2dt®+dr2+r2d6>+ a’r?sir? od¢>. (1)
some unusual properties. It possesses a deficit solid angle
A=3272G 72, 7 being the energy scale of symmetry break- The parameterr=1—(4G/c®)u runs in the interval0,
ing. Test particles in this spacetime experience topologicall, with « being the linear mass density of the cosmic string.
scattering by an angleA/2 irrespective of their velocity and ~ Let us consider the generally covariant form of the Dirac
their impact parameter. Also in this case, the nontrivial to-equation, which is given by
pology of spacetime as well as its curvature, which are due to
the deficit solid angle, lead to a number of interesting effects
[22,23 which are not present in flat Minkowski spacetime.

In this paper, we deal with the interesting problem con- ] . )
cerning the modifications of the energy levels of a hydrogervhereu is the mass of the particldy,, is an external elec-
atom placed in the gravitational fields of a cosmic string andromagnetic potential, anfi ,(x) are the spinor affine con-
further, we determine the solutions of the correspondingieldsefs)(x) and the standard flat spacetimé’ Dirac ma-
Dirac equations and the energy levels of a hydrogen atorifices as
under the influence of these gravitational fields. To do these
calculations, we shall make the following assumptiofis.

The atomic nucleus is not affected by the presence of the
defect.(ii) The atomic nucleus is located on the defect. With

these assumptions, doing our calculations accordingly would The generalized Dirac matriceg“(x) satisfy the anti-
have been possible, and doing so affords an explicit demorcommutation relations

stration of the effects of spacetime topology on the shifts in

the atomic spectral lines of the hydrogen atom. {v*(x), v ()} =29*"(x)

A similar problem concerning the effects of gravitational
fields at atomic level has been considered before. As ex2
amples of some works on this topic, we can menfibr 8],
which obtained the expressions for the shifts in the energy
levels of an atom caused by its interaction with the curvature, . o
of spacetime, and also a recent paj##|, which calculated
the atomic energy-level shifts of atoms placed in strongi .
gravitational fields near collapsing spheroidal masses nd|ces.. : .-~

: S ’ . In this paper, the following explicit forms of the constant

The results obtained in this paper are related to the previs, . . ;

: ; - irac matrices will be taken:
ous one$4—8] connected with this topic in the sense that we
also study the effect of gravitational fields at the atomic 1 0 0 o
level, however our calculation provides an interesting new 7<0>=( ) y<i>:( : ) i=1,2,3, (5
example of an effect at the atomic scale which can be 0 -1 —o 0
thought of as a consequence of the nontrivial topology of
spacetime, and this aspect was not taken into account b‘?f
previous workg4,8].

In the case of an infinitely thin cosmic string spacetime,US take the tetrade, (x) as
the shifts in the energy levels depend on the angle deficit,

In what follows, we will study the behavior of a hydrogen

i y#(X)] 9, +T (%) +i T(x)=0, (2

eAM _,u_C
fic

f

1 @by -
=2 7"77e(9,u8m—b)0)- ©)

nd are defined by
’)/'M(X) = efl‘a)(x) Y(a)7 (4)

#2)(X) obeys the relatiomy®%ef, (X) efp (X) = g*"; u,
y=0,1,2,3 are tensor indices ara b=0,1,2,3 are tetrad

hered' are the usual Pauli matrices.
In order to write the Dirac equation in this spacetime, let

and for the global monopole spacetime these shifts depend 1 0 0 0
on the deficit solid angle. In both situations, these effects 0 sinfcos¢ sinfsing  cosé
vanish when these angle deficits vanish, as it should be. cosfcosé cosdsing sing
This paper is organized as follows. In Sec. I, we obtain  ef;(x)=| 0 -
the solution of the Dirac equation and we calculate the en- r r r
ergy shifts experienced by a hydrogen atom placed in the sing CcoSs¢
gravitational field of a cosmic string. In Sec. Ill, we also 0 - arsingd  arsing
obtain the solutions of the Dirac equation and we calculate (6)

the modifications of the spectrum of a hydrogen atom in the
gravitational field of a global monopole. Finally, in Sec. IV,  Thus using Eq(6), we obtain the following expressions
we draw some conclusions. for the generalized Dirac matriceg(x):
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0/v\ — ~,(0)
=+ — | =+ — —_
1 Kg)== J(a)+2 + J+2+m " 1 (14
Y )=7",
(6) are the eigenvalues of the generalized spin-orbit operator
YA(x)= Bk K(q) in the spacetime of a cosmic string ang, corresponds
to the eigenvalues of the generalized total angular momen-
NE tum operator. The operatét, is given by
3 =
Y=g (7)
1y OK =3 Lo+, 15
where LA (e 19
vk cosésing singsing  cosé P with $=(2",3%3%) and I:(a) is the generalized angular
Y9 | =| cos¢coshd singcosd —sing || v? |, momentum operatof13] in the spacetime of the cosmic
'y<¢) _Sin¢ COS¢ 0 '}/(3) Stl’ing, which is such thdf(za)Yln(](‘;)(ﬁ,¢)thl(a)(l(a)-l—l),

®  with YI"Z(;*)(Q, ¢) being the generalized spherical harmonics
The covariant Dirac Eq2), written in the spacetime of a in the sense tham,, andl,, are not necessarily integers.

cosmic string, is then given by The parametersn,, and |, are given, respectively, by
My=m/a and | y=n+m=l+m[(l/a)-1], |

< oL ' >¢ =0,1,2,..n—1, | is the orbital angular momentum quantum
{'ﬁE G+t dptih ——ady number,m is the magnetic quantum number, ands the

principal quantum number.

1 1 . ) Let us choose the following two-dimensional representa-
+ih5(1— ;) > +coto, tion for =, and )
eAy E .
(1) Zly(f) = 0 —i 1 0
¢ 7mergMn=o © E!E(i o)’ 7<O)E(o —1)' (10

whereX", 3¢ and=? are defined by

. Now, let us assume that the radial solution can be written as

r 7

2 E),(0)),(0, Z E),(0)),(49), 2 E7,(0)},(«5),
(10)

—iF(r)). an

1
R“):F( G(r)

and we have choset (x) as

_ a—i(E/A)t 2
W x)=e "= x(), (1D Then, Eq.(13) decomposes into the coupled equations

which comes from the fact that the spacetime under consid-

eration is static. e? dG(r) K
We must now turn our attention to the solution of the —i(fc)™* E-Eo+ |F(N+—4—+—G(nN=0
equation fory(r). Then, let us assume that the solutions of (18)
Eq. (9) are of the form
x(F)=r VA= l(sin g) = VAL~ WIIR(r) O (6) D (). and
(12
Thus, substituting Eq(12) into Eqg. (9), we obtain the ) . e? dF(r) K
following radial equation: —i(hc) | E+Eo+ - |G(N)+ —5—— - F(N=0,
(19
2
cX pr+iﬁCT YO +eAg+ uc?y'® | R(r) whereE,= uc? is the rest energy of the electron. Note that
in obtaining these equations, use was made of the fact that
=ER(r), (13) Ag=—elr.
The solutions of these equations are given in terms of the
where confluent hypergeometric functiavl (a,b;x) as
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—rD
F(r)=—i \@ez (rD)Yw ™

M(¥(w—1+P,2y,—1;2rD)

X

o—1+P -
+MM(7(Q)+P,2y(Q)—1;2rD)
(kT Q)
(20
and
gD B
G(r): > (rD)y(ﬂ’)il M(’y(a)—l-l-P,Z'y(a)—l,Zl’D)
o—1+P -
_MM(VWWP.ZY(@_EZTD) ,
(k)T Q)
(21
where T=(E,—E)/fic; Q=(Ey,+E)/ic, D=\TQ
= (E3—E?)/tc;  yum=1+k,,—a% P=al2(\T/Q

—JQIT); 0=a/2(JT/Q+QIT), with &@=e?hc~1/137
being the fine-structure constant.

The solutions given by Eq$20) and (21) are divergent,
unless the following condition is fulfilled:

Yw—1+P=—nn=0,12,.., (22)

which means that
L \F \ﬁ - 1 23
24 Vo V7 =—(Ntye—1). (23

From this equation we may infer that the energy eigenvalue

are given by

E=Eo[1+a2(n+ Ko |N1-a%k ;) 21 Y2 (24

PHYSICAL REVIEW D66, 105011 (2002

This equation can be written in a way which is better
suited to physical interpretation. Thus, @1, we can ex-
pand Eq.(26) in powers ofa, and as a result we get the
following leading terms:

. w? e 2t (3 ng,

Ny d(o)~ D0 F05 2 %Sad | 2 1
(@ (@) i

J(a) >

(27)

The first term corresponds to the rest energy of the elec-
tron, the second one gives the energy of the bound states in
the nonrelativistic approximation, and the third one corre-
sponds to the relativistic correction. Note that these last two
terms depend on the deficit angle. The further terms can be
neglected in comparison with these first three terms.

Now, let us consider the total shift in the energy between
the states with =n—1/2 andj = 1/2 for a givenn. This shift
is given by

8

ne
AE, . T7ia 3
() N(0) A cn(a)
Ny~ 1
% (a) 1
2n(a)+mz—1 1+m;—1”

(28)

One important characteristic of E(R6) is that it contains a
dependence on, j, anda. The dependence ancorresponds

to an analogue of the electromagnetic Aharonov-Bohm effect
for bound states, but now in the gravitational context. There-
fore, the interaction with the topologficonical singularity
causes the energy levels to change. Note that the presence of
the cosmic string destroys the degeneracy of all the levels,
corresponding td=0 andl=1, and destroys partially this
gegeneracy for the other sublevels. Therefore, as the occur-
rence of degeneracy can often be ascribed to some symmetry
property of the physical system, the fact that the presence of
the cosmic string destroys the degeneracy means that there is
a break of the original symmetry. Observe that éor 1, the

This equation exhibits the angle deficit dependence of th&€Sults reduce to the flat Minkowski spacetime case as ex-

energy levels. It is helpful to introduce the quantum numbe
N(«) that corresponds to the principal quantum number of the

nonrelativistic theory whemr=1,

1

n(a):n+J(a)+ E (25)

Therefore, Eq(24) may be cast in the form

1
N ~lw™ 3

1
j(a)+ E) \/1_‘5[2

Enuica EO[ 1+%

—+

1 —ZJ—Z} -1/2

J(ayT >
(26)

ected.

As an estimation of the effect of the cosmic string on the
energy shift of the hydrogen atom, let us consider 1
—10"®, which corresponds to grand unified thedGUT)
cosmic strings. Using this value in E@3), we conclude that
the presence of the cosmic string reduces the energy of the
level of the states Ryo(n=2,1=1, j=1-1/2=1/2, m=1)
to about 10 % in comparison with the flat spacetime value.
This decrease is of the order of the measurable Zeeman ef-
fect in carbon atoms for R states when submitted, for ex-
ample, to an external magnetic field with strength to about
tens of tesla. Therefore, this shift in energy levels produced
by a cosmic string is measurable as well.

Finally, we can write down the general solution to E2).
corresponding to a hydrogen atom placed in the background
spacetime of a cosmic string. Thus, it reads
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=

Y =+ (121m g (X) 0 . .

o

e~ (EUM —(L2[1- (Wi )~ VAL-(WIE (1) sinfcos¢p sinfsing  cosd
cosfcos¢ coshsing sing

1 en=| 0
l(a)+ m(a)+ 5 _ b_r br br
S 0,0) sing CoS¢
l(a) ( 0o -
% w1 ’ brsing  brsing
32
)™M+ 5 _ o %2 _
l"‘(a 1’2>(,9 &) Therefore, the generalized and flat spacetime Dirac matrices
2 (a)+1 () are related by
(29)
and Y=y,
(60)
Y =~ W2y (X) y2(X) = I)_r
:e*i(Et/ﬁ)r71/2[17(1/01)](Sin 0)71/2[17(1/:1)]G(a)(r)
, (¢)
Y= 5rsing (33
Vi) where, (", Y9 andy(? were defined in the previous sec-
>< .
: tion.
Proceeding in analogy with Sec. Il, we find that the gen-
m<ﬂ,>+<1/2)(¢9 b) eralized Dirac equation can be written, in this background
Yica) spacetime, as
(30)
>’ >
. . r . .
whereF ,)(r) andG,(r) are given by Eqs(20) and(21), |ﬁ2 ar+|ﬁwﬁg+|hma¢

respectively, and the index was introduced to emphasize

the dependence of these functions on this parameter. 1
Note that the solutions depend on the topological features —|1- —) Er +cot020)
of the space time of a cosmic string whose influence appears b
codified in the parametax associated with the presence of
the cosmic string, and this is the point at issue here. o2 E
+ o YO uc+ < x(F)=0, (39

I1l. RELATIVISTIC HYDROGEN ATOM IN THE
PRESENCE OF A GLOBAL MONOPOLE where Eq.(11) has been used in obtaining the above result.

Now, let us assume that the solution of E§4) can be
In continuation of the preceding consideration, in this seCvyyyitten as

tion we shall be concerned with the study of the influence of

a global monopole on the states of a hydrogen atom. x(F)=r[1=UDIR(HO () D( ). (35)
The solution corresponding to a global monopole in an

O(3) broken symmetry model has been investigated by Bar- Using Eq.(35), Eq. (34) turns into the simple form

riola and Vilenkin[16].

Far away from the global monopole core, we can neglect ,
the mass term and as a consequence the main effects are , _ Er 2
produced by the solid deficit angle. The respective metric in Czr pr+|ﬁCTY(O)k<b)— T+MC 290
the Einstein theory of gravity can be written [d$]

XR(r)=ER(r), (36)
— _ ~2A¢2 2 2.2 2 H 2
ds?®= —c2dt>+dr2+b?r2(d6%+sir? od¢?), (31) where

where b?>=1-8xG#?, the parameter being the energy W +} 1/2:+ J_+1 2+l 1_1 v
scale of symmetry breaking. 0O~ =1p2 " ph2 " 4 “I\b "2/ "bl\b

Now, let us choose the tetrad as (37)
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are the eigenvalues of the generalized spin-orbit operatq;;,herey(b):1+1/k2(b)_~0;2; T,Q, M, P, andQ are the same
K in the spacetime of a global monopole, which is givengs defined previously. The indéxin the functionsk and G
y indicates their dependence on this parameter. These functions
s [ are, formally, the same used in the previous section.
AK )=y [2" Ly th], By the use of conditiori22) with the interchange o,

whereE”z(gQ). by {OR we obtain the following spectrum of energy eigen-
o : values:
In the present case, the generalized angular momentum
: : "2 M ~
W|I(Ih§)/t:)2)d|((alnote)d Iby Ly It is suc:a thatl:/(tk;)YI E]H,gb) En i, = Eotl+ &[Ny~ | K|
= +1),1=0,1,2,..n—1, andL ,y=L/b is the an-
’ gy Ly, ’ (b) — —5_ o
gular momentum in the spacetime of a global monop2. +[Kepyl V1=K 50172, (40

Using the same procedure as in the previous section, we find

in which we have defined ;,y as a number which reduces to
Qe P the principal quantum number whér=1 and is given by
Fpy(r)=—i T (rD)Ym ™1t

M(yp—1

2 1/2

J'l1
+515”

n(b):n+|k(b)|:n+ b

(41)

J
b2

Then, expanding Eq40) in a series of powers ¢k, we

N (Yoy—1+P) have the following leading terms:

- M('}’(b)"'va?’(b)_ 1;2rD)
(ki +Q)

'a,Z

(39 By iy~ B0~ E°2n(2b)

and wt /3 N(b)
s BT T LA T F A
Gpy(r)= 5 (rD)Y® =Y M(y(p)—1+P,2yp—1;2rD) b 2/ "blb
~ (42)
(Yipy—1+P) ~ _
- #M(')’(b)"' P.2yp—1;2rD) |, which tell us what the dependence of each term with the
(K +Q) parameteb is. In this case, the shift in the energy between
(390  the energy levels with=n—1/2 andj = 1/2, for a givem, is
|
Ny 1(1 2 (np 1)(1 21 1\ 11 2
8 e e B B [ I e B e
_ pe b 2l\b b 2b/\b 2b 2 2b\b
"o do) " 2719¢%n® 1,1 2+ 11, Vne 11 L 2+ N 1}(1 2 43
2b 2/ "2blb b 2lb b 2b/lb
|
This equation reduces to the same result of the flat spacetimey, =141 m(x):e—i<Et/h>r—[1—(1/b)]|:(b)(r)
in the absence of the global monopole<(1). ’ ’
It is worth noticing from Eq(42) that the presence of the 1
monopole does not break the degeneracy of the energy lev- I+m+ 2
els, as in the case of a cosmic string. WY”H”Z)(&, ®)
As an estimation of the shift in the energy levels, let us %
consider a grand unifiedGUT) monopole in whichb?=1 1
—10®. Using this value in Eq(42), we conclude that the l=m+3
presence of the monopole reduces the relativistic correction WY'”MUZ)(H’ é)
of the energy of the level Ryy(n=2, I=1, j=1-1/2
=1/2,m=1) in approximately 10*% as compared with the (44)

result of the flat Minkowski spacetime.
Finally, let us write down the general solution for this
case. It reads and
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x):e*“Et’ﬁ)r*1’2[1*<1’b)]G(b)(r) global monopole, the modifications in the solution and the
shifts in the energy levels are due to the combined effects of
the curvature and the nontrivial topology determined by the
deficit solid angle associated with this spacetime. These

W i=1—(w2,m(

1
[-m+ 5

- WYF]_(UZ)(@.@ shifts also vanish when the deficit solid angle vanishes.
% , Both effects can be thought of as a consequence of the
| 1 topological influence of the spacetime under consideration
m f—

upon the hydrogen atom.

The decrease in energy for the situations considered is
only two orders of magnitude less than the ratio between the
fine-structure splitting and the energy of the ground state of
. the nonrelativistic hydrogen atom and is of the order of the
whereF ,)(r) andG,)(r) are given by Eqsi38) and(39),  7eeman effect. Therefore, the modifications in the spectra of

respectively. It is important to call attention to the fact thaty,, hydrogen atom due to the presence of the gravitational

all these results depend on the geomgtrical and topologicgla|qs of a string or a monopole are all measurable, in prin-
features of the global monopole spacetime.

ciple.

The obtained results show how the geometry and a non-
trivial topology influence the energy spectrum as compared
ryvith the flat spacetime case and how these quantities depend

For the purpose of discussing the role of topology on a h di 4 their ch tics. Th I
atomic system, we carried out the calculations of the shifts ipn the surroundings anc their ¢ araqtgnsﬂcs. ese results
lso show how the solutions are modified.

th levels of a hyd tom placed in th &
© energy eveis ol a nycrogen atom pacec In e spac Therefore, the problem of finding how the energy spec-

times of a string and a monopole, adding, in this way, some ; laced i itational field i bed b
new results to the interesting problem considered in semind[Um Of an atom placed in a gravitational field is perturbed by

papers by Parker and collaboratpds-8] about the effects of this packground has to take .into account not only the geo-
gravitational fields at the atomic level, but now from the metrical but also the topological features of the spacetimes

geometrical and topological points of view, instead of |00k_unde_r con5|der_at|on. In_ other words, the behavior of an
ing only for the local effects of the curvature as in thosedtomic system is determined not only by the curvature at the
earlier paper§4—8g| position of the atom, but also by the topology of the back-

The presence of a cosmic string changes the solution ang{ound spacetime.
shifts the energy levels of a hydrogen atom as compared with
the flat Minkowski spacetime result. It is interesting to ob-
serve that these shifts depend on the parameter that defines
the angle deficit and vanish when the angle deficit vanishes. We acknowledge Conselho Nacional de Desenvolvimento
These shifts arise from the topological features of the spaceGientfico e Tecnolgico (CNPg and Coordengo de Aper-
time generated by this defect. feicoamento de Pessoal dévdl Superior(CAPES-Program

In the case of the hydrogen atom in the spacetime of #ROCAD for partial financial support.

— g )

(49)

IV. CONCLUSIONS
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