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Landau-Khalatnikov-Fradkin transformations and the fermion propagator
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We study the gauge covariance of the massive fermion propagator in three as well as four-dimensional
guantum electrodynamic¢QED). Starting from its value at the lowest order in perturbation theory, we evaluate
a nonperturbative expression for it by means of its Landau-Khalatnikov-FrdtkiR) transformation. We
compare the perturbative expansion of our findings with the known one-loop results and observe perfect
agreement up to a gauge parameter independent term, a difference permitted by the structure of the LKF

transformations.
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I. INTRODUCTION The LKF transformation for the three-point vertex is com-

plicated and hampers direct extraction of analytical restric-
In gauge field theory, Green functions transform in a spetions on its structure. Burden and Robdi§] carried out a
cific manner under a variation of the gauge. In quantum elecaumerical analysis to compare the self-consistency of vari-
trodynamics(QED) these transformations carry the nameous ansatzefor the vertex[18,19,31 by means of its LKF
Landau-Khalatnikov-FradkifiLKF) transformations[1-3].  transformation. In addition to these numerical constraints,
These were derived also by Johnson and Zumino througfhdirect analytical insight can be obtained on the nonpertur-
functional method$4,5]." LKF transformations are nonper- pative structure of the vertex by demanding correct gauge
turbative in nature and hence have the potential of playing agoyariance properties of the fermion propagator. In the con-
important role in addressing the problems of gauge invarigy; of gauge technique, examples §8-34. Concerning
ance which plague the strong coupling studies of Schwingerfne works based upon choosing a vertemsatze Refs.
Dyson equation§SDE). In general, the rules governing theseélg,24,25,35—3]7employ this ided. However, all the work

f/:/erlirt-]tzfr? rmaéfgr?jiﬁ;et efasr ggg] aségsplteo' ;I::a?r fgg;qtf}g;ittheisar Jn the later category has been carried out for massless three-
P piexty. imensional QED (QEE) and four-dimensional QED

result, these transformations have played a less significa . o
Pay g I?%EDAI). The masslessness of the fermions implies that the

and practical role in the study of SDE than desired. formi b ! Vi ¢ ‘
A consequence of gauge covariance is Ward-Greenf€rmion propagator can be written only in terms of one func-

Takahashi identitie@VGTI) [7—9], which are simpler to use tion, the so-called wave function renormalizatiigp). In
and, therefore, have been extensively implemented in therder to apply the LKF transform, one needs to know a
SDE studies which are based either upon gauge techniquereen function at least in one particular gauge. This is a
e.g.,[10-17, or upon making amnsatzfor the full fermion- ~ formidable task. However, one can rely on approximations
boson vertex, e.g[18—-25. WGTI follow from the Becchi- based on perturbation theory. It is customary to t&Ke)
Rouet-Stora-Tyutin(BRST) symmetry. One can enlarge =1 in the Landau gauge, an approximation justified by a
these transformations by transforming also the gauge paranene-loop calculation of the massless fermion propagator in
eteré [26,27] to arrive at modified Ward identities, known as arbitrary dimensions, see for exampl89]. The LKF trans-
Nielsen identitiegNI). An advantage of the NI over the con- formation then implies a power law fé(p) in QED, and a
ventional Ward identities is that/ 9¢ becomes a part of the simple trigonometric function in QED To improve upon
new relations involving Green functions. This fact was ex-these results, one can take two pattisincorporate the in-
ploited in[28,29 to prove the gauge independence of someformation contained in higher orders of perturbation theory
of the quantities related to two-point Green functions at theand (i) study the massive theory. As pointed ouf86], in
one-loop level and to all orders in perturbation theory, re-QED,, the power law structure of the wave function renor-
spectively. As it is a difficult task to establish the gaugemalization remains intact by increasing order of approxima-
independence of physical observables in the study of SDHEjon in perturbation theory although the exponent of course
NI may play a significant role in addressing this issue ingets a contribution from next to leading logarithms and so
addition to Ward identies and LKF transformations. How-on2 In[36], constraint was obtained on the 3-point vertex by
ever, in this paper, we concentrate only on the LKF transforconsidering a power law where the exponent of this power
mations. law was not restricted only to the one-loop fermion propaga-

'Fukuda, Kubo, and Yokoyama have looked at possible formal- 2A criticism of the vertex construction if87] was raised if38].
isms where the wave function renormalization constants can actu-3For the two-loop calculation of the fermion propagator, see for
ally be made gauge invariafé]. example[40].
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tor. In QED; the two-loop fermion propagator was evaluated Perturbation theory also reveals that this result continues to
in [38,41,42, where it was explicitly shown that the the ap- hold true to one-loop order for the wave function renormal-
proximationF(p) =1 is only valid up to one loop, thus vio- ization. Equationg1), (2) are related to each other through
lating thetransversality conditioradvocated if37]. The re-  the following Fourier transforms:
sult found there was used used[#8] to find the improved
LKF transform. Cey— dy Aip-X .

In the present paper we calculate the LKF transformed SF(p’g)_f dXEPTSE (), “@
fermion propagator in massive Qg@nd QED.* We start
with the simplest input which corresponds to the lowest or-
der of perturbation theory, i.éS(p) = 1/ip —m in the Landau Se(X; €)= J
gauge. On LKF transforming, we find the fermion propaga-

tor in an arbitrary covariant gauge. In the case of QEDe whered is the dimension of space-time. The LKF transfor-

obEtgntthhef_reslult In terms qf bast'ﬁ fl}'nCt'onfShOf momentat. _Inmation relating the coordinate space fermion propagator in
Q 4 (NE Tinal expression IS In the form of Nypergeometrc, »,q,, gauge to the one in an arbitrary covariant gauge
functions. Couplingx enters as a parameter of this transcen-.o4 s
dental function. A comparison with perturbation theory needs

the expansion of the hypergeometric function in terms of its Se(X; €)= Sp(x;0) e [Ad(0)=2q(] (6)
parameters. We use the technique developed by Mbeth.

[44] for the said expansion. We compare our results with theyhere

one-loop expansion of the fermion propagator in QEDd

QED; [45,46], and find perfect agreement up to terms inde-

pendent of the gauge parameter at one loop, a difference Ad(X)=—i§eZ,u4_df .
permitted by the structure of the LKF transformations. We o (2m)% p
believe that the incorporation of LKF transformations, along ,, . he di onl | . ina. T
with WGT identities, in the SDE can play a key role in € 'Et eh |men?|onbess eectrorgagnetlc coupiing. 3{5‘1“9
addressing the problems of gauge invariance. For exampld® P€ the angle betweem and p, we can write d"p

, - =dpp?Lsin®2ydy) where Q4_,=27"D2[(d
in the study of the SDE of the fermion propagator, only those d-2, d-2

assumptions should be permissible which keep intact the cor- 1)/2]- Hence

rect behavior of the Green functions under the LKF transfor- "

mations_, in.addition to ensuring that the WGTI is satisfied. It Ag(x)= _igezﬂ“—df(d)f dpp?~°

makes it vital to explore how two- and three-point Green 0

functions transform in a gauge covariant fashion. In this pa- -

per we consider only a two-point function, namely, the fer- Xf dy sint—2yeiPxcosy, (8)
mion propagator. 0

d

(ZW‘;de‘p'xsF(p;f), ®)

o ddp efip-x
o (7)

where f(d)=Q4_,/(27)%. Performing angular and radial

Il. FERMION PROPAGATOR AND THE LKF integrations, we arrive at the following equation:

TRANSFORMATION

We start by expanding out the fermion propagator, in mo- Ag(x¥)= — ;fe;/zwx)4dr(g_z '
v

mentum and coordinate spaces, respectively, in its most gen- 1
eral form as follows:

(©)

With these tools at hand, the procedure now is as follows:

B(p:£) F(p;£) Start with the lowest order fermion propagator and Fourier
Se(p; &) =A(p;é) +i o= ’ , (1) transform it to coordinate space, apply the LKF transforma-
p ip—M(p;¢) tion law. Fourier transform the result back to momentum
space.
SE(X; ) =*X(X;§) +Y(X;€), 2

IIl. THREE-DIMENSIONAL CASE

whereF(p;€&) is generally referred to as the wave function Employing Eqgs.(1), (2), (3), (5), the lowest order three-

renormalization and\(p;¢) as the mass functior is the  gimensional fermion propagator in Landau gauge in the po-
usual covariant gauge parameter. Motivated from the lowest;;io, space is given by

order perturbation theory, we take

e ™(1+mx)
F(p;0)=1 and M(p;0)=m. 3 X(%;,0)= = —————0,
47X
4 . . me—mx
In the context of gauge technique, gauge covariance of the spec- Y(x;0)=— (10)
tral functions in QED was studied {182—34. ' Aax
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Once in the coordinate space, we can apply the LKF trans- m (= ' -
formation law using expressid®) explicitly in three dimen- A(p;§)=— BJ dxsinpxe” (M &2, (14
sions: 0
i aéx ] = dx i
As(x)=———, (1) B(p,§)=5 . ;(1+mx)[pxcospx—smpx]
where a=e?/47r. The fermion propagator in an arbitrary X g (mtati2)x (15

auge is then
gaud and the radial integration then yields

Se(X; €)= Sr(x;0)e (a&2x, (12)
4m
For Fourier transforming back to momentum space, we use (p:€) Ap2+ (2m+ af)? (16)
M(
A(p;g):_W J d3xeP*Y(x; §), B(p_g):_4p2+a§(2m+a§)
(p:&) ’ 4p2+(2m+ ag)?
. ip?F(p; &) ; aé
IB(p:§)=——=f dxp-x€PX(x; €). + ——arctafi2p/(2m+ aé)]. 1
1
(13 One can now arrive at the following expressions for the wave
Performing the angular integration, we get function renormalization and the mass function, respectively:

2p(4p2+ a?£%) — af[Ap%+ a&(2m+ aé) Jarctaf 2p/ (2m+ aé) ]

a
F(p;&)=— —arctafi2p/(2m+ a&)]+

2p 2p[4p%+ aé(2m+ aé)]— ad[4p?+ (2m+ af)?]arctafi2p/(2m+ af)]’ .
18
8p%m
M(p; €)= - . - . (19
2p[4p+ aé(2m+ aé)]— aé[4p~+ (2m+ aé)“arctan2p/(2m+ aé) ]
|
In the massless limit, one immediately recuperates the well- o
known results M soog P €)=m| 1+ —{[£(m?+p?) + 4p°]
p
aé 2p
massles@p 5) 1- _arCtan_g
2p X arctafip/m]—mp}|. (24
MnassiesP; §) =0. (20
In the weak coupling, we can expand out E¢s), (19) in ~ We of course only expect the results to be in agreement up to
powers ofa. To O(a), we find a term proportional ter¢°, as allowed by the structure of the

LKF transformations. There is no such term in Eg3).

Therefore, the agreement is exact. Equati®@® and (24)
F(p;&)=1+ —{(m —p?)arctafip/m]—mp}, (2)  become identical only after we subract out the nonvanishing
term in the Landau gauge from E¢R4) to write out the
subtractedmass function at one loop as

M(p;é)=m| 1+ :—i{(m2+pz)arctalﬁp/m]—mp}].
p
(22 MSipdPié)=m 1+Zirﬁ{am%p%arctarﬁp/m]—mp} -

Let us compare these results with the ones obtaing¢déh (25)

aé . .
= £)=1+ m2— p?)arctafip/m]—mpt, One can numerically check that without the above-
o0 Pi) 3{( P) fip/m] P mentioned subtraction, Eq$22), (24) approach the same
(23)  value only in the large momentum regime.
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IV. FOUR-DIMENSIONAL CASE m2

1 14
Employing Egs.(1), (2), (3), (5), the lowest order four- Alp:§) =~ E(P) I'(1=»I(2=v)

dimensional fermion propagator in position space is given by

2
m? X2F1<1_Va2_ V;2;—p—2), (34)
X(x;0)=— K,(mx), (26) m
47%x?
5 p2 m2 v
m B(p;é§)=———| —| I'A—»)['(3—
Y0600 =~ 5 Ky(m), @7 (PO= " ome | az) HETEETY)
4%
2
whereK; andK, are Bessel functions of the second kind. In X zpl( 1-v,3—v3;— p_z) , (35
order to apply the LKF transformation in four dimensions,
we expand Eq(9) aroundd=4-¢ and use the following
identities: where we have identified 2/;,— A. The above equations
imply
1“( 6) —_2 Lo
2|7 e vTHeh T'(1- )
F(pié)=—— P
x5=1+elnx+(9(52), 2m°r'(3—v) ZFl(l_V,3_ v;3;—p/m°)
. m2\"”
to obtain x| | [4mPr2(2= ) FY 1-v,2-v;2;
2 |2
AyX)=i ———|—+y+2Inux+0(e) |. (28 2 2
16w 2 € - = +p2r2(3—y)2F§<1—v,3— vi3i- ||,
m m
Note that we cannot write a similar expression fiog(0)
because of the presence of the term proportional ta In (36)
Therefore, we introduce a cut-off scalg;,,. Now
2m,F (1= v,2— v;2;— p?/m?)
x2 \" M(p;§)= —— > (37
Ag(Xmin) = Ag() =i In[ 5] (29 (2= v)oFy(1=w,3=v;3;—p*/m’)
min

Equations(36), (37) constitute the LKF transformation of
wherev= aé/4m. Hence Egs.(3). We shall now see that although E¢3) correspond
to the lowest order propagator, their LKF transformation,

x2 |\ Egs. (36), (37), is nonperturbative in nature and contains
SF(X;g):SF(X;O)(E B0 information of higher orders.
For Fourier transforming back to momentum space we use A. Casea=0

he followi ions:
the following expressions Let us switch off the coupling and pui=0 which im-

plies v=0. Now using the identity

F(p;&) M(p; .
A(p;§)=—M=f d*xeP*Y(x; ), - -
P+ M=(p;€) 2F1(1,2;2;—p/m%) = ,F4(1,3;3;—p/m?)
: =(1+p%m?) L 38
. ip?F(p;é) N (1+pm?) (39
iB(p;&)=— 5 ——= | dxp-xePX(x;6).
p=+M=(p;§) it is easy to see that
(31
On carrying out angular integration, we obtain F(pd)=1 and M(p;&)=m, (39
m? % which coincides with the lowest order perturbative result as
A(p;é)=— szmvi”fo dxx 2" 1K, (mx)J;(pX), (32)  expected.
[ — B. Casem>p
. — —2v+
B(p;&)=—m fo dxx Ka(mx) Jo(px). (33 In the limit m>p, the hypergeometric functions in Egs.
(36), (37) can be easily expanded in powersp3fm?, using
The radial integration then yields the identity
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p2 ap p? p2 beyond. Therefore, we expect E¢5) to be exactly repro-
zFl( a,By;— —2> =l-——=+0| = (40)  duced and Eq(46) to be reproduced up to the terms which
m Y m m vanish in the Landau gauge @(«). After subtracting these
Retaining only®(p3/m?) terms, we arrive at terms, the resultingubtractedmass function is
2
m m
o= A Wl@=w)  2v(  5v)p? M i) =m+ 2 1 T 1| @)
i (1-v12) 3 8 /m? TLoP
2 m2\ In the limit m—o, the wave function renormalization ac-
o(p_) — (41 quires the form
m? A2
2 081+ 25 ceuem 22 2P g
2 2 P;:&)100p= 1+ 7| —Cu— 5+ —|,
m v P p 1-loop 47 2 3m?
M(p;é)= =2 1+5(1=v) m2+(’) m2> :
(42)  while thesubtractedmass function is
Now carrying out an expansion i and substitutingy @ p?
= aél4m, we get the followingO(«) expressions: Mf_mp(p;g):m 1+ oy 1+ F . (49
m
af 1 2p> m : . .
F(p;&)=1+—|2y— =+ ——+In—|, (43)  The last two expressions are in perfect agreement with Egs.
am 2 3m? A? (43), (44) after we make the identification:
e aé p2 . m?
M(p;§)=my 1+ o— 1+ﬁ : (44) —Cu —>2y+|np. (50)

Let us now compare these expressions against the one-loop
perturbative evaluation of the massive fermion propagator,

C. Case of weak coupling

see, e.g.[45]: The casan>p is relatively easier to handle as we merely
) have to expandF (8, v; 6;x) in powers ofx and retain only
e ag m the leading terms. If we want to obtain a series in powers of
F1i00fP;€)=1— A Cus+|1- E) (1-L)|, 49 the coupling alone, we need the expansion of the hypergeo-
metric functions in terms of its paramete@s and y. We
am £ 3 follow the technique developed i4]. One of the math-
Moo P;E)=m+—| | 1+ = |+ —(Cu—L) ematical objects we shall use for such an expansion arg the
™ 4/ 4 sums, defined as
m? Z(N;my, . MeiXg, e Xe)
M), (46) (m:m o “
4 52 i i
P x'1 X'k
= D LK
where n=ig>i> . >0 i ik
L= 1+_2 | 1+P_2 For x;=---=x,=1 the definition reduces to the Euler-
- p? n m2/)’ Zagier sumg47,48:

2

"

C=———vy—Inm=In
€ Y m

Z(mmy, ... m;l, 0 D=2, o (n). (52
Euler-Zagier sums can be used in the expansion of gamma

functions. For positive integerswe have[44]

Knowing the fermion propagator even in one particular

gauge is a prohibitively difficult task. Therefore, Ed8)

T(n+e)=T(1+e)T(N[1+eZy(n—1)+- -

have to be viewed only as an approximation. For the wave

function renormalizatiorf(p), this approximation is valid

up to one-loop order, whereas for the mass function, it is tru . . .
only to the lowest order. Therefore we cannot expect thgrhe first sumz,(n—1), e._g., is just ther{—1)-th harmonic
LKF transform of Eqs(3) to yield correctly each term in the humber,H,—,, of order 1:

perturbative expansion of the fermion propagator. However,
it should correctly reproduce all those terms at every order of
expansion which vanish in the Landau gaugedédtr) and

+e"1Zy  4(n—1)]. (53

Z,(n-1)=2, - (54)

n—1
1
i=1 1
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With these definitions in hand, we proceed to expand a hyTherefore, we have seen that the LKF transformation of the

pergeometric function;F,(1+¢,2+¢;2;x), as an example,

assumingx|<1:

JFi(1+e,2+¢€;2;%x)

B r'(2)
M raTeorzre
i I'(1+e+mI(2+&+n) x"
) [(2+n) n!

N 1
(1+&e)I'%(1+¢)

o

S (1+&+n)(e+n)’T%(e+n) x"
= I'(2+n) n

bare propagator contains important information of higher or-
ders in perturbation theory.

V. CONCLUSIONS

We have studied the gauge covariance of the massive fer-
mion propagator in three- as well as four-dimensional QED
through its LKF transformation, starting from its lowest or-
der approximation. Equatior(48), (19), (36), (37) form the
main result of this paper. In the three-dimensional case the
LKF transformation consists of basic functions of the mo-
mentum variable, whereas in the four-dimensional case hy-
pergeometric functions arise with electromagnetic coupling
as parameter of these functions. Although our input is only
the bare propagator, the corresponding LKF transformation,
being nonperturbative in nature, contains useful information
of higher orders in perturbation theory. For example, we

Employing Eq.(53), we can expand the last expression inhave shown that a perturbative expansion of our results
powers ofe to any desired order of approximation. We shall Matches onto the known one-loop results up to gauge-

be interested only in terms up ©(«),

JFi(l+e,2+¢€;2;x)

[

- ” 2+3n
=1+ 2, x"- X"+ ——X"
n§=:1 8n§=:1 8n§=:1 n(n+1)

]

+2e >, Hyo X" (55)
n=1

Performing the summations, we obtain

F12'2'—11 11+XI1
Fi(1+e,2+¢; ,X)—m e +Tn( X) 1.
(56)
Similarly,
oFi(1+e,3+¢€;3;X)
B 1 1 3 1 1+X 2
T1ox flx 21 x" X2 T1x
Xln(l—x)]. (57
Substituting back into Eqe36), (37) and identifyinge =
— v, we obtain
F‘—1a§2|m21m21L
aém m?
M(p;§)=m+ |1+ —(1-L)|, (58)
77 p

which matches exactly onto the one-loop result of E4S),
(47) after the same identification as before, i.e., E8).

independent terms at this order. This slight difference arises
due to our approximated input and can be corrected system-
atically at the cost of increasing complexity of the integrals
involved. We intend to carry out a similar exercise for the
three-point fermion-boson vertex. LKF transformations of
the propagator and the vertex impose useful constraints on
the SDE and we believe that these transformations can be of
immense help in addressing the problems of gauge invari-
ance in the related studies.
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APPENDIX

Most of the integrals involved in this paper are listed be-
low for a quick referenc¢49,50:

J:d ysirf =2y cogpe IPx cosy
1-(d2) [
= —I\/;(pz—x> T(T)Jd/z(px), (A1)

. T'(d/2)
fo Xd/2 1Jd,2(ax)=21T/2ad/2. (AZ)

For the three-dimensional case, the needed integrals are
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7 ) ) 2 sinpx
j d@singe 'Pxcosb— (A3)
0 px
w . cospx  sinpx
f d6 cosé sin ge 'PX cosi=2j P ——p,
0 PX  (px)?
(Ad)
°° p® | cospx sinpx m(l+mx)
J dp - =—————e ™
o (pHmA| X (px?] 2
(AS5)
*» psinpx w7
dp———=-e ™ A6
J'o p(p2+m2) 2 (A9)
1J°° dx o inpx] 1+a . p
—| —e X cospx—sinpx]=— 1+ —arctan-,
Plo x2 P P P p a
(A7)

1foodX —ay . 1 a 1 t p
_ —e XCOSpPX—SINpPX|=—F7——F — —alcCtan-,
PJo X P P P a’+p®> P a
(A8)
fmdxsinpxe‘(m+a§/2)x: p

0 (m+ aél2)?+p?
(A9)

PHYSICAL REVIEW D 66, 105005 (2002

rd P, (px) _ m Tk

= K,_,.(mx),
0 (PP 20T (ut 1) WM

(A1)

dexx*)‘KM(ax)J,,(bx)
0

_atrlpy (v—)\+u+l
2V (1+ ) 2

v—A—u+l
2

v=AN+ut+l v—A—pu+l b?
® , il v+l ——].
2 2 a2

(A12)

X oF1

Some of the series used in our calculation are as follows:

For the four-dimensional case, we used the following inte-

grals in particular:

foﬂdﬁsinzﬁeipx°°s‘9:p1le(px), (A10)

” L xIn(1-x)
ngl Hyox'= = ———. (A13)
% n+tl  2+x (1+x)In(1-x)
“nn+2) " T Tax 252 :
(A14)
i 1 L 2=x (1-x)In(1-x)
“ ntD)(n+2) " T 2x 2 '
(A15)
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