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Landau-Khalatnikov-Fradkin transformations and the fermion propagator
in quantum electrodynamics

A. Bashir and A. Raya
Instituto de Fı´sica y Matema´ticas, Universidad Michoacana de San Nicola´s de Hidalgo, Apartado Postal 2-82, Morelia,

Michoacán 58040, Mexico
~Received 26 June 2002; published 12 November 2002!

We study the gauge covariance of the massive fermion propagator in three as well as four-dimensional
quantum electrodynamics~QED!. Starting from its value at the lowest order in perturbation theory, we evaluate
a nonperturbative expression for it by means of its Landau-Khalatnikov-Fradkin~LKF! transformation. We
compare the perturbative expansion of our findings with the known one-loop results and observe perfect
agreement up to a gauge parameter independent term, a difference permitted by the structure of the LKF
transformations.
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I. INTRODUCTION

In gauge field theory, Green functions transform in a s
cific manner under a variation of the gauge. In quantum e
trodynamics~QED! these transformations carry the nam
Landau-Khalatnikov-Fradkin~LKF! transformations,@1–3#.
These were derived also by Johnson and Zumino thro
functional methods@4,5#.1 LKF transformations are nonper
turbative in nature and hence have the potential of playing
important role in addressing the problems of gauge inv
ance which plague the strong coupling studies of Schwing
Dyson equations~SDE!. In general, the rules governing the
transformations are far from simple. The fact that they
written in coordinate space adds to their complexity. As
result, these transformations have played a less signifi
and practical role in the study of SDE than desired.

A consequence of gauge covariance is Ward-Gre
Takahashi identities~WGTI! @7–9#, which are simpler to use
and, therefore, have been extensively implemented in
SDE studies which are based either upon gauge techni
e.g.,@10–17#, or upon making anansatzfor the full fermion-
boson vertex, e.g.,@18–25#. WGTI follow from the Becchi-
Rouet-Stora-Tyutin~BRST! symmetry. One can enlarg
these transformations by transforming also the gauge pa
eterj @26,27# to arrive at modified Ward identities, known a
Nielsen identities~NI!. An advantage of the NI over the con
ventional Ward identities is that]/]j becomes a part of the
new relations involving Green functions. This fact was e
ploited in @28,29# to prove the gauge independence of so
of the quantities related to two-point Green functions at
one-loop level and to all orders in perturbation theory,
spectively. As it is a difficult task to establish the gau
independence of physical observables in the study of S
NI may play a significant role in addressing this issue
addition to Ward identies and LKF transformations. Ho
ever, in this paper, we concentrate only on the LKF trans
mations.

1Fukuda, Kubo, and Yokoyama have looked at possible form
isms where the wave function renormalization constants can a
ally be made gauge invariant@6#.
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The LKF transformation for the three-point vertex is com
plicated and hampers direct extraction of analytical rest
tions on its structure. Burden and Roberts@30# carried out a
numerical analysis to compare the self-consistency of v
ous ansatzefor the vertex@18,19,31# by means of its LKF
transformation. In addition to these numerical constrain
indirect analytical insight can be obtained on the nonper
bative structure of the vertex by demanding correct ga
covariance properties of the fermion propagator. In the c
text of gauge technique, examples are@32–34#. Concerning
the works based upon choosing a vertexansatze, Refs.
@19,24,25,35–37# employ this idea.2 However, all the work
in the later category has been carried out for massless th
dimensional QED (QED3) and four-dimensional QED
(QED4). The masslessness of the fermions implies that
fermion propagator can be written only in terms of one fun
tion, the so-called wave function renormalizationF(p). In
order to apply the LKF transform, one needs to know
Green function at least in one particular gauge. This i
formidable task. However, one can rely on approximatio
based on perturbation theory. It is customary to takeF(p)
51 in the Landau gauge, an approximation justified by
one-loop calculation of the massless fermion propagato
arbitrary dimensions, see for example,@39#. The LKF trans-
formation then implies a power law forF(p) in QED4 and a
simple trigonometric function in QED3. To improve upon
these results, one can take two paths:~i! incorporate the in-
formation contained in higher orders of perturbation theo
and ~ii ! study the massive theory. As pointed out in@36#, in
QED4, the power law structure of the wave function reno
malization remains intact by increasing order of approxim
tion in perturbation theory although the exponent of cou
gets a contribution from next to leading logarithms and
on.3 In @36#, constraint was obtained on the 3-point vertex
considering a power law where the exponent of this pow
law was not restricted only to the one-loop fermion propa

l-
u-

2A criticism of the vertex construction in@37# was raised in@38#.
3For the two-loop calculation of the fermion propagator, see

example@40#.
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tor. In QED3 the two-loop fermion propagator was evaluat
in @38,41,42#, where it was explicitly shown that the the a
proximationF(p)51 is only valid up to one loop, thus vio
lating thetransversality conditionadvocated in@37#. The re-
sult found there was used used in@43# to find the improved
LKF transform.

In the present paper we calculate the LKF transform
fermion propagator in massive QED3 and QED4.4 We start
with the simplest input which corresponds to the lowest
der of perturbation theory, i.e.,S(p)51/ip”2m in the Landau
gauge. On LKF transforming, we find the fermion propag
tor in an arbitrary covariant gauge. In the case of QED3, we
obtain the result in terms of basic functions of momenta.
QED4 the final expression is in the form of hypergeomet
functions. Couplinga enters as a parameter of this transce
dental function. A comparison with perturbation theory nee
the expansion of the hypergeometric function in terms of
parameters. We use the technique developed by Mochet al.
@44# for the said expansion. We compare our results with
one-loop expansion of the fermion propagator in QED4 and
QED3 @45,46#, and find perfect agreement up to terms ind
pendent of the gauge parameter at one loop, a differe
permitted by the structure of the LKF transformations. W
believe that the incorporation of LKF transformations, alo
with WGT identities, in the SDE can play a key role
addressing the problems of gauge invariance. For exam
in the study of the SDE of the fermion propagator, only tho
assumptions should be permissible which keep intact the
rect behavior of the Green functions under the LKF transf
mations, in addition to ensuring that the WGTI is satisfied
makes it vital to explore how two- and three-point Gre
functions transform in a gauge covariant fashion. In this
per we consider only a two-point function, namely, the f
mion propagator.

II. FERMION PROPAGATOR AND THE LKF
TRANSFORMATION

We start by expanding out the fermion propagator, in m
mentum and coordinate spaces, respectively, in its most
eral form as follows:

SF~p;j!5A~p;j!1 i
B~p;j!

p”
[

F~p;j!

ip”2M~p;j!
, ~1!

SF~x;j!5x”X~x;j!1Y~x;j!, ~2!

whereF(p;j) is generally referred to as the wave functio
renormalization andM(p;j) as the mass function.j is the
usual covariant gauge parameter. Motivated from the low
order perturbation theory, we take

F~p;0!51 and M~p;0!5m. ~3!

4In the context of gauge technique, gauge covariance of the s
tral functions in QED was studied in@32–34#.
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Perturbation theory also reveals that this result continue
hold true to one-loop order for the wave function renorm
ization. Equations~1!, ~2! are related to each other throug
the following Fourier transforms:

SF~p;j!5E ddxeip•xSF~x;j!, ~4!

SF~x;j!5E ddp

~2p!d
e2 ip•xSF~p;j!, ~5!

whered is the dimension of space-time. The LKF transfo
mation relating the coordinate space fermion propagato
Landau gauge to the one in an arbitrary covariant ga
reads

SF~x;j!5SF~x;0!e2 i [Dd(0)2Dd(x)] , ~6!

where

Dd~x!52 i je2m42dE
0

` ddp

~2p!d

e2 ip•x

p4
. ~7!

e2 is the dimensionless electromagnetic coupling. Takingc
to be the angle betweenx and p, we can write ddp
5dppd21sind22cdcVd22, where Vd2252p (d21)/2/G@(d
21)/2#. Hence

Dd~x!52 i je2m42df ~d!E
0

`

dppd25

3E
0

p

dc sind22ce2 ipx cosc, ~8!

where f (d)5Vd22 /(2p)d. Performing angular and radia
integrations, we arrive at the following equation:

Dd~x!52
i je2

16~p!d/2
~mx!42dGS d

2
22D . ~9!

With these tools at hand, the procedure now is as follo
Start with the lowest order fermion propagator and Four
transform it to coordinate space, apply the LKF transform
tion law. Fourier transform the result back to momentu
space.

III. THREE-DIMENSIONAL CASE

Employing Eqs.~1!, ~2!, ~3!, ~5!, the lowest order three
dimensional fermion propagator in Landau gauge in the
sition space is given by

X~x;0!52
e2mx~11mx!

4px3
,

Y~x;0!52
me2mx

4px
. ~10!c-
5-2
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Once in the coordinate space, we can apply the LKF tra
formation law using expression~9! explicitly in three dimen-
sions:

D3~x!52
iajx

2
, ~11!

where a5e2/4p. The fermion propagator in an arbitrar
gauge is then

SF~x;j!5SF~x;0!e2(aj/2)x. ~12!

For Fourier transforming back to momentum space, we u

A~p;j!52
F~p;j!M~p;j!

p21M 2~p;j!
5E d3xeip•xY~x;j!,

iB~p;j!52
ip2F~p;j!

p21M 2~p;j!
5E d3xp•xeip•xX~x;j!.

~13!

Performing the angular integration, we get
e

10500
s-

e

A~p;j!52
m

p E0

`

dx sinpxe2(m1aj/2)x, ~14!

B~p;j!5
1

pE0

` dx

x2
~11mx!@px cospx2sinpx#

3e2(m1aj/2)x, ~15!

and the radial integration then yields

A~p;j!52
4m

4p21~2m1aj!2
, ~16!

B~p;j!52
4p21aj~2m1aj!

4p21~2m1aj!2

1
aj

2p
arctan@2p/~2m1aj!#. ~17!

One can now arrive at the following expressions for the wa
function renormalization and the mass function, respective
F~p;j!52
aj

2p
arctan@2p/~2m1aj!#1

2p~4p21a2j2!2aj@4p21aj~2m1aj!#arctan@2p/~2m1aj!#

2p@4p21aj~2m1aj!#2aj@4p21~2m1aj!2#arctan@2p/~2m1aj!#
,

~18!

M~p;j!5
8p3m

2p@4p21aj~2m1aj!#2aj@4p21~2m1aj!2#arctan@2p/~2m1aj!#
. ~19!
p to
e

ing

e-
In the massless limit, one immediately recuperates the w
known results

Fmassless~p;j!512
aj

2p
arctan

2p

aj
,

Mmassless~p;j!50. ~20!

In the weak coupling, we can expand out Eqs.~18!, ~19! in
powers ofa. To O(a), we find

F~p;j!511
aj

2p3
$~m22p2!arctan@p/m#2mp%, ~21!

M~p;j!5mF11
aj

2p3
$~m21p2!arctan@p/m#2mp%G .

~22!

Let us compare these results with the ones obtained in@46#:

F1-loop~p;j!511
aj

2p3
$~m22p2!arctan@p/m#2mp%,

~23!
ll-
M1-loop~p;j!5mF11

a

2p3
$@j~m21p2!14p2#

3arctan@p/m#2mp%G . ~24!

We of course only expect the results to be in agreement u
a term proportional toaj0, as allowed by the structure of th
LKF transformations. There is no such term in Eq.~23!.
Therefore, the agreement is exact. Equations~22! and ~24!
become identical only after we subract out the nonvanish
term in the Landau gauge from Eq.~24! to write out the
subtractedmass function at one loop as

M1-loop
S ~p;j!5mF11

a

2p3
$j~m21p2!arctan@p/m#2mp%G .

~25!

One can numerically check that without the abov
mentioned subtraction, Eqs.~22!, ~24! approach the same
value only in the large momentum regime.
5-3
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IV. FOUR-DIMENSIONAL CASE

Employing Eqs.~1!, ~2!, ~3!, ~5!, the lowest order four-
dimensional fermion propagator in position space is given

X~x;0!52
m2

4p2x2
K2~mx!, ~26!

Y~x;0!52
m2

4p2x
K1~mx!, ~27!

whereK1 andK2 are Bessel functions of the second kind.
order to apply the LKF transformation in four dimension
we expand Eq.~9! aroundd542e and use the following
identities:

GS 2
e

2D52
2

e
2g1O~e!,

xe511e ln x1O~e2!,

to obtain

D4~x!5 i
je2

16p22e/2 F2

e
1g12 lnmx1O~e!G . ~28!

Note that we cannot write a similar expression forD4(0)
because of the presence of the term proportional to lx.
Therefore, we introduce a cut-off scalexmin . Now

D4~xmin!2D4~x!52 i lnS x2

xmin
2 D n

, ~29!

wheren5aj/4p. Hence

SF~x;j!5SF~x;0!S x2

xmin
2 D 2n

. ~30!

For Fourier transforming back to momentum space we
the following expressions:

A~p;j!52
F~p;j!M~p;j!

p21M 2~p;j!
5E d4xeip•xY~x;j!,

iB~p;j!52
ip2F~p;j!

p21M 2~p;j!
5E d4xp•xeip•xX~x;j!.

~31!

On carrying out angular integration, we obtain

A~p;j!52
m2

p
xmin

2n E
0

`

dxx22n11K1~mx!J1~px!, ~32!

B~p;j!52m2E
0

`

dxx22n11K2~mx!J2~px!. ~33!

The radial integration then yields
10500
y

,

e

A~p;j!52
1

m S m2

L2D n

G~12n!G~22n!

3 2F1S 12n,22n;2;2
p2

m2D , ~34!

B~p;j!52
p2

2m2 S m2

L2D n

G~12n!G~32n!

3 2F1S 12n,32n;3;2
p2

m2D , ~35!

where we have identified 2/xmin→L. The above equations
imply

F~p;j!5
G~12n!

2m2G~32n! 2F1~12n,32n;3;2p2/m2!

3S m2

L2D nF4m2G2~22n! 2F1
2S 12n,22n;2;

2
p2

m2D 1p2G2~32n!2F1
2S 12n,32n;3;2

p2

m2D G ,

~36!

M~p;j!5
2m2F1~12n,22n;2;2p2/m2!

~22n! 2F1~12n,32n;3;2p2/m2!
. ~37!

Equations~36!, ~37! constitute the LKF transformation o
Eqs.~3!. We shall now see that although Eqs.~3! correspond
to the lowest order propagator, their LKF transformatio
Eqs. ~36!, ~37!, is nonperturbative in nature and contai
information of higher orders.

A. CaseaÄ0

Let us switch off the coupling and puta50 which im-
plies n50. Now using the identity

2F1~1,2;2;2p2/m2!5 2F1~1,3;3;2p2/m2!

5~11p2/m2!21, ~38!

it is easy to see that

F~p;j!51 and M~p;j!5m, ~39!

which coincides with the lowest order perturbative result
expected.

B. Casemšp

In the limit m@p, the hypergeometric functions in Eq
~36!, ~37! can be easily expanded in powers ofp2/m2, using
the identity
5-4
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2F1S a,b;g;2
p2

m2D 512
ab

g

p2

m2
1OS p2

m2D 2

. ~40!

Retaining onlyO(p2/m2) terms, we arrive at

F~p;j!5
G~12n!G~22n!

~12n/2! F11
2n

3 S 12
5n

8 D p2

m2

1OS p2

m2D 2G S m2

L2D n

, ~41!

M~p;j!5
m

~12n/2! F11
n

6
~12n!

p2

m2
1OS p2

m2D 2G .

~42!

Now carrying out an expansion ina and substitutingn
5aj/4p, we get the followingO(a) expressions:

F~p;j!511
aj

4p F2g2
1

2
1

2p2

3m2
1 ln

m2

L2G , ~43!

M~p;j!5mH 11
aj

8p F11
p2

3m2G J . ~44!

Let us now compare these expressions against the one
perturbative evaluation of the massive fermion propaga
see, e.g.,@45#:

F1-loop~p;j!512
aj

4p FCme1S 12
m2

p2 D ~12L !G , ~45!

M1-loop~p;j!5m1
am

p F S 11
j

4D1
3

4
~Cme2L !

1
j

4

m2

p2
~12L !G , ~46!

where

L5S 11
m2

p2 D lnS 11
p2

m2D ,

C52
2

e
2g2 lnp2 lnS m2

m2D .

Knowing the fermion propagator even in one particu
gauge is a prohibitively difficult task. Therefore, Eqs.~3!
have to be viewed only as an approximation. For the w
function renormalizationF(p), this approximation is valid
up to one-loop order, whereas for the mass function, it is t
only to the lowest order. Therefore we cannot expect
LKF transform of Eqs.~3! to yield correctly each term in the
perturbative expansion of the fermion propagator. Howe
it should correctly reproduce all those terms at every orde
expansion which vanish in the Landau gauge atO(a) and
10500
op
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beyond. Therefore, we expect Eq.~45! to be exactly repro-
duced and Eq.~46! to be reproduced up to the terms whic
vanish in the Landau gauge atO(a). After subtracting these
terms, the resultingsubtractedmass function is

M1-loop
S ~p;j!5m1

ajm

4p F11
m2

p2
~12L !G . ~47!

In the limit m→`, the wave function renormalization ac
quires the form

F~p;j!1-loop511
aj

4p F2Cme2
1

2
1

2p2

3m2G , ~48!

while thesubtractedmass function is

M1-loop
S ~p;j!5mH 11

aj

8p F11
p2

3m2G J . ~49!

The last two expressions are in perfect agreement with E
~43!, ~44! after we make the identification:

2Cme→2g1 ln
m2

L2
. ~50!

C. Case of weak coupling

The casem@p is relatively easier to handle as we mere
have to expand2F1(b,g;d;x) in powers ofx and retain only
the leading terms. If we want to obtain a series in powers
the coupling alone, we need the expansion of the hyperg
metric functions in terms of its parametersb and g. We
follow the technique developed in@44#. One of the math-
ematical objects we shall use for such an expansion are tZ
sums, defined as

Z~n;m1 , . . . ,mk ;x1 , . . . ,xk!

5 (
n> i 1. i 2. . . . . i k.0

x1
i 1

i 1
m1

. . .
xk

i k

i k
mk

. ~51!

For x15•••5xk51 the definition reduces to the Eule
Zagier sums@47,48#:

Z~n;m1 , . . . ,mk ;1, . . . ,1!5Zm1 , . . . ,mk
~n!. ~52!

Euler-Zagier sums can be used in the expansion of gam
functions. For positive integersn we have@44#

G~n1e!5G~11e!G~n!@11eZ1~n21!1•••

1en21Z11 . . . 1~n21!#. ~53!

The first sumZ1(n21), e.g., is just the (n21)-th harmonic
number,Hn21, of order 1:

Z1~n21!5 (
i 51

n21
1

i
[Hn21 . ~54!
5-5
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With these definitions in hand, we proceed to expand a
pergeometric function,2F1(11«,21«;2;x), as an example
assuminguxu,1:

2F1~11«,21«;2;x!

511
G~2!

G~11«!G~21«!

3 (
n51

`
G~11«1n!G~21«1n!

G~21n!

xn

n!

511
1

~11«!G2~11«!

3 (
n51

`
~11«1n!~«1n!2G2~e1n!

G~21n!

xn

n!
.

Employing Eq.~53!, we can expand the last expression
powers ofe to any desired order of approximation. We sh
be interested only in terms up toO(a),

2F1~11«,21«;2;x!

511 (
n51

`

xn2« (
n51

`

xn1« (
n51

`
213n

n~n11!
xn

12« (
n51

`

Hn21xn. ~55!

Performing the summations, we obtain

2F1~11«,21«;2;x!5
1

12x F12«H 11
11x

x
ln~12x!J G .

~56!

Similarly,

2F1~11«,31«;3;x!

5
1

12x
2«H 1

x
1

3

2

1

12x
1S 11x

x2
1

2

12xD
3 ln~12x!J . ~57!

Substituting back into Eqs.~36!, ~37! and identifying«5
2n, we obtain

F~p;j!512
aj

4p F22g2 ln
m2

L2
1S 12

m2

p2 D ~12L !G ,

M~p;j!5m1
ajm

4p F11
m2

p2
~12L !G , ~58!

which matches exactly onto the one-loop result of Eqs.~45!,
~47! after the same identification as before, i.e., Eq.~50!.
10500
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Therefore, we have seen that the LKF transformation of
bare propagator contains important information of higher
ders in perturbation theory.

V. CONCLUSIONS

We have studied the gauge covariance of the massive
mion propagator in three- as well as four-dimensional Q
through its LKF transformation, starting from its lowest o
der approximation. Equations~18!, ~19!, ~36!, ~37! form the
main result of this paper. In the three-dimensional case
LKF transformation consists of basic functions of the m
mentum variable, whereas in the four-dimensional case
pergeometric functions arise with electromagnetic coupl
as parameter of these functions. Although our input is o
the bare propagator, the corresponding LKF transformat
being nonperturbative in nature, contains useful informat
of higher orders in perturbation theory. For example,
have shown that a perturbative expansion of our res
matches onto the known one-loop results up to gau
independent terms at this order. This slight difference ari
due to our approximated input and can be corrected syst
atically at the cost of increasing complexity of the integra
involved. We intend to carry out a similar exercise for t
three-point fermion-boson vertex. LKF transformations
the propagator and the vertex impose useful constraints
the SDE and we believe that these transformations can b
immense help in addressing the problems of gauge inv
ance in the related studies.
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APPENDIX

Most of the integrals involved in this paper are listed b
low for a quick reference@49,50#:

E
0

p

dcsind22c cosce2 ipx cosc

52 iApS px

2 D 12(d/2)

GS d21

2 D Jd/2~px!, ~A1!

E
0

`

xd/221Jd/2~ax!5
G~d/2!

212d/2ad/2
. ~A2!

For the three-dimensional case, the needed integrals are
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:
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E
0

p

du sinue2 ipx cosu5
2 sinpx

px
, ~A3!

E
0

p

du cosu sinue2 ipx cosu52i Fcospx

px
2

sinpx

~px!2G ,

~A4!

E
0

`

dp
p3

~p21m2!
Fcospx

px
2

sinpx

~px!2G52
p

2

~11mx!

x2
e2mx,

~A5!

E
0

`

dp
p sinpx

~p21m2!
5

p

2
e2mx, ~A6!

1

pE0

` dx

x2
e2ax@px cospx2sinpx#5211

a

p
arctan

p

a
,

~A7!

1

pE0

`dx

x
e2ax@px cospx2sinpx#5

a

a21p2
2

1

p
arctan

p

a
,

~A8!

E
0

`

dx sinpxe2(m1aj/2)x5
p

~m1aj/2!21p2
.

~A9!

For the four-dimensional case, we used the following in
grals in particular:

E
0

p

du sin2ue2 ipx cosu5
p

px
J1~px!, ~A10!
10500
-

E
0

`

dp
pn11Jn~px!

~p21m2!m11
5

mn2mxm

2mG~m11!
Kn2m~mx!,

~A11!

E
0

`

dxx2lKm~ax!Jn~bx!

5
al2n21bn

2l11G~11n!
GS n2l1m11

2 DGS n2l2m11

2 D
3 2F1S n2l1m11

2
,
n2l2m11

2
;n11;2

b2

a2D .

~A12!

Some of the series used in our calculation are as follows

(
n51

`

Hn21xn52
x ln~12x!

12x
, ~A13!

(
n51

`
n11

n~n12!
xn52

21x

4x
2

~11x2!ln~12x!

2x2
,

~A14!

(
n51

`
1

~n11!~n12!
xn5

22x

2x
1

~12x!ln~12x!

x2
.

~A15!
n,
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