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Energy and angular momentum radiated for non-head-on binary black hole collisions
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We investigate the possible total radiated energy produced by a binary black hole system containing non-
vanishing total angular momentum. For the scenarios considered we find that the total radiated energy does not
exceed 1%. Additionally we explore the gravitational radiation field and the variation of angular momentum in
the process. After the formation of the final black hole, the model uses the Robinson-TrédRffhapacetimes
as background. The evolution of perturbed RT geometries is carried out numerically.
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[. INTRODUCTION these options can be satisfactorily addressed, they will inevi-
tably break in the late stages of the merger, which for the
The advent of powerful detectors capable of directly meacase of black holes lies in the maximum sensitivity window
suring gravitational radiation for the first time has motivatedof earth-based detectof$2,13.
numerous investigations of systems likely to produce gravi- Another approximation, known as tloéose limit approxi-
tational waves of enough intensity which are expected to benation (CLA) (see for instanc¢14,15) assumes the black
observed with these detectors. Among those systems, a prin®les have already merged and the perturbation parameter
candidate is that composed by a couple of inspiraling blaclcan be considered to be how non-Schwarzschild non-
holes which eventually merge into one releasing considerKerr) the hole is. Since no-hair theorems imply the final fate
able amounts of energy via gravitational radiation. Clearly,of the formed black hole should be of the Kerr-type, this
because of the strong gravitational fields involved in such approach can safely be used to describe such efuute
process, its complete description requires solving Einsteilmowever, that in certain situations, the CLA has been able to
equations in their full generality which can only be doneproduce valuable results at rather earlier times when the
through numerical method4]. Several groups are combin- holes had just merged; however, it is not clear that this will
ing efforts to numerically model such a systé@+7] and  hold in generic cases
although significant progress has béand is beinggmade in A different approximate model can be obtained by consid-
this direction(see for instanc¢l]), an accurate and robust ering Robinson-Trautman spacetimgs6] which contain
implementation is still missing. In the meantime, valuablepurely outgoing gravitational radiation and decay to leave a
insight can be gained through approximate models of th&chwarzschild-like horizof17-19. These spacetimes are
system. These models serve both as means to gain a betthus natural candidates to study systems settling to a single
understanding of the problem and also to provide informablack hole. The idea here would be to use them as back-
tion that can serve as tests for the numerical simulationgground spacetimes for a perturbation treatntefor in-
where the lack of known solutions renders the problem oftance, a perturbation approach can be constructed where the
accuracy assessment more involved. perturbation parameter is the gravitational radiation pro-
Traditional models are obtained through perturbative apduced by the systefi20]. This indeed appears as an enticing
proximations where an expansion with respect to some apsuggestion since the system is not expected to produce total
propriately chosen parameter provides a reduced and maradiation outputs in excess of a few percent of the initial
ageable system of equations. Naturally, these approachesass.
provide accurate answers only when the perturbative param- In the past, this idea was pursued to produce estimates of
eter remains small. For instance, the traditional postthe total gravitational radiatiofi21,22 obtaining excellent
Newtonian approximatior(see for instancg8,9]), can be agreement with numerical relativity results for the head-on
safely used when the black holes are far enough and theollision, i.e. zero angular momentum cd&8]. These stud-
relative speeds involved are much smaller than 1. Howeveigs did not allow for the spacetime to have total angular
as the holes come closer, the gravitational fields and relativemomentum and also the physical situations considered pro-
speeds involved become very large and it is clear that this
approximation will fail to give sensible answers. Resumatiom
techniques 10] and/or effective one-body expansiofikl] INote that this approach would therefore have a background
have been proposed to extend the regime of validity of thispacetime which radiates as opposed to considering perturbations
approach. However, even when the ambiguities proper o6ff a stationary spacetime.
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duced small enough radiation output that the equations gowith i=0,2,3 and/=3(x?+ix%); and where the compo-
erning the dynamic of the perturbations were solved in thenentsé, U and X' are given by the following expressions:
asymptotic late-time linear regini@1,22.

In order to consider more interesting scenarios, perturba- £=0,
tions allowing for angular momentum were introduced in

[24] thus paving the way for studies of more generic situa- 5 2 oo 1°W, 2 dW,
tions. In the present work, we perform such studies by nu- £ —T+7\ TSt rT T TG | 8
merically solving the dynamical equations introducedi24] o '
in their full generality. Our studies are aimed towards obtain- )
ing a deeper understanding of the system and also with the ggzéﬂ\ga 0o Ea_WO_ Ea_wo
hope of producing information that can be used as a check of r 0 2 r g2 2 or
full numerical relativistic simulations.
This work is organized as follows. In Sec. Il we briefly 22— op v 2= —jg; (9)

review the perturbative treatment of Robinson-Trautman
(RT) spacetimes that allows for angular momentum. Section u, U,
Il describes the physical parameters and how to make the y=ry,,+U,+ _+ —+AU3, (10)
matching between the two eras that appear in our model. The r?

numerical implementation to solve the equations that govern

the evolution of the perturbations is described in Sec. IV. The v

numerical results are presented in Sec. V where the totaIUoo=v.

energy, the gravitational radiation field and the evolution of

angular momentum are shown. We conclude with some final 1

comments in Sec. VI. Uo=—

Il. GENERAL ANGULAR MOMENTUM PERTURBATIONS 1
OF RT SPACETIMES U1: _ _(\I’g"' \I,g)’ (11)

In [24], generic perturbations of RT spacetimes, which
include angular momentum, have been presented. A
It is convenient to express the geometry in terms of a null U2:€(<’5VR \Ifl+ 6V w9,

tetrad (2, m?, m?, n?) where

anb_ _ a—b_ A - —
Yapt*n"= —gapm’m’=1 D AUz=-— 5 (8 Wot &5 Wo);
with all other possible scalar products being zero; then, the
metric can be expressed by X0=1,
=€ Np+Nglp— MMy —Mmym, . 2 — — —
Jab a''b alb a'llb a'llb ( ) o 2‘1’2 2 (96VRTW0 4 o
In terms of the coordinate systenx’(x*,x?x%)=(u,r,(¢ =& T2 33 +r_2 ar _r_36VRTW0

+Z),(1ﬁ)(§—f)), whereu is a null coordinate and is an
affine parameter along the geodesic integral lines of the vec- +c.c., (12)
tor €2, one can express the null tetrad in terms of its com-

ponents by the relations: J T 29 2 9By Wo 4  _
X3=\g| — =S+ +— — =8y, W
€,=(du), ©) r2 3rd 2 or 3 CRT
9 a +cC.C. y
o= 7] @
ar where
a —
mi= ¢ i (5) 7-0:6VRT0-0’ (13
ax'
c.C. means complex conjugate,
_ [ a)\®
A= '<—I> (6) 2 2 — 2
X szvévavv_ ﬁavv 6\/V+V y (14)
a a
nazu(i +Xi i 7) a_md where in these (_equation_s we are explicitly denoting the
ar X' first order terms by introducing the first order parameter
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dependency, and whef, is the edth operatdr25—-27, in
the GHP notationj28], of the sphere with metric

1 _
ds? Edgdg, (15)
whereP=V(u,£,0)Po(¢,0), andPy is the value o for the
unit sphere.

The scalatV is given by

V:VRT+ )\V)\, (16)

where Vit is the RT scalar satisfying the Robinson-
Trautman equation

- 3MOVRT: VéT 3%8? Vr1— V3RT 62VRT 52VRTa
17

V, is the linear perturbation scalar aféids the edth operator
of the unit sphere. One can then expréssby

KV:KVRT+)\ K\/)\, (18)
where
2 2 — 5
Kver VoVt VarVRT™ VTRTavRTVRT Ovy VrTt VRT!
(19
and

_ 2 _
KV)\: V_RT6VRT6VRTV)‘_ \ETa\/RTV)‘ 6VRTVRT

_ \ _
- VTavRTVRT Oy Vit VTavRTVRT Ov, VRT
RT RT

Vi

Var 20

In the agove equations_we haveozao(u,g,?), W,
=Wo(u,r,¢,0), ¥i="3(u,,{) and

VI=W(u,Z,0)=—(Mg+A[M(U,Z,0)+i M(u,éf)](): )
21

where u is related too by

=5 (87 00— 8y, 00). (22
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whereW3=w9(u,Z- ) andw,;=0(1/r?). Itis interesting to
note that the component ;= d*W,/dr* of the Weyl tensor
is given in this cas¢24] by

W AW, 4
s gt
where the second term is of ord@(1/r®).
The remaining equations at scri are
1,0 VRT 0 0
\POZ?)_‘I,O_{—aVRT‘I,l_gMOO-O’ (25)

VRT

«iro—sv—RT«lfO—a Mq+ium)— 8y (K (26)
(VA1 Var(Mitin) =0y, (Ky )oo

and
_ v \Y; .
A _g-RT > _
VRT—z VRT— =<
— g 0V, 0ot 250y, VrrOy, 00
VRT RT VZRT RT RT

X X2 0 RT »2
——3dy  V 0o+05 0°——085 o
Vit VRT RTaVRT 0" MVgy Vgr VRT 0

+2E6 V o
V%T Vit RTavRTO'O

(27)

_ y — _x2 0
VRTavRTVRTaVRT00+ aVRTU :

The objective is to use the solutions of the previous equa-
tions to model a black hole that just formed after the non-
head-on collision of a previous binary system. In this model
the idea is to only make use of the information of the indi-
vidual masses and the total angular momentum. With all this
in mind we have to chose the appropriate gauge and free
functions.

In Ref.[24] it was discussed the gauge freedom of these
spacetimes. In order not to introduce extra structure, we will
chose the free functions and gauges that make

M;=0 (28

and

In order to study the intrinsic fields at future null infinity Other choices will force extra structure on the model beyond
(scri, it is convenient to consider the leading order behaviofMasseés and angular momentum, as mentioned above.

of Wy, namely

\PO

0
Wo=77, TW1, (23

With this choice the previous equations become

Y
\1’823\/—:_::\1’8-‘1- 3y, W9, (30)
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: Y
=350 (31)
VRT
and
) _ . v,
—6MgyV, = VRTéVRTaVRT KVF 18M Vgt V_RT '
(32
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A 3 — — 3 —
V=1- E( \/;Y2'2(§,§)+Y2'0(§,§)+ \/;Yz,z(g,f)>-

(40
IIl. FIXING THE PARAMETERS AND THE NEWTONIAN

MATCHING

The physical system can be characterized by two stages.
During the first stage two black holes are moving towards

Itis interesting to note that since the RT equation can alsQ:n other with some orbital angular momentum. At some

be expressed as

VRT =
—6M 0 \/_RT = 6VRT6 (33)

VRTKVRT’
Eq. (32) can be written in the following way:

—-6M 0 V)\ = VRTEVRTBVRT Kv)\ + 3VA€VRT6VRT KVRT'
(34)

Given initial conditions for the function¥/gy, W9, ¥
andV, Egs.(17), (30), (31) and(32) provide for the respec-
tive evolutions.

The radiation content of the spacetime is easily described"

by the time derivative of the Bondi shear. L&} denote the
Bondi shear andig the Bondi time; then for any section of

scriu=const one can express the radiation content from th

relation[29]

do B 62V_ 35
HB VAL (39
therefore to first order one has
(90'% _ 62VRT 62V)\ V)\62VRT (36)
dug Vgt Vrt Vi: |

The radiation flux at the retarded tinteis given by

1 [ do% dod

41 SuauB (9UB

Fg(u)= ds. (37

moment they collide and form a single black hole, which
settles down in the asymptotic future to a stationary Kerr
geometry.

During the first stage of evolution we describe the gravi-
tational radiation with the quadrupole formula, where the
dynamics is worked out from the Newtonian framework. The
whole motion is contained in a plane; therefore two variables
are sufficient to describe the orbits. The two integrals of
motion, namely energi and angular momentufy allow to
solve the Newtonian system.

The initial data are assumed to be given in theyj
plane, with zero total momentum and such that the orbital
gular momentum is along the positizelirection.

The initial velocities can be thought to have components
along thex axis only. Let us calR, the initial impact param-
eter, at some initial relative distaneg. In this way, using
fhe relative velocity o, one has

Gmym,

(41)

J=uRovo, (42

where u=m;m,/(m;+m,) is the reduced mass.
For this kind of motion the quadrupole formula predicts

that the power of gravitational radiation is given by

11j2

u2rb

wrt

(43

Gmlmz)
r

8 2
Fo(r)= 1_5(Gm1m2)

Let us recall that in this case the timelike component ofwhich generalizes the analog equation appearing in Ref.

the Bondi momentum at the sectior=const can be calcu-
lated from

Mo

V3

0

_ - 2

(38)
At the retarded timau, we say thatv represents a quad-
rupole excitation along thg axis if
V=1+AY, ({0, (39

whereA is the amplitude of the excitatiolY,, o is a spherical

harmonic, and (’,Z’) are the coordinates of the sphere
where the pole is along theaxis. Then in terms of the usual

spherical harmonics with coordinates {), one has

[22].

In order to continue the dynamical description after the
collision of the two black holes, we need to have a merging
condition in the Newtonian framework. In RefR21] and
[22] we have succeeded in estimating the total energy radi-
ated in the head-on black hole collision using the following
criteria. When a black hole, which mass at infinitynis,;, is
brought to a distance;, of another black hole of asymptotic
massm;,, its physical mass, for the stationary situation, is
changed 30] to

ml=m;;+ , (44)

and similarly for the other mass.
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Applying the arguments of Ref22] one concludes that It should be emphasized that the relation between the initial
the merging condition should be taken when the separatioRT stage mass and angular momentivimand J with the
distance has the value Newtonian mass and angular momentiy,,, andj is just
the Lorentzian factoy=1/\/1—v2,=1.1547. In the last sec-
tion we will comment on the incidence of this factor on our
results.

Let us observe that the relation between the relativistic
angular momentum and total massJi¢N?=0.217.

Since the angular momentum is small, it can be treated as

re=2(ml+m2). (45

It is convenient to introduce the relative mass parameter
and the reference mass, so thatm;;=m and m;,=am.
Then the merging conditiof22] gives

5 a perturbation. At the moment of the collapse, we can con-
ro=(mi+my)| 1+ \/ 1+ @ _ (46) sider a quadrupole excitation along thaxis with amplitude
¢ ' ' (1+ a)? A, as described above. Let us take-A,+A;, whereA; is

the contribution coming from the appearance of the angular
Let us now consider the initial data used in Ref] for  momentumj. The matching condition is given by the equa-
the grazing collisions of black holes; namel;=5m, x,  tion [see Eqs(35), (37) and(43)]
=-5m, y;=m, y,=—m, v,,=—0.5 andv,,=0.5, with
m=1 and a=1. These data correspond to a hyperbolic Fe=Fo(re), (50)
Newtonian trajectory, with initial separation distance
=10.198, and critical merging radiug=4.449.
Our strategy is to follow closely the model used in A,,=0.057 (51)
[21,22; but we also want to compare our work wifg].
However, the initial data df2] involve two black holes with  and
half the speed of light each; therefore in adapting this initial
data to our model we must take into account relativistic ef- A;=0.028. (52
fects. In Refs.[21] and [22] there was no need for these
concerns because the initial data were not relativistic.
Since the initial velocities are relativistic, the relative ini- A
tial velocity v, is calculated from the expression Ver=1— 7”‘ X

from which one obtains in this case

Therefore, to be explicit, the initial data fMzt andV, are

3 — _
\/;YZ,— 2(§! g) + Y2,0(§! g)

_ Ux27Uxa
1-vyvy

Uy =0.8, (47)

3 _
+ §Y2,2(§,§)) (53)

where we are using geometric units in which the velocity of
light and the gravitational constant have the unit value.
The energy radiated during the falling phase, calculated A 3 L .
from Eq. (43) is Ey=0.00346(;+m,). AV, =— “x \ﬁYzz(g,g)JrYzo(g,g)
In order to match the Newtonian stage with the black hole 2 2~ '
RT perturbed model we need also to set the total initial mass 3 .
+ \[EYZ,Z(gvg)) .

and

and initial angular momentum for the RT stage.
In previous work we have matched the Newtonian mass

Mpew=Mi1+ M, 10 the initial massM; this already takes The constantM, is determined from Eq(38), and the
into accqunt thg field relativistic first _order corrgctlon N .ondition that initially the mass is given by EG8), which
terms of its physical massesl andm2, since, recalling Eq. setsMy=2.302

(_21) of I/?ef. [_lz_ﬁ]' the initi;l massd Wogdzggﬁlg m2 The orbital angular momentum is taken into account in
Miymip/11,. The system discussed in R¢E2] had zero  yoo inisial data for?Y. It is convenient to express these ini-

initial velocity, and therefore there was no need to take intq. . I : .
account any other effect. Instead in our case we should ta(lzueal data in terms of the auxiliary field, given by
into account speed relativistic corrections.

(54)

Then, since the initial data are relativistic, the initial mass PO 6VRTg i ﬁ (55)
and angular momentum are calculated from ' Var Vet
mi, mi, Let us note that then
M= >+ > =2.309 (49
\/1_U1 \/1_U2 6VRT\1/8:529
and . . .
so that in the stationary case one lf8g=0 andg=0.
, . We takeg=g and
m;qv m;ov
J=—y oy, 22 =1155. (49 B
Vicv 1-vg 9=0oY1d LD, (56)
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whereg is related to the angular momentum in thdirec- V. RESULTS

tion by A. Variations of total energy

Jo= — V12m)=—4.094. (57) The total Bondi energy-momentum vector at any RT re-
tarded timeu can be calculated from the expression

In Ref. [31] it was also considered a similar case of a 1 o L
binary system with orbital angular momentum. Their initial pa=— —f 13(¢,0)(W3,+ ogog) AT, (60)
data werex;=0, X,=0, y;=m, y,=—m, v,;=—0.8 and 4mls
Uy>=0.894, withm=1.5 anda=3%. From the Newtonian
point of view this data correspond to an elliptic motion, but
with maximum and minimum radius that are smaller than the
corresponding critical merging radius. For this reason, we (13) =
cannot compare this case with our model.

whereSis the section determined hy= const,

(v -¢ -1
1+¢0i(1+¢0) "1+¢)

and the subscripB is used to emphasize that the quantities

are evaluated with respect to a Bondi frame. The nmass
Accurate numerical evolution of a fourth order parabolicthis sectionSis then given by

equation, such as Eq17), by means of an explicit finite

difference scheme is a challenge because the Courant- M= \P?P,, (62)

Friedrich-Lewy (CFL) [32] condition requires that the time

stepAu scale as the fourth power of the spatial grid size. _ X

Nevertheless, we constructed a set of algorithms to solvgat MEtric 77, at scri[36]. . . .

these equations using second order accurate finite difference Let us note _that the relations between the Bondi quantities

approximationgfollowing [33]). The numerical treatment of and the intrinsic ones are

the eth operator has been thoroughly described38]. This

work presented a clean way to deal with derivative operators PO —

on the sphere by covering it with two coordinate patches and B2

dealing with spin weighted quantities. Thus, it is ideally

suited for our present purposes. The numerical grid on eacand

patch is defined by;;=q;+ip; whereq;,pj=—1-2A,

+(i—1)A4 [with Ay=2/(N,—5)]. Theangular derivatives o _9. (64)

are discretized by centered second order finite difference ap- BTV’

proximations and information between patches is obtained ] ]

through fourth order accurate interpolatiofBor a detailed ~therefore in our gauge one hag=0, at each RT section.

description of this approach sgg3].) The gravitational energy radiation flux is calculated from

The integration in time is based upon a three time levefhe Bondi time derivative of the supermomentuan [37];

1 (61)

IV. NUMERICAL IMPLEMENTATION

where the indices are raised and lowered by the Lorentzian

v

v (63)

Adams-Bashford32] scheme with predictor®) given by namely
~ Au ﬂ :% L:B (65)
Fu+Au)=Fu)+ Tau[Sf(u)—f(u—Au)], (58) dug dug dug’
If one instead considers the time change with respect to the
and corrector RT time, it is convenient to have in mind that for any func-
A tion f one has
u -
Flu+Au)=Fu)+ 7(9u[]—'(u)+}'(u+Au)]+O(Au3), of _1 of o
(59) g Vau (66)
where F stands foVgt or V, and thed, terms are to right The so called news functiofog/dug can be expressed in

hand sides of Eqg27). Additionally, we implemented the terms of the perturbed RT fields by
iterative Cranck-Nicholson algorithi§84,35 and observed

that the results obtained with both implementations agree. dog 6°V 1. Vv ) 5
Since the evolution equation fok) is linear, its numerical g V2 TV (67)
integration is straightforwardly done by centered second or-

der differences at the level- Au/2). To calculate the total energy radiated, one could then nu-

The second order convergence of numerical solutions washerically evaluate the gravitational energy radiation flux of
confirmed in the perturbative regime using solutions of theEq. (65) at different times and sum along all the elapsed
linearized equation and second order self-convergence of theme. However, it is more accurate to numerically evaluate
solutions was confirmed in the nonlinear regime. the initial mass and subtract the final mass. This is due to the
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Re(¥,,) C. Variations of angular momentum

When dealing with the notion of angular momentum one
is faced with the fact that there are several inequivalent defi-
nitions of angular momentum, which are not tightly related
with the notion of intrinsic angular momentum, with the ex-
ception of[38]. An appropriate definition of intrinsic angular
momentum involves the selection of unique secti88 of
future null infinity where the quantity is to be calculated.
Since in our case we are taking the angular momentum as a
perturbation parameter of the RT geometries, it is not essen-
0.601 tial to consider these refinements in our model. And also,
since the RT spacetimes provide with a geometric unique
family of sections of future null infinity, namely the sections

_02 1 1 1 1 1 1 1 1 1 N .
0 02 04 06 08 1 12 14 16 18 2 u=const, it is natural to use them to calculate the angular
momentum.
Re(¥ax) Then, instead of describing the variation of the intrinsic
0.4 o — T . . T T angular momentum we describe the variation of the RT-
0.3 - FOO womeos angular momentum vector given by
0.3 | 0.2 |, . 602 oo 8
o1k ] 900 ,,,,,,,,,,,,,,,, | S
i OF .. I | J*=n f —30* 3 dS |, (68)
biz 01 F i e[ serdm o S
0.2
01} 0.001 . . .
where Syt are the sections determined hy=-const, k
S e ) =1,2,3, so that* are the spacelike components ¥t and
P where the Bondi componen¥3;, of the Weyl tensor, is
0.1 _ o related to the RT Weyl componeﬂ{‘f by
_02 1 1 1 1 1 1 1 1 1 ’\I]‘O
0 02 04 06 08 1 12 14 16 18 2 0o _*1

B1= = (69

3
FIG. 1. Evolution of¥, as a function of time. The subscript v

andy refer to thex andy axis of the stereographic coordinate

=x-+iy of the northern hemisphere. Each of the four curves referto  Figure 2 shows a very small and smooth variation of the

detectors at 0°, 30°, 60° and 90°, measured from the north pole dingular momentum; which is more related to the time varia-

the sphere. The insets show the detail of the rapid time variations dion of the RT geometry than to the radiation of angular

the beginning. momentum, as can be seen from the nature of(&%).

fact that the RT spacetime is known to converge asymptoti-
cally to the Schwarzschild one; more specifically, one knows
that lim,_.Vgr=1, and similarly one can see that The estimate of the total gravitational energy radiated in
lim,_.V,=0. the non-head-on collision of two black holes is less than one
Using this procedure, and a resolutionnef 32 points for  percent according to our model. This is on the low end value
half a meridian of the sphefapproximatelyN= 1600 points  of existing numerical resultévhich are still being refined
for the whole sphepethe energy radiateBlgt during the RT  and comparable with those obtained with the close limit ap-
stage is found to b&z;=0.003M,,. proximation[39]. It is however worth mentioning that our
Then, since in units o, the energy radiated in the first calculations predict an amplitude of the gravitational waves
stage isEy=0.003M,, the total energy radiated in the that could be important from the observational point of view.
whole process i€=0.0064M,,. Additionally, it predicts a rather narrow time duration of the
“burst.” Since the frequency at which this happens, its am-
plitude and the time duration can be used as preliminary
information for constructing data analysis “filter$20,41],
The numerical calculation of the evolution of the gravita- knowledge of these is of importance while templates from
tional radiation field¥,, is shown in Fig. 1. full numerical simulations are not available. We will carry
It can be seen that although the total energy radiated isut a detailed study of these in the future.
rather small, the amplitude of the gravitational radiation field At first sight there is too large a difference between the
can be large. In other words, this model describes a noticeaumerical results if2] and the estimates obtained here.

VI. FINAL COMMENTS

B. Gravitational radiation field

able burst. However, one should keep in mind several points wlloh
This is interesting sinc¥ , is precisely what gravitational themselvescan account for this difference. Comments are in
wave detectors will measure. place for both the results if2] and those presented here:
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Angular momentum relative to intitial value
0~004 T T T T T T T T T

0.0035 1
0.003 | 1

0.0025 - 4

0.002 [ 4 FIG. 2. Evolution of the relative variation of
angular momentund as a function of time.

(J-dindd

0.0015 | 1

0.001 | 1

0.0005 1

time

First, the results ifi2] were obtained under a rather coarseso that the ration between the total energy radiated versus the
resolution and the final numbers need to be refittleere are  changedM, would increase by the factoy, that is about
intense efforts worldwide in this directiorAdditionally, the  15%.
obtained value of radiated energy come from comparissons Similarly, had we not used the relativistic correction on
of initial Arnowitt-Deser-Misner mass and apparent horizonthe angular momentund, its initial value would have de-
masses. Masses obtained from apparent horizon calculationsreased by about 13%, but the relative variation shown in
in dynamical regimes, are only an approximation of the masgig. 2 would not have changed.
the black hole and hence results obtained through this |p any case, we think that by applying our model to these
method can have a significant systematic error. Furthermorg|ativistic initial data, we are pushing the model to the
itis important to remember that the initial data[@f is given 1, ndary of is validity. Comparisons with future numerical

at a spacelike hypersurface of the spacetime; while, by thgjnjations will shed light on this and indicate how far this
nature of the RT spacetime, our initial data is given on 3model can be pushed

characteristic surface. This implies an essential difference 1. - qiation of aﬁgular momentum seems to be negli-
since in the space_llke hy_pe_rsurface _|n|t|_al data one has In(jible with these initial conditions. In order to consider higher
coming gnd outgoing radiation contrlbqtlr_]g to the total en_values of the initial angular momentum, we would need to
ergy radiated, while in the RT characteristic problem that we '

solve, we do not consider any incoming initial radiation in Qeal with other background geometries, as for example twist-

our calculations. So, for the relativistic regime, one expectd!d @lgebraically special spacetimes. Regarding the smooth

the time slice initial data to radiate more energy than thénonotonic variation of it one can infer that, for these small
characteristic case. initial angular momentum data, its behavior is driven by the

As far as the present model is concerned, in preViougxponential asymptotic behavior of the RT background ge-
works we have obtained very good agreements between o@metry. There are not complicated initial variationsf,
estimates and the mature numerical calculations of exact gdéhat for example do appear iﬂg, as seen in Fig. 1.
ometries, as one can check in the family of systems depicted When describing a concrete physical situation with these
in Figs. 3 and 4 of Ref[22]. The fact that the model repre- spacetimes, one is supposed to choose the gauge and fix the
sented so well such a variety of initial data and differentfree functions in order to make the best representation of the
mass ratios, motivated us to apply the same techniques to tlsystem. It is somehow striking that the choice of the frame in
case in which angular momentum was involved. Howeverfirst order has physical significance, and it is not pure gauge
since there are just twistill being refined numerical calcu- as one is accustomed to in the studies of linearized gravity
lations available to compare with, it is difficult to obtain around Minkowski spacetime.
much information at this stage.

As we have mentioned before our aim is to follow as
close as possible the model used 2i] and[22]; however ACKNOWLEDGMENTS
the fact that the initial conditions considered are relativistic
poses several questions. For example, in matching the We acknowledge support from CONICET, SeCyT-UNC,
masses of the two stages we have used (B6), so one NSF Grants No. PHY9900791 and PHY0090091, and Eberly
might ask how would the results change if the relativistic Research Funds of Penn State. Some computations were per-
factor was not used? This would certainly decrease the initisflormed in the VN cluster(vn.physics.ubc.gasupported by
M andM g by about 13%; buEy andErt would not change, the Canadian Foundation for Innovation.
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