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Energy and angular momentum radiated for non-head-on binary black hole collisions
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We investigate the possible total radiated energy produced by a binary black hole system containing non-
vanishing total angular momentum. For the scenarios considered we find that the total radiated energy does not
exceed 1%. Additionally we explore the gravitational radiation field and the variation of angular momentum in
the process. After the formation of the final black hole, the model uses the Robinson-Trautman~RT! spacetimes
as background. The evolution of perturbed RT geometries is carried out numerically.
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I. INTRODUCTION

The advent of powerful detectors capable of directly m
suring gravitational radiation for the first time has motivat
numerous investigations of systems likely to produce gra
tational waves of enough intensity which are expected to
observed with these detectors. Among those systems, a p
candidate is that composed by a couple of inspiraling bl
holes which eventually merge into one releasing consid
able amounts of energy via gravitational radiation. Clea
because of the strong gravitational fields involved in suc
process, its complete description requires solving Eins
equations in their full generality which can only be do
through numerical methods@1#. Several groups are combin
ing efforts to numerically model such a system@2–7# and
although significant progress has been~and is being! made in
this direction~see for instance@1#!, an accurate and robus
implementation is still missing. In the meantime, valuab
insight can be gained through approximate models of
system. These models serve both as means to gain a b
understanding of the problem and also to provide inform
tion that can serve as tests for the numerical simulatio
where the lack of known solutions renders the problem
accuracy assessment more involved.

Traditional models are obtained through perturbative
proximations where an expansion with respect to some
propriately chosen parameter provides a reduced and m
ageable system of equations. Naturally, these approa
provide accurate answers only when the perturbative par
eter remains small. For instance, the traditional po
Newtonian approximation~see for instance@8,9#!, can be
safely used when the black holes are far enough and
relative speeds involved are much smaller than 1. Howe
as the holes come closer, the gravitational fields and rela
speeds involved become very large and it is clear that
approximation will fail to give sensible answers. Resumat
techniques@10# and/or effective one-body expansions@11#
have been proposed to extend the regime of validity of
approach. However, even when the ambiguities prope
0556-2821/2002/66~10!/104017~9!/$20.00 66 1040
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these options can be satisfactorily addressed, they will in
tably break in the late stages of the merger, which for
case of black holes lies in the maximum sensitivity windo
of earth-based detectors@12,13#.

Another approximation, known as theclose limit approxi-
mation ~CLA! ~see for instance@14,15#! assumes the black
holes have already merged and the perturbation param
can be considered to be how non-Schwarzschild~or non-
Kerr! the hole is. Since no-hair theorems imply the final fa
of the formed black hole should be of the Kerr-type, th
approach can safely be used to describe such epoch~note
however, that in certain situations, the CLA has been able
produce valuable results at rather earlier times when
holes had just merged; however, it is not clear that this w
hold in generic cases!.

A different approximate model can be obtained by cons
ering Robinson-Trautman spacetimes@16# which contain
purely outgoing gravitational radiation and decay to leav
Schwarzschild-like horizon@17–19#. These spacetimes ar
thus natural candidates to study systems settling to a si
black hole. The idea here would be to use them as ba
ground spacetimes for a perturbation treatment.1 For in-
stance, a perturbation approach can be constructed wher
perturbation parameter is the gravitational radiation p
duced by the system@20#. This indeed appears as an enticin
suggestion since the system is not expected to produce
radiation outputs in excess of a few percent of the init
mass.

In the past, this idea was pursued to produce estimate
the total gravitational radiation@21,22# obtaining excellent
agreement with numerical relativity results for the head-
collision, i.e. zero angular momentum case@23#. These stud-
ies did not allow for the spacetime to have total angu
momentum and also the physical situations considered

1Note that this approach would therefore have a backgro
spacetime which radiates as opposed to considering perturba
off a stationary spacetime.
©2002 The American Physical Society17-1
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duced small enough radiation output that the equations g
erning the dynamic of the perturbations were solved in
asymptotic late-time linear regime@21,22#.

In order to consider more interesting scenarios, pertur
tions allowing for angular momentum were introduced
@24# thus paving the way for studies of more generic situ
tions. In the present work, we perform such studies by
merically solving the dynamical equations introduced in@24#
in their full generality. Our studies are aimed towards obta
ing a deeper understanding of the system and also with
hope of producing information that can be used as a chec
full numerical relativistic simulations.

This work is organized as follows. In Sec. II we briefl
review the perturbative treatment of Robinson-Trautm
~RT! spacetimes that allows for angular momentum. Sec
III describes the physical parameters and how to make
matching between the two eras that appear in our model.
numerical implementation to solve the equations that gov
the evolution of the perturbations is described in Sec. IV. T
numerical results are presented in Sec. V where the t
energy, the gravitational radiation field and the evolution
angular momentum are shown. We conclude with some fi
comments in Sec. VI.

II. GENERAL ANGULAR MOMENTUM PERTURBATIONS
OF RT SPACETIMES

In @24#, generic perturbations of RT spacetimes, wh
include angular momentum, have been presented.

It is convenient to express the geometry in terms of a n
tetrad (,a, ma, m̄a, na) where

gab,anb52gabm
am̄b51 ~1!

with all other possible scalar products being zero; then,
metric can be expressed by

gab5,anb1na,b2mam̄b2m̄amb . ~2!

In terms of the coordinate system (x0,x1,x2,x3)5„u,r ,(z
1 z̄),(1/i )(z2 z̄)…, whereu is a null coordinate andr is an
affine parameter along the geodesic integral lines of the v
tor ,a, one can express the null tetrad in terms of its co
ponents by the relations:

,a5~du!a ~3!

,a5S ]

] r D
a

~4!

ma5j iS ]

]xi D a

~5!

m̄a5 j̄ iS ]

]xi D a

~6!

na5US ]

] r D
a

1Xi S ]

] xi D a

~7!
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with i 50,2,3 andz5 1
2 (x21 ix3); and where the compo

nentsj i , U andXi are given by the following expressions

j050,

j25
j0

2

r
1lj̄0

2S 2
s0

r 2
1

1

r

]2W0

]r 2
2

2

r 2

]W0

]r D , ~8!

j35
j0

3

r
1lj̄0

3S 2
s0

r 2
1

1

r

]2W0

]r 2
2

2

r 2

]W0

]r D
j0

25A2P0V, j0
352 i j0

2 ; ~9!

U5rU 001U01
U1

r
1

U2

r 2
1DU3 , ~10!

U005
V̇

V
,

U052
1

2
KV ,

U152
1

2
~C2

01C̄2
0!, ~11!

U25
l

6
~ðVRT

C̄1
01ð̄VRT

C1
0!,

DU352
l

r 2
~ ð̄VRT

2 W01ðVRT

2 W̄0!;

X051,

X25lj0
2S 2

t̄0

r 2
1

2C̄1
0

3r 3
1

2

r 2

]ðVRT
W̄0

]r
2

4

r 3
ðVRT

W̄0D
1c.c., ~12!

X35lj0
3S 2

t̄0

r 2
1

2C̄1
0

3r 3
1

2

r 2

]ðVRT
W̄0

]r
2

4

r 3
ðVRT

W̄0D
1c.c.,

where

t05ð̄VRT
s0 , ~13!

c.c. means complex conjugate,

KV5
2

V
ð̄VðVV2

2

V2
ðVV ð̄VV1V2, ~14!

and where in these equations we are explicitly denoting
first order terms by introducing the first order parameterl
7-2
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dependency, and whereðV is the edth operator@25–27#, in
the GHP notation@28#, of the sphere with metric

dS25
1

P2
dzdz̄, ~15!

whereP5V(u,z,z̄)P0(z,z̄), andP0 is the value ofP for the
unit sphere.

The scalarV is given by

V5VRT1lVl , ~16!

where VRT is the RT scalar satisfying the Robinso
Trautman equation

23M0V̇RT5VRT
4 ð2ð̄2 VRT2VRT

3 ð2VRT ð̄2VRT ,
~17!

Vl is the linear perturbation scalar andð is the edth operato
of the unit sphere. One can then expressKV by

KV5KVRT
1l KVl

, ~18!

where

KVRT
5

2

VRT
ð̄VRT

ðVRT
VRT2

2

VRT
2

ðVRT
VRT ð̄VRT

VRT1VRT
2 ,

~19!

and

KVl
5

2

VRT
ð̄VRT

ðVRT
Vl2

2

VRT
2

ðVRT
Vl ð̄VRT

VRT

2
2

VRT
2

ðVRT
VRT ð̄VRT

Vl1
2Vl

VRT
3

ðVRT
VRT ð̄VRT

VRT

1VlVRT1
Vl

VRT
KVRT

. ~20!

In the above equations we haves05s0(u,z,z̄), W0

5W0(u,r ,z,z̄), C1
05C1

0(u,z,z̄) and

C2
05C2

0~u,z,z̄ !52„M01l@M1~u,z,z̄ !1 i m~u,z,z̄ !#…;
~21!

wherem is related tos0 by

m5
1

2i
~ðVRT

2 s̄02ð̄VRT

2 s0!. ~22!

In order to study the intrinsic fields at future null infinit
~scri!, it is convenient to consider the leading order behav
of W0, namely

W05
C0

0

4!r
1W1 , ~23!
10401
r

whereC0
05C0

0(u,z• z̄) andW15O(1/r 2). It is interesting to
note that the componentC05]4W0 /]r 4 of the Weyl tensor
is given in this case@24# by

C05
C0

0

r 5
1

]4W1

]r 4
, ~24!

where the second term is of orderO(1/r 6).
The remaining equations at scri are

Ċ0
053

V̇RT

VRT
C0

01ðVRT
C1

023M0s0 , ~25!

Ċ1
053

V̇RT

VRT
C1

02ðVRT
~M11 im!2ð̄VRT

~KVRT
!s0 ~26!

and

26M0

V̇l

VRT
5ð̄VRT

ðVRT
KVl

26
V̇RT

VRT
S 3M

Vl

VRT
2M1D22Ṁ1

2
V̇RT

VRT
ð̄VRT

2 s012
V̇RT

VRT
2

ð̄VRT
VRTð̄VRT

s0

2
2

VRT
ð̄VRT

V̇RTð̄VRT
s01ð̄VRT

2 ṡ02
V̇RT

VRT
ðVRT

2 s̄0

12
V̇RT

VRT
2

ðVRT
VRTðVRT

s̄0

2
2

VRT
ðVRT

V̇RTðVRT
s̄01ðVRT

2 ṡ̄0. ~27!

The objective is to use the solutions of the previous eq
tions to model a black hole that just formed after the no
head-on collision of a previous binary system. In this mo
the idea is to only make use of the information of the in
vidual masses and the total angular momentum. With all
in mind we have to chose the appropriate gauge and
functions.

In Ref. @24# it was discussed the gauge freedom of the
spacetimes. In order not to introduce extra structure, we
chose the free functions and gauges that make

M150 ~28!

and

s050. ~29!

Other choices will force extra structure on the model beyo
masses and angular momentum, as mentioned above.

With this choice the previous equations become

Ċ0
053

V̇RT

VRT
C0

01ðVRT
C1

0 , ~30!
7-3
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Ċ1
053

V̇RT

VRT
C1

0 ~31!

and

26M0V̇l5VRTð̄VRT
ðVRT

KVl
218M0V̇RTS Vl

VRT
D .

~32!

It is interesting to note that since the RT equation can a
be expressed as

26M0

V̇RT

VRT
5ð̄VRT

ðVRT
KVRT

, ~33!

Eq. ~32! can be written in the following way:

26M0 V̇l5VRTð̄VRT
ðVRT

KVl
13Vlð̄VRT

ðVRT
KVRT

.
~34!

Given initial conditions for the functionsVRT , C0
0, C1

0

andVl Eqs.~17!, ~30!, ~31! and~32! provide for the respec
tive evolutions.

The radiation content of the spacetime is easily descri
by the time derivative of the Bondi shear. LetsB

0 denote the
Bondi shear anduB the Bondi time; then for any section o
scri u5const one can express the radiation content from
relation @29#

]sB
0

]uB
5

ð2V

V
; ~35!

therefore to first order one has

]sB
0

]uB
5

ð2VRT

VRT
1lS ð2Vl

VRT
2

Vlð2VRT

VRT
2 D . ~36!

The radiation flux at the retarded timeu is given by

FB~u!5
1

4pESu

]sB
0

]uB

]s̄B
0

]uB
dS2. ~37!

Let us recall that in this case the timelike component
the Bondi momentum at the sectionu5const can be calcu
lated from

PB
05

1

4pE M0

V3
dS2. ~38!

At the retarded timeu, we say thatV represents a quad
rupole excitation along they axis if

V511AY2,0~z8,z̄8!, ~39!

whereA is the amplitude of the excitation,Y2,0 is a spherical
harmonic, and (z8,z̄8) are the coordinates of the sphe
where the pole is along they axis. Then in terms of the usua
spherical harmonics with coordinates (z,z̄), one has
10401
o

d

e

f

V512
A

2 SA3

2
Y2,22~z,z̄ !1Y2,0~z,z̄ !1A3

2
Y2,2~z,z̄ ! D .

~40!

III. FIXING THE PARAMETERS AND THE NEWTONIAN
MATCHING

The physical system can be characterized by two sta
During the first stage two black holes are moving towa
each other with some orbital angular momentum. At so
moment they collide and form a single black hole, whi
settles down in the asymptotic future to a stationary K
geometry.

During the first stage of evolution we describe the gra
tational radiation with the quadrupole formula, where t
dynamics is worked out from the Newtonian framework. T
whole motion is contained in a plane; therefore two variab
are sufficient to describe the orbits. The two integrals
motion, namely energyE and angular momentumj, allow to
solve the Newtonian system.

The initial data are assumed to be given in the (x,y)
plane, with zero total momentum and such that the orb
angular momentum is along the positiveẑ direction.

The initial velocities can be thought to have compone
along thex axis only. Let us callR0 the initial impact param-
eter, at some initial relative distancer 0. In this way, using
the relative velocityv0, one has

E5
m

2
v0

22
Gm1m2

r 0
, ~41!

j 5mR0v0 , ~42!

wherem5m1m2 /(m11m2) is the reduced mass.
For this kind of motion the quadrupole formula predic

that the power of gravitational radiation is given by

FQ~r !5
8

15
~Gm1m2!2F 2

mr 4 S E1
Gm1m2

r D1
11j 2

m2r 6G ,

~43!

which generalizes the analog equation appearing in R
@22#.

In order to continue the dynamical description after t
collision of the two black holes, we need to have a merg
condition in the Newtonian framework. In Refs.@21# and
@22# we have succeeded in estimating the total energy r
ated in the head-on black hole collision using the followi
criteria. When a black hole, which mass at infinity ismi1, is
brought to a distancer 12 of another black hole of asymptoti
massmi2, its physical mass, for the stationary situation,
changed@30# to

m15mi11
mi1mi2

2r 12
, ~44!

and similarly for the other mass.
7-4
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Applying the arguments of Ref.@22# one concludes tha
the merging condition should be taken when the separa
distance has the value

r c52~m11m2!. ~45!

It is convenient to introduce the relative mass parametea
and the reference massm, so thatmi15m and mi25am.
Then the merging condition@22# gives

r c5~mi11mi2!F11A11
2a

~11a!2G . ~46!

Let us now consider the initial data used in Ref.@2# for
the grazing collisions of black holes; namely:x155m, x2
525m, y15m, y252m, vx1520.5 andvx250.5, with
m51 and a51. These data correspond to a hyperbo
Newtonian trajectory, with initial separation distancer
510.198, and critical merging radiusr c54.449.

Our strategy is to follow closely the model used
@21,22#; but we also want to compare our work with@2#.
However, the initial data of@2# involve two black holes with
half the speed of light each; therefore in adapting this ini
data to our model we must take into account relativistic
fects. In Refs.@21# and @22# there was no need for thes
concerns because the initial data were not relativistic.

Since the initial velocities are relativistic, the relative in
tial velocity v0 is calculated from the expression

v05
vx22vx1

12vx1vx2
50.8, ~47!

where we are using geometric units in which the velocity
light and the gravitational constant have the unit value.

The energy radiated during the falling phase, calcula
from Eq. ~43! is EN50.00346(m11m2).

In order to match the Newtonian stage with the black h
RT perturbed model we need also to set the total initial m
and initial angular momentum for the RT stage.

In previous work we have matched the Newtonian m
MNew5mi11mi2 to the initial massM; this already takes
into account the field relativistic first order correction
terms of its physical massesm1 andm2, since, recalling Eq.
~21! of Ref. @22#, the initial mass would bem11m2
2mi1mi2 /r 12. The system discussed in Ref.@22# had zero
initial velocity, and therefore there was no need to take i
account any other effect. Instead in our case we should
into account speed relativistic corrections.

Then, since the initial data are relativistic, the initial ma
and angular momentum are calculated from

M5
mi1

A12v1
2

1
mi2

A12v2
2

52.309 ~48!

and

J52y1

mi1vx1

A12vx1
2

2y2

mi2vx2

A12vx2
2

51.155. ~49!
10401
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It should be emphasized that the relation between the in
RT stage mass and angular momentumM and J with the
Newtonian mass and angular momentumMNew and j is just
the Lorentzian factorg51/A12vx1

2 51.1547. In the last sec
tion we will comment on the incidence of this factor on o
results.

Let us observe that the relation between the relativis
angular momentum and total mass isJ/M250.217.

Since the angular momentum is small, it can be treated
a perturbation. At the moment of the collapse, we can c
sider a quadrupole excitation along they axis with amplitude
A, as described above. Let us takeA5Am1Aj , whereAj is
the contribution coming from the appearance of the angu
momentumj. The matching condition is given by the equ
tion @see Eqs.~35!, ~37! and ~43!#

FB5FQ~r c!, ~50!

from which one obtains in this case

Am50.057 ~51!

and

Aj50.028. ~52!

Therefore, to be explicit, the initial data forVRT andVl are

VRT512
Am

2
3SA3

2
Y2,22~z,z̄ !1Y2,0~z,z̄ !

1A3

2
Y2,2~z,z̄ ! D ~53!

and

lVl52
Aj

2
3SA3

2
Y2,22~z,z̄ !1Y2,0~z,z̄ !

1A3

2
Y2,2~z,z̄ ! D . ~54!

The constantM0 is determined from Eq.~38!, and the
condition that initially the mass is given by Eq.~48!, which
setsM052.302.

The orbital angular momentum is taken into account
the initial data forC1

0. It is convenient to express these in
tial data in terms of the auxiliary fieldg, given by

C1
05 i

ðVRT
g

VRT
2

5 i
ðg

VRT
. ~55!

Let us note that then

ðVRT
C1

05ð2g

so that in the stationary case one hasð2g50 andġ50.
We takeg5ḡ and

g5g0Y1,0~z,z̄ !, ~56!
7-5
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MORESCHI, PEREZ, AND LEHNER PHYSICAL REVIEW D66, 104017 ~2002!
whereg0 is related to the angular momentum in thez direc-
tion by

g052A12pJ524.094. ~57!

In Ref. @31# it was also considered a similar case of
binary system with orbital angular momentum. Their init
data werex150, x250, y15m, y252m, vx1520.8 and
vx250.894, with m51.5 anda5 2

3 . From the Newtonian
point of view this data correspond to an elliptic motion, b
with maximum and minimum radius that are smaller than
corresponding critical merging radius. For this reason,
cannot compare this case with our model.

IV. NUMERICAL IMPLEMENTATION

Accurate numerical evolution of a fourth order parabo
equation, such as Eq.~17!, by means of an explicit finite
difference scheme is a challenge because the Cou
Friedrich-Lewy~CFL! @32# condition requires that the tim
stepDu scale as the fourth power of the spatial grid siz
Nevertheless, we constructed a set of algorithms to so
these equations using second order accurate finite differ
approximations~following @33#!. The numerical treatment o
the eth operator has been thoroughly described in@33#. This
work presented a clean way to deal with derivative opera
on the sphere by covering it with two coordinate patches
dealing with spin weighted quantities. Thus, it is idea
suited for our present purposes. The numerical grid on e
patch is defined byj i j 5qi1 ip j where qi ,pi52122DA
1( i 21)DA @with DA52/(NA25)]. Theangular derivatives
are discretized by centered second order finite difference
proximations and information between patches is obtai
through fourth order accurate interpolations.~For a detailed
description of this approach see@33#.!

The integration in time is based upon a three time le
Adams-Bashford@32# scheme with predictor (F̃) given by

F̃~u1Du!5F~u!1
Du

2
]u@3F~u!2F~u2Du!#, ~58!

and corrector

F~u1Du!5F~u!1
Du

2
]u@F~u!1F̃~u1Du!#1O~Du3!,

~59!

whereF stands forVRT or Vl and the]u terms are to right
hand sides of Eqs.~27!. Additionally, we implemented the
iterative Cranck-Nicholson algorithm@34,35# and observed
that the results obtained with both implementations ag
Since the evolution equation forC0

0 is linear, its numerical
integration is straightforwardly done by centered second
der differences at the level (u1Du/2).

The second order convergence of numerical solutions
confirmed in the perturbative regime using solutions of
linearized equation and second order self-convergence o
solutions was confirmed in the nonlinear regime.
10401
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V. RESULTS

A. Variations of total energy

The total Bondi energy-momentum vector at any RT
tarded timeu can be calculated from the expression

Pa52
1

4pES
l a~z,z̄ !~CB2

0 1sBṡ̄B! dS2, ~60!

whereS is the section determined byu5const,

~ l a!5S 1,
z1 z̄

11zz̄
,

z2 z̄

i~11zz̄!
,
zz̄21

11zz̄
D , ~61!

and the subscriptB is used to emphasize that the quantiti
are evaluated with respect to a Bondi frame. The massM at
this sectionS is then given by

M5APaPa, ~62!

where the indices are raised and lowered by the Lorentz
flat metrichab at scri @36#.

Let us note that the relations between the Bondi quanti
and the intrinsic ones are

CB2
0 5

C2
0

V3
~63!

and

sB5
s

V
; ~64!

therefore in our gauge one hassB50, at each RT section.
The gravitational energy radiation flux is calculated fro

the Bondi time derivative of the supermomentumC @37#;
namely

]C

]uB
5

]sB

]uB

]s̄B

]uB
. ~65!

If one instead considers the time change with respect to
RT time, it is convenient to have in mind that for any fun
tion f one has

] f

]uB
5

1

V

] f

]u
. ~66!

The so called news function]sB /]uB can be expressed in
terms of the perturbed RT fields by

]sB

]uB
5

ð2V

V
1

1

V2 S ṡ2
V̇

V
s D . ~67!

To calculate the total energy radiated, one could then
merically evaluate the gravitational energy radiation flux
Eq. ~65! at different times and sum along all the elaps
time. However, it is more accurate to numerically evalu
the initial mass and subtract the final mass. This is due to
7-6
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fact that the RT spacetime is known to converge asympt
cally to the Schwarzschild one; more specifically, one kno
that limu→`VRT51, and similarly one can see tha
limu→`Vl50.

Using this procedure, and a resolution ofn532 points for
half a meridian of the sphere~approximatelyN51600 points
for the whole sphere!, the energy radiatedERT during the RT
stage is found to beERT50.0034M0.

Then, since in units ofM0, the energy radiated in the firs
stage isEN50.0030M0, the total energy radiated in th
whole process isE50.0064M0.

B. Gravitational radiation field

The numerical calculation of the evolution of the gravit
tional radiation fieldC4, is shown in Fig. 1.

It can be seen that although the total energy radiate
rather small, the amplitude of the gravitational radiation fie
can be large. In other words, this model describes a not
able burst.

This is interesting sinceC4 is precisely what gravitationa
wave detectors will measure.

FIG. 1. Evolution ofC4 as a function of time. The subscriptx
and y refer to thex and y axis of the stereographic coordinatez
5x1 iy of the northern hemisphere. Each of the four curves refe
detectors at 0°, 30°, 60° and 90°, measured from the north po
the sphere. The insets show the detail of the rapid time variation
the beginning.
10401
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C. Variations of angular momentum

When dealing with the notion of angular momentum o
is faced with the fact that there are several inequivalent d
nitions of angular momentum, which are not tightly relat
with the notion of intrinsic angular momentum, with the e
ception of@38#. An appropriate definition of intrinsic angula
momentum involves the selection of unique sections@38# of
future null infinity where the quantity is to be calculate
Since in our case we are taking the angular momentum
perturbation parameter of the RT geometries, it is not ess
tial to consider these refinements in our model. And al
since the RT spacetimes provide with a geometric uniq
family of sections of future null infinity, namely the section
u5const, it is natural to use them to calculate the angu
momentum.

Then, instead of describing the variation of the intrins
angular momentum we describe the variation of the R
angular momentum vector given by

Jk5ReF E
SRT

i

4p
ð̄,kCB1

0 dSB
2 G , ~68!

where SRT are the sections determined byu5const, k
51,2,3, so that,k are the spacelike components of,a; and
where the Bondi componentCB1

0 , of the Weyl tensor, is
related to the RT Weyl componentC1

0 by

CB1
0 5

C1
0

V3
. ~69!

Figure 2 shows a very small and smooth variation of
angular momentum; which is more related to the time va
tion of the RT geometry than to the radiation of angu
momentum, as can be seen from the nature of Eq.~31!.

VI. FINAL COMMENTS

The estimate of the total gravitational energy radiated
the non-head-on collision of two black holes is less than o
percent according to our model. This is on the low end va
of existing numerical results~which are still being refined!
and comparable with those obtained with the close limit
proximation @39#. It is however worth mentioning that ou
calculations predict an amplitude of the gravitational wav
that could be important from the observational point of vie
Additionally, it predicts a rather narrow time duration of th
‘‘burst.’’ Since the frequency at which this happens, its a
plitude and the time duration can be used as prelimin
information for constructing data analysis ‘‘filters’’@40,41#,
knowledge of these is of importance while templates fro
full numerical simulations are not available. We will car
out a detailed study of these in the future.

At first sight there is too large a difference between t
numerical results in@2# and the estimates obtained her
However, one should keep in mind several points which~by
themselves! can account for this difference. Comments are
place for both the results in@2# and those presented here:

o
of
at
7-7
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FIG. 2. Evolution of the relative variation o
angular momentumJ as a function of time.
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First, the results in@2# were obtained under a rather coar
resolution and the final numbers need to be refined~there are
intense efforts worldwide in this direction!. Additionally, the
obtained value of radiated energy come from compariss
of initial Arnowitt-Deser-Misner mass and apparent horiz
masses. Masses obtained from apparent horizon calculat
in dynamical regimes, are only an approximation of the m
the black hole and hence results obtained through
method can have a significant systematic error. Furtherm
it is important to remember that the initial data of@2# is given
at a spacelike hypersurface of the spacetime; while, by
nature of the RT spacetime, our initial data is given on
characteristic surface. This implies an essential differe
since in the spacelike hypersurface initial data one has
coming and outgoing radiation contributing to the total e
ergy radiated, while in the RT characteristic problem that
solve, we do not consider any incoming initial radiation
our calculations. So, for the relativistic regime, one expe
the time slice initial data to radiate more energy than
characteristic case.

As far as the present model is concerned, in previ
works we have obtained very good agreements between
estimates and the mature numerical calculations of exact
ometries, as one can check in the family of systems depi
in Figs. 3 and 4 of Ref.@22#. The fact that the model repre
sented so well such a variety of initial data and differe
mass ratios, motivated us to apply the same techniques to
case in which angular momentum was involved. Howev
since there are just two~still being refined! numerical calcu-
lations available to compare with, it is difficult to obta
much information at this stage.

As we have mentioned before our aim is to follow
close as possible the model used in@21# and @22#; however
the fact that the initial conditions considered are relativis
poses several questions. For example, in matching
masses of the two stages we have used Eq.~48!, so one
might ask how would the results change if the relativisticg
factor was not used? This would certainly decrease the in
M andM0 by about 13%; butEN andERT would not change,
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so that the ration between the total energy radiated versus
changedM0 would increase by the factorg, that is about
15%.

Similarly, had we not used the relativistic correction o
the angular momentumJ, its initial value would have de-
creased by about 13%, but the relative variation shown
Fig. 2 would not have changed.

In any case, we think that by applying our model to the
relativistic initial data, we are pushing the model to t
boundary of is validity. Comparisons with future numeric
simulations will shed light on this and indicate how far th
model can be pushed.

The radiation of angular momentum seems to be ne
gible with these initial conditions. In order to consider high
values of the initial angular momentum, we would need
deal with other background geometries, as for example tw
ing algebraically special spacetimes. Regarding the smo
monotonic variation of it one can infer that, for these sm
initial angular momentum data, its behavior is driven by t
exponential asymptotic behavior of the RT background
ometry. There are not complicated initial variations inC1

0,
that for example do appear inC4

0, as seen in Fig. 1.
When describing a concrete physical situation with the

spacetimes, one is supposed to choose the gauge and fi
free functions in order to make the best representation of
system. It is somehow striking that the choice of the frame
first order has physical significance, and it is not pure ga
as one is accustomed to in the studies of linearized gra
around Minkowski spacetime.
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