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Spherically symmetric braneworld solutions with an „4…R term in the bulk
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An analysis of a spherically symmetric braneworld configuration is performed when the intrinsic curvature
scalar is included in the bulk action; the vanishing of the electric part of the Weyl tensor is used as the
boundary condition for the embedding of the brane in the bulk. All the solutions outside a static localized
matter distribution are found; some of them are of the Schwarzschild-(A)dS4 form. Two modified
Oppenheimer-Volkoff interior solutions are also found; one is matched to a Schwarzschild-(A)dS4 exterior,
while the other is not. A nonuniversal gravitational constant arises, depending on the density of the considered
object; however, the conventional limits of Newton’s constant are recovered. An upper bound of the order of
TeV for the energy string scale is extracted from the known solar system measurements~experiments!. On the
contrary, in the usual brane dynamics, this string scale is calculated to be larger than TeV.
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I. INTRODUCTION

The desire to explore physics beyond the standard m
has led us to explore the ideas that spacetime is of a dim
sion larger than four, and that we are essentially confine
a four-dimensional hypersurface. String theories provid
framework for exploring such ideas, but nevertheless we
still far away from having a viable low-energy realization
these theories. Braneworld models are relevant world rea
tions in which some underlying features are often minimiz
Replacing, for example, a whole field with a constant~soli-
tonic solution! may probably oversimplify the reality but a
the same time make it possible to obtain a more conc
picture, with the hope that any new behavior appearing w
still be present in the more complete theory. Not only at
cosmological level, but also at a local one—concerning st
galaxies, clusters of galaxies—has a brane solution to
consistent with the various astrophysical observations, wh
are often more reliable than the cosmological ones.

Attempts at obtaining braneworld solutions are cast i
two categories. First, the bulk space assumes a given ge
etry, a coordinate system is adopted, and the influence on
brane geometry is somehow extracted. It seems a disad
tage of this approach that the bulk is prefixed and also
the brane embedding obtained is not gauge invariant~inde-
pendent of the coordinate system chosen!. Second, do not
specify the exact bulk geometry, adopt a coordinate sys
adapted to the brane~Gauss normal coordinates or some r
evant one!, and deduce a brane dynamics, containing
prints from the bulk. Assumptions about the brane geome
are often sufficient to obtain an exactly closed brane dyn
ics. This approach allows for a brane dynamically interact
with a bulk, though this situation is not necessarily cons
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ered. A disadvantage of this method is that finding a b
geometry in which the brane is the boundary may be a v
difficult task. A probable advantage would be the extract
of common braneworld characteristics holding for a bro
class of bulk backgrounds. In both approaches, if the co
mension is one, Israel matching conditions are necessa
used. In the present paper we shall elaborate on the se
approach.

The effective brane equations have been obtained@1#
when the effective low-energy theory in the bulk is highe
dimensional gravity. However, a more fundamental desc
tion of the physics that produces the brane could include@2#
higher-order terms in a derivative expansion of the effect
action, such as a term for the scalar curvature of the bra
and higher powers of curvature tensors on the brane. A br
action that contains powers of the brane curvature ten
has also been used in the context of the AdS conformal fi
theory~CFT! correspondence~e.g.,@3#! to regularize the ac-
tion of a bulk AdS space which diverges when the radius
the AdS space becomes infinite. If the dynamics is gover
not only by the ordinary five-dimensional Einstein-Hilbe
action, but also by the four-dimensional Ricci scalar te
induced on the brane, new phenomena appear. In@4,5# it was
observed that the localized matter fields on the brane~which
couple to bulk gravitons! can generate via quantum loops
localized four-dimensional worldvolume kinetic term fo
gravitons~see also@6–9#!. That is to say, four-dimensiona
gravity is induced from the bulk gravity to the brane worl
volume by the matter fields confined to the brane. It was a
shown that an observer on the brane will see correct N
tonian gravity at distances shorter than a certain crosso
scale, despite the fact that gravity propagates in extra sp
which was assumed there to be flat with infinite extent;
larger distances, the force becomes higher dimensional.
first realization of the induced gravity scenario in strin
theory was presented in@10#. Furthermore, new closed strin
couplings on Dp-branes for the bosonic string were found
©2002 The American Physical Society14-1
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@11#. These couplings are quadratic in derivatives and the
fore take the form of induced kinetic terms on the brane.
the graviton in particular these are the induced Einste
Hilbert term as well as terms quadratic in the second fun
mental tensor. Considering the intrinsic curvature scala
the bulk action, the effective brane equations have been
tained in@12#. Results concerning cosmology have been d
cussed in@13–17#.

The original Randall-Sundrum models@18#, based on a
Minkowski brane and a specific relation between the b
cosmological constant and the brane tension, have dr
much attention because they might be realizable in su
gravity and superstring compactifications@19–22#. However,
any Ricci-flat four-dimensional metric can be embedd
~with the common warped embedding! in (A)dS5 ~e.g.,
@23,24#!. In this way, a black-string solution@23,25–27# can
easily be constructed. Furthermore, it is known that any fo
dimensional Einstein spaces can foliate an (A)dS5 bulk @28–
33#. Thus, asymptotically nonflat black hole
@Schwarzschild-(A)dS4] can be obtained as slices of th
above precise bulks. Almost all treatments on spheric
symmetric braneworld solutions, such as those previou
mentioned, representing, for example, the exterior of a s
do not take account of the finite extension of the object. U
now, there is no known exact five-dimensional solution
astrophysical brane black holes. Furthermore, looking
bulks having some interior star solution as part of th
boundaries is even harder. In@34–36#, some interior and
exterior solutions were found, without including the(4)R
term.

In the present paper, we discuss the gravitational field
an uncharged, nonrotating spherically symmetric rigid obj
when there is a contribution in the dynamics from the bra
intrinsic curvature invariant. In Sec. II, we find all the po
sible exterior solutions containing one undetermined par
eter, which is the parameter of the Newtonian term. Som
these solutions are of the Schwarzschild-(A)dS4 form. In
two cases, we can also solve the interior problem which
duces to a generalization of the Oppenheimer-Volkoff so
tion, and thus determine the unknown parameter. This
found to be different from the conventional value of a loc
ized spherically symmetric distribution within the framewo
of four-dimensional general relativity. Hence, a nonuniver
Newton’s constant, depending on the density of the obj
naturally arises. In Sec. III, taking account of the classi
experiments of gravity in the solar system, we can set
upper bound for the five-dimensional Planck mass of
order of TeV. The revival of the conventional results is d
cussed, and also a comparison with the more standard b
dynamics is presented. Finally, in Sec. IV are our conc
sions.

II. FOUR-DIMENSIONAL SPHERICALLY SYMMETRIC
SOLUTIONS

We consider a three-dimensional braneS ~with normal
vector fieldnA) embedded in a five-dimensional spacetim
M. Capital latin lettersA,B, . . . 50,1, . . . ,4 denote full
spacetime, lower-case greekm,n, . . . 50,1, . . . ,3 runover
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the brane worldvolume, while lower-case latin letters sp
some three-dimensional spacelike surface foliating the bra
i.e., i , j , . . . 51, . . . ,3. Forconvenience, we can quite gen
erally choose a coordinatey such that the hypersurfacey
50 coincides with the brane. The total action for the syst
is taken to be

S5
1

2k5
2EM

A2 (5)g~ (5)R22L5!d5x

1
1

2k4
2E

S
A2 (4)g~ (4)R22L4!d4x1E

M
A2 (5)gL5

matd5x

1E
S
A2 (4)gL4

matd4x. ~1!

For clarity, we have separated the cosmological consta
L5 ,L4 from the rest of the matter contentL5

mat,L4
mat of the

bulk and the brane, respectively.L4 /k4
2 can be interpreted a

the brane tension of the standard Dirac-Nambu-Goto act
or as the sum of a brane worldvolume cosmological cons
and a brane tension. We are basically concerned with
case with no fields in the bulk, i.e.,(5)TAB50.

From the dimensionful constantsk5
2 ,k4

2 the Planck
massesM5 ,M4 are defined as

k5
258pG(5)5M5

23 , k4
258pG(4)5M4

22 , ~2!

with M5 ,M4 having dimensions of (length)21. Then, a dis-
tance scaler c is defined as

r c[
k5

2

k4
2

5
M4

2

M5
3

. ~3!

Varying Eq. ~1! with respect to the bulk metricgAB , we
obtain the equations

(5)GAB52L5gAB1k5
2 @ (5)TAB1 ( loc)TABd~y!#, ~4!

where

( loc)TAB[2
1

k4
2A2 (4)g

2 (5)g
~ (4)GAB2k4

2 (4)TAB1L4hAB!

~5!

is the localized energy-momentum tensor of the bra
(5)

GAB , (4)GAB denote the Einstein tensors constructed from
bulk and the brane metrics, respectively. Clearly,(4)GAB acts
as an additional source term for the brane through( loc)TAB .
The tensorhAB5gAB2nAnB is the induced metric on the
hypersurface y5constant, withnA the normal vector on
these.

The way they coordinate has been defined allows us
write, at least in the neighborhood of the brane, the five-l
element in the block diagonal form

ds(5)
2 52N2dt21gi j dxidxj1dy2, ~6!

whereN,gi j are generally functions oft,xi ,y. The distribu-
tional character of the brane matter content makes ne
4-2
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sary for the compatibility of the bulk equations~4! the fol-
lowing modified~due to(4)Gn

m) Israel-Darmois-Lanczos-Se
conditions@37–40#:

@Kn
m#52k5

2S ( loc)Tn
m2

( loc)T

3
dn

mD , ~7!

where the square brackets mean discontinuity of the extri
curvatureKmn5(1/2)]ygmn acrossy50. A Z2 symmetry on
reflection around the brane is considered throughout.

One can derive from Eqs.~4!,~7! the induced brane gravi
tational dynamics@12#, which consists of a four-dimensiona
Einstein gravity, coupled to a well-defined modified mat
content. More explicitly, one gets

(4)Gn
m5k4

2 (4)Tn
m2S L41

3

2
a2D dn

m1aS Ln
m1

L

2
dn

mD , ~8!

where a[2/r c , while the quantitiesLn
m are related to the

matter content of the theory through the equation

Ll
mLn

l2
L2

4
dn

m5T n
m2

1

4
~3a212T l

l!dn
m , ~9!

andL[Lm
m . The quantitiesT n

m are given by the expression

T n
m5S L42

1

2
L5D dn

m2k4
2 (4)Tn

m

1
2

3
k5

2F (5)T̄n
m1S (5)T̄y

y2
(5)T̄

4
D dn

mG2Ēn
m , ~10!

with (5)T̄5 (5)T̄A
A, (5)T̄B

A5gAC (5)T̄CB. The overbars on
(5)TB

A and the electric partEn
m
5CAnB

m nAnB of the five-
dimensional Weyl tensorCBCD

A mean that the quantities ar

evaluated aty50. Ēn
m carries the influence of nonlocal grav

tational degrees of freedom in the bulk onto the brane@1# and
makes the brane equations~8! not closed in general. This
means that there are bulk degrees of freedom which ca
be predicted from data available on the brane. One need
solve the field equations in the bulk in order to determineEn

m

on the brane. In the present paper, to make Eq.~8! closed, we
shall setĒn

m50 as a boundary condition of the propagati
equations in the bulk space. This is somewhat simplifi
from the viewpoint of geometric complexity, but it is the fir
step for investigating the characteristics carried by the br
curvature invariant on the local brane dynamics we are in
ested in. Treatments and solutions without this assumpt
in the context of the usual brane dynamics, have been g
in @26,41,42,43,34–36,44#. Because of the block-diagona
form of the metric~6! the solution of the algebraic syste
~9!, whenever

T j
i 5td j

i , ~11!

is

L0
056

1

2B
@~724n1n2!T 0

02~324n1n2!t13a2#, ~12!
10401
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L j
i 5SEj

i , ~13!

Li
05L0

i 50, ~14!

where

S5
1

2B
uT 0

013~t1a2!u, ~15!

B5@26~n121!~n221!T 0
012n1n2~12n1n2!t

13~322n1n2!a2#1/2, ~16!

while the matrix Ej
i is either diag(11,11,11) ~with n1

53,n250) or diag(11,11,21) ~with n152,n251).
Inspecting Eq.~8!, we see that the inclusion of the term

(4)R has brought a convenient decomposition of the ma
terms. First, the standard energy-momentum tensor en
without having made any choice for the brane tensionL4 in
terms ofM4 ,M5 ~in @45,1# it has to beL453a2/2). Note
that if (4)R is not included in the action, forL450, ordinary
energy-momentum terms cannot arise. Furthermore, in
case,L4 has to be positive in order fork4

2 to be positive.
Second, the additional matter terms~which appear here a
square roots instead of squares of the four-dimensio
energy-momentum tensor! all contain the factora of the
energy string scale. Thus, conventional four-dimensio
general relativity is revived on some region of a fou
spacetime, whenever these extra terms remain suppre
relative to the conventional ones; the specific value ofa
determines the regional validity of general relativity.

From now on, we are interested in static~noncosmologi-
cal! local braneworld solutions arising from the action~1!.
More specifically we consider a spherically symmetric li
element

ds(4)
2 52B~r !dt21A~r !dr21r 2~du21sin2udf2!.

~17!

The matter content of the three-universe is a localized sph
cally symmetric untilted perfect fluid~e.g., a star! (4)Tmn

5(r1p)umun1pgmn with r5p50 for r .R, plus the cos-
mological constantL4. The matter content of the bulk is
cosmological constantL5. This matter content entersT n

m in
Eq. ~10! and thus determinesLn

m on the right hand side of ou
dynamical equations~8!. The result is

L0
056

1

2B
$u4L422L513a2u

1k4
2@~723n1n2!r1~n113n2!p#%, ~18!

S5
1

2B
u4L422L513a21k4

2 ~r23p!u,

~19!

B5$~324n2!~4L422L513a2!

24k4
2@3~n221!r1~n123!p#%1/2, ~20!
4-3
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with the only restriction imposed by the square root appe
ing in B. Thus, necessarily, 4L422L513a2 is non-
negative~nonpositive! for Ej

i 5d j
i ~for the other choice of

Ej
i ).
For the metric~17!, one evaluates the Ricci tensor(4)Rmn

and then constructs the field equations~8!. The combination
(4)Rrr /2A1 (4)Ruu /r 21 (4)R00/2B provides the following
differential equation forA(r ):

S r

AD 8
512k4

2r~r !r 22S L41
3

2
a2D r 2

1
a

2
@3L0

01~n12n2!S#r 2, ~21!

(8[d/dr). Eliminating A8/A from Eq. ~21! in the (uu)
component of Eq.~8!, we get an equation forB8/B, from
which we obtain

~AB!8

AB
5Ar$k4

2~r1p!2a@L0
01~22n11n2!S#%.

~22!
.

o
e

-
n

it
a-

10401
r- There are various different cases~namely, eight! accord-
ing to the choice ofEj

i and the alternative signs ofL0
0 ,S.

However, in the outside region, there are only four differe
cases, according ton1,n2 and the6 sign in Eq.~18!. In all
these cases, we can integrate Eq.~21! in the outside region,
obtain the solutionA.(r ), and from Eq.~22! get the solution
B.(r ). The result is

1

A.~r !
512

g

r
2br 2, r>R, ~23!

B.~r !5
1

A.~r !
Fn1 ,n2

~r !, r>R, ~24!

with

b5
1

3
L41

1

2
a22a

n12n263

12Au324n2u
Au4L422L513a2u,

~25!
Fn1 ,n2
~r !511@ f ~r !ar 1$[n12(213A3)n2]/6A3b(3g22r 1)%Au4L422L513a2u21#dn171,423n2

, ~26!
nd
re

rs
lv-

of

ori-

dS

ulk

ce
rva-
re
f ~r !5~r 2r 1!S r

A.
D 122g/r 1

g~r !Aur 12gu/(r 113g), ~27!

wherer 1 is the minimum horizon distance andg(r ) is equal
to

u@r 1r 1/21A~r 113g!/4br 1#/@r 1r 1/22A~r 113g!/4br 1#u

for b.0, or e2 arctanA4ubur 1 /(r 113g)(r 1r 1/2) for b,0. For b
50, g(r )Aur 12gu/b is replaced by (r
2g)4g5/2

e2Ag(r 13g)(r 2g). The 6, 7 signs appearing in Eqs
~25!, ~26! correspond to the6 sign of Eq.~18!. A multipli-
cative constant of integration forB. has been absorbed int
a redefinition of time andg is a constant of integration. Not
that for b<0 there is only one horizonr 1,g, while for b
.0 ~and 27bg2,4 to have well defined horizons! there are
two horizonsg,r 1,3g and 1/A3b,r 2,1/Ab.

The solutions~23!,~24! are not yet completely defined un
less the parameterg is determined, i.e., the interior solutio
is found. In the caseEj

i 5d j
i , we can find two situations

where Eq.~21! does not containp and so we can integrate
in the interior region@we give these solutions below, equ
tion ~31!#.

As it is seen from Eqs.~24! and ~26!, all the exterior
solutions are either of the form whereA. ,B. are inverse to
each other, or of the form where the productA.B. is equal
to f (r ) to a power appearing in Eq.~26!. The first class of
these solutions is of the Schwarzschild-(A)dS4 form, while
the second is not. For zerob ~we can interpretb as the
effective brane cosmological constant! the first class of these
solutions reduces to Schwarzschild-like, while the seco
does not. Non-Schwarzschild-like exterior solutions we
also obtained in@34,41,36,44#, but this fact was attributed to
the nonvanishingĒn

m . Such irregular behavior also appea
here, due to the intrinsic curvature invariant, without invo
ing nonlocal bulk effects on the brane. There is one case
our non-Schwarzschild–(A)dS4 solutions withb.0, g/r 1
52/3, where at large distances—given that the second h
zon is actually at cosmological distances—A.B. is almost
one, i.e., the solution asymptotes to the Schwarzschild-4
solution.

If we take the covariant derivative~denoted by u) with
respect to the induced brane metrichAB5gAB2nAnB of Eqs.
~7!, and make use of Codacci’s equations, and of the b
equations ~4!, we arrive at the equations(4)TBuA

A 5

2@ (5)TCD#nChB
D . When the matter content of the bulk spa

is only a cosmological constant, then the common conse
tion law of our world is obtained. For the static case we a
discussing, this law is equivalent to the equation

B8

B
52

2p8

r1p
. ~28!

Thus, forr<R we get the equation forp(r ):

p8

r1p
5

12A

2r
2

Ar

2 Fk4
2p2S L41

3

2
a2D

1
a

2
L0

02
3

2
aS 4

3
2n11n2DSG . ~29!
4-4
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We assume a uniform distributionr(r )5ro53M /4pR3

for r<R. Then, the immediate integration of Eq.~28! gives

B,~r !5
~12g/R2bR2!Fn1 ,n2

~R!

@11~4pR3/3M !p~r !#2
, r<R, ~30!

in which, the continuity ofB(r ) at r 5R and the condition
p(R)50 have been used. The vanishing of the pressur
the surface, which is certainly physically reasonable, i
consequence of the application of the Israel matching co
tions at the stellar surface@46,47#. The pressurep(r ) in Eq.
~30! is found from Eq.~29!.

Now, we proceed, as we said before, with the two ca
where we can solve the system of equations~21!,~29!. Both
haveEj

i 5d j
i . The first case corresponds to the upper sign

the 6 sign in Eq.~18!, and the quantity inside the absolu
value of Eq.~19! in the interior of the stars being positive
The second case corresponds to the lower6 sign in Eq.~18!
and negative quantity in Eq.~19!. In these cases, integratio
of Eq. ~21! gives

1

A,~r !
512S b1

g

R3D r 2, r<R. ~31!

The parametersg andb @from Eq. ~25!# are given in terms
of M ,a,L5 ,L4, by:

First solution

g

R3
5

k4
2M

4pR3
1

a

2A3
A4L422L513a2

2
a

2A3
A4L422L513a21

3k4
2M

pR3
, ~32!

b5
1

3
L41

1

2
a22

a

2A3
A4L422L513a2.

~33!

Second solution

g

R3
5

k4
2M

4pR3
1

a

2A3
A4L422L513a21

3k4
2M

pR3
,

~34!

b5
1

3
L41

1

2
a2. ~35!

The first solution, as it is seen from Eq.~26! and Eq.~24!, is
matched to a Schwarzschild-(A)dS4 exterior solution, while
the second solution is matched to a non–Schwarzsch
(A)dS4 exterior solution. Note that no additional constant
integration enters the above solution since we have requ
that the metric is nondegenerate atr 50. In the special case
with 4L422L513a250, Eq.~34! is matched to an exterio
Schwarzschild-(A)dS4 solution.

From Eq.~29!, p(r ) for our two solutions is found to be
10401
at
a
i-

s

f

d-
f
ed

p~r !52r0

A12~b1g/R3!r 2*A12~b1g/R3!R2

A12~b1g/R3!r 2*vA12~b1g/R3!R2
,

~36!

where

v21512
2

k4
2 r0

S b1
g

R3D
3S 17

A3a

A4L422L513a214k4
2r0

D 21

. ~37!

The symbol* means2, except from the~rather irregular!
case withv,0,p.r0 /uvu, where it becomes1. In the
limit a,L4→0 both solutions forA,(r ),B,(r ),p(r ) reduce
to the known Oppenheimer-Volkoff solution. Also, in th
limit a→0, the exterior solutions corresponding to Eq
~32!,~33! and Eqs.~34!,~35! reduce to the Kottler@48,49#
solution of four-dimensional general relativity.

It is of some importance to notice the following. Althoug
three unrelated parametersa,L4 ,L5 ~which are supposed to
be fundamental! enter our problem, the final exterior solu
tions contain only two combinations of them, namely, t
parametersg,b. Thus, from exterior experimental data on
two constraints ona,L4 ,L5 can be extracted. However, th
interior solutions contain, furthermore, the parameterv,
which means that a third combination ofa,L4 ,L5 could be
obtained from possible astrophysical information. Th
a,L4 ,L5 can be uniquely determined from local measu
ments. Of course, as is seen from Eq.~37!, if the parameters
a,L4 ,L5 are extremely small~as will be seen in the nex
section!, the influence of the bulk effects onto the interi
solution is also small.

It can be seen from Eq.~32! that for a given set of param
etersa,L4 ,L5, the relative change (g/2G(4)M )21 in the
parameter of the Newtonian term is negative, and it is
increasing function ofr0 . This deviation from the common
situation can be interpreted as an object-dependent gra
tional constant, while M remains unchanged, i.e.,g
52G(4)(r0)M , where

G(4)~r0!/G(4)5112S 11
4L422L5

3 a2 D 21/2

3
1

sr0
~12A11sr0!

and

s532p
G(4)

3a2 S 11
4L422L5

3 a2 D 21

.

Then, G(4)(r0) starts from the valueG(4)$12@11(4L4
22L5)/3a2#21/2% whenr0→0, and asymptotically tends to
G(4) for r0→`. In this picture,GN , the measured Newton’s
constant, is not a universal quantity, but simply correspo
to G(4)(r0,everyday), wherer0,everyday is the density of com-
4-5
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mon matter;g/cm3. There is a characteristic value of e
ergy, which can be associated with these densities, nam
ae5AGNr0,everyday;10214 cm21. If 4L422L5@3a2

~plot 1a in Fig. 1!, G(4)(r0) is always almost equal toGN
.G(4) , and no significant deviations from Newton’s consta
universality exist. Otherwise~plot 1b in Fig. 1!, significant
deviations fromGN can arise. Thus, there exist only tw
situations which do not contradict the everyday experie
of no deviation from Newton’s constant universality. The
area!ae or a@ae . In the first case,GN.G(4) and signifi-
cant deviations fromGN appear at extremely low densitie
r0!a2/GN . In the second case,GN.G(4)$12@11(4L4
22L5)/3a2#21/2% and significant deviations appear for e
tremely dense objects. In the next section, we will set up
bounds ona, similar to a!ae , from solar system experi
ments, and thus the second case is excluded. If this is re
the situation, the possibility for the parameters to have 4L4
22L5,0, which leads to repulsive gravity on very low de
sity objects, is possible. Similar behavior to that describ
above, but with extra attraction, appears in solution~34! ~plot
2 in Fig. 1!.

The solution~32!,~33!, since it is matched to an exterio
Schwarzschild-(A)dS4 solution, will be used in the next sec
tion to bound the parameters encountered from experime
data of our solar system~deflection of light coming from
distant stars, precession of perihelia, and radar echo de!.
Since there are two parametersb,g in the exterior solution,
connected to the threea,L4 ,L5, it is necessary to drop on
of these three by hand, in order to get an estimation of
other two. It is obvious thata cannot be this one, since th
is too restrictive and in fact analyses of this case have b
performed@50,51#. Also, we do not setL550, since thenb
cannot be negative (b negative impliesL5,0). Althoughb
is the same quantity that in cosmology plays the role of
effective cosmological constant@16,12# and it is then posi-
tive, in the present work we do not claim any connecti
with cosmology, so we would prefer to be able to also d
with a negativeb. As will be discussed in the next sectio
this may be of importance for galactic scale phenomena

FIG. 1. The r0 dependence of Newton’s constant in vario
models.
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the following, we chooseL450. Then, from Eqs.~32!,~33!
we find that forG(4).GN the values are

a25
1

gR3
~2GNM2g!~2GNM2g22bR3!, ~38!

L556bS 12
bgR3

~2GNM2g!~2GNM2g22bR3!
D , ~39!

while in the other limiting case

a252b1
2g2

R3 Fg22GNM2
2g

bR3
GNM

6A~2GNM2g!S 2GNM2g1
4g

bR3
GNM D G21

.

~40!

Finally, we note that the non-Schwarzschild–~A!dS4 solu-
tion ~34!,~35! could also be used for extracting pheonmen
logical bounds on the string parameters from the so
system experiments. We have chosen in this paper
simplest solution for this purpose. However, it is known@52#
that the agreement with the solar-system tests of so
metric-based relativistic theory requires on kinemati
grounds thatAB.1 to high accuracy in the vicinity of the
sun.

III. CONSTRAINTS FROM CLASSICAL TESTS

A difficulty arising with the calculations of measurab
quantities~integrals! comes from the fact that the solutio
~32!,~33! is not asymptotically flat, but diverges at large di
tances; thus, an expansion in powers of 1/r , performed in the
standard PPN~parametrized post-Newtonian! analysis, does
not work here. Hence, one has to make expansions accor
to parameters of the problem that are sufficiently small, a
fortunately such parameters exist.

The motion of a freely falling material particle or photo
in a static isotropic gravitational field@Eq. ~17!# is described
@53# by the equation

S df

dr D 2

5
A.

r 4 S 1

J2B.

2
1

r 2
2

E

J2D 21

, ~41!

where J,E are constants of integration (E.0 for material
particles andE50 for photons!. At the points of minimum or
maximum distancer 0 , dr/df50, and thus

J5r 0S 1

B.~r 0!
2ED 1/2

. ~42!

We will analyze the three classical solar sca
experiments—deflection of electromagnetic waves com
from distant stars by the sun, precession of the perihelia
planets, and time delay of radio waves.

~1! Deflection of light. Although the metric is not asymp
totically flat, the photon, as can be seen from Eq.~41!, has
df/dr→0 asr→`, and thus, it moves in a ‘‘straight’’ line
4-6
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of the background geometry in that region. The deviat
from this line is measured by the total deflection an
Dfd52uf(r 0)2f(`)u2p, wherer 0 is the minimum dis-
tance of the orbit to the sun~when a ray grazes the sunr 0
5R(). As is expected and will be shown below,ubu has an
extremely small value; thus, forb.0 the horizonr 2 is of
cosmological scale and scattering of light can be practic
defined even in this case. The angular momentumJ is related
to the ‘‘impact parameter’’b through the relationJ5b(1
2bb2)21/2. Integrating Eq.~41! we arrive at

f~r !2f~`!5A r 0
3

r 02gEr

`F r ~r 2r 0!

3S r 21r 0r 2
gr 0

2

r 02g D G21/2

dr. ~43!

For the above expression to be well defined, we must h
r 0> 3

2 g ~which is always the case for common stars such
our sun!. Note that the parameterb has disappeared in th
expression~43!, i.e. the deflection phenomenon is the sa
as if it had occurred in a Schwarzschild field of parameterg.
The expression~43! leads to an elliptic integral. Sinceg is
almost 2GNM ( andr 0 is of the order ofR( , g/r 0 is of the
order of 1026. Hence, we can expand the integrand of E
~43! to first order in this parameter before integration@54#. It
is convenient, simultaneously, to set sinu5r0 /r, and the re-
sult is

Dfd5
2g

r 0
. ~44!

The best measurements of the deflection of light from
sun were obtained using radio-interferometric methods@55#
and the result found~for r 05R() was Dfd51.76160.016
arc sec. Then, from Eq.~44!,

29.4403104 cm,g,29.9793104 cm, ~45!

which is around the conventional value 2GNM (529.539
3104 cm.

(2) Precession of perihelia. Here, there are two value
r 1 ,r 2 of maximum and minimum distance satisfying E
~42!. The two constants of motionJ,E are expressed in term
of r 1 ,r 2 and are plugged into Eq.~41!. The expression aris
ing is very complicated, but referring to@50,51# we can write
the precession per orbitDfp52uf(r 1)2f(r 2)u2p as

Dfp5
3pg

L
1

6pbL3

g
, ~46!

whereL215(r 1
211r 2

21)/2 is thesemilatus rectumof the or-
bit. Both @50,51# agree on the result Eq.~46!. Actually, they
refer to the Gibbons-Hawking metric, but their methods c
be immediately applied in our case. They disagree on
next order terms, which are, however, negligible compare
the second term of Eq.~46! for stars with small Schwarzs
child radius and for slightly eccentric orbits.
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For Mercury, the uncertainty in the quantityDfp
26pGNM ( /L is 61029 rad/orbit. Then, taking into ac
count the range~45! of g received from deflection, we obtai

27.908310243 cm22,b,2.465310243 cm22.
~47!

The bounds~45!,~47! give, from Eq.~38!,

a,4.379310216 cm21. ~48!

Actually, as long as the upper bound ofubu remains many
orders of magnitude smaller thanGNM ( /R( , the above re-
sult, as can be seen from Eq.~38!, is insensitive to the exac
value ofb. Furthermore, the fact thata has an upper instea
of a lower bound is due to the specific functional form of t
expression~38! in terms ofg. This means that the crossove
scaler c.4.56731015 cm, i.e., the lower bound ofr c is a
few times the diameter of our planetary system. Thus,
five-dimensional fundamental Planck scaleM5 is less than
0.9 TeV. From Eq.~40!, one can see that forb→0, a→0
and then, from Eqs.~45!,~47!, an upper bound of the order o
10222 cm21 is set for a, which is incompatible witha
@ae . Thus, this case is not acceptable.

From Eq.~39!, an upper bound forL5 can be obtained:

L5,3.804310243 cm22. ~49!

Uncertainties in the measurement of the precession
perihelion are known to exist, due to the rotation of the s
thus, it is better to examine the bounds onb from the radar
echo delay independently.

(3) Radar echo delay. The time required for a radar signa
to go from a pointr to the closest pointr 0 of its orbit to the
sun is

t~r ,r 0!5E
r 0

r S A.

B.
D 1/2S 12

r 0
2

r 2

B.

B.~r 0!D 21/2

dr. ~50!

As in the deflection of light, expanding to first order ing/R
we obtain

t~r ,R!5
1

Aubu
arctanhS AubuA r 22R2

12bR2D
1gS ln

A12bR2r 1Ar 22R2

RA12br 2

1
1

2A12bR2
Ar 2R

r 1R

11brR

12br 2 D . ~51!

This expression holds forb.0, while for b,0
arctanh@AubuA(r 22R2)/(12bR2)# has to be replaced by
p/22arctan@(1/Aubu) A(12bR2)/(r 22R2)#. Whenever
ubur 2!1, the above expression takes the form
4-7
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t~r ,R!.Ar 22R21g ln
r 1Ar 22R2

R

1
g

2
Ar 2R

r 1R
1

b

3
~r 22R2!3/2. ~52!

We will use this expression to get bounds from solar ra
echo experiments. Notice, however, that Eq.~51! may be
applicable to some more general cases.

In @56#, the time delay on solar system scales was m
sured to an accuracy of 0.1%. A ray that leaves the Ea
grazes the Sun, reaches Mars, and comes back would ha
time delay of 24860.25ms where the 248ms is the exact
prediction of the ‘‘Shapiro’’ time delay and the uncertain
60.25ms can be used to constrainb. At superior conjunc-
tion, the radii of the Sun to Earth,r e , and to Mars,r m , are
much greater than the radius of the sunR( , and thus
2
3 b(r e

31r m
3 )560.25ms. This constrainsb to the range

ubu,7.555310237 cm22. ~53!

It is interesting to compare the bounds on the vario
parameters of a brane theory with an(4)R term, with the
bounds on the parameters that result from brane dynam
without the (4)R term. In @1#, the dynamics on the brane
given, instead of Eq.~8!, by the following equation:

(4)Gn
m5

k5
4

6k4
2
L4

(4)Tn
m2

1

2 S L51
k5

4

6k4
4
L4

2D dn
m

2
k5

4

24
~6(4) Tr

m (4) Tn
r22 (4) T(4) Tn

m

23 (4)Ts
r (4)Tr

sdn
m1 (4)T2dn

m!2Ēn
m . ~54!

For Ēn
m50, following the same steps for solving Eq.~54!, as

before, we arrive at the unique Schwarzschild-(A)dS4 exte-
rior solutionB.(r )51/A.(r ), whereA.(r ) is given by Eq.
~23!. The parameters of this solution, denoted by the s
script SMS, are given by

gSMS5
k4

2L4,SMS

6paSMS
2 S 11

3k4
2M

8pL4,SMSR
3D M , ~55!

bSMS5
1

6
L5,SMS1

L4,SMS
2

9aSMS
2

. ~56!

It is obvious that the conventional value 2GNM of the New-
tonian term can dominategSMS only if L4,SMS53aSMS

2 /2.
This is the same value that revives the common fo
dimensional energy-momentum terms in the general equa
~54!. This value is substituted in Eqs.~55!,~56! and then,
using the bounds~45!,~47! from the classical tests, we can s
bounds onaSMS,L5,SMS. More specifically, sinceL5,SMS is
not contained in Eq.~55!, Eq. ~45! is enough to find

aSMS.2.425310213 cm21, ~57!
10401
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which meansM5.7 TeV. Then, from Eq.~56!,

L5,SMS,28.818310226 cm22, ~58!

and only a bulk of negative curvature is allowed in this a
proach. The above results are exact, since now there are
two unknown parametersaSMS,L5,SMS to be determined
from the twogSMS,bSMS. It is seen from Eq.~55! ~plot 3 in
Fig. 1! that the point particle limit of infinite density canno
be obtained~in contrast to the plots 1a, 1b, and 2 of Fig. 1!,
since thenG(4)→`. Even for different boundary condition
@34# the above limit is sometimes not defined at all.

Finally, we make the following comment. In our secon
solution ~34!, obtainedg.2GNM . Thus, from Eq.~44!, the
deflection angleDfd is larger than the corresponding ‘‘Ein
stein’’ deflection 4GNM /r 0 . This situation of increased de
flection ~compared to that caused by luminous matter! has
been clearly observed in galaxies or clusters of galaxies,
the above solution might serve as a possible way to prov
an explanation. In Weyl gravity@57,58,54#, the above in-
crease is associated with some parameter like ourb ~with the
difference of a linear instead of a quadratic term!, which has
to be positive in order to account for this~see also@52,59#!.
But, then, ab.0 cannot account for the additional attractiv
force needed to explain the galactic rotation curves. In
solution, instead, there is the additional freedom for the
rameterb to be negative, which can be used for galac
rotation curve fitting. Notice also that the Gibbons-Hawki
solution cannot explain the extra deflection in galaxies in t
way. Alternative gravity theories have probably not be
very successful in illuminating the missing mass proble
but this does not mean that a new gravity modificati
should not be tested in the arena of local phenomena;
certain that the whole topic deserves a more thorough inv
tigation.

IV. CONCLUSIONS

In the present paper, we have investigated the influenc
the brane curvature invariant included in the bulk action
local spherically symmetric braneworld solutions. The bra
dynamics is made closed by assuming the vanishing of
electric part of the Weyl tensor as a boundary condition
the propagation equations in bulk space. All the exterior
lutions for a compact rigid object were obtained. Some
them are of the Schwarzschild-(A)dS4 form. Furthermore,
two generalized interior Oppenheimer-Volkoff solution
were found, one of which is matched to a Schwarzsch
(A)dS4 exterior, while the other is not. A remarkable cons
quence is that the bulk space ‘‘sees’’ the finite region of
body and modifies the parameter of the Newtonian term
the outside region. Imposing no contradiction with everyd
Newton’s constant universality leads to bounds on the str
scale. The known classical solar system tests, which w
used in the past to check the validity of general relativity, a
here used to put precise bounds on the parameters of
model. More specifically, the crossover scale is found to
beyond our planetary system diameter, which means tha
upper bound for the energy string scale is of the order
4-8
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TeV. The limit of the idealized infinite density point partic
is obtained, and significant deviations from the known Ne
ton’s constant might occur in extremely low density mat
distributions. In the usual brane dynamics, in contrast to
case, the solar tests impose a lower, instead of upper, bo
of the above order on the string scale. Furthermore, in
case, to obtain exterior non-Schwarzschild-(A)dS4 solutions,
one has to consider nonlocal bulk effects.

We have followed a braneworld viewpoint to obta
braneworld solutions, ignoring the exact bulk space. We h
not provided a description of the gravitational field in t
bulk space, but confined our interest to effects that can
measured by brane observers. However, our formalism
sures the existence of a five-dimensional Einstein spac
the bulk space. Because of the assumptions made to obt
closed brane dynamics, there is no guarantee that the bra
embeddable in a regular bulk. This is the case for the Fr
mann brane@45#, whose symmetries imply that the bulk
Schwarzschild-AdS5 @60,61#. A Schwarzschild brane can b
embedded in a ‘‘black-string’’ bulk metric, but this has si
gularities @23,62#. Investigation of bulk backgrounds whic
reduce to Schwarzschild@or Schwarzschild-(A)dS4] black
holes is in progress.

It is clear that a density-dependent gravitational cons
generally violates, at the weak field limit, Newton’s third la
O

gy

ys

.
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of equal action and reaction. This, furthermore, means vio
tion of the conservation of linear momentum and makes
impossible to define precisely the potential energy for a s
tem of two masses. Since the point particle limit does
meet any problem in our model, and the Newtonian lim
also arises in metric-based theories for point particles m
ing along geodesics, we think that an understanding of
motion of an extended body in general relativity~or more
generally! would shed light on the above subtleties. Beyo
this, in our everyday phenomena, where very low dens
distributions do not contribute gravitationally, no such dif
culties arise. However, such situations may be relevan
early stages of the universe, before or during structure
mation.

As a motivation for further speculation, we mention tha
would be quite interesting, even for the formal status of
theory, if the existence of ther0→` asymptotic behavior of
the solutions found here, remains valid whenever the(4)R
term is present. In addition to this, it is known that in co
mology the(4)R term revives the desirable early universe
standard general relativity. However, to conclude, as bra
world solutions are continuously investigated, they have
be confronted with the accumulated cosmological and as
physical observations, if one wishes to consider the unde
ing theories as viable generalizations of general relativity
gy
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