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Spherically symmetric braneworld solutions with an ‘YR term in the bulk
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An analysis of a spherically symmetric braneworld configuration is performed when the intrinsic curvature
scalar is included in the bulk action; the vanishing of the electric part of the Weyl tensor is used as the
boundary condition for the embedding of the brane in the bulk. All the solutions outside a static localized
matter distribution are found; some of them are of the Schwarzschild-(AYdS8n. Two modified
Oppenheimer-Volkoff interior solutions are also found; one is matched to a Schwarzschild;(&jtsior,
while the other is not. A nonuniversal gravitational constant arises, depending on the density of the considered
object; however, the conventional limits of Newton’s constant are recovered. An upper bound of the order of
TeV for the energy string scale is extracted from the known solar system measuréaxpetsments On the
contrary, in the usual brane dynamics, this string scale is calculated to be larger than TeV.
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[. INTRODUCTION ered. A disadvantage of this method is that finding a bulk
geometry in which the brane is the boundary may be a very
The desire to explore physics beyond the standard modadlifficult task. A probable advantage would be the extraction
has led us to explore the ideas that spacetime is of a dimemf common braneworld characteristics holding for a broad
sion larger than four, and that we are essentially confined talass of bulk backgrounds. In both approaches, if the codi-
a four-dimensional hypersurface. String theories provide anension is one, Israel matching conditions are necessarily
framework for exploring such ideas, but nevertheless we ar@sed. In the present paper we shall elaborate on the second
still far away from having a viable low-energy realization of approach.
these theories. Braneworld models are relevant world realiza- The effective brane equations have been obtaifgd
tions in which some underlying features are often minimizedyhen the effective low-energy theory in the bulk is higher-
Replacing, for example, a whole field with a constestli-  gimensional gravity. However, a more fundamental descrip-
tonic solution may probably oversimplify the reality but at o of the physics that produces the brane could incl@e
the same time make it possible to obtain & more concretgigher order terms in a derivative expansion of the effective

picture, with the hope that any new behavior appearing willy 0, “sich as a term for the scalar curvature of the brane,

zggrgglgr?csaelr}:a\l/llth&;n;l;% ;‘:rgﬂit; ;mioryég:]%te?:ilz a;t:]rzand higher powers of curvature tensors on the brane. A brane
olog ' . N ng action that contains powers of the brane curvature tensors
galaxies, clusters of galaxies—has a brane solution to bﬁ-‘

consistent with the various astrophysical observations, whic A as als(célg%en used in Ijhe cgentex[tsc])f :he Ad? gonf(t:)r:mal field
are often more reliable than the cosmological ones. eory correspondencée.g.,[3]) to regularize the ac-

Attempts at obtaining braneworld solutions are cast intotion of a bulk AdS space which diverges when the radius of

two categories. First, the bulk space assumes a given georl€ AdS space becomes infinite. If the dynamics is governed
etry, a coordinate system is adopted, and the influence on tH¥t only by the ordinary five-dimensional Einstein-Hilbert
brane geometry is somehow extracted. It seems a disadvafiction, but also by the four-dimensional Ricci scalar term
tage of this approach that the bulk is prefixed and also thdfiduced on the brane, new phenomena appedu, & it was
the brane embedding obtained is not gauge invai(izie- observed that the localized matter fields on the biartéch
pendent of the coordinate system chgseecond, do not couple to bulk gravitonscan generate via quantum loops a
specify the exact bulk geometry, adopt a coordinate systertpcalized four-dimensional worldvolume kinetic term for
adapted to the bran&auss normal coordinates or some rel-gravitons(see alsd6—9]). That is to say, four-dimensional
evant ong¢, and deduce a brane dynamics, containing im-gravity is induced from the bulk gravity to the brane world-
prints from the bulk. Assumptions about the brane geometryolume by the matter fields confined to the brane. It was also
are often sufficient to obtain an exactly closed brane dynamshown that an observer on the brane will see correct New-
ics. This approach allows for a brane dynamically interactingonian gravity at distances shorter than a certain crossover
with a bulk, though this situation is not necessarily consid-scale, despite the fact that gravity propagates in extra space
which was assumed there to be flat with infinite extent; at
larger distances, the force becomes higher dimensional. The

*Email address: gkofin@phys.uoa.gr first realization of the induced gravity scenario in string
"Email address: Ipapa@central.ntua.gr theory was presented [d0]. Furthermore, new closed string
*Email address: gpappa@central.ntua.gr couplings on p-branes for the bosonic string were found in
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[11]. These couplings are quadratic in derivatives and therethe brane worldvolume, while lower-case latin letters span
fore take the form of induced kinetic terms on the brane. Fosome three-dimensional spacelike surface foliating the brane,
the graviton in particular these are the induced Einsteini.e.,i,j,...=1,...,3. Forconvenience, we can quite gen-
Hilbert term as well as terms quadratic in the second fundaerally choose a coordinatg such that the hypersurface
mental tensor. Considering the intrinsic curvature scalar in=0 coincides with the brane. The total action for the system
the bulk action, the effective brane equations have been olis taken to be
tained in[12]. Results concerning cosmology have been dis-
cussed if13-17. 1

The original Randall-Sundrum model&8], based on a 5= ﬁJ’M V=®lg(IR—2A5)d°
Minkowski brane and a specific relation between the bulk °
cosmological constant and the brane tension, have drawn 1
much attention because they might be realizable in super- +—2f \/—(459((4)R—2A4)d4x+f V= ClgLMatgsy
gravity and superstring compactificatigri®©—22. However, 2K3) M
any Ricci-flat four-dimensional metric can be embedded
(with the common warped embeddjngn (A)dS; (e.g., +f ,/—(459|_L”atd4x_ (1)
[23,24). In this way, a black-string solutiof23,25-27 can 2

easily be constructed. Furthermore, it is known that any four-FOr clarity. we have separated the cosmoloaical constants
dimensional Einstein spaces can foliate an (A)d6lk [28— Y. b 9

at mat
33 Thus, asymptotically nonflat black holes As,A, from the rest of the matter contebf'®',L}'®" of the

[Schwarzschild-(A)dg can be obtained as slices of the bulk and the br_ane, respectlve1y4/K4.can be interpreted as
above precise bulks. Almost all treatments on sphericallyin€ Prane tension of the standard Dirac-Nambu-Goto action,

symmetric braneworld solutions, such as those previousl$' 85 the sum of a brane worldvolume cosmological constant
mentioned, representing, for example, the exterior of a staf"d @ brane tension. We are _bag)cally_concerned with the
do not take account of the finite extension of the object. UntilcaS€ With no fields in the bulk, i.€7"Tag=0.

now, there is no known exact five-dimensional solution for From the dimensionful constantss,«; the Planck
astrophysical brane black holes. Furthermore, looking fofnassesMs,M, are defined as

bulks having some interior star solution as part of their 2_ 43 2 a2

boundaries is even harder. [84—36, some interior and K5=87CG(5)=Ms”, #,=87CG,H=M,",
exterior solutions were found, without including tH&®R  ith Ms,M, having dimensions of (length}. Then, a dis-

term. _ o _ tance scale is defined as
In the present paper, we discuss the gravitational field of
an uncharged, nonrotating spherically symmetric rigid object Ké Mi
when there is a contribution in the dynamics from the brane re=—H=—3- (©)

intrinsic curvature invariant. In Sec. Il, we find all the pos-
sible exterior solutions containing one undetermined param- Varying Eq. (1) with respect to the bulk metrig,g, we
eter, which is the parameter of the Newtonian term. Some ofptain the equations

these solutions are of the Schwarzschild-(A)dBrm. In

two cases, we can also solve the interior problem which re- OIGpg=—Asgapt+ kZ[ OTpg+ (9T xg8(y)], (4
duces to a generalization of the Oppenheimer-Volkoff solu-

tion, and thus determine the unknown parameter. This igvhere

found to be different from the conventional value of a local- 7

ized spherically symmetric distribution within the framework (oo _ _ i, [— ( )g( @G ag— k2T ag+ Ashag)
of four-dimensional general relativity. Hence, a nonuniversal AB k2 N —(6)g AB T4 TABTR4TAB
Newton’s constant, depending on the density of the object, (5)
naturally arises. In Sec. lll, taking account of the classical

experiments of gravity in the solar system, we can set a#f the localized energy-momentum tensor of the brane.
upper bound for the five-dimensional Planck mass of the  Gas.YGag denote the Einstein tensors constructed from the
order of TeV. The revival of the conventional results is dis-Pulk and the brane metrics, respectively. CleafG 45 acts
cussed, and also a comparison with the more standard bragé an additional source term for the brane throflgfT .
dynamics is presented. Finally, in Sec. IV are our conclu-The tensorhag=gag—nang is the induced metric on the

sions. hypersurface yconstant, withn® the normal vector on
these.
The way they coordinate has been defined allows us to
Il. FOUR-DIMENSIONAL SPHERICALLY SYMMETRIC write, at least in the neighborhood of the brane, the five-line
SOLUTIONS element in the block diagonal form

We c_onsiq\er a three-dimensional _braEe(with normal dS%S)Z — N2dt?+ gj;dxidxi +dy?, (6)
vector fieldn™) embedded in a five-dimensional spacetime '
M. Capital latin lettersA,B, ...=0,1,...,4denote full whereN,g; are generally functions dfx',y. The distribu-
spacetime, lower-case gregkv, ...=0,1,...,3 runover tional character of the brane matter content makes neces-
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sary for the compatibility of the bulk equatioré) the fol-
lowing modified (due td¥G*) Israel-Darmois-Lanczos-Sen
conditions[37-4Q:

(Ioc)-l—

(K= = | (ITs——— %,

3o @

1
where the square brackets mean discontinuity of the extrinsic ~ S= ﬁ|7’8+ 3(7+a?)|,

curvatureK ,,=(1/2)d,g,,, acrossy=0. AZ, symmetry on

reflection around the brane is considered throughout.
One can derive from Eq#$4),(7) the induced brane gravi-

tational dynamic$12], which consists of a four-dimensional

Einstein gravity, coupled to a well-defined modified matter

content. More explicitly, one gets

(GH= (F(ITH— ( Ayt gaz S+ a

L
My — oM
LV+25V), (8)

where a=2/r., while the quantitied are related to the
matter content of the theory through the equation

R L2 o /2 1 2 N\ S
LAl =5 00 =Ty~ 7(3a*+2T}) 3}, 9)

andL=L/;. The quantitiesT’; are given by the expression

TH=

1
A4—5A5) S — K5 T

(5)
(5)?5—7?) h

with OT=GTA GITA=gA )T, The overbars on
®)T5 and the electric parE.=C4 gn*nB of the five-
dimensional Weyl tenso€4., mean that the quantities are
evaluated ay=0. E’V‘ carries the influence of nonlocal gravi-

tational degrees of freedom in the bulk onto the brdriend
makes the brane equatio®) not closed in general. This

—EH,

14

(10

2 _
o
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Li=SE, (13
LO=L}=0, (14)

where
(15

B=[—6(n,—1)(n_—1)79+2n,n_(1-n,n_)r

+3(3—-2n.n_)a?]*?, (16)
while the matrix E} is either diag(-1,+1,+1) (with n,
=3n_=0) ordiagt1,+1,—1) (withn,=2n_=1).

Inspecting Eq(8), we see that the inclusion of the term
(R has brought a convenient decomposition of the matter
terms. First, the standard energy-momentum tensor enters
without having made any choice for the brane tensignin
terms ofM4,Ms (in [45,1] it has to beA,=3a?/2). Note
that if (R is not included in the action, fok,=0, ordinary
energy-momentum terms cannot arise. Furthermore, in that
case,A, has to be positive in order fo;rf1 to be positive.
Second, the additional matter termwhich appear here as
square roots instead of squares of the four-dimensional
energy-momentum tengoall contain the factore of the
energy string scale. Thus, conventional four-dimensional
general relativity is revived on some region of a four-
spacetime, whenever these extra terms remain suppressed
relative to the conventional ones; the specific valueaof
determines the regional validity of general relativity.

From now on, we are interested in stafmncosmologi-
cal) local braneworld solutions arising from the acti@h).
More specifically we consider a spherically symmetric line
element

ds;y=—B(r)dt?+A(r)dr?+r2(d 6%+ sin’ 6d ¢?).
(17

means that there are bulk degrees of freedom which cannot ) ) ) )
be predicted from data available on the brane. One needs tghe matter content of the three-universe is a localized spheri-

solve the field equations in the bulk in order to deterniifje
on the brane. In the present paper, to make(Boclosed, we

shall setE’=0 as a boundary condition of the propagation
equations in the bulk space. This is somewhat simplifie
from the viewpoint of geometric complexity, but it is the first
step for investigating the characteristics carried by the bran

cally symmetric untilted perfect fluide.g., a star )T,
=(p+p)u,u,+pg,, with p=p=0 for r>R, plus the cos-
mological constant\,. The matter content of the bulk is a

(Eosmological constamts. This matter content entef&, in

g.(10) and thus determinds{ on the right hand side of our
gynamical equationg8). The result is

curvature invariant on the local brane dynamics we are inter-
ested in. Treatments and solutions without this assumption,
in the context of the usual brane dynamics, have been given
in [26,41,42,43,34—-36,44 Because of the block-diagonal

LO= ii{|4A —2A5+3a?|
0 2B 4 5

+x3[(7-3n,n_)p+(n,+3n_)p]l}, (18
form of the metric(6) the solution of the algebraic system wal( nn-)pt(n.+3n-)pl} 18
(9), whenever 1
P S=——|4A,—2As+3a?+ k3 (p—3p)|,
’]’}: 7-5'], , (12) ZB| 4 5 a K4(p p)|
(19
iS
L B={(3—4n_)(4A,—2A5+3a?)
L8= iﬁ[(7—4n+n,)7'8—(3—4n+n,)r+3a2], (12 —4K§[3(n,—l)p+(n+—3)p]}1’2, (20)
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with the only restriction imposed by the square root appear- There are various different cas@samely, eight accord-
ing in B. Thus, necessarily, M,—2As+ 32 is non- ing to the choice oiE} and the alternative signs a@f2,S.
negative (nonpositive for E}zé} (for the other choice of However, in the outside region, there are only four different

E}).

cases, according to, ,n_ and thex sign in Eq.(18). In all

For the metriq17), one evaluates the Ricci tensd?R,,  these cases, we can integrate E2{) in the outside region,
and then constructs the field equati@8s The combination obtain the solutiorA-(r), and from Eq(22) get the solution
BR, 2A+ PR, /12 + WRy/2B provides the following B-(r). The result is

differential equation folA(r):

ry’ 2 2 3 5.2 ! =1—Z—,8r2 r=R (23
y =1—«gp(r)re— A4+§a r A-(r) r ' '
@ o 2 1
+§[3L0+(n+—n,)8]r , (21 Bo(r)=——F, , (), =R, (24)
Ao(r) M0
'=d/dr). Eliminating A'/A from Eq. (21) in the (66)
component of Eq(8), we get an equation foB'/B, from  with
which we obtain
(AB)’ ) o 1 1, n,—n_=3 5
DA — — =-As+za"—a————=|4A ,— 2A5+ 3a7|,
A5 —AHKi(p+p) —alL§+(2—n. +n )S]}. B=3 At 5 = |3_4n7|J| 4= 2As |
(22) (25)
|
thr ,n,(r): l+[f(r)arl{[m_7(2+3\f§)n_]/6\f§ﬁ(3772r1)}\ \4A4*2A5+3a2|_ 1] 5n+11,473n71 (26)

r )127”1

f(r)=(r—r1)<x g(r)VIra= a3,

wherer ; is the minimum horizon distance aigdr) is equal

to

effective brane cosmological constatite first class of these

(27) solutions reduces to Schwarzschild-like, while the second

does not. Non-Schwarzschild-like exterior solutions were
also obtained i134,41,36,44 but this fact was attributed to

the nonvanishindge . Such irregular behavior also appears
here, due to the intrinsic curvature invariant, without involv-

I[r +r11/2+ (r 1+ 39)/4Br L J/[r +11/2— (r 1+ 37)/48r ]| ing nonlocal bulk effects on the brane. There is one case of

for >0, or e? a4 /(ri+30(r+r1/2) for B<0. For B

=0, g(r)Vra=e is replaced by
— )R H3INC =) The =

our non-Schwarzschild—(A)dSsolutions with 3>0, y/r,
=2/3, where at large distances—given that the second hori-
zon is actually at cosmological distance8<B- is almost
( one, i.e., the solution asymptotes to the Schwarzschild-dS

*+, ¥ signs appearing in Egs. solution.

(25), (26) correspond to the- sign of Eq.(18). A multipli- If we take the covariant derivativedenoted by) with
cative constant of integration f@.. has been absorbed into respect to the induced brane metnigs=gag— hahg Of EQs.
a redefinition of time and is a constant of integration. Note (7), and make use of Codacci’s equations, and of the bulk
that for B<0 there is only one horizon; <y, while for 3 equations (4), we arrive at the equations(“)T’B\‘A:
>0 (and 2By?*<4 to have well defined horizopthere are  —[(®T<;]n°hy . When the matter content of the bulk space

two horizonsy<r;<3y and 1A38<r,<1/|/B.

is only a cosmological constant, then the common conserva-

The solutiong23),(24) are not yet completely defined un- tion law of our world is obtained. For the static case we are
less the parametey is determined, i.e., the interior solution discussing, this law is equivalent to the equation

is found. In the caséj=4;, we can find two situations B’ 2p’
where Eq.(21) does not contaip and so we can integrate it —_— = (28
in the interior regionwe give these solutions below, equa- B ptp
tion (31)]. _ Thus, forr<R we get the equation fop(r):
As it is seen from Egs(24) and (26), all the exterior
solutions are either of the form whefe. ,B.. are inverse to p’  1-A Ar|, A 3,
each other, or of the form where the prodéctB- is equal o+p 2r 2 Kap—| Aatsa
to f(r) to a power appearing in E426). The first class of
these solutions is of the Schwarzschild-(A)d8rm, while L& 3 AL )S} 29
the second is not. For zer8 (we can interpretB as the 270 27\3 "t

104014-4



SPHERICALLY SYMMETRIC BRANEWORLD SOLUTION . .. PHYSICAL REVIEW D 66, 104014 (2002

We assume a uniform distribution(r) = p,=3M/47R3 V1= (B+yIR)r2e\1—(B+ yIR)R?
for r<R. Then, the immediate integration of E@8) gives p(r)=—pg :
V1= (B+ yIR)IZOw\1— (B+ yIR)R?

(1-yIR=BRY)Fy, o (R) (36)
B_(r)= , I<R, (30
[1+(47R33BM)p(r)]?

where

in which, the continuity ofB(r) atr=R and the condition 1

p(R)=0 have been used. The vanishing of the pressure at w "=1- 2 p

the surface, which is certainly physically reasonable, is a 4ro

consequence of the application of the Israel matching condi- ( J3a
X

Y
,3+§

tions at the stellar surfadé6,47. The pressurg(r) in Eqg.
(30) is found from Eq.(29).

Now, we proceed, as we said before, with the two cases .
where we can solve the system of equati®®,(29). Both "€ SymbolS means—, except from therather irregular
haveE'jzé}. The first case corresponds to the upper sign o -ase W'th“’<o'p>p°/|“.’|’ where it becomest. In the
the = sign in Eq.(18), and the quantity inside the absolute imit @,A,—0 both SOIUt_'OnS foA<(r),B<(_r),p(r) red_uce
value of Eq.(19) in the interior of the stars being positive. to the known Oppenheimer-Volkoff solution. Also, in the

. limit «a—0, the exterior solutions corresponding to Egs.
The second case corresponds to the lowesign in Eq.(18)
and negative quantity in Eq19). In these cases, integration (32)’(_33) and Eq_s.(34),(35) reduce to the _Kottle|[48,4q
of Eq. (21) gives solution of four-dimensional general relativity.

It is of some importance to notice the following. Although

three unrelated parametetsA 4, A5 (which are supposed to

r, r<R. (31) be fundamentalenter our problem, the final exterior solu-
tions contain only two combinations of them, namely, the

) ) parametersy, 8. Thus, from exterior experimental data only

The parametery and 8 [from Eq. (25)] are given in terms o constraints onr, A4, As can be extracted. However, the

of M,a, A5, A4, by: interior solutions contain, furthermore, the parameigr

-1
1 . (37
VAA,—2Ag+ 3a2+4kip0)

1 —_
At

Y
ﬂ+¥

First solution which means that a third combination @fA 4, A5 could be
) obtained from possible astrophysical information. Thus,
v _ kM n a N —oA-T3a2 a,A4,A5 can be uniquely determined from local measure-
4 5

R3 47R3 23 ments. Of course, as is seen from E8j7), if the parameters
a,A,, A5 are extremely smallas will be seen in the next
a 3K§M section, the influence of the bulk effects onto the interior
4M;—2As+3a’+——, (32  solution is also small.
R It can be seen from E@32) that for a given set of param-
etersa,A4,As, the relative changeW2G4M)—1 in the

1 l a . . . . .
5 §A4+ g AN, 2Ao+ 3. parameter of the Newtonian term is negative, and it is an

23

2 23 increasing function opq. This deviation from the common
(33 situation can be interpreted as an object-dependent gravita-
tional constant, whileM remains unchanged, i.e.y
Second solution =2G4)(po)M, where
y KM a \/ 313M aN,—2A5|
—= + ——=\/4A,—2A5+3a’+ : Guy)(po)/Gay=1+2| 1+ ————
R® 47R® 23 e 7R3 3a?
(34) L
X—(1—+1+spyp)
1 1, Spo
3 2
and
The first solution, as it is seen from E@6) and Eq.(24), is —1
matched to a Schwarzschild-(A)g$xterior solution, while s— 327TG(4) 1 4A4—2As _
the second solution is matched to a non-—Schwarzschild- 3a2 3a2

(A)dS, exterior solution. Note that no additional constant of

integration enters the above solution since we have requiretihen, G4)(po) starts from the valueG){1—[1+(4A,

that the metric is nondegeneraterat0. In the special case —2Ag)/3a?] Y% whenpy,—0, and asymptotically tends to

with 4A ,—2As+3a?=0, Eq.(34) is matched to an exterior G4 for pg— . In this picture, Gy, the measured Newton's

Schwarzschild-(A)dgsolution. constant, is not a universal quantity, but simply corresponds
From Eq.(29), p(r) for our two solutions is found to be 10 G4)(poeveryday: Wherepge,erydayis the density of com-
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A the following, we choosé\ ,=0. Then, from Eqs(32),(33)
Glpy) we find that forG4)=Gy, the values are

1
aZ:—3(ZGNM—7)(ZGNM—7—2,3R3), (39
3 YR
BYR
(2GyM — y)(2G\yM — y—28R?)

. (39

@ A5=65<1_

(1b) while in the other limiting case
2

(12)

2y
v ZGNM - ﬁGNM

2y

CYZZZB'F ?

-1

4
‘ . \/(ZGNM—)/)(ZGNM—7+ —2GM
0 Po AR

40
FIG. 1. Thep, dependence of Newton's constant in various (40

models. Finally, we note that the non-Schwarzschil@}dS, solu-

. o tion (34),(35) could also be used for extracting pheonmeno-
mon matter~g/cn?. There is a characteristic value of en- logical bounds on the string parameters from the solar-
ergy, which can be associated with these densities, namelyystem experiments. We have chosen in this paper the
@e=\Gnpoeveryday~10 M cm . If  4A,—2As>3a®  simplest solution for this purpose. However, it is knol&a]

(plot 1a in Fig. 3, Gy(po) is always almost equal t&y  that the agreement with the solar-system tests of some
=G4, and no significant deviations from Newton’s constantmetric-based relativistic theory requires on kinematical
universality exist. Otherwisgplot 1b in Fig. 3, significant  grounds thatAB=1 to high accuracy in the vicinity of the
deviations fromGy can arise. Thus, there exist only two syn.
situations which do not contradict the everyday experience
of no deviation from NeWtqn’S constant Universality. These IIl. CONSTRAINTS FROM CLASSICAL TESTS
area<ag Or a>a,. In the first caseGy=G4) and signifi- o o _ _
cant deviations fronGy appear at extremely low densities A difficulty arising with the calculations of measurable
po<a?/Gy. In the second caseGn=G{1—[1+(4A, guantities(integral3 comes from the fact that the solution
—2A5)/3a?]" Y3 and significant deviations appear for ex- (32),(33) is not asymptotically flat, but diverges at large dis-
tremely dense objects. In the next section, we will set uppetances; thus, an expansion in powers of berformed in the
bounds ona, similar to a<a,, from solar system experi- standard PPNparametrized post-Newtonipanalysis, does
ments, and thus the second case is excluded. If this is realljot work here. Hence, one has to make expansions according
the situation, the possibility for the parameters to hawg 4 t0 parameters of the problem that are sufficiently small, and
—2A5<0, which leads to repulsive gravity on very low den- fortunately such parameters exist.
sity objects, is possible. Similar behavior to that described The motion of a freely falling material particle or photon
above, but with extra attraction, appears in solut®4) (plot  in a static isotropic gravitational fiel&Eq. (17)] is described
2 in Fig. 1. [53] by the equation

The solution(32),(33), since it is matched to an exterior
Schwarzschild-(A)dgsolution, will be used in the next sec-
tion to bound the parameters encountered from experimental
data of our solar systerfdeflection of light coming from
distant stars, precession of perihelia, and radar echo Jdelaywhere J,E are constants of integratiorE(=0 for material
Since there are two paramete8sy in the exterior solution, particles andE =0 for photon$. At the points of minimum or
connected to the three,A 4, A5, it is necessary to drop one maximum distance,, dr/d¢=0, and thus
of these three by hand, in order to get an estimation of the

do

2_A>
dr| 4

r4

1 1 E\? )
PB. r2 32

other two. It is obvious tha& cannot be this one, since this 1 w2

) - . : J=ro|z———-E (42

is too restrictive and in fact analyses of this case have been B-(ro)

performed50,51]. Also, we do not sef\5;=0, since thers

cannot be negatived negative implies\ ;<<0). Althoughg We will analyze the three classical solar scale

is the same quantity that in cosmology plays the role of theexperiments—deflection of electromagnetic waves coming
effective cosmological constaht6,12 and it is then posi- from distant stars by the sun, precession of the perihelia of
tive, in the present work we do not claim any connectionplanets, and time delay of radio waves.

with cosmology, so we would prefer to be able to also deal (1) Deflection of light Although the metric is not asymp-
with a negativeB. As will be discussed in the next section, totically flat, the photon, as can be seen from Etl), has
this may be of importance for galactic scale phenomena. lal¢/dr—0 asr—, and thus, it moves in a “straight” line
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of the background geometry in that region. The deviation For Mercury, the uncertainty in the quantithé,
from this line is measured by the total deflection angle—67GyM/L is +10 ° rad/orbit. Then, taking into ac-
Adg=2|p(ro) — ()| — 7, wherer, is the minimum dis-  count the rangé45) of y received from deflection, we obtain
tance of the orbit to the sufwhen a ray grazes the sug

=Rp). As is expected and will be shown belojg| has an —7.908<10°% cm2<B<2.465<10°% cm 2,
extremely small value; thus, fg8>0 the horizonr, is of (47)
cosmological scale and scattering of light can be practically
defined even in this case. The angular momenlusrelated .
to the “impact parameter’d through the relationJ=b(1 The boundd45),(47) give, from Eq.(38),
— Bb?) Y2 Integrating Eq(41) we arrive at
A grating Eal41) a<4.37910 16 cm L. (48)
3
re (=
(1) = p(*) =/ ro—yfr r(r=ro) Actually, as long as the upper bound || remains many
orders of magnitude smaller th&M /Ry, the above re-
, yr2 ]2 sult, as can be seen from E@®8), is insensitive to the exact
X\ rotror——— dr.  (43)  value of 8. Furthermore, the fact that has an upper instead

of a lower bound is due to the specific functional form of the

For the above expression to be well defined, we must havgxpre53|or(38) in terms ofy. This means that the crossover

s e Scaler.>4.567x 10'° cm, i.e., the lower bound of, is a

g‘:; ggr)(wl\rl]éctg 'tf]:th’:ﬁgs ;hr(:mife fg;;(é?;r;loneztraerds ;ufﬁea?ew times the diameter of our planetary system. Thus, the
: . P ) i bpea five-dimensional fundamental Planck scdlk is less than

expression43), i.e. the deflection phenomenon is the same0 9 TeV. From Eq(40), one can see that fg8—0, a—0
as if it had occurred in a Schwarzschild field of parameter aﬁd theﬁ from Ec?s.(45) ’(47) an upper bound of thé order of
The expressiort43) leads to an elliptic integral. Since is 1022 cle s set .for’a \;vhich is incompatible withe
almost ZSNI\A6@ andr is of the order oRg, y/rg is of the >a,. Thus, this case is,not acceptable
order of 10°°. Hence, we can expand the integrand of Eq. ) ' i S
(43) to first order in this parameter before integratjéd]. It From Eq.(39), an upper bound fofs can be obtained:
is convenient, simultaneously, to set siary/r, and the re-

sult is A5<3.804<10 %% cm 2. (49)
Aquzz_y_ (44) Uncertainties in the measurement of the precession of
o perihelion are known to exist, due to the rotation of the sun;

thus, it is better to examine the bounds @rirom the radar
The best measurements of the deflection of light from theecho delay independently.

sun were obtained using radio-interferometric methidif (3) Radar echo delayThe time required for a radar signal
and the result foundfor ro=Rg) wasA¢y=1.761-0.016  to go from a point to the closest point, of its orbit to the
arc sec. Then, from Ed44), sun is
29.440<10" cm<y<29.979%10* cm,  (45) fr <A>)1’2 2 B. 1’2d -
trro=| || |1-= r.
( 0) ro B> r2 B>(I’0)

which is around the conventional valueGgM ,=29.539

x 10* cm. _ _ _ _ _ _
(2) Precession of periheliaHere, there are two values As in th(_a deflection of light, expanding to first order R

r,,r_ of maximum and minimum distance satisfying Eq. We obtain

(42). The two constants of motiah E are expressed in terms . =

of r . ,r_ and are plugged into E@¢41). The expression aris- _ B

ing is very complicated, but referring {60,51 we can write tr.R)= ﬁarctam( \/W 1—,3R2)

the precession per orbk ¢, =2|¢(r ) — ¢(r_)|— as

amy EmBLS . (l V1-BR%r +\r?—R?
T T | In
A¢p:Ty+ f : (46) Ry1-pgr?
hereL " 1=(r;*+r_h/2is th il f th T \/r_RHﬁrR (51)
whereL™*=(r~+r_")/2 is thesemilatus rectunof the or- Zm r+R1_pr2 :

bit. Both[50,51] agree on the result E§46). Actually, they

refer to the Gibbons-Hawking metric, but their methods can

be immediately applied in our case. They disagree on th&his expression holds for3>0, while for B<0
next order terms, which are, however, negligible compared tarctarh[ [ 8]\(r?—R?)/(1— 8R?)] has to be replaced by
the second term of Eq46) for stars with small Schwarzs- /2—arctaf(1/V[B8]) V(1— BR?)/(r?—R?)]. Whenever
child radius and for slightly eccentric orbits. |B|r?<1, the above expression takes the form
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r+Jr2—R? which meandM;>7 TeV. Then, from Eq(56),
t(r,R)=\r?—R%+ yin—e—
Assys< —8.818<10 6 cm 2, (58)
Y ﬂ+é 2_R2)32 52 . , N
>Virr' 3 (r )7 (52)  and only a bulk of negative curvature is allowed in this ap-

proach. The above results are exact, since now there are only

We will use this expression to get bounds from solar radafWo unknown parametersisys,Assus to be determined
echo experiments. Notice, however, that E§l) may be from the twoysys, Bsus. It is seen from Eq(55) (plot 3 in
applicable to some more general cases. Fig. 1) that the point particle limit of infinite density cannot
In [56], the time delay on solar system scales was meabe obtainedin contrast to the plots 1a, 1b, and 2 of Fig, 1
sured to an accuracy of 0.1%. A ray that leaves the Eartt§ince thenG4y—. Even for different boundary conditions
grazes the Sun, reaches Mars, and comes back would havé3#] the above limit is sometimes not defined at all.
time delay of 248 0.25us where the 248&s is the exact Finally, we make the following comment. In our second
prediction of the “Shapiro” time delay and the uncertainty solution(34), obtainedy>2GyM. Thus, from Eq(44), the
+0.25 s can be used to constrgih At superior conjunc- deflection anglel ¢ is larger than the corresponding “Ein-
tion, the radii of the Sun to Earth,, and to Marsy,, are stein” deflection 45yM/r. This situation of increased de-

much greater than the radius of the s®a,, and thus flection (compared to that caused by luminous matteas

23(r3+r3)=+0.25us. This constraing to the range been clearly observed in galaxies or clusters of galaxies, and
¢ the above solution might serve as a possible way to provide
|| <7.555¢<10° % cm 2. (53  an explanation. In Weyl gravity57,58,54, the above in-

crease is associated with some parameter likeBolwith the
It is interesting to compare the bounds on the varioudifference of a linear instead of a quadratic tgrmhich has
parameters of a brane theory with 4HR term, with the to be positive in order to account for thisee alsd52,59).
bounds on the parameters that result from brane dynamid3ut, then, §3>0 cannot account for the additional attractive
without the (YR term. In[1], the dynamics on the brane is force needed to explain the galactic rotation curves. In our

given, instead of Eq(8), by the following equation: solution, instead, there is the additional freedom for the pa-
rameter 8 to be negative, which can be used for galactic

Ké 1 Kg rotation curve fitting. Notice also that the Gibbons-Hawking
(4)652—2/\4(4)1'5—5 Ag+—AZ | 8% solution cannot explain the extra deflection in galaxies in this

6«4 6r4 way. Alternative gravity theories have probably not been

Kg very successful in illuminating the missing mass problem,

—ﬂ(s(“)Tg @12 @ TEH TH but this does not mean that a new gravity modification

should not be tested in the arena of local phenomena,; it is

_3(4)1_,; (4)T26’V‘+ (4)T25¢)_ E‘V‘ . (54) certain that the whole topic deserves a more thorough inves-

tigation.
For E’V‘:O, following the same steps for solving E&§4), as
before, we arrive at the unique Schwarzschild-(A)@Rte- IV. CONCLUSIONS
rior solutionB..(r)=1/A.(r), whereA.(r) is given by Eq. In the present paper, we have investigated the influence of
(23). The parameters of this solution, denoted by the subthe prane curvature invariant included in the bulk action on
scriptSMS are given by local spherically symmetric braneworld solutions. The brane

dynamics is made closed by assuming the vanishing of the
electric part of the Weyl tensor as a boundary condition for
the propagation equations in bulk space. All the exterior so-
lutions for a compact rigid object were obtained. Some of
2 them are of the Schwarzschild-(A)g$orm. Furthermore,
_ = Alsws two generalized interior Oppenheimer-Volkoff solutions
Bsms= 6A5,SMS+ > - (56) S :
9asys were found, one of which is matched to a Schwarzschild-
(A)dS, exterior, while the other is not. A remarkable conse-
It is obvious that the conventional valu&M of the New-  quence is that the bulk space “sees” the finite region of the
tonian term can dominatgsys only if A,sus=3a3yd2.  body and modifies the parameter of the Newtonian term in
This is the same value that revives the common fourthe outside region. Imposing no contradiction with everyday
dimensional energy-momentum terms in the general equatioNewton’s constant universality leads to bounds on the string
(54). This value is substituted in Eq$55),(56) and then, scale. The known classical solar system tests, which were
using the bound#&5),(47) from the classical tests, we can set used in the past to check the validity of general relativity, are
bounds onagys, Assws. More specifically, since\ssysis here used to put precise bounds on the parameters of our

M, (55)

2 2
LTAURIVES 3kaM
Ysms= <1+

8mALsmR>

2
6magys

not contained in Eq(55), Eq. (45) is enough to find model. More specifically, the crossover scale is found to be
beyond our planetary system diameter, which means that the
asys>2.425<10° 13 cm 1, (57)  upper bound for the energy string scale is of the order of
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TeV. The limit of the idealized infinite density point particle of equal action and reaction. This, furthermore, means viola-
is obtained, and significant deviations from the known New-tion of the conservation of linear momentum and makes it
ton’s constant might occur in extremely low density matterimpossible to define precisely the potential energy for a sys-
distributions. In the usual brane dynamics, in contrast to outem of two masses. Since the point particle limit does not
case, the solar tests impose a lower, instead of upper, boumdeet any problem in our model, and the Newtonian limit
of the above order on the string scale. Furthermore, in thatlso arises in metric-based theories for point particles mov-
case, to obtain exterior non-Schwarzschild-(A)@8lutions, ing along geodesics, we think that an understanding of the
one has to consider nonlocal bulk effects. motion of an extended body in general relativir more

We have followed a braneworld viewpoint to obtain generally would shed light on the above subtleties. Beyond
braneworld solutions, ignoring the exact bulk space. We hav#his, in our everyday phenomena, where very low density
not provided a description of the gravitational field in the distributions do not contribute gravitationally, no such diffi-
bulk space, but confined our interest to effects that can beulties arise. However, such situations may be relevant to
measured by brane observers. However, our formalism a®arly stages of the universe, before or during structure for-
sures the existence of a five-dimensional Einstein space asation.
the bulk space. Because of the assumptions made to obtain a As a motivation for further speculation, we mention that it
closed brane dynamics, there is no guarantee that the branev®uld be quite interesting, even for the formal status of the
embeddable in a regular bulk. This is the case for the Friedtheory, if the existence of the,— o asymptotic behavior of
mann brand45], whose symmetries imply that the bulk is the solutions found here, remains valid whenever th&
Schwarzschild-AdS[60,61. A Schwarzschild brane can be term is present. In addition to this, it is known that in cos-
embedded in a “black-string” bulk metric, but this has sin- mology the )R term revives the desirable early universe of
gularities[23,62. Investigation of bulk backgrounds which standard general relativity. However, to conclude, as brane-
reduce to Schwarzschilfor Schwarzschild-(A)dg black  world solutions are continuously investigated, they have to
holes is in progress. be confronted with the accumulated cosmological and astro-

It is clear that a density-dependent gravitational constanphysical observations, if one wishes to consider the underly-
generally violates, at the weak field limit, Newton'’s third law ing theories as viable generalizations of general relativity.
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