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By using an isotropic field configuration for thigplet ansatz sector of the metric-affine theories of gravity
(MAG), we find a class of harmonic solutions which represents the interior and exterior field of a distribution
endowed with electric and strong gravitoelectric multipole moments. Moreover, the general matching and
junction conditions in MAG and their reduction to tlwplet ansatz sector are presented.
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[. INTRODUCTION it =0. It is therefore important to derive and investi-
y af p
gate exact solutions of these theories which contain
Even though Einstein’s treatment of spacetime as a Rieinformation about the new geometric objects like torsion and
mannian manifold appears almost fully corroborated experinonmetricity (for a survey of these theories sf).

mentally, there are several reasons to believe that its validi / It:r?r restricted i_lrre_(;l_ucibbletpiecestr(])f tgsiotn_ansl nonmet;ic-
is limited to macroscopic structures and to the present co ty thére are simiiarities between the Einstein-rroca system

mological era. The only available finite perturbative treat—and the vacuum MAG field equatio—9]. This observa-

ment of quantum aravity. namelv. the theorv of the quantu tion enables us to find new solutions for MAG theolfi&§].
a 9 Y, Y, y d rT‘Special electrovacuum solutions in MAG have already been

superstringg 1], suggests that non-Riemannian features argy .4 in Refs[11—13. Moreover, also static black hole con-
present on the scale of the Planck length. On the other han gurations in MAG have been i’nvestigated in vacu[t]
recent advances in the study of the early universe, as reprgg g in the presence of Abelian and non-Abelian mdttéf.
sented by the inflationary paradigm, involve, in addition to | this paper we use an isotropic field configuration and
the metric tensor, at the very least a scalar fl@ld induced  the underlying harmonic structure of the MAG theories, in
by a Weyl geometry, i.e., the inflaton, an essential departurgheir triplet ansatz sector, in order to generalize our previous
from Riemannian metricity3]. Even at the classical cosmo- vacuum result416] by introducing additional electromag-
logical level, a dilatonic field has recently been used to denetic fields. We obtain electric multipole solutions. These
scribe the presence of dark matter in the universe, as well asblutions are interesting because they imply the consider-
to explain certain cosmological observations which contraation of matching conditions between internal and external
dicted the fundamentals of the standard cosmological modedolutions. However, the necessary matching conditions be-
[4]. tween two different spacetimes in MAG have not been in-
There exist good experimental evidence that, at thevestigated so far. Arkuszewski al. [17] advanced in this
present state of the universe, the geometrical structure d@pic in the framework of the Einstein-Cartan theory. The
spacetime corresponds to a metric-compatible geometry ifatching conditions and their general implications in MAG
which nonmetricity vanishes. Consequently, a metric-affinédre analyzed to some extent. , _
geometry is irrelevant for the geometrical description of the ‘The plan of the paper is as follows: Section Il contains a
universe today. However, during the early universe, when th@rief presentation of MAG theories and its triplet ansatz sec-

energies of the cosmic matter were much higher than todafo" ' S%C'l IIISthe I|\s/0t10pt|c_ f"ﬁld %onflgélratlc?tn ml MAth.IS
we expect scale invariance to prevail and, according to thg|scusse - IN SEC. [V electrically charged mulipole solutions

metric affine theory of gravityMAG), the canonical dilation i MAG are displayed and the physical interpretation of the

(or scale current of matter, the trace of the hypermomentumpf?lrameters entering the solutions is analyzed. In Sec. V we
Y b ' led to the Wevl ¥ Q|scu_ss the d|scont|nu_|t|es. In Sec. VI the matchm_g condi-

currentA”,, becomes coupled to the Weyl covecF,.  inng in MAG are considered. In Sec. VIl the matching con-

Moreover, shear type excitations of the material multis-giions for the specific Einstein-Proca-Maxwell system of the

pinors, i.e., Regge trajectory type of constructs, are expectegis|et ansatz sector of MAG are presented. In Sec. VIII the
to arise, thereby liberating the metric-compatible Riemann;egyits are discussed.

Cartan spacetime from its constraint of vanishing nonmetric-
Il. MAG FIELD EQUATIONS AND THE TRIPLET ANSATZ

*Electronic address: amac@xanum.uam.mx A. MAG in brief

TElectronic address: claus.laemmerzahl@uni-duesseldorf.de Let us consider a frame field and a coframe field denoted
*Electronic address: lopr@xanum.uam.mx by
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e,=e*,d ¥P=e Pdx*, (1) SLyar /6P =0  (mattep, (11

a aPu

respectively. The5L(4,R)-covariant derivative for a tensor

valuedp form reads DM*—m*=g*F  (zeroth, (12)
D=d+T,p(Lp)/\, 2
. . DH,—E,=%, first), 13
wherep(L“p) is the representation @&L(4,R) and L;ﬂ are (first) (13
the generators; the connection one-fornTiCs‘g:FM dx*.
The nonmetricity one-form, the torsion, and curvature two- DHY,—E%, =A% (second, (14)
forms read b b b
Qup=—Dgup, T*:=DI*, where we have used the canonical moméfgacitations”),
R,?:=dl' ,f~T,YAT ~, (3)
Maﬁ:=_2&VMAG/aQaBI (15)

respectively, and the Bianchi identities are given by

DQus=2R(,p, DT*=R,\9?, DR,/P=0. (4  a momentum three-form conjugate to the metric field,

It is worthwhile to stress the fact that the nonmetric@y,;,
the torsionT¢, and the curvatur® ? play the role of field H,:=—dVyac/dT, (16)
strengths.

We now turn to thesource currentdor the fields above,
these will depend on the Lagrangia® (is a matter mani- @ momentum two-form conjugate to the coframe field, and
field),

£=£(gaﬁ,dgalg,ﬂ“,dﬂ“,raﬁ,draﬁ,‘l’,D\P), (5) Haﬁzz_(?VMAG/O')Raﬁ, (17)

which can be rewritten in a covariantized form as
the momentum two-form conjugate to tk&l(4,R) connec-
£=L‘(gaﬁ,Qaﬁ,ﬂ“,T“,Faﬁ,Raﬁ,\P,D\P). (6) tion.
) ) ] ) ) The currentsm"B,Ea,E“ﬁ are components of the metric
We will c0n3|de_r a metric-affine theory described by the Parenergy momentum, of the canonical energy momentum, and
ticular Lagrangian of the hypermomentum currents, contributed by the gravita-
L=Nant [ @ tional fields themfselves, respectively, ity e the so-called
MAG T ~MAT » vacuum contributions.

where Ly represents the Lagrangian of the matter field. Diffeomorphisms and5L(4,R) invariance yield two No-
The matter current three-forms are then given by the Euleréther identitiegS] which, given in their “weak” form, i.e.,
Lagrange functional derivativeslenoted bys) of the mate-  &fter the application of the matter equation of motidd),

rial pieceL s . We have the canonical energy-momentumP&come

current

Ea==5LMAT/51‘}“=(9LMAT/&19a+ D(&LMAT/&T“), (8) Dza:(eaJTﬂ)/\Eﬁ
+(eq Rs")NAL,

—(1/2)(ea]Qpy) 0", (18

the hypermomentum current
Aa[;:: 5LMAT/5FQB
=p(L*g)WA[dLyar /d(DW)]+294,(ILyar /9Q.y)

DA%+ 9N 53— 0,07 =0. (19
+ 3\ (ILyar 1ITH)
+D(dlyar 1IRP), 9 It is worthwhile to stress the fact that given a solution of
. ) the second MAG field equation the zeroth and the first field
and also a related current four-form, tteymmetrig metric  quations are not independent, i.e., one of them is redundant.
energy-momentum, namely In a metric-affine spacetime, the curvature has 11 irreduc-
ible pieces[5], whereas the nonmetricity hdsur and the

aB,_ =
0%:=20L war 1 89ap= 2L war 199 torsionthreeirreducible pieces. The most general parity con-

+2D (I ar /9Q ) - (10) serving LagrangianVyag Which has been constructed in
terms of all irreducible pieces of the post-Riemannian com-
Hence the MAG field equations turn out to [ig ponents has been investigated previoli$§] and reads
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4

4
2}2 C|(')Qaﬁ)/\1‘7‘“/\*T'B+ Qaﬁ/\*( > bf"Q“B)

1
=—]| — ap — +Ta/N\*
VMAG 2k aoR /\naﬁ 2)\7] T “~

+2

3
2 al(I)Ta
I=1

6 5
1
+ b5((3)Qay/\ﬁa)/\*((4)Qﬁy/\ﬁﬁ):| - ZR“ﬁ/\* ( Zl WOW, g+ w7 3,/ (e, JOW? ) + Zl ZNZ, 5+ 269,

9
(e, PZ7,)+ 27 Z aa/\(eyj““)zyﬁ)) . (20)

The Minkowski metric iso,z=diag(—+++), * is the wherek,, k;, andk, are given in terms of the gravitational
Hodge dual,z:=*1 is the volume four-form, the constakt  coupling constants, i.eko=4a,B;— 373, ki=9(a,B5/2

is the cosmological constang, the strong gravity coupling — y5y,), ko=3(4B83y,—3857v3/2), anda,=a,—2a,, B3
constant, the constants andg,...,as, bq,...bs, =bs+ay/8, Bs=bs—3ay/8, Bs=hbs—ay, y3=Cc3+ag, and
C»,C3,Cq, Wy, ... W7, Z1,...,Zg are dimensionless. We +y,=c,+a,. In other words, we assume that the triplet of
have introduced in the curvature square term the irreduciblene-forms are proportional to each otfig8—10,18. This is
pieces of the antisymmetric paW¥,;:=R;,5 and the sym- the so-calledriplet ansatz sector of MAG theorig$,8,9.

metric partZ,;:=R,p of the curvature two-form. IiZ .z, Consequently, here we limit ourselves to the special case

we have the purelypost Riemannian part of the curvature. in which the only surviving strong gravity piece is the square

Note the peculiar cross terms with and bs. of the segmental curvaturévith vanishing cosmological
constany, i.e.,

B. Triplet ansatz sector of MAG and equivalence theorem

1
The Lagrangiar(20) is very complicated and difficult to VMAGZZ[_aORaﬁ/\ NaptaT/A* AT +2(c30Q,4
manage. Therefore we will consider here only the simplest

nontrivial case of torsion and nonmetricity with shear. Then, +¢,Q ) NI\ * TP+Q, 5\ * (b3PQ#
for the nonmetricity we use the ansatz
@By 24 RaBA * (4)
Qup=Qu* “Qu. (2 FhaEQ] = 5 RN 2, @9
where where the segmental curvature™®Z,,:=R,g,/4
=0,5dQ, with the Weyl covectoQ:=Q,"/4. Therefore
4 1
GQus==| Fu€p)A— 70usA (22)
B («®p) ap | z z
° 4 — SARaBAF (A7 = — AR ANFRP
2p 2p
with
——ng/\*dQ (26)
A=9€P|Q, 5 p

is the proper shear piece aftiQ,;=Q g, represents the IS the kinetic term for the Weyl one-form. .
dilation piece, whereQ:=(1/4)Q.” is the Weyl one-form, Under the above given assumptions it is now straightfor-
and Q,5=Q.p— Q dug is the trgceless piece of the non- ward to apply Obukhov's equivalence thgoréﬁ‘;?,g] ac-
metricity. Other pieces of the irreducible decomposition ofc0rding to which the field equations following from the pure

the nonmetricity[5] are taken to be zero. geometrical part of the Lagrangiafy), i.e., Vyac, are
Let us choose for the torsion only the covector piece a§auivalentto Einstein’s equations with an energy-momentum
nonvanishing: tensor determined by a Proca field. In the case investigated

here we have an additional term due to the presence of the
1 matter field in Eq(7). Thus the field equations reduce to
Te= (Z)T“=§ﬂ“/\T, with T:=e,|T* (23
Qo

7 naﬁy/\ﬁﬁyz Kza ’ (27)
Thus we are left with a triplet of nontrivial one-forngg A,
and T for which we make the following ansatfor details,
coe[10] g ansat d* w+m2* $=0, (28
K K where ¢ represents the Proca one-for@e=d ¢ is the corre-
Q= 0420 ' (24) sponding field strengtimis completely given in terms of the
ky ka coupling constants, and a tilde denotes the Riemannian part
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of the curvature. The energy-momentum current entering the 1
right-hand side of the Einstein equations is given by ds?=0,,9°® 9= — f—zdt2

_ () 1 v (MAT)
3,=3+30, (29 +F[dr2+r2(de?+sirtedg?)].  (34)

where . .
Let us make the following ansatz for the triplet
2

2<¢>==Z“—k°{<eaJd¢>A*d¢—(eaJ*d¢>Ad¢+mZ[<eaJ¢> - ko ko
“ 2p szoNeu(r,G)ﬁozk—lAzk—zT, (35)

A*pt(ed]* $)\ B} (30)
, , with Ng the gravito-electric charge. This is the so-callgp-
is the energy-momentum current of the Proca field, anget ansatz sector of MAG theorid8)].

2N is the energy-momentum current of the additional  The electromagnetic potential appropriate for this con-
matter field which also satisfies the corresponding Eulerfiguration read$12,13
Lagrange equations.
Thus the triplet ansatz sector of a MAG theory coupled to A=eyu(r,0) ,96, (36)
a matter field has been reduced to the effective Einstein-

Proca system of differential equations coupled to a matteyyheree, is the electric charge. Here we have introduced a
field. Moreover, by settingn=0 the system acquires the second functiomi(r, ) which together witH (r, ) has to be

constraint B,= (ki Bs/2+k,74)/4k, among the coupling determined by the field equations.
constants of the Lagrangiaf®0), and it reduces to an
Einstein-Maxwell system, cf. Ref10]. IV. HARMONIC SOLUTIONS IN MAG
[l. ISOTROPIC FIELD CONFIGURATION IN MAG In order to solve the equations arising from the MAG
. . . _ Lagrangian(25), we substitute the local metri, 5, the cof-
We_ will Io_ok for exact multlpole_ solutions of the field rame (33), and the ansat#35) of the nonmetricity and tor-
equations arising from the Lagrangian sion into the field equationsl3), (14) of the Lagrangian
—Vigac+ Ly, ith L= —(1/2EA*E (31 (25), we flnq that the funptlonéff(r,a) and u=u(r,0)
£=Vunet Ly WIth Lya=—(1/2) G pave 1o satisfy the two-dimensional Laplace equatioh
the Lagrangian of the Maxwell field, arfi=dA. Since the =0=Au with
matter pari ., does not depend on the connectiogf, the
hypermomentun\ ®z:= 8Ly / ST, vanishes, i.eA®;=0, A:i rzi 1 i( . d 37
and the only external current is the electromagnetic energy- ar ar) sinég a6
momentum current ,, given by
Furthermore, the coefficientg,k,k, in the ansat424)
2 o= €q|Lmaxt (84]JF)/\H. (32 are determined by the dimensionless coupling constants of

. . . . . ) _the Lagrangian:
We will consider a static axially symmetric configuration

for the metric-affine spacetime as well as for the Maxwell

field. Using the invariance of a metric-affine spacetime under ko=
diffeomorphisms, it can be shown that the conditions of sta-

ticity and axial symmetry lead to a metric with only three

independent componenf$9] which, for instance in spheri- ky=—9| ao| =—
cal coordinatest(r,#,¢), coordinates depend on the two 2
spatial coordinatesand @ only. For the sake of simplicity, in (39)
this work we will assume that the spacetime can be com-
pletely described by only one independent function, ay
=f(r,0). Furthermore, we limit ourselves to ttigotropic
coframe (40

az
——a
2 0

(8b3+ag) —3(Cca+ag)?, (39

a,
Qo

+(C3+a0)(c4+a0)},

3
ko=5[3ap(Cstap) +(8bs+ap)(cstap)].

90— Edt, 9itg . 92—frd 0 A rather weak condition, which must be imposed on these

f coefficients, prescribes the value
3_ ; agk+2c,4k
93=frsined ¢, (33 b4:%, with k:=3ko—ky+2k,,  (41)
0

with the unknown functiorf =f(r,#). Since the coframe is

assumed to berthonormalwith the local Minkowski metric ~ for the coupling constartt,, and leads to the following re-
0,4+=diag(—1,1,1,1)y 0%#, we have the metric iisotropic  lation for z, and the effective gravitational constamt the
form electric chargesy, and the gravitoelectric chardé,:
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(koNe)2
2ag |

must demand the vanishing of the functiohsnd u. This

can be achieved by putting the corresponding coefficients
f,=0 andu,=0 (n=0,1,2...). Accordingly, the interior
Thus we see that the assumption of an isotropic field conse|ution is given as

figuration for thetriplet ansatz sector of MAG leads to a

single linear differential equation for both unknowinandu

q°=x (42)

et+z,

and, therefore, the corresponding solution can be given in f=q>, T.r"P,(cosé), (48)
terms of harmonic functions with arbitrary constant param- n=0
eters.
Therefore the general solution can be written as o A
B . A=e02O Upr"P,(cos6)9°, (49)
A=
f(r,0)=1+q>, 7nr"+M P.(cosf), (43
h=0 rn-%—l .
= o Q’J‘anzo Upr"P(cos)| koNg 0%
u(r,0)=2 (unr”+ :H)Pn(cosa), (44)
n=0 r 4 1 .
- . + §k1Ne( 9HeeP)|— Zo“ﬁ) 9%, (50
wheref,, f .1, U,, andu,, 1 are arbitraryintegration con-
stants andP,, are the Legendre polynomials of orderThe
constant is related with the parametej of the Lagrangians . KaNe S N wn od
(20)—(42). Consequently, the electromagnetic potential can == n§=:O Unr"Pp(cose) 9N\ 9°.
be written as (51)
A=gy > (ﬁnr“+un+l) pn(cose)ﬁé_ (45) This interior solution is valid inside a three-dimensional
n=0 pntl hypersurface (r, #) =0 which corresponds to the surface of

the matter distribution. From the form of the metric function

f we can see that the coefficients determine the interior

multipole moments of the gravito-electric field. On the other

hand, the Maxwell field is defined by the electromagnetic

L1 P (cosh) potential A which in this case contains only interior electric
n

multipole moments of the forneuoﬁn (n=0,1,2...). Non-
metricity and torsion also present a multipole structure where

99, the interior multipole moments are all proportionaittpdue
to thetriplet ansatz we are using here.
(46) Consider now the exterior part of the matter distribution.
Since nonmetricity and torsion are geometric objects like
. KoNe “ - . Ups g n b curvature, divergences in their components at spatial infinity
Ti=—3 nZO Unf +r“_+1 Pn(cose) 3\ 9. are nonphysical. For example, torsion can be measured by
(47) spin precessiof0,21]. An infinite torsion will then give rise
to a spin precession with an infinite angular velocity at spa-
The harmonic structure of the metric as well as non_tial |nf|n|ty Moreover, the electric pOtential must tend to a
metricity and torsion allows us to interpret this solution in constant value or has to vanish at spatial infinity because it
terms of multipole moments. In fact, the functioh&r,¢)  represents the field of a finite charge distribution. For sim-
andu(r,) can be written as the sum of two infinite series, Plicity, here we assume that the electromagnetic potential
f=F+% andu="+0, wheref=F(r,6) andu=(r, ) con- vanishes at spatial infinity. In order to avoid such unphysical
. N » ' ' A singularities in the exterior region of the distribution, we
tain only terms with positive powers of, yvhereasf have to demand the vanishing of the corresponding coeffi-
=f(r,6) and u=u(r,6) include all terms with negative ;jens¥ =0 andu,=0. Therefore the class of solutions for
powers ofr. The functionf also contains a constant term this case reads:
necessary in order to obtain the Minkowski metric in the
limiting case of vanishing curvature, torsion and, nonmetric- 2

If we collect our results, then the nonmetricity and the
torsion reads as follows:

X

4 1
KoNe 0%A+ 5 klNe( 9(eeh)|— Zo“5>

ity. This resembles the s'tandard decompqsiti_on Qf the field f:1+q2 fn_iipn(cosg), (52)
generated by a nonspherically symmetric distribution of mat- n=0 r"
ter.

Consider first the internal part of the matter distribution. =4 A
In Qrder to avoid singulari?iesf on the origin of cc_)ord_inates, A:eoz “_+ipn(cosg) 9°, (53
which we suppose to lay inside the matter distribution, we n=o r"*
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I ~

o Un+1
Q ﬁ=nz_:o I.r]—+lpn(COS(9)

koNe 0P

4 1 .
+ §k1Ne( ﬁ(aeB)J_ Zoaﬁ) 1901 (54)

KoNg <« U A
22N Mlp (cos) 9N,
n=0

= 3 pht+i1

(55

with free coefficientsf,,,, and U, representing the exte-

rior multipole structure of the solutions amfdthe effective

gravitational constant. To make a more specific interpretationt N9(n, -)

PHYSICAL REVIEW D 66, 104013 (2002

sideration. Therefore we have to formulate appropriate
matching conditions in our MAG framework. In doing so,
we take as a starting point the formalism developefilifi
where the same notions are introduced in the framework of
Einstein-Cartan theory of gravitation. For the convenience of
the reader we shortly summarize their results.

We consider a hypersurface in the manifold M which
is assumed to be of cla§® everywhere and oE* in M\3..
We choose coordinates=(7,x) such that the hypersurface
is given byr=0. Therefore, ¥ (x*,a=1,2,3) define a local
coordinate system oB. We assume that this hypersurface is
timelike. That is, there is a normal of 3 with g(n,n)=
—1. There is a corresponding projection operakr 1
(in components: PY=¢§+n,n" with n”

of these coefficients, we have to consider some properties 6fg"’n ). If T is a geometric object, theh denotes its pro-

the geometric objects entering the solution.

As it is well known[5], a propagating nonmetricit®, 5
generatesone dilation chargerelated to the traceQ
:=Q,”/4 of the nonmetricity, called the Weyl covectQ

=Q,dx', andnine types ofshear chargeare related to the
remaining traceless piedg, s of the nonmetricity. Therefore
we should find 4-4+ 1 shear charges and 1 dilation charge.

Besides the multipole chargegﬁnH, the exterior solu-

jectionT=PT. We callh=g=Pg.

A function f: M—R is of classC{ if fis C%in M\Y
(g=4) andCP everywhere p=<2). A functionf of the class
Cg defines or® the functionsf , , f_, and[f] which are of
classC*:

tion carries dilation, shear, and spin charges, each of them of

the covectorial type. We have then the following assign-

ments:
g— effective gravitational constant, (56)
gp— €electric charge, (57
N— gravito-electric charge, (59
eoUy+ 1— higher electric multipole moments,  (59)
koNgU,+ ;— dilation (“Weyl” ) multipole charges
of type(Q*~, (60)
klNeﬁn+1—>shear multipole charges
of type(®Q*~, (61
k,NeUy, . 1— Spin multipole charges
of type®T?, (62

In principle, however, these “charge” assignments need to be

f.(x)= lim f(7,x), (63)
—1o

f_(x)= lim f(7,x), (64)
T— 0

[fl=f,—f_. (65)

Forfe C;l with g=1 the derivativedf/dx“ is a regular
function and we have

[Vt 1=V F]. (66)
For the derivative with respect to one has that
a-f=[f](x)o(7)+9g(7,x), (67)

whereg is of classCq*;.

All these notions can be transcribed to any geometrical
object if one applies the conditions above to the correspond-
ing coefficients. As a consequencedifis a differential form
of cIassC;l, then the propertieg6) and(67) are given by

dxA\[d¢]=dx\d[ ¢], (68)

de(7,x%) =dX\[$](x*) 3(X) + (7,X"), (69)

justified by integrating locally conserved Noether currents in

MAG [5].

where s is a regular distribution of the classg,ll. There-

The solutions presented in this work have been checkefpre dx/\[¢] is necessary and sufficient for the regularity of

using REDUCE [22] with its EXCALC package[23,24] for
treating exterior differential form$25] and the REDUCE
based GRG computer algebra systefi].

V. DISCONTINUITIES

deb.

VI. MATCHING CONDITIONS IN MAG

We assume the following matching conditiof7]: (1)

The coframe and the metric tensor are of cl@Ss; (2) the

The matching of inner and outer solutions is in generalspin tensor7“; is of class C1,; and (3) the energy-
accompanied with discontinuities of certain fields under conmomentum tensor is of clags™1,.
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From the first assumption, it is clear that the Riemannian

connection'l:‘)‘ﬁ is C™1, and that the projection operatBris
of C%. The Riemannian connection,

[ z=heh#zh", 7, dx~, (70)
on each of these hypersurfaces is associatedgxgqu: hop

and is algebraically dependent @Eaﬁlﬁﬂ andg,g is of
classC9, so that

[Tez]=0. (71)

The conditions(1) and (2) imply that the contorsion
K“,,3=F“,3—1~““f, the torsionT“g,., and the connectioh“
are of clas<C; ~. It is obvious from Eq(71) and the defini-
tion of the contorsion that

[T“g]=[K%]. (72

The quantity
Na=VBnadxﬁ~d_na—F"anK (73

defines the second fundamental foN@=Naﬁdxﬁ of any
hypersurfacex= const with respect to the connectidif ;.

PHYSICAL REVIEW D 66, 104013 (2002

1 . s
= 7 NAXA[KE,]=0,

%naﬁ"/\dx/\[NK]nﬁzo, (79

or equivalently
[KP,,]=0, (80)
[Ngp]=0. (81)

If the spin vanishes, conditiof80) becomes trivial, whereas
condition (81) assures the regularity of the curvaturé.
However, in general, regularity of the energy-momentum
tensor is insufficient to assure regularif's, becausedx
/A\I'“g is continuous, if and only if the equatid81) and the
relation[K?,5]=0, instead of Eq(80), are satisfied.

In a special coordinate system,k“), the continuity con-
dition of the symmetric paml 4 of the second fundamental
form reduces to

[agaﬁ/aT] = (Zlgoo)[KO(aB)]

Because the derivativery,,z/dt are continuous and the de-
rivatives dgq; /d7 can be made continuous by a convenient
and admissible choice of a coordinate system, (B8) de-

(82

The formN,, is related to the Riemannian, symmetric secontkermines the discontinuities of the first derivatives of the

fundamental formN, =N, zdx? by

N,=N,— «*,n,. (74)
The third matching condition is equivalent to
1
> Nap/NAXA[TF ]=0. )
Let us decompose the forax/\I'?, as
dxATA, =dx\(T#,~T#n,nP—TF n“n,
+T#,n,nnn,), (76)
and notice that the form
dXA\(I' 5= T o) =dx/\dg,g, 77

is continuous. As a consequence of this Etp) reduces to
the following conditions:

1 -,
5 ag NDATE,]=0,

1 .
EnaBK/\dx/\[FPKnpnB]=0, (78)

Taking into account Eqs72) and(73), the above conditions
can be written as

metric tensor.

By using Eq.(74), the continuity condition of the anti-
symmetric partN,z of the second fundamental form re-
duces to

[npr[aB]]:o. (83)
It is interesting to notice that conditio®0) and (83) are
equivalent to

[n.T*,z]=0. (84)
We have reduced assumpti@8) to the relations(82) and
(84). This last equation gives a restriction on possible spin
(torsion discontinuities, while Eq(82) expresses disconti-
nuities of the metric tensor derivativeésonmetricity by spin
discontinuities. When the spin tensor is continuous, one ob-
tains Lichnerowicz’s matching conditiof27]. If Eq. (82) is
satisfied, the symmetric past®?) of the energy-momentum
tensor is a regular distribution, while the antisymmetric part
Trap 1S regular if Eq.(84) is fulfilled.

On the other hand, from the generalized energy-
momentum conservation law the following equality can be
deduced:

B K pBx L K., KPxB
8mGIN T2+ [K eI, KPP + 50, [Kiy, K] =0,
(85

One says that a gravitational field given in the region
<0 matches a gravitational field in the regig 0, if con-
ditions (1), (2), and(3) are satisfied in any admissible coor-
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dinate system. These conditions imply that the matter tensors ® R21+1Y

o“gandT” 4, being sources of those fields, satisfy the junc-
tion conditions(84) and(85). One can prove that the junction
conditions are the only independent restrictions imposed o
the jumpg o“;] and[ T“ 4] of the matter tensors by condi-
tions (1), (2), and(3).

PHYSICAL REVIEW D 66, 104013 (2002

Al =e0r]§=:0 rn—HnPn(COS@) 9°, (93

n

o0

R2n+ 1T,l

aff _ n
a —nz,o T P,(cos#)

koNe 0%#

VII. EINSTEIN-PROCA-MAXWELL CASE 4 1 -
+ —klNe< b)) — —oaﬂ) 9°, (94)
As mentioned above, in the triplet ansatz sector the MAG 9 4
field equations reduce to an effective Einstein-Proca system
of differential equations, and to an Einstein-Proca-Maxwell koNg R 1y, 5
system in the case where one considers also electrodynamics. Th= 3 nZO i P.(cosf) 3*/\9°. (95

Therefore let us consider a boundary surfate:const,
the matching conditions of the last section reduce to the fol
lowing conditions on this surface.

(1) @l s=0. 4. the metric should be continuous. This en-
sures the equality of the intrinsic curvature on both sides o
the boundary surface.

(2) k5= Kbg, the extrinsic curvature should also be con-

tinuous.

VIIl. DISCUSSION

f In this paper, we developed the matching and junction
conditions between two different spacetimes in MAG. A
gravitational field given in the region<<O matches a gravi-
tational field in the regiorx>0, if the following conditions

(3) The time components of the energy-momentum tensogre satisfied in any admissible coordinate systéth:The

T4, andT#, are also continuous.
The above conditions for a timelike surfagé=0, and
r =R=const imply:

o 1 ~
fn+1:aRn+1[qfan_l]a (86)

LAjnJrlsznJrlTJn- (87)

Hence the interior solution is given as

M s

fi=q>, f,r"P,(cosé), (88)

n=0

©

A=y, Unr"P,(cosd) a0, (89)
n=0

[

b= 20 U, r"P,(cosd)| koNg 0%2
=

4 9%, (90

*9

1
klNe( 9eeh) |- Zoﬂﬁ)

KoNg < ~ R
T = 23 € Unr"P,(cosh) 9N\,
n=0
(91
and the exterior solution becomes
“ [qf,R"—1
fu=1+ >, Mpn(cosa), (92
=5 pn+1

coframe and the metric tensor are of cl&@%; (2) The spin
tensorr“g is of classC™1,; and(3) the energy-momentum
tensor is of clas€ ~1,. These conditions imply that the mat-
ter tensorsr“; andT” .5, being sources of those fields, sat-
isfy the junction condition$84) and (85). Moreover, in the
framework of the triplet ansatz sector of MAG external and
internal charged multipole solutions are presented. It is clear
that one may start with any solution of the Einstein-Maxwell
equations and then, after imposing a suitable constraint on
the coupling constants, replace the electric and/or magnetic
charge by strong gravitoelectric and/or gravitomagnetic
charges, thereby arriving at the post-Riemannian triplet. It is
important to stress that in the triplet ansatz sector of MAG
there exists an underlying harmonic structure. This structure
is reflected by the fact that the coframe functfothe triplet,

and the electromagnetic one-forms satisfy the two-
dimensional Laplace equation.

For the Einstein-Proca-Maxwell system of the triplet an-
satz sector the matching conditions of MAG reduce to the
following.

(1) 9., s=0u 5. the metric should be continuous. This en-
sures the equality of the intrinsic curvature on both sides of
the boundary surface.

(2) k5= Kbyg, the extrinsic curvature should also be con-
tinuous.

(3) The time components of the energy-momentum tensor
T4, andT*, are also continuous.

The study of the matching conditions in MAG presented
here and its reduction in the triplet ansatz sector contributes
to consider the structure of such a sector of MAG as fully
understood.
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