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Matching conditions in metric-affine gravity
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By using an isotropic field configuration for thetriplet ansatz sector of the metric-affine theories of gravity
~MAG!, we find a class of harmonic solutions which represents the interior and exterior field of a distribution
endowed with electric and strong gravitoelectric multipole moments. Moreover, the general matching and
junction conditions in MAG and their reduction to thetriplet ansatz sector are presented.
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I. INTRODUCTION

Even though Einstein’s treatment of spacetime as a R
mannian manifold appears almost fully corroborated exp
mentally, there are several reasons to believe that its vali
is limited to macroscopic structures and to the present c
mological era. The only available finite perturbative tre
ment of quantum gravity, namely, the theory of the quant
superstrings@1#, suggests that non-Riemannian features
present on the scale of the Planck length. On the other h
recent advances in the study of the early universe, as re
sented by the inflationary paradigm, involve, in addition
the metric tensor, at the very least a scalar field@2#, induced
by a Weyl geometry, i.e., the inflaton, an essential depar
from Riemannian metricity@3#. Even at the classical cosmo
logical level, a dilatonic field has recently been used to
scribe the presence of dark matter in the universe, as we
to explain certain cosmological observations which con
dicted the fundamentals of the standard cosmological mo
@4#.

There exist good experimental evidence that, at
present state of the universe, the geometrical structur
spacetime corresponds to a metric-compatible geometr
which nonmetricity vanishes. Consequently, a metric-affi
geometry is irrelevant for the geometrical description of
universe today. However, during the early universe, when
energies of the cosmic matter were much higher than to
we expect scale invariance to prevail and, according to
metric affine theory of gravity~MAG!, the canonical dilation
~or scale! current of matter, the trace of the hypermomentu
currentDg

g , becomes coupled to the Weyl covectorQg
g .

Moreover, shear type excitations of the material mult
pinors, i.e., Regge trajectory type of constructs, are expe
to arise, thereby liberating the metric-compatible Riema
Cartan spacetime from its constraint of vanishing nonmet
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ity Qab50. It is therefore important to derive and inves
gate exact solutions of these theories which cont
information about the new geometric objects like torsion a
nonmetricity~for a survey of these theories see@5#!.

For restricted irreducible pieces of torsion and nonmet
ity there are similarities between the Einstein-Proca sys
and the vacuum MAG field equations@6–9#. This observa-
tion enables us to find new solutions for MAG theories@10#.
Special electrovacuum solutions in MAG have already be
found in Refs.@11–13#. Moreover, also static black hole con
figurations in MAG have been investigated in vacuum@14#
and in the presence of Abelian and non-Abelian matter@15#.

In this paper we use an isotropic field configuration a
the underlying harmonic structure of the MAG theories,
their triplet ansatz sector, in order to generalize our previo
vacuum results@16# by introducing additional electromag
netic fields. We obtain electric multipole solutions. The
solutions are interesting because they imply the consid
ation of matching conditions between internal and exter
solutions. However, the necessary matching conditions
tween two different spacetimes in MAG have not been
vestigated so far. Arkuszewskiet al. @17# advanced in this
topic in the framework of the Einstein-Cartan theory. T
matching conditions and their general implications in MA
are analyzed to some extent.

The plan of the paper is as follows: Section II contains
brief presentation of MAG theories and its triplet ansatz s
tor. In Sec. III the isotropic field configuration in MAG i
discussed. In Sec. IV electrically charged multipole solutio
in MAG are displayed and the physical interpretation of t
parameters entering the solutions is analyzed. In Sec. V
discuss the discontinuities. In Sec. VI the matching con
tions in MAG are considered. In Sec. VII the matching co
ditions for the specific Einstein-Proca-Maxwell system of t
triplet ansatz sector of MAG are presented. In Sec. VIII t
results are discussed.

II. MAG FIELD EQUATIONS AND THE TRIPLET ANSATZ

A. MAG in brief

Let us consider a frame field and a coframe field deno
by
©2002 The American Physical Society13-1
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ea5em
a ]m , qb5em

bdxm, ~1!

respectively. TheGL(4,R)-covariant derivative for a tenso
valuedp form reads

D5d1Ga
br~La

b!`, ~2!

wherer(La
b) is the representation ofGL(4,R) andLa

b are
the generators; the connection one-form isGa

b5Gma
bdxm.

The nonmetricity one-form, the torsion, and curvature tw
forms read

Qabª2Dgab , Ta
ªDqa ,

Ra
b
ªdGa

b2Ga
g`Gg

b, ~3!

respectively, and the Bianchi identities are given by

DQab[2R(ab) , DTa[Rg
a`qg, DRa

b[0 . ~4!

It is worthwhile to stress the fact that the nonmetricityQab ,
the torsionTa, and the curvatureRa

b play the role of field
strengths.

We now turn to thesource currentsfor the fields above,
these will depend on the Lagrangian (C is a matter mani-
field!,

L5L~gab ,dgab ,qa,dqa,Ga
b,dGa

b,C,DC!, ~5!

which can be rewritten in a covariantized form as

L5L~gab ,Qab ,qa,Ta,Ga
b,Ra

b,C,DC!. ~6!

We will consider a metric-affine theory described by the p
ticular Lagrangian

L5VMAG1LMAT , ~7!

where LMAT represents the Lagrangian of the matter fie
The matter current three-forms are then given by the Eu
Lagrange functional derivatives~denoted byd) of the mate-
rial pieceLMAT . We have the canonical energy-momentu
current

SaªdLMAT /dqa5]LMAT /]qa1D~]LMAT /]Ta!, ~8!

the hypermomentum current

Da
bªdLMAT /dGa

b

5r~La
b!C`@]LMAT /]~DC!#12gbg~]LMAT /]Qag!

1qa`~]LMAT /]Tb!

1D~]LMAT /]Ra
b!, ~9!

and also a related current four-form, the~symmetric! metric
energy-momentum, namely

sab
ª2dLMAT /dgab52]LMAT /]gab

12D~]LMAT /]Qab!. ~10!

Hence the MAG field equations turn out to be@5#
10401
-

-

.
r-

dLMAT /dC50 ~matter!, ~11!

DMab2mab5sab ~zeroth!, ~12!

DHa2Ea5Sa ~first!, ~13!

DHa
b2Ea

b5Da
b ~second!, ~14!

where we have used the canonical momenta~‘‘excitations’’!,

Mab
ª22]VMAG /]Qab , ~15!

a momentum three-form conjugate to the metric field,

Haª2]VMAG /]Ta, ~16!

a momentum two-form conjugate to the coframe field, an

Ha
bª2]VMAG /]Ra

b, ~17!

the momentum two-form conjugate to theGL(4,R) connec-
tion.

The currentsmab,Ea ,Ea
b are components of the metri

energy momentum, of the canonical energy momentum,
of the hypermomentum currents, contributed by the grav
tional fields themselves, respectively, inVMAG the so-called
vacuum contributions.

Diffeomorphisms andGL(4,R) invariance yield two No-
ether identities@5# which, given in their ‘‘weak’’ form, i.e.,
after the application of the matter equation of motion~11!,
become

DSa5~eacTb!`Sb

1~eacRb
g!`Db

g

2~1/2!~eacQbg!sbg, ~18!

DDa
b1qa`Sb2gbgsag50. ~19!

It is worthwhile to stress the fact that given a solution
the second MAG field equation the zeroth and the first fi
equations are not independent, i.e., one of them is redund

In a metric-affine spacetime, the curvature has 11 irred
ible pieces@5#, whereas the nonmetricity hasfour and the
torsionthreeirreducible pieces. The most general parity co
serving LagrangianVMAG which has been constructed i
terms of all irreducible pieces of the post-Riemannian co
ponents has been investigated previously@10# and reads
3-2
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VMAG5
1

2k F2a0Rab`hab22lh1Ta` * S (
I 51

3

aI
(I )TaD 12S (

I 52

4

cI
(I )QabD `qa` * Tb1Qab`* S (

I 51

4

bI
(I )QabD

1b5~ (3)Qag`qa!` * ~ (4)Qbg`qb!G2
1

2r
Rab` * S (

I 51

6

wI
(I )Wab1w7qa`~egc (5)Wg

b!1(
I 51

5

zI
(I )Zab1z6qg

`~eac (2)Zg
b!1(

I 57

9

zIqa`~egc (I 24)Zg
b!D . ~20!
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The Minkowski metric isoab5diag(2111), * is the
Hodge dual,hª * 1 is the volume four-form, the constantl
is the cosmological constant,r the strong gravity coupling
constant, the constants anda0 , . . . ,a3 , b1 , . . . ,b5 ,
c2 ,c3 ,c4 , w1 , . . . ,w7 , z1 , . . . ,z9 are dimensionless. We
have introduced in the curvature square term the irreduc
pieces of the antisymmetric partWabªR[ab] and the sym-
metric partZabªR(ab) of the curvature two-form. InZab ,
we have the purelypost Riemannian part of the curvature
Note the peculiar cross terms withcI andb5.

B. Triplet ansatz sector of MAG and equivalence theorem

The Lagrangian~20! is very complicated and difficult to
manage. Therefore we will consider here only the simp
nontrivial case of torsion and nonmetricity with shear. Th
for the nonmetricity we use the ansatz

Qab5 (3)Qab1 (4)Qab , ~21!

where

(3)Qab5
4

9 S q (aeb)cL2
1

4
gabL D , ~22!

with

Lªqaebc↗Qab

is the proper shear piece and(4)Qab5Q gab represents the
dilation piece, whereQª(1/4) Qg

g is the Weyl one-form,
and ↗QabªQab2Q gab is the traceless piece of the no
metricity. Other pieces of the irreducible decomposition
the nonmetricity@5# are taken to be zero.

Let us choose for the torsion only the covector piece
nonvanishing:

Ta5 (2)Ta5
1

3
qa`T, with TªeacTa. ~23!

Thus we are left with a triplet of nontrivial one-formsQ, L,
and T for which we make the following ansatz~for details,
see@10#!

Q5
k0

k1
L5

k0

k2
T, ~24!
10401
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wherek0 , k1, andk2 are given in terms of the gravitationa
coupling constants, i.e.,k0[4a2b323g3

2, k1[9(a2b5/2
2g3g4), k2[3(4b3g423b5g3/2), anda25a222a0 , b3
5b31a0/8, b45b423a0/8, b55b52a0 , g35c31a0, and
g45c41a0. In other words, we assume that the triplet
one-forms are proportional to each other@6,8–10,18#. This is
the so-calledtriplet ansatz sector of MAG theories@6,8,9#.

Consequently, here we limit ourselves to the special c
in which the only surviving strong gravity piece is the squa
of the segmental curvature~with vanishing cosmologica
constant!, i.e.,

VMAG5
1

2k
@2a0Rab`hab1a2Ta` * (2)Ta12~c3

(3)Qab

1c4
(4)Qab!`qa` * Tb1Qab` * ~b3

(3)Qab

1b4
(4)Qab!#2

z4

2r
Rab` * (4)Zab , ~25!

where the segmental curvature(4)ZabªRg
ggab/4

5gabdQ, with the Weyl covectorQªQg
g/4. Therefore

2
z4

2r
Rab` * (4)Zab52

z4

2r
Ra

a` * Rb
b

52
2z4

r
dQ` * dQ ~26!

is the kinetic term for the Weyl one-form.
Under the above given assumptions it is now straightf

ward to apply Obukhov’s equivalence theorem@6,7,9# ac-
cording to which the field equations following from the pu
geometrical part of the Lagrangian~7!, i.e., VMAG , are
equivalent to Einstein’s equations with an energy-moment
tensor determined by a Proca field. In the case investiga
here we have an additional term due to the presence of
matter field in Eq.~7!. Thus the field equations reduce to

a0

2
habg`R̃bg5kSa , ~27!

d * v1m2 * f50, ~28!

wheref represents the Proca one-form,v[df is the corre-
sponding field strength,m is completely given in terms of the
coupling constants, and a tilde denotes the Riemannian
3-3
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of the curvature. The energy-momentum current entering
right-hand side of the Einstein equations is given by

Sa5Sa
(f)1Sa

(MAT) , ~29!

where

Sa
(f)

ª

z4k0
2

2r
$~eacdf!` * df2~eac * df!`df1m2@~eacf!

` * f1~eac * f!`f#% ~30!

is the energy-momentum current of the Proca field, a
Sa

(MAT) is the energy-momentum current of the addition
matter field which also satisfies the corresponding Eu
Lagrange equations.

Thus the triplet ansatz sector of a MAG theory coupled
a matter field has been reduced to the effective Einst
Proca system of differential equations coupled to a ma
field. Moreover, by settingm50 the system acquires th
constraint b45(k1b5/21k2g4)/4k0 among the coupling
constants of the Lagrangian~20!, and it reduces to an
Einstein-Maxwell system, cf. Ref.@10#.

III. ISOTROPIC FIELD CONFIGURATION IN MAG

We will look for exact multipole solutions of the field
equations arising from the Lagrangian

L5VMAG1LMax , with LMax52~1/2!F` !F ~31!

the Lagrangian of the Maxwell field, andF5dA. Since the
matter partLMax does not depend on the connectionGa

b, the
hypermomentumDa

bªdLMax /dGa
b vanishes, i.e.Da

b50,
and the only external current is the electromagnetic ene
momentum currentSa , given by

Sa5eacLMax1~eacF !`H. ~32!

We will consider a static axially symmetric configuratio
for the metric-affine spacetime as well as for the Maxw
field. Using the invariance of a metric-affine spacetime un
diffeomorphisms, it can be shown that the conditions of s
ticity and axial symmetry lead to a metric with only thre
independent components@19# which, for instance in spheri
cal coordinates (t,r ,u,f), coordinates depend on the tw
spatial coordinatesr andu only. For the sake of simplicity, in
this work we will assume that the spacetime can be co
pletely described by only one independent function, saf
5 f (r ,u). Furthermore, we limit ourselves to theisotropic
coframe

q 0̂5
1

f
dt, q 1̂5 f d r, q 2̂5 f r d u,

q 3̂5 f r sinud f, ~33!

with the unknown functionf 5 f (r ,u). Since the coframe is
assumed to beorthonormalwith the local Minkowski metric
oabªdiag(21,1,1,1)5oab, we have the metric inisotropic
form
10401
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ds25oabqa
^ qb52

1

f 2
dt2

1 f 2@dr21r 2~du21sin2udf2!#. ~34!

Let us make the following ansatz for the triplet

Q5k0Neu~r ,u!q 0̂5
k0

k1
L5

k0

k2
T, ~35!

with Ne the gravito-electric charge. This is the so-calledtrip-
let ansatz sector of MAG theories@9#.

The electromagnetic potential appropriate for this co
figuration reads@12,13#

A5e0u~r ,u!q 0̂, ~36!

whereeo is the electric charge. Here we have introduced
second functionu(r ,u) which together withf (r ,u) has to be
determined by the field equations.

IV. HARMONIC SOLUTIONS IN MAG

In order to solve the equations arising from the MA
Lagrangian~25!, we substitute the local metricoab , the cof-
rame ~33!, and the ansatz~35! of the nonmetricity and tor-
sion into the field equations~13!, ~14! of the Lagrangian
~25!, we find that the functionsf 5 f (r ,u) and u5u(r ,u)
have to satisfy the two-dimensional Laplace equationD f
505Du with

D5
]

]r S r 2
]

]r D1
1

sinu

]

]u S sinu
]

]u D . ~37!

Furthermore, the coefficientsk0 ,k1 ,k2 in the ansatz~24!
are determined by the dimensionless coupling constant
the Lagrangian:

k05S a2

2
2a0D ~8b31a0!23~c31a0!2, ~38!

k1529Fa0S a2

2
2a0D1~c31a0!~c41a0!G ,

~39!

k25
3

2
@3a0~c31a0!1~8b31a0!~c41a0!#.

~40!

A rather weak condition, which must be imposed on the
coefficients, prescribes the value

b45
a0k12c4k2

8k0
, with kª3k02k112k2 , ~41!

for the coupling constantb4, and leads to the following re
lation for z4 and the effective gravitational constantq, the
electric chargee0, and the gravitoelectric chargeNe :
3-4
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q25kFe0
21z4

~k0Ne!
2

2a0
G . ~42!

Thus we see that the assumption of an isotropic field c
figuration for thetriplet ansatz sector of MAG leads to
single linear differential equation for both unknownsf andu
and, therefore, the corresponding solution can be given
terms of harmonic functions with arbitrary constant para
eters.

Therefore the general solution can be written as

f ~r ,u!511q(
n50

` S f̃ nr n1
f̂ n11

r n11D Pn~cosu!, ~43!

u~r ,u!5 (
n50

` S ũnr n1
ûn11

r n11 D Pn~cosu!, ~44!

where f̃ n , f̂ n11 , ũn , andûn11 are arbitraryintegration con-
stants, andPn are the Legendre polynomials of ordern. The
constantq is related with the parameterz4 of the Lagrangians
~20!–~42!. Consequently, the electromagnetic potential c
be written as

A5e0(
n50

` S ũnr n1
ûn11

r n11 D Pn~cosu!q 0̂. ~45!

If we collect our results, then the nonmetricity and t
torsion reads as follows:

Qab5 (
n50

` S ũnr n1
ûn11

r n11 D Pn~cosu!

3Fk0Ne oab1
4

9
k1NeS q (aeb)c2 1

4
oabD Gq 0̂,

~46!

Ta5
k2Ne

3 (
n50

` S ũnr n1
ûn11

r n11 D Pn~cosu!qa`q 0̂.

~47!

The harmonic structure of the metric as well as no
metricity and torsion allows us to interpret this solution
terms of multipole moments. In fact, the functionsf (r ,u)
andu(r ,u) can be written as the sum of two infinite serie
f 5 f̃ 1 f̂ andu5ũ1û, wheref̃ 5 f̃ (r ,u) andũ5ũ(r ,u) con-
tain only terms with positive powers ofr, whereas f̂

5 f̂ (r ,u) and û5û(r ,u) include all terms with negative
powers ofr. The function f̂ also contains a constant ter
necessary in order to obtain the Minkowski metric in t
limiting case of vanishing curvature, torsion and, nonmet
ity. This resembles the standard decomposition of the fi
generated by a nonspherically symmetric distribution of m
ter.

Consider first the internal part of the matter distributio
In order to avoid singularities on the origin of coordinate
which we suppose to lay inside the matter distribution,
10401
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must demand the vanishing of the functionsf̂ and û. This
can be achieved by putting the corresponding coefficie
f̂ n50 and ûn50 (n50,1,2, . . . ). Accordingly, the interior
solution is given as

f 5q(
n50

`

f̃ nr nPn~cosu!, ~48!

A5e0(
n50

`

ũnr nPn~cosu!q 0̂, ~49!

Qab5 (
n50

`

ũnr nPn~cosu!Fk0Ne oab

1
4

9
k1NeS q (aeb)c2 1

4
oabD Gq 0̂, ~50!

Ta5
k2Ne

3 (
n50

`

ũnr nPn~cosu!qa`q 0̂.

~51!

This interior solution is valid inside a three-dimension
hypersurfaceS(r ,u)50 which corresponds to the surface
the matter distribution. From the form of the metric functio
f we can see that the coefficientsf̃ n determine the interior
multipole moments of the gravito-electric field. On the oth
hand, the Maxwell field is defined by the electromagne
potentialA which in this case contains only interior electr
multipole moments of the forme0ũn (n50,1,2, . . . ). Non-
metricity and torsion also present a multipole structure wh
the interior multipole moments are all proportional toũn due
to the triplet ansatz we are using here.

Consider now the exterior part of the matter distributio
Since nonmetricity and torsion are geometric objects l
curvature, divergences in their components at spatial infin
are nonphysical. For example, torsion can be measured
spin precession@20,21#. An infinite torsion will then give rise
to a spin precession with an infinite angular velocity at s
tial infinity. Moreover, the electric potential must tend to
constant value or has to vanish at spatial infinity becaus
represents the field of a finite charge distribution. For si
plicity, here we assume that the electromagnetic poten
vanishes at spatial infinity. In order to avoid such unphysi
singularities in the exterior region of the distribution, w
have to demand the vanishing of the corresponding coe
cients f̃ n50 andũn50. Therefore the class of solutions fo
this case reads:

f 511q(
n50

`
f̂ n11

r n11
Pn~cosu!, ~52!

A5e0(
n50

`
ûn11

r n11
Pn~cosu!q 0̂, ~53!
3-5
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Qab5 (
n50

`
ûn11

r n11
Pn~cosu!Fk0Ne oab

1
4

9
k1NeS q (aeb)c2 1

4
oabD Gq 0̂, ~54!

Ta5
k2Ne

3 (
n50

`
ûn11

r n11
Pn~cosu!qa`q 0̂,

~55!

with free coefficientsf̂ n11 and ûn11 representing the exte
rior multipole structure of the solutions andq the effective
gravitational constant. To make a more specific interpreta
of these coefficients, we have to consider some propertie
the geometric objects entering the solution.

As it is well known @5#, a propagating nonmetricityQab
generatesone dilation charge related to the traceQ
ªQg

g/4 of the nonmetricity, called the Weyl covectorQ
5Qidxi , and nine types ofshear chargeare related to the
remaining traceless piece↗Qab of the nonmetricity. Therefore
we should find 41411 shear charges and 1 dilation charg

Besides the multipole chargese0ûn11, the exterior solu-
tion carries dilation, shear, and spin charges, each of them
the covectorial type. We have then the following assig
ments:

q→effective gravitational constant, ~56!

e0→electric charge, ~57!

Ne→gravito-electric charge, ~58!

e0ûn11→higher electric multipole moments, ~59!

k0Neûn11→dilation ~‘‘Weyl’’ ! multipole charges

of type(4)Qab, ~60!

k1Neûn11→shear multipole charges

of type(3)Qab, ~61!

k2Neûn11→spin multipole charges

of type(2)Ta. ~62!

In principle, however, these ‘‘charge’’ assignments need to
justified by integrating locally conserved Noether currents
MAG @5#.

The solutions presented in this work have been chec
using REDUCE @22# with its EXCALC package@23,24# for
treating exterior differential forms@25# and the REDUCE-
based GRG computer algebra system@26#.

V. DISCONTINUITIES

The matching of inner and outer solutions is in gene
accompanied with discontinuities of certain fields under c
10401
n
of
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of
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e
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sideration. Therefore we have to formulate appropri
matching conditions in our MAG framework. In doing s
we take as a starting point the formalism developed in@17#
where the same notions are introduced in the framework
Einstein-Cartan theory of gravitation. For the convenience
the reader we shortly summarize their results.

We consider a hypersurfaceS in the manifoldM which
is assumed to be of classC2 everywhere and ofC4 in M\S.
We choose coordinatesx5(t,x) such that the hypersurfac
is given byt50. Therefore, x5(xa,a51,2,3) define a local
coordinate system onS. We assume that this hypersurface
timelike. That is, there is a normaln of S with g(n,n)5
21. There is a corresponding projection operatorP51
1ng(n,•) ~in components: Pn

m5dn
m1nnnn with nn

5gnrnr). If T is a geometric object, thenT̄ denotes its pro-
jection T̄5PT. We callh5ḡ5Pg.

A function f :M°R is of classCq
p if f is Cq in M\S

(q<4) andCp everywhere (p<2). A function f of the class
Cq

p defines onS the functionsf 1 , f 2 , and@f# which are of
classC4:

f 1~x!5 lim
t→10

f ~t,x!, ~63!

f 2~x!5 lim
t→20

f ~t,x!, ~64!

@ f #5 f 12 f 2 . ~65!

For f PCq
21 with q>1 the derivative] f /]xa is a regular

function and we have

@¹xf #5¹x@ f #. ~66!

For the derivative with respect tot one has that

]t f 5@ f #~x!d~t!1g~t,x!, ~67!

whereg is of classCq21
21 .

All these notions can be transcribed to any geometr
object if one applies the conditions above to the correspo
ing coefficients. As a consequence, iff is a differential form
of classCq

21 , then the properties~66! and~67! are given by

dx`@df#5dx`d@f#, ~68!

df~t,xa!5dx`@f#~xa!d~x!1c~t,xa!, ~69!

wherec is a regular distribution of the classCq21
21 . There-

fore dx`@f# is necessary and sufficient for the regularity
df.

VI. MATCHING CONDITIONS IN MAG

We assume the following matching conditions@17#: ~1!
The coframe and the metric tensor are of classC0

3; ~2! the
spin tensorta

b is of class C21
2; and ~3! the energy-

momentum tensor is of classC21
2.
3-6
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From the first assumption, it is clear that the Riemann
connectionG̃a

b is C21
2 and that the projection operatorP is

of C0
3. The Riemannian connection,

GS
a

b5ha
rhm

bhn
kG̃r

mndxk, ~70!

on each of these hypersurfaces is associated withḡab5hab

and is algebraically dependent on]ḡab /]xg and ḡab is of
classC2

0, so that

@G̃a
b#50. ~71!

The conditions~1! and ~2! imply that the contorsion
Ka

b5Ga
b2G̃a

b , the torsionTa
bk , and the connectionGa

b

are of classC2
21. It is obvious from Eq.~71! and the defini-

tion of the contorsion that

@Ga
b#5@Ka

b#. ~72!

The quantity

Na5¹bnadxb;dna2Gk
ank ~73!

defines the second fundamental formNa5Nabdxb of any
hypersurfacex5const with respect to the connectionGa

b .
The formNa is related to the Riemannian, symmetric seco
fundamental formÑa5Ñabdxb by

Na5Ña2kk
ank. ~74!

The third matching condition is equivalent to

1

2
hab

k`dx`@Gb
k#50. ~75!

Let us decompose the formdx`Gb
k as

dx`Gb
k5dx`~Gb

k2Gm
knmnb2Gb

mnmnk

1Gm
rnmnrnbnk!, ~76!

and notice that the form

dx`~Gab2Gba!5dx`dgab , ~77!

is continuous. As a consequence of this Eq.~75! reduces to
the following conditions:

1

2
hab

k`dx`@Ḡb
k#50,

1

2
hab

k`dx`@Gr
knrnb#50, ~78!

Taking into account Eqs.~72! and~73!, the above conditions
can be written as
10401
n

d

1

2
hab

k`dx`@K̄b
k#50,

1

2
hab

k`dx`@Nk#nb50, ~79!

or equivalently

@K̄r
ar#50, ~80!

@Nab#50. ~81!

If the spin vanishes, condition~80! becomes trivial, whereas
condition ~81! assures the regularity of the curvatureRa

b .
However, in general, regularity of the energy-momentu
tensor is insufficient to assure regularityRa

b , becausedx
`Ga

b is continuous, if and only if the equation~81! and the
relation @K̄r

ab#50, instead of Eq.~80!, are satisfied.
In a special coordinate system (t,xa), the continuity con-

dition of the symmetric partN(ab) of the second fundamenta
form reduces to

@]gab /]t#5~2/g00!@K0
(ab)#. ~82!

Because the derivatives]gab /]t are continuous and the de
rivatives ]g0i /]t can be made continuous by a convenie
and admissible choice of a coordinate system, Eq.~82! de-
termines the discontinuities of the first derivatives of t
metric tensor.

By using Eq.~74!, the continuity condition of the anti-
symmetric partN[ab] of the second fundamental form re
duces to

@nrKr
[ab] #50. ~83!

It is interesting to notice that conditions~80! and ~83! are
equivalent to

@nkTk
ab#50. ~84!

We have reduced assumption~3! to the relations~82! and
~84!. This last equation gives a restriction on possible s
~torsion! discontinuities, while Eq.~82! expresses disconti
nuities of the metric tensor derivatives~nonmetricity! by spin
discontinuities. When the spin tensor is continuous, one
tains Lichnerowicz’s matching conditions@27#. If Eq. ~82! is
satisfied, the symmetric parts (ab) of the energy-momentum
tensor is a regular distribution, while the antisymmetric p
s [ab] is regular if Eq.~84! is fulfilled.

On the other hand, from the generalized energ
momentum conservation law the following equality can
deduced:

8pG@nbTb
a#1@K̄bka#nrKrbk1

1

2
na@K̄bkrK̄rkb#50.

~85!

One says that a gravitational field given in the regionx
,0 matches a gravitational field in the regionx.0, if con-
ditions ~1!, ~2!, and~3! are satisfied in any admissible coo
3-7
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dinate system. These conditions imply that the matter ten
sa

b andTk
ab , being sources of those fields, satisfy the jun

tion conditions~84! and~85!. One can prove that the junctio
conditions are the only independent restrictions imposed
the jumps@sa

b# and@Tk
ab# of the matter tensors by cond

tions ~1!, ~2!, and~3!.

VII. EINSTEIN-PROCA-MAXWELL CASE

As mentioned above, in the triplet ansatz sector the M
field equations reduce to an effective Einstein-Proca sys
of differential equations, and to an Einstein-Proca-Maxw
system in the case where one considers also electrodyna

Therefore let us consider a boundary surfacex45const,
the matching conditions of the last section reduce to the
lowing conditions on this surface.

~1! ga,b
I 5ga,b

II , the metric should be continuous. This e
sures the equality of the intrinsic curvature on both sides
the boundary surface.

~2! kab
I 5kab

II , the extrinsic curvature should also be co
tinuous.

~3! The time components of the energy-momentum ten
T4

4 andT4
a are also continuous.

The above conditions for a timelike surfacex450, and
r 5R5const imply:

f̂ n115
1

q
Rn11@q f̃nRn21#, ~86!

ûn115R2n11ũn . ~87!

Hence the interior solution is given as

f I5q(
n50

`

f̃ nr n Pn~cosu!, ~88!

AI5e0(
n50

`

ũnr nPn~cosu!q 0̂, ~89!

QI
ab5 (

n50

`

ũnr nPn~cosu!Fk0Ne oab

1
4

9
k1NeS q (aeb)c2 1

4
oabD Gq 0̂, ~90!

TI
a5

k2Ne

3 (
n50

`

ũnr nPn~cosu!qa`q 0̂,

~91!

and the exterior solution becomes

f II 511 (
n50

`
@q f̃nRn21#

r n11
Pn~cosu!, ~92!
10401
rs
-

n

m
ll
ics.

l-

f

-

r

AII 5e0(
n50

`
R2n11 ũn

r n11
Pn~cosu!q 0̂, ~93!

QII
ab5 (

n50

`
R2n11 ũn

r n11
Pn~cosu!Fk0Ne oab

1
4

9
k1NeS q (aeb)c2 1

4
oabD Gq 0̂, ~94!

TII
a 5

k2Ne

3 (
n50

`
R2n11ũn

r n11
Pn~cosu!qa`q 0̂. ~95!

VIII. DISCUSSION

In this paper, we developed the matching and junct
conditions between two different spacetimes in MAG.
gravitational field given in the regionx,0 matches a gravi-
tational field in the regionx.0, if the following conditions
are satisfied in any admissible coordinate system:~1! The
coframe and the metric tensor are of classC0

3; ~2! The spin
tensorta

b is of classC21
2; and ~3! the energy-momentum

tensor is of classC21
2. These conditions imply that the ma

ter tensorssa
b andTk

ab , being sources of those fields, sa
isfy the junction conditions~84! and ~85!. Moreover, in the
framework of the triplet ansatz sector of MAG external a
internal charged multipole solutions are presented. It is c
that one may start with any solution of the Einstein-Maxw
equations and then, after imposing a suitable constrain
the coupling constants, replace the electric and/or magn
charge by strong gravitoelectric and/or gravitomagne
charges, thereby arriving at the post-Riemannian triplet. I
important to stress that in the triplet ansatz sector of MA
there exists an underlying harmonic structure. This struct
is reflected by the fact that the coframe functionf, the triplet,
and the electromagnetic one-forms satisfy the tw
dimensional Laplace equation.

For the Einstein-Proca-Maxwell system of the triplet a
satz sector the matching conditions of MAG reduce to
following.

~1! ga,b
I 5ga,b

II , the metric should be continuous. This e
sures the equality of the intrinsic curvature on both sides
the boundary surface.

~2! kab
I 5kab

II , the extrinsic curvature should also be co
tinuous.

~3! The time components of the energy-momentum ten
T4

4 andT4
a are also continuous.

The study of the matching conditions in MAG present
here and its reduction in the triplet ansatz sector contribu
to consider the structure of such a sector of MAG as fu
understood.

ACKNOWLEDGMENTS

We thank Alberto Garcı´a and Friedrich W. Hehl for usefu
discussions and literature hints. This research was suppo
by CONACYT Grant 28339E.
3-8



c

,

s

f
re
-

av

hl

n-

av.

.

.

.

-

es,

W.

it.

-

o-
es

n-

e

MATCHING CONDITIONS IN METRIC-AFFINE GRAVITY PHYSICAL REVIEW D 66, 104013 ~2002!
@1# E.S. Fradkin and A.A. Tseytlin, Phys. Lett.158B, 316 ~1985!;
C.G. Callan, D. Friedan, E.J. Martinec, and M.J. Perry, Nu
Phys.B262, 593 ~1985!; D. Gross, Phys. Rev. Lett.60, 1229
~1988!; D. Gross and P.F. Mende, Nucl. Phys.B303, 407
~1988!; Phys. Lett. B197, 129 ~1987!.

@2# A. Guth, Phys. Rev. D23, 347 ~1981!; Proc. Natl. Acad. Sci.
U.S.A. 90, 4871 ~1993!; A. Linde, Phys. Lett.108B, 389
~1982!; Phys. Lett. B249, 18 ~1990!; D. La and P.J. Steinhardt
Phys. Rev. Lett.62, 376 ~1989!.

@3# Y. Ne’eman and F.W. Hehl, Class. Quantum Grav.14, A251
~1997!.

@4# H. Quevedo, M. Salgado, and D. Sudarsky, Astrophys. J.488,
14 ~1997!.

@5# F.W. Hehl, J.D. McCrea, E.W. Mielke, and Y. Ne’eman, Phy
Rep.258, 1 ~1995!.

@6# R. Tucker and C. Wang, Talk given atMathematical Aspects o
Theories of Gravitation, Warsaw, Poland, 1996; Banach Cent
Publications Vol. 41~Institute of Mathematics, Polish Acad
emy of Sciences, Warsaw, 1997!; Los Alamos E-Print Archive:
gr-qc/9608055.

@7# A. Macı́as, E.W. Mielke, and J. Socorro, Class. Quantum Gr
15, 445 ~1998!.

@8# A. Garcı́a, F.W. Hehl, C. La¨mmerzahl, A. Macı´as, and J. So-
corro, Class. Quantum Grav.15, 1793 ~1998!; A. Garcı́a, A.
Macı́as, and J. Socorro,ibid. 16, 93 ~1999!; A. Macı́as, C.
Lämmerzahl, and A. Garcı´a, J. Math. Phys.41, 6369~2000!.

@9# Yu.N. Obukhov, E.J. Vlachynsky, W. Esser, and F.W. He
Phys. Rev. D56, 7769~1997!.

@10# F.W. Hehl and A. Macı´as, Int. J. Mod. Phys. D8, 339 ~1999!.
@11# R.A. Puntigam, C. La¨mmerzahl, and F.W. Hehl, Class. Qua

tum Grav.14, 1347~1997!.
10401
l.

.

.

,

@12# F.W. Hehl and J. Socorro, Acta Phys. Pol. B29, 1113~1998!.
@13# A. Garcı́a, A. Macı́as, and J. Socorro, Class. Quantum Gr

16, 93 ~1999!.
@14# E. Ayón-Beato, A. Garcı´a, A. Macı́as, and H. Quevedo, Phys

Rev. D61, 084017~2000!.
@15# E. Ayón-Beato, A. Garcı´a, A. Macı́as, and H. Quevedo, Phys

Rev. D64, 024026~2001!.
@16# J. Socorro, C. La¨mmerzahl, A. Macı´as, and E.W. Mielke, Phys

Lett. A 244, 317 ~1998!.
@17# W. Arkuszewski, W. Kopczyn´ski, and V.N. Ponomariev, Com

mun. Math. Phys.45, 183 ~1975!.
@18# Yu.N. Obukhov, E.J. Vlachynsky, W. Esser, R. Tresguerr

and F.W. Hehl, Phys. Lett. A220, 1 ~1996!.
@19# J.N. Islam,Rotating Fields in General Relativity~Cambridge

University Press, Cambridge, England, 1985!.
@20# E.J. Vlachynsky, R. Tresguerres, Yu.N. Obukhov, and F.

Hehl, Class. Quantum Grav.13, 3253~1996!.
@21# C. Lämmerzahl, Phys. Lett. A228, 223 ~1997!.
@22# A.C. Hearn,REDUCE User’s Manual. Version 3.6. Rand pub-

lication CP78~Rev. 7/95! ~RAND, Santa Monica, CA, 1995!.
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