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Quantum entropy bound by information in black hole spacetime
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We show that the increase of the generalized entropy by a quantum process outside the horizon of a black
hole is more than the Holevo bound of the classical information which could be obtained by further observa-
tions outside the horizon. In the optimal case, the prepared information can be completely retrieved.
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I. INTRODUCTION

Bekenstein@1#, on the basis of information from theore
ical arguments in a gedanken experiment, proposed the
eralized second law in black hole spacetime prior to the
covery of Hawking radiation@2# and thus opened up blac
hole thermodynamics@3#. It has been shown that there is a
almost complete parallel between black hole physics
thermodynamics from the zeroth to the third law. Howev
there remains a long standing problem: the apparent los
information about the initial state by the evaporation of t
black hole@4#. From our point of view, it is crucial to clarify
the meaning of ‘‘information’’ to resolve this paradox. R
cently, the information theoretical aspects in black hole ph
ics have been reemphasized@5# in the light of the entropy
bound conjecture.

In black hole thermodynamics the total entropy is the s
of the black hole entropySBH5A/4 ~whereA is the area of
the black hole horizon, andSBH54pM2 for a spherical
black hole of massM ) and of ordinary matter entropySM ,
i.e.,ST5SBH1SM . The generalized second law is motivat
by the paradox of Wheeler’s demon: although the entro
SM of the matter outside the black hole decreases by dis
ing it to the black hole, the total entropyDST increases.
There is plenty of evidence to support it. For example
gedanken experiment suggested by Unruh and Wald@7# takes
into account the Unruh effect@8#, while Frolov and Page@9#
gave a general argument based on the Einstein-Podo
Rosen~EPR!-like entanglement of the particle states insi
and outside the event horizon. In a previous work@10# the
present authors showed that, in aquantumversion of the
Geroch-Bekenstein gedanken experiment, for the outside
gion of a black hole the total entropy increases, while
matter entropy decreases when a detector is dropped int
black hole. The decrease of the matter entropy is more t
compensated for by the increase of the black hole entr
via the increase of the black hole mass which is ultimat
attributed to the work done by the measurement. In
present work we will show further that the increase of t
generalized entropy is greater than or equal to the Hol
bound@11,12#, which in turn is the upper bound to the cla
sical information which can be obtained by quantum m
surements. Entanglement plays an essential role in our a
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ment and is a key concept of quantum information the
@13#.

II. QUANTUM ENTROPY BOUND

The quantum state of the matter in the black hole spa
time is described by the Hartle-Hawking state,

uc&HH[(
n

Acnun&Bun&A , ~1!

where cn[exp@2vn/TBH#/Z is the Boltzmann factor,Z
[(nexp@2vn/TBH# and TBH[(8pM )21 is the Hawking
temperature. The state~1! is an entangled state@9# of the
particles inside (un&B) and outside (un&A) of the black hole
just like the EPR pair~for a review see, e.g.,@13#!. The state
inside the black hole is not accessible from the outside
that we trace over theB state to obtain a mixed state for th
observer outside, i.e.,rA[Tr B(uc&HH^cu)5(ncnun&A^nu,
which is nothing but the canonical thermal density opera
@14#. Now imagine a detector of negligible mass in the pu
state uF0&, initially located far away from the black hole
horizon, which is slowly lowered by a string up to a poi
near the horizon, and then a quantum experiment outsid
the black hole is performed. The reducedA state will change
in general as

rA→rA8[(
a

AarAAa
†5(

a
para8 , ~2!

with (aAa
†Aa51. The transition is represented by a trac

preserving positive operator-valued measurement~POVM!,
where pa[Tr (AarAAa

†) is the probability to get the mea
surement resulta, and ra8[(AarAAa

†)/pa is the new nor-
malized density operator. The POVM process is more ph
cally understood if we explicitly introduce detector stat
uFa& tensored to the entangled state~1!. In more detail,
when the agent outside the black hole switches on his exp
mental apparatus, the system will undergo a unitary trans
mationU for the compound state ofA and the detector as

uC&→uC&8, ~3!

where
©2002 The American Physical Society11-1
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uC&[(
n

Acnun&Bun&AuF0~x0!&

uC&8[(
n

Acnun&BU@ un&AuF0~x0&]

5(
a,n

Acnun&B(
m

Unm
a um&AuFa~x0!&, ~4!

and wherex0 is the spacetime point of the detector, which
initially located outside the horizon. We assume that by
measurement the state decoheres~on a proper time scale
which ensures that the process is quasistatic, and whic
smaller than the dynamical time scale of the process itsel! to
a diagonal form with respect to the detector statesuFa(x0)&
~the decoherence due to the interaction with the environm
is neglected here for simplicity, since its inclusion would n
alter our results!. The resultant mixed stater8 is then

r85(
a

S (
n

Acnun&B(
m

Unm
a um&AD

3S (
n8

Acn8B^n8u(
m8

Un8m8
* a

A^m8u D
^ uFa~x0!&^Fa~x0!u. ~5!

However, since the state inside the black hole is not ac
sible for the outside observerA, we trace over the state ofB
to obtain a reduced density operator forA and the detector a

rAF8 [(
a

para8 uFa~x0!&^Fa~x0!u

5(
a

AarAAa
† uFa~x0!&^Fa~x0!u, ~6!

where Aa[^Fa(x0)uUuF0(x0)&. If the outside agent doe
not ‘‘read’’ the detector, the detector states in Eq.~6! must be
traced out and then Eq.~2! is reproduced. What we have see
above is an explicit construction of a unitary representat
of the POVM where we identify the extended Hilbert spa
as that including the detector states@13#.

Now, the experiment is a local and isothermal process
to the Unruh effect of the accelerated system with the te
peratureT̄(r )[TBH /x(r ), the blue-shifted temperature from
the Hawking temperatureTBH of the cavity surrounding the
black hole at infinity. The first law of black hole physics i

DSBH5
DM

TBH
5

DW

TBH
, ~7!

whereDW is the work needed for the quantum experime
In the semiclassical gedanken experiment, this correspo
to the work to push down the box towards the black h
against the buoyancy force by the Hawking radiation@6,7#.
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Ordinary thermodynamics tells us that the workDW
needed in the isothermal process is more than or equal to
variation of the free energy:

DW>DF ~8!

@with the equality in Eq.~8! holding for a quasistatic pro
cess#, where

DF[F(
a

paEa2T̄S~rAF8 !Gx2~E02T̄SM !x

5@SM2Sr,M8 #TBH , ~9!

and we have used the conservation of the internal ene
E05(apaEa , which holds in the isothermal system (E0 and
Ea are the energies of the combined system of the Hawk
state plus the detector before and after the experiment
spectively!. Furthermore,SM[S(rA) is the initial matter en-
tropy andSr,M8 [S(rAF8 ) the matter entropy after the mea
surement~including the contribution from the detector!, with
S(r)[2Tr (r logr) the von Neumann entropy for a gener
stater.

Combining the first law of black hole physics and th
second law of thermodynamics given above, we then ea
obtain DSBH5SBH8 2SBH>SM2Sr,M8 or, in a more illumi-
nating way,

~SBH8 1Sr,M8 !2~SBH1SM !>0. ~10!

In other words, the generalized second law holds.
Let us now extend the previous argument to the case

which the observer disposes of the detector in a gedan
experiment a la´ Geroch-Bekenstein. Suppose that the o
server conditionally drops the detector into the black hole
the experiment outcome isaPD, while keeping it outside
the black hole ifa¹D. That is, the detector might alter th
state inside the black hole if the measurement outcoma
PD. In general the state~5! will change further to

s85(
a

S (
n

AcnVaun&B(
m

Unm
a um&AD

3S (
n8

Acn8B^n8uVa
†(

m8
Un8m8

* a
A^m8u D

^ uFa~xa!&^Fa~xa!u, ~11!

whereVa is a nontrivial unitary transformation if the exper
mental outcome isaPD andVa51 if a¹D. Moreover,xa
is the spacetime point of the detector sufficiently after
measurement:xa is inside the black hole ifaPD and it is
outside otherwise. This corresponds to the ‘‘classical co
munication from Alice to Bob’’ in the standard quantu
communication setup, except that in the present case it i
inherently one-way communication.

The trace over theB states washes out theVa dependence
altogether and we obtain the reduced density matrix for
compound state ofA and the detector as
1-2
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sAF8 [pDs181~12pD!s28 ,

s18[S (
aPD

p̂ara8 D rD , ~12!

s28[ (
a¹D

p̃ara8 uFa~xa!&^Fa~xa!u,

where we have introduced the reduced density operator
the detector asrD[(aPDp̂auFa(xa)&^Fa(xa)u, with pD
[(aPDpa the total probability that the detector is dropp
into the black hole,p̂a[pa /pD the normalized probability
for aPD, and p̃a[pa /(12pD) the normalized probability
for aP” D. For aPD the detector Hilbert space is tensor
with the Hilbert space of the outside observer because
detector and the outside observer get causally disconne
and therefore decoupled. It is then straightforward to co
pute the matter entropy@now reading, for an outside ob
server,Ss,M8 [S(sAF8 )2pDS(rD)] using the concavity prop-
erty as

Ss,M8 5S@pDs181~12pD!s28#2pDS~rD!

>pDSS (
aPD

p̂ara8 D 1~12pD!S~s28!. ~13!

Furthermore, using the fact that, for a quantum systemt
[(bqbtb , the Holevo accessible informationx(t)[S(t)
2(bqbS(tb) decreases under an arbitrary completely po
tive mapE, i.e., x@E(t)#<x(t) @15#, we obtain the follow-
ing inequalities:

S~s28!>SS (
aP” D

p̃ara8 D
~14!

Sr,M8 <(
a

paSa82(
a

palogpa ,

whereSa8[S(ra8 ).
Now, the change of free energy is still given by Eq.~9!,

and an almost identical argument as before leads to

DST[~SBH8 1Ss,M8 !2~SBH1SM !>Ss,M8 2Sr,M8 . ~15!

Finally, substituting the inequalities~13! and ~14! into Eq.
~15! we obtain

DST>pDFSS (
aPD

p̂ara8 D 2 (
aPD

p̂aSa8 G1~12pD!

3FSS (
aP” D

p̃ara8 D 2 (
aP” D

p̃aSa8 G1(
a

palog pa .

~16!

The last term on the right-hand side~rhs! of Eq. ~16! can be
interpreted as~minus! the ‘‘entropy of the choice,’’Sc
[2(apalog pa ~see page 282 of Ref.@12#!, for the detector,
reflecting thea priori ignorance about the actual outcome
10401
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the measurement determininga. In other words, we could as
well redefine the total variation of the generalized entropy

DST8[DST1Sc . ~17!

The quantities inside the first two brackets on the right-ha
side of Eq.~16! are the same appearing in the famous Hole
bound@11,12#:

xā
8[SS (

ā

p̄ārā
8 D 2(

ā

p̄āS~rā
8 !>I ā

8 , ~18!

where p̄a[ p̂a when ā→aPD and p̄a[ p̃a when ā
→a¹D. Moreover, I ā

8 is the mutual information of the

componentsā which would be obtained if one performed
further measurement before the detector and the outside
server get causally disconnected. More precisely, with$Ej%
being the orthogonal projection summing to unity which co
responds to the further observation at infinity and should
distinguished from the previous POVM, one has

I ā
8 ~E!52(

j ,ā

p̄āp~ j uā !log
p~ j !

p~ j uā !
, ~19!

where p( j uā)[Tr (Ejrā
8 ) is the conditional probability to

obtain the outcomej when the staterā
8 is prepared and

p( j )[(āp̄(ā)p( j uā) is the average probability to obtainj.
Equation~19! can be interpreted as the mutual informati
between the state prepared by an agent near the black
and that of another agent at infinity, i.e., the uncertainty
the first measurement minus its uncertainty after the sec
measurement. The equality in Eq.~18! can be achieved for
some projection$Ej% if and only if the components of the
rā
8s are mutually commuting. In this case therā

8s can be
simultaneously diagonalized so that we can choose, for
ample, thatAā

†
Aā→Ej as the best that the second agent c

do. In this optimal case we obtainI ā
8 (E)52(āp̄ālog p̄ā ,

which is nothing but the Shannon information entropy sto
by the first measurement. To summarize, Eq.~16! tells us that
this potentially acquirable classical information is bound
from above by the change of the generalized entropy, i.e

DST8>pDI aPD8 1~12pD!I aP” D8 . ~20!

In the ordinary thermodynamics of a closed systemDW
50, so that we have Ss,M8 1Sc2SM>pDI aPD8 1(1
2pD)I aP” D8 : the acquirable information is not more than th
change of entropy. In the case of an orthogonal POV
$uFa&^Fau% for the detector, one can directly computeSs,M8
without using the concavity of the entropy, but just by wr
ing
1-3
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Ss,M8 5pDSS (
aPD

p̂ara8 D 1~12pD! (
a¹D

p̃aSa81Sc

1pD (
aPD

p̂alog p̂a ,

Sr,M8 5(
a

paSa81Sc , ~21!

and then we obtain

DST85pDxaPD8 1Sc1pD (
aPD

p̂alog p̂a

5pDxaPD8 1Sd2~12pD! (
aP” D

p̃alog p̃a , ~22!

where Sd[2@pDlog pD1(12pD)log(12pD)# represents
the entropy due to the decision whether to drop the dete
into the black hole, and the last term is the classi
information carried by the detector remaining outside of
horizon.

It is also illuminating to consider an ideal case in whi
the first agent performs a series of successive quasi-s
measurements. In the quasi-static isothermal process,
work which is needed under the influence of an inhomo
neous HamiltonianH in an experiment a la´ Stern-Gerlach
equals the change of free energy, i.e.,

DW5*Tr @] rH~r !e2bH(r )#•dr /Z

52b21*] r logZ•dr5DF,

where Z[Tr @e2bH(r )# and F[2b21logZ. Therefore, the
equality is saturated in Eq.~20!:

DST85pDxaPD8 1~12pD!xaP” D8 . ~23!

Recalling that the Holevo accessible informationx does not
increase by further measurement@15#, we see that the
amount of increase of the total entropy becomes less and
at each step of measurement and eventually does not ch
at all. This is reminiscent of Prigogine’s theorem on min
mum entropy production@16#, according to which the en
tropy production rate should not increase in a steady s
linear thermodynamical process approaching equilibrium

Consider a further ideal situation: a quasistatic orthogo
measurement by the first agent near the black hole follow
by the same orthogonal measurement by the second age
infinity, so that in Eq.~20! the equality is doubly saturated
i.e., DST85pDI aPD8 1(12pD)I aP” D8 5Sc , and a black hole of
sufficiently large massM so that the time scale of evapor
tion is slow enough compared with that of the quantum m
surement. We can then think of the situation where the s
s8 is distorted from the thermal stater0[uc&HH^cu by the
quantum measurement, i.e.,r0→s8, and it relaxes back to
the initial thermal stater0, assuming that the whole syste
10401
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is surrounded by a cavity with temperatureTBH . When the
relaxations8→r0 eventually occurs, the energyDW is emit-
ted to infinity in a form of radiation, and the informationI 8
initially stored in the states8 is encoded in the radiation
itself. Thus, the information could be completely retrieved
this relaxation process in the ideal case~the details on how
the information is encoded and on the relaxation process
beyond the scope of the present paper!. Of course, it is pos-
sible to drop matter into a black hole without distorting t
compound state ofA and B. However, in this case the ob
server cannot get any information so that he has no infor
tion to lose. The thermal state remains the thermal state
that the radiation from the black hole does not carry a
information.

III. SUMMARY AND DISCUSSION

We have shown that the increase of the generalized
tropy by a quantum process outside the horizon of a bl
hole is more than the Holevo bound of classical mutual
formation which in principle could be retrieved by a furth
observation outside the black hole. What we have used
physics are the energy conservation for an isothermal pro
in the black hole spacetime and the second law of ordin
thermodynamics. The difference between the ordin
POVMs and those in the black hole spacetime is that
work needed for the experiment makes the black hole m
massive. One might consider ours as a special and hypot
cal gedanken experiment. After a little thought, however, o
may realize that this represents a fact of real life. After
black holes exist somewhere in the universe and any phys
process can be considered as a POVM outside the b
holes. The present argument is universal in the sense
POVMs represent the most general physical process inc
ing, for example, gas collision before the infall. The dec
herence due to the coupling with the environment redu
the Holevo accessible information and the inequality~16! is
even more comfortably satisfied. The universality holds a
in the sense that the quantum state is entangled for all k
of particles because gravity is universally coupled to a
matter. Of course our discussion does not completely so
the information loss paradox, because our treatment of
black hole is semiclassical. One will need a full theory
quantum gravity to really understand the process of inform
tion loss and retrieval after a complete evaporation of
black hole, the final stage of which is expected to be tra
Planckian.

In conclusion, our suggestion is that the informati
loss paradox is not merely an issue of evolution from p
to mixed states, but rather it should be fully address
within the context of quantum measurement and informat
theory.
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