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Gravitational optics: Self-phase modulation and harmonic cascades
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A nonlinear wave interaction of low amplitude gravitational waves in flat space-time is considered. An
analogy with optics is established. It is shown that the flat metric space-time is equivalent to a centrosymmetric
optical medium, with no second order susceptibility. The lowest order nonlinear effects are those due to the
third order nonlinearity and include self-phase modulation and high harmonic generation. These processes lead
to an efficient energy dilution of the gravitational wave energy over an increasingly large spectral range.
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I. INTRODUCTION

Gravitational radiation is a direct result of the theory
gravitation @1,2# and, even if not yet directly observed, i
existence has been indirectly inferred from the change
orbital parameters in binary star systems@3#. Potential gravi-
tational wave sources@4# can emit intense and short burst
such as collapsing massive binary stars or supernova ex
sions, and continuous waves of much lower amplitudes, s
as stable binary stars or nonaxisymmetric spinning stars

It is well known that Einstein’s equation governing th
gravitational field contains strong nonlinearities. The nonl
ear effects will, of course, be more relevant to the sh
bursts, containing only a few cycles of radiation, and ass
ated with the more catastrophic events. It is also known
nonlinear gravitational waves of the soliton type can be
cited @5–8#. We have learned, however, from the more co
mon situations of nonlinear optics@9#, that the excitation of
solitons depends very critically on the balance between
dispersive and the nonlinear effects. Even if the gravitatio
solitons do not seem to display such a balance and be
much more like superpositions of linear waves@10#, they
nevertheless correspond to particular solutions. And, with
exception of the soliton representation of cosmological so
tions @11–13#, which are pertinent to the large scale structu
of the universe, it is very unlikely that solitons will spont
neously be excited by local gravitational wave sources.

It is therefore quite plausible in physical terms to consid
the problem of gravitational wave packets of arbitrary sha
This will be considered here. In order to understand th
typical behavior, and to describe the main physical pictu
of their spectral evolution, we concentrate here on the s
plest possible situation: that of propagation in a flat spa
time. We are not interested in the wave generation phen
ena, for which there exists a standard powerful formali
@14# valid even in strongly curved regions, nor in the prop
gation of gravitational waves in strongly curved region
Here we want to focus on regions far from the sourc
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where the background is approximately flat. This allows
to simplify the problem considerably, but still retain som
important physical features. We try then to establish cl
analogies with the well known concepts of nonlinear opti
In particular, the nonlinear gravitational susceptibilities a
established and nonlinear wave mixing processes are con
ered. Explicit analytical solutions for the processes of se
phase modulation and high order harmonic cascades wil
derived.

II. BASIC EQUATIONS

Einstein’s equation for the gravitational field in the a
sence of matter is given by

Rik5G ik,l
l 2G i l ,k

l 1G ik
l G lm

m 2G i l
mGkm

l 50, ~1!

where the comma stands for the ordinary derivative, and
Christoffel symbols are determined by the derivatives of
metric tensor elements, according to

G ik
l 5

1

2
glmS ]gmi

]xk
1

]gmk

]xi
2

]gik

]xmD . ~2!

We are considering a flat space-time, perturbed by a sm
amplitude gravitational wave. This means that we can wr

gi j 5h i j 1hi j , ~3!

whereuhi j u!1, and

h0051, h i i 521 ~ i 51,2,3!, h i j 50 ~ i 5” j !. ~4!

In this case, we can write

Rik5Rik
L 1Rik

NL , ~5!

where the linear term is

Rik
L 5

1

2
h lmS ]2hmi

]xl]xk
1

]2hmk

]xl]xi
2

]2hik

]xl]xm
2

]2hml

]xk]xi D . ~6!
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The nonlinear termRik
LN contains second, third, and high

order nonlinearities. This means that, in principle, we c
have three, four, and higher wave mixing processes. Le
then write

Rik
LN5Rik

(2)1Rik
(3)1•••, ~7!

where we have, for the lowest order term,

Rik
(2)5

hlm

h lm
Rik

L 1
h lp

hlp
Rik

(3)1
1

2 F ]hlm

]xl S ]hmi

]xk

1
]hmk

]xi
2

]hik

]xmD 2
]hlm

]xk

]hml

]xi G . ~8!

The third order nonlinearities are contained in

Rik
(3)52

1

4
hnmhlpF S ]hmi

]xl
1

]hml

]xi
2

]hil

]xmD
3S ]hpk

]xn
1

]hpn

]xk
2

]hkn

]xp D 2S ]hpi

]xk
1

]hpk

]xi

2
]hik

]xp D ]hnp

]xl G . ~9!

We could go on to higher orders but as we assumeuhi j u
!1, these terms become less important. Furthermore, s
ping at third order suffices, as we will show, to uncover so
truly nonlinear and interesting aspects of gravitation.

It is well known @2# that the linear term~6! can simply be
written as

Rik
L .2

1

2
!2hik , ~10!

where the d’Alembert operator is

!25
]2

]xj]xj

5h jn
]2

]xj]xn
. ~11!

This means that we can write the nonlinear wave equatio

!2hik52@Rik
(2)1Rik

(3)1Rik
(4)#. ~12!

III. NONLINEAR WAVE COUPLING

Equation~12! predicts the possibility of several types
nonlinear gravitational wave coupling. This can be stud
by assuming that several waves of the type

hi j ~n!5e i j ~n!a~n!exp@ iqk~n!xk# ~13!

coexist in the same region of flat space-time. Herea(n) are
slowly varying amplitudes,e i j (n) are unit polarization ten-
sors such thate i j* e i j 51, andqk(n) are the four-wave vector
associated with the interacting wavesn51,2,3, . . . .

The total wave field, for real waves, is given by
10400
n
us

p-
e

as

d

hi j 5(
n

hi j ~n!1c.c. ~14!

In order to determine the evolution of the amplitudesa(n),
we can construct the envelope equation, by noting that

!2hi j ~n!.S 2qkq
k1 iqk

]

]xk
Dhi j ~n!. ~15!

Assuming that the waves still obey the linear dispersion
lation, valid in the limitRi j

NL→0,

qk~n!qk~n!50, ~16!

we obtain, for three-wave mixing,

iqk~1!
]

]xk
a~1!5v~1!a~2!a~3!exp~ iDqkx

k!, ~17!

where

Dqk5qk~2!1qk~3!2qk~1!. ~18!

The nonlinear coupling coefficientv(1) is determined by
Ri j

(2) , Eq. ~8!. It can be verified thatv(1)50, which means
that three-wave coupling is forbidden. We can continue
hard way, by calculatingRi j

(2) explicitly, or the easy way, by
noting that flat space-time is a centrosymmetric medium
therefore, as in optics, it has no second order susceptib
We then proceed to the next order of nonlinearity, and w
the envelope equation for the four-wave mixing process:

iqk~1!
]

]xk
a~1!5w~1!a* ~2!a~3!a~4!exp~ iDqkx

k!,

~19!

where now

Dqk5qk~3!1qk~4!2qk~1!2qk~2!, ~20!

and the coupling coefficientw(1) is determined byRi j
(3) .

Similar equations give the other three wave amplitudes
order to derive explicit results, we assume wave propaga
along a given directionx15x. We have iqkx

k5 iq0x0

1 iq1x1. We will useq15q, q052V/c, andx05ct, which
then leads to

exp~ iqkx
k!5exp~ iqx2 iVt !. ~21!

The linear dispersion relation~16! is

qkx
k5

V2

c2
2q250. ~22!

This shows that flat space-time is nondispersive. This me
that, for V(2)1V(1)5V(1)1V(2), we canguarantee a
perfect phase matching:

Dqk50. ~23!

We also have
9-2
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iqk

]

]xk
5 iqkh

k j
]

]xj
5 iqS ]

]x
1

1

c

]

]t D . ~24!

We can now introduce a variablez5x2ct, such that

iq~1!
]

]z
a~1!5w~1!a* ~2!a~3!a~4!. ~25!

Let us use Eq.~9! to calculate. The result is

w~1!5
1

4
e ik* hnme lp* ~2!$@ql~3!emi~3!1qi~3!eml~3!

2qm~3!e i l ~3!#•@qn~4!epk~4!1qk~4!epn~4!

2qp~4!ekn~4!#2ql~4!enp~4!•@qk~3!epi~3!

1qi~3!epk~3!2qk~3!e ik~3!#%1perm ~2,3,4!.

~26!

This is a very complicated expression, where the last te
represents two terms formally identical to the first one, a
obtained by permutation of the indices 2, 3, and 4. It
important to notice that, in order of magnitude, we ha
w(1).V2/c2.

IV. SELF-PHASE MODULATION

An important particular case is obtained when the mo
n51,2,3,4 coincide. The mode coupling equation~19! is
then reduced to

iq
]

]z
a5wuau2a. ~27!

It is instructive to compare it with the envelope equation
an optical pulse~for instance a laser pulse!, with central fre-
quencyv0, propagating in a nonlinear medium with grou
velocity v0. Its electric field amplitude is described by th
equation@9#

S ]

]x
1

1

v0

]

]t DE05 iv0auE0u2E0 , ~28!

whereE0 is the electric field amplitude anda is the nonlin-
ear coupling coefficient

a5
v0

k0c2
x (2). ~29!

Notice that this equation can be written in a similar form

S ]

]x
1

1

c

]

]t Da52 i
w

q
uau2a. ~30!

Comparing with Eq.~28! we conclude that the equivalen
nonlinear susceptibility of the flat space-time, which wou
be the gravitational wave version of the electromagnetic s
ceptibility x (2) is equal to 1, whereas in optical materials t
typical value isx (2);10216. This means that the gravita
10400
m
d
s

s

r

s-

tional field is extremely nonlinear, and that we expect
observe the same nonlinear effects as in optics at much lo
wave amplitudes. In particular, we can follow the usual o
tical approach and obtain a wave packet solution of the fo

a~x,t !5a~z!exp@ if~z,t !#, ~31!

where the nonlinear phase is

f~z,t !5f02
w

q
ua~z!u2t. ~32!

This means that a gravitational wave packet, even of v
small amplitude, will suffer a self-phase modulation su
that its central frequencyV will not remain fixed but will
change during propagation, according to

V5V~0!2
]f

]t
5V~0!2

w

qc
t

]

]z
ua~z!u2. ~33!

For instance, if we have a Gaussian gravitational wave pu
of the form

ua~z!u25a0
2 expS 2

z2

z0
2D , ~34!

we will obtain a gravitational wave frequency shiftDV
5V2V(0):

DV5
w

qc

2z

z0
2

ua~z!u2t. ~35!

It contrast with what usually occurs in nonlinear optic
this frequency shift is positive at the pulse front (z.0), and
negative at the pulse rear (z,0). We also see that, for ver
large propagation timest, this shift can be quite significant
DV@V(0), even for weak gravitational perturbations,a
!1, due to the strong nonlinearities already noticed. To
quantitative, let us see what conditions have to be satisfie
order to have the same effect as in nonlinear optics, i.e.
have the same frequency shiftDV/Vopt5DV/Vgrav. In or-
der to satisfy this condition we have to have

ua~z!u2;uE0u2xopt
(2) dopt

dgrav
, ~36!

wheredopt is the length traveled by light in the usual expe
ments, anddgrav is the length traveled by a gravitationa
wave until it reaches the gravitational wave detector. A
typical example, we havedopt;1023 m, uE0u2xopt

(2);1022.
For these values, we get

ua~z!u;
6310213

@dgrav ~kpc!#1/2
, ~37!

where the distance is now measured in kpc. For a grav
tional wave produced by any reasonable astrophysical ev
our best expectations@14# give a;10221, as the wave ar-
rives on Earth. But, along its path from the radiation sou
9-3
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to the Earth, its amplitude will remain significantly high
over large distances. It seems therefore very likely that s
an effect will indeed take place.

V. HARMONIC CASCADE

Another possibility of nonlinear gravitational wave co
pling is the generation of a large spectrum of harmonics
the initial frequencyV(0). Here, in principle, the sum overn
will extend to infinity:

hi j 5 (
n52`

`

hi j ~n!. ~38!

We will also have

qk~n!5nqk . ~39!

Four-wave mixing between these different harmonics w
occur, where a perfect phase-matching condition can be v
fied:

Dqk5@qk~2!1qk~n21!#2@qk~1!1qk~n!#50. ~40!

For the present case, an envelope equation for the am
tudes of the different harmonics can be derived, in the sa
way as Eq.~19!. Assuming that the fundamental and the fi
harmonics are dominant,uhi j (n51,2)@hi j (nÞ1,2), we can
retain only two of the mixing terms and get, for propagati
along one given directionx,

iq~n!S ]

]x
1

1

c

]

]t Da~n!5w~n!@a* ~1!a~2!a~n21!

1a~1!a* ~2!a~n11!#, ~41!

wherew(n) is determined by an expression similar to E
~26!. Let us now define

a* ~1!a~2!5Ieid, ~42!

where I and d are real. In order to get order of magnitud
analytical solutions, let us assume thatw(n)}q(n), and let
us also neglect the amplitude variations of the domin
modes, which means that the intensity parameterI is ap-
proximately constant. We are then led to

]

]z
a~n!5 iw@eida~n21!1e2 ida~n11!#, ~43!

with

w52
w~n!

q~n!
I . ~44!

It is now convenient to introduce new amplitude variab
b(n), such that

a~n!5~21!n/2eindb~n!, ~45!

and we get
10400
h

f

l
ri-

li-
e

t

.

t

s

]

]z
5w@b~n21!2b~n11!#. ~46!

Usingt5wz, we can reduce this equation to the well know
recurrence relation for Bessel functions:

]

]t
b~n!5b~n21!2b~n11!. ~47!

An adequate solution will then be given in terms of Bes
functions of the first kindJn(t), such as

b~n,t!5AJn~t!1A8Jn21~t!, ~48!

where the two constantsA and A8 are determined by the
initial conditions

A5a~n51,t50!, A85a~n52,t50!, ~49!

and all the other harmonic wave amplitudes are assume
be initially equal to zero:a (n5” 1,2;t50). Notice that this
solution satisfies energy conservation, in the sense that

(
n52`

`

ub~n,t!u25const. ~50!

It is then an adequate, if particular, solution to the problem
harmonic generation of low amplitude gravitational wav
propagating in a flat space-time.

VI. CONCLUSIONS

Nonlinear wave coupling of gravitational waves was co
sidered in this work. The problem of low amplitude waves
flat space-time was examined, in order to extract the m
physical consequences with the simplest possible for
complexity and to establish clear connections with the w
known effects occurring in nonlinear optics.

In particular, the gravitational equivalent to the optic
second and third order susceptibility was derived. It w
shown that the second order gravitational susceptibility
equal to zero and, consequently, the process of th
nonlinear-wave coupling is forbidden. This is not surprisi
because the flat space-time background considered here
be seen as a centrosymmetric material medium. This p
erty will eventually disappear in curved space-time.

In contrast, the gravitational third order susceptibility w
shown to be equal to 1, thus meaning that the flat space-
is a strongly nonlinear medium. As in optics, four-wave m
ing processes can then be considered. But, unlike the ca
optical phenomena, these wave mixing processes can
come relevant even for very low wave amplitudes. The p
ticularly important cases of generation of harmonic casca
and of self-phase modulation were considered, and exp
analytical solutions were derived. They show that a sign
cant spectral broadening and spectral energy dilution
then take place, especially in the vicinity of radiation sourc
where the wave amplitudes are non-negligible. Such ene
dilution is not considered in the usual estimates for grav
tional wave detection@4,15# and could eventually lower the
9-4
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prospects for direct observation of these waves near
Earth.

Finally, it should be noticed that self-phase modulati
occurring in optics can be described as a particular exam
f

.

,

10400
e

le

of photon acceleration@16,17#. In analogy, the present resu
showing the existence of self-phase modulation of grav
tional wave pulses could also be interpreted as graviton
celeration. This aspect will be explored in future work.
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