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Gravitational optics: Self-phase modulation and harmonic cascades
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A nonlinear wave interaction of low amplitude gravitational waves in flat space-time is considered. An
analogy with optics is established. It is shown that the flat metric space-time is equivalent to a centrosymmetric
optical medium, with no second order susceptibility. The lowest order nonlinear effects are those due to the
third order nonlinearity and include self-phase modulation and high harmonic generation. These processes lead
to an efficient energy dilution of the gravitational wave energy over an increasingly large spectral range.
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[. INTRODUCTION where the background is approximately flat. This allows us
to simplify the problem considerably, but still retain some
Gravitational radiation is a direct result of the theory of important physical features. We try then to establish clear
gravitation [1,2] and, even if not yet direcﬂy observed, its analogies with the well known concepts of nonlinear optics.
existence has been indirectly inferred from the change ofn particular, the nonlinear gravitational susceptibilities are
Orbita| parameters in binary star Systeiﬁ$ Potentia| gravi_ established and nonlinear wave miXing processes are consid-
tational wave sourcelgt] can emit intense and short bursts, €red. Explicit analytical solutions for the processes of self-
such as collapsing massive binary stars or supernova expl#hase modulation and high order harmonic cascades will be
sions, and continuous waves of much lower amplitudes, sucferived.
as stable binary stars or nonaxisymmetric spinning stars.
It is well known that Einstein’s equation governing the Il. BASIC EQUATIONS
gravitational field contains strong nonlinearities. The nonlin- . . . o i )
ear effects will, of course, be more relevant to the short EINSteIN's equation for the gravitational field in the ab-
bursts, containing only a few cycles of radiation, and associS€nce of matter is given by
ated with the more catastrophic events. It is also known that | | | wm el
nonlinear gravitational waves of the soliton type can be ex- Rikx=Tii =itk T = T k=0, ()

cited[5—8]. We have learned, however, from the more com- ) o
mon situations of nonlinear opti¢§], that the excitation of where the comma stands for the ordinary derivative, and the

solitons depends very critically on the balance between th&hristoffel symbols are determined by the derivatives of the
dispersive and the nonlinear effects. Even if the gravitationaMetric tensor elements, according to

solitons do not seem to display such a balance and behave
much more like superpositions of linear wavidd], they
nevertheless correspond to particular solutions. And, with the
exception of the soliton representation of cosmological solu-

tions[11-13, which are pertinent to the large scale structure We are considering a flat space-time, perturbed by a small

of the universe, it is very unlikely that solitons will sponta- gmpjityde gravitational wave. This means that we can write
neously be excited by local gravitational wave sources.

It is therefore quite plausible in physical terms to consider 9 =7 +h; 3)
the problem of gravitational wave packets of arbitrary shape. we e
This will be considered here. In order to understand the"i/vhere|hi»|<l, and
typical behavior, and to describe the main physical pictures !
of their spectral evolution, we concentrate here on the sim- =1, mi=—1(=12,3, 7:=0(i%]). (4
plest possible situation: that of propagation in a flat space- '
time. We are not interested in the wave generation phenomg, this case, we can write
ena, for which there exists a standard powerful formalism
[14] valid even in strongly curved regions, nor in the propa- Ry =Rb + RN (5)
gation of gravitational waves in strongly curved regions. ' Kok
Here we want to focus on regions far from the sources, here the linear term is
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The nonlinear ternRy contains second, third, and higher

order nonlinearities. This means that, in principle, we can hij:; hij(n)+c.c. (14
have three, four, and higher wave mixing processes. Let us
then write In order to determine the evolution of the amplitudgs),
we can construct the envelope equation, by noting that
RN=R@+RE+ - ) be €4 Y J
J
where we have, for the lowest order term, DOhij(n)= _Qqu+iqkﬁ7) hi;(n). (15
k
| Ip [
R h™m R +7/_R(3) (?h " 3hml Assuming that the waves still obey the linear dispersion re-
e pm K e 2] x| axk lation, valid in the limitR\{"—0,
Pk ah.k) h'™ dhp ® a(n)g¥(n)=0, (16
axl - ox™ axk oxi | we obtain, for three-wave mixing,
The third order nonlinearities are contained in ) d ) .
|qk(1)&Ta(l)=v(1)a(2)a(3)exp(|Aqu), a7
1 i | gh™  oh,, k
R(S):__nnmhlp _
ik 4 X ox ox™ where
y ( Ihoic on ahkn) B ( hyr Ag=0i(2) +ay(3) ~ ak( D). (18
ax" o axk oxP axk<  ox The nonlinear coupling coefficient(1) is determined by
R,(Jz), Eq. (8). It can be verified thab (1)=0, which means
_ i | N that three-wave coupling is forbidden. We can continue the
— . 9 ) .
axP | ox! hard way, by calculatingr;;”’ explicitly, or the easy way, by

noting that flat space- t|me is a centrosymmetric medium and

We could go on to higher orders but as we assqmﬁ therefore, as in optics, it has no second order susceptibility.

<1, these terms become less important. Furthermore, stojwWe then proceed to the next order of nonlinearity, and write
ping at third order suffices, as we will show, to uncover somehe envelope equation for the four-wave mixing process:
truly nonlinear and interesting aspects of gravitation.

i i i J

Wrilti;v;ill known[2] that the linear tern6) can simply be iqk(l)a—xka(l)=W(1)a*(2)a(3)a(4)exp(iAquk),

(19

RL=— E|:|2hik, (100 where now

where the d’Alembert operator is Agi=aw(3) +ak(4) —ax(1) —ak(2), (20

and the coupling coefficieniv(1) is determined byR(>).

: 7 - (11  Similar equations give the other three wave amplitudes. In

X! oX; axlox" order to derive explicit results, we assume wave propagation
along a given directionx!=x. We have iqx*=iqx°

This means that we can write the nonlinear wave equation as jq,x*. We will useq;=q, go=—Q/c, andx®=ct, which

then leads to

Dz_ 52 3 jn &2

D?hye= 2[R+ R+ R, (12
exp(iqxX) =expigx—iQt). (21)

I1l. NONLINEAR WAVE COUPLING . . . . .
The linear dispersion relatiof16) is

Equation(12) predicts the possibility of several types of
nonlinear gravitational wave coupling. This can be studied

by assuming that several waves of the type AX"="3 : (22

_ ; k
hij(n)=e;j(n)a(n)exfiqx(n)x’] (13 This shows that flat space-time is nondispersive. This means
that, for Q(2)+Q(1)=Q(1)+Q(2), we canguarantee a

coexist in the same region of flat space-time. Hafp) are perfect phase matching:

slowly varying amplitudese;;(n) are unit polarization ten-
sors s_uch thafti’} =1, andq'k(n) are the four-wave vectors AQg,=0. (23
associated with the interacting waves1,2,3 ... .

The total wave field, for real waves, is given by We also have
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(24)  observe the same nonlinear effects as in optics at much lower
wave amplitudes. In particular, we can follow the usual op-
tical approach and obtain a wave packet solution of the form

a(x,t)y=a(z)exgi¢(zt)], (31

(9 9 19 tional field is extremely nonlinear, and that we expect to
ol g

Jd
| =
Qkax Qk77 a &x

We can now introduce a variabke=x—ct, such that

J
. 9 _ .
(1) aza(l) w(l)a*(2)a(3)a(4). (25 where the nonlinear phase is
Let us use EQq(9) to calculate. The result is w )
¢(z,t)=¢o—a|a(z)| t. (32)
1.
— = _ikx _nm_Ipx . .
W(l)=geTnTe (23 €mi(3)+6i(3) €mi(3) This means that a gravitational wave packet, even of very
small amplitude, will suffer a self-phase modulation such
~Am(3) € (3)]-[An(4) €p(4) T A(4) €pn(4) that its central frequency) will not remain fixed but will
—0p(4) €kn(4) 1= A1(4) €np(4) - [A(3) €i(3) change during propagation, according to
+q; - i + ) d
(26) gc 0z

This is a very complicated expression, where the last ternfror instance, if we have a Gaussian gravitational wave pulse

represents two terms formally identical to the first one, ancPf the form

obtained by permutation of the indices 2, 3, and 4. It is 5

important to notice that, in order of magnitude, we have 2 2 z
la(2) —aoexp( )

w(1)=02/c?. B Z_g

(34

IV. SELF-PHASE MODULATION we will obtain a gravitational wave frequency shift()

. . . . =0-0(0):
An important particular case is obtained when the modes (0)

n=1,2,3,4 coincide. The mode coupling equatit®) is
then reduced to AQ=— —la(2)]*. (35)
ac z3

iq 53=W|a|23- (27) It contrast with what usually occurs in nonlinear optics,
this frequency shift is positive at the pulse fromt(0), and
It is instructive to compare it with the envelope equation fornegative at the pulse reaz<0). We also see that, for very
an optical pulséfor instance a laser pulsewith central fre-  large propagation times this shift can be quite significant,
quencyw,, propagating in a nonlinear medium with group AQ2>(0), even for weak gravitational perturbationa,

velocity v. Its electric field amplitude is described by the <1, due to the strong nonlinearities already noticed. To be
equation[9] guantitative, let us see what conditions have to be satisfied in

order to have the same effect as in nonlinear optics, i.e., to

g 14 have the same frequency shit)/Q,,=AQ/Q g, In or-
X vgdt Eo=iwoa|Eo|*Eo, (28 der to satisfy this condition we have to have
whereE, is the electric field amplitude and is the nonlin- |a(2) |2~ [Eq|2x2) dopt (36)
0

ear coupling coefficient °Pldgray
) whered, is the length traveled by light in the usual experi-
a= ZX( ), (29 ments, anddy,,, is the length traveled by a gravitational
o€ wave until it reaches the gravitational wave detector. As a
. . . . . o i ~10°3 2.(2) 1072
Notice that this equation can be written in a similar form: typical example, we havep~107 m, [Eq|*xop~10"%.
For these values, we get

((9+” i~ [af? (30) 13

—+——]a=—i—|al%a. 6X10"

ax ¢ ot q la(2)|~ ——, (37)
[dgray (kpo)]

Comparing with Eq(28) we conclude that the equivalent
nonlinear susceptibility of the flat space-time, which wouldwhere the distance is now measured in kpc. For a gravita-
be the gravitational wave version of the electromagnetic susional wave produced by any reasonable astrophysical event,
ceptibility y(® is equal to 1, whereas in optical materials theour best expectationgl4] give a~10 %, as the wave ar-
typical value isy(®~10 1. This means that the gravita- rives on Earth. But, along its path from the radiation source
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to the Earth, its amplitude will remain significantly higher
over large distances. It seems therefore very likely that such Ezw[b(n— 1)—b(n+1)]. (46)
an effect will indeed take place.

Using r=wz, we can reduce this equation to the well known

V. HARMONIC CASCADE recurrence relation for Bessel functions:

Another possibility of nonlinear gravitational wave cou- 9
pling is the generation of a large spectrum of harmonics of é—b(n)=b(n—1)—b(n+ 1). (47
the initial frequency2(0). Here, in principle, the sum over T
will extend to infinity: An adequate solution will then be given in terms of Bessel

w functions of the first kindl,(7), such as
hij= 2 (). (38) b(n,7)=Ad(7)+AJy_1(7), (48)

We will also have where the two constant8 and A’ are determined by the

initial conditions
ak(n)=ngy. (39

Four-wave mixing between these different harmonics will

occur, where a perfect phase-matching condition can be vernd all the other harmonic wave amplitudes are assumed to
fied: be initially equal to zeroa (n#1,2;7=0). Notice that this

solution satisfies energy conservation, in the sense that

A=a(n=1,7=0), A’=a(n=2,7=0), (49

Ag=[a(2) +ar(n—1)]-[qk(1)+qx(n)]=0. (40

For the present case, an envelope equation for the ampli- n:E_w |b(n,7)|?=const. (50)
tudes of the different harmonics can be derived, in the same
way as Eq(19). Assuming that the fundamental and the first|t js then an adequate, if particular, solution to the problem of

harmonics are dominarity;(n=1,2)>h;;(n#1,2), we can  harmonic generation of low amplitude gravitational waves
retain only two of the mixing terms and get, for propagationpropagating in a flat space-time.

along one given directior,

0

VI. CONCLUSIONS
a(ny=w(n)[a*(1)a(2)a(n—1)

Jd 19
|q(n)((9—x Tt Nonlinear wave coupling of gravitational waves was con-
sidered in this work. The problem of low amplitude waves in
+a(l)a*(2)a(n+1)], (41)  flat space-time was examined, in order to extract the main
physical consequences with the simplest possible formal
complexity and to establish clear connections with the well
known effects occurring in nonlinear optics.

* s In particular, the gravitational equivalent to the optical
at(ha2)=le", (42) second and third order susceptibility was derived. It was
shown that the second order gravitational susceptibility is
equal to zero and, consequently, the process of three-

onlinear-wave coupling is forbidden. This is not surprising

ecause the flat space-time background considered here can
be seen as a centrosymmetric material medium. This prop-
erty will eventually disappear in curved space-time.
9 _ ‘ In contrast, the gravitational third order susceptibility was
Ea(n): iw[e'?a(n—1)+e '’a(n+1)], (43)  shown to be equal to 1, thus meaning that the flat space-time
is a strongly nonlinear medium. As in optics, four-wave mix-
with ing processes can then be considered. But, unlike the case of
optical phenomena, these wave mixing processes can be-
w(n) come relevant even for very low wave amplitudes. The par-
w=— Wl : (44 ticularly important cases of generation of harmonic cascades
and of self-phase modulation were considered, and explicit

It is now convenient to introduce new amplitude variables@nalytical solutions were derived. They show that a signifi-

wherew(n) is determined by an expression similar to Eq.
(26). Let us now define

wherel and é are real. In order to get order of magnitude
analytical solutions, let us assume th&tn)ocq(n), and let

us also neglect the amplitude variations of the dominan
modes, which means that the intensity paramétes ap-
proximately constant. We are then led to

b(n), such that cant spectral broadening and spectral energy dilution can
then take place, especially in the vicinity of radiation sources
a(n)=(—1)"%e"%p(n), (45)  where the wave amplitudes are non-negligible. Such energy
dilution is not considered in the usual estimates for gravita-
and we get tional wave detectiofi4,15] and could eventually lower the
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prospects for direct observation of these waves near thef photon acceleratiofil6,17. In analogy, the present result

Earth.

showing the existence of self-phase modulation of gravita-

Finally, it should be noticed that self-phase modulationtional wave pulses could also be interpreted as graviton ac-
occurring in optics can be described as a particular exampleeleration. This aspect will be explored in future work.
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