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Topological derivation of black hole entropy by analogy with a chain polymer
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The generic crease set of an event horizon possesses anisotropic structure although most black holes are
dynamically stable. This fact suggests that a generic almost spherical black hole has a very crumpled crease set
on a microscopic scale although the crease set is similar to a pointwise crease set on a macroscopic scale. In
the present article, we count the number of such microstates of an almost spherical black hole by analogy with
an elastic chain polymer. This estimation of black hole entropy reproduces the well-known Bekenstein-
Hawking entropy of a Schwarzschild black hole.
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I. INTRODUCTION: A TOPOLOGICAL VIEWPOINT OF When we concentrate on the topological features of an
EVENT HORIZONS event horizon, that can be reduced to the structure of the

crease set of the event horizpr]. On the crease set, two or

One of the most remarkable aspects of black hole entropynore generators of the event horizon intersect and the event
[1] is that it is not proportional to something like the volume horizon is not smooth8] (a rigorous definition will be given
of the black hole but to the area of its event horizon, whilein the third sectioh Furthermore, catastrophe the¢8x-11]
entropy is an extensive variable in statistical mechanics. Futells that the generic crease set is composed not of the point-
thermore, if one tries to find the appropriate volumelike vari-wise structure of a spherical black hole but of two-
able, even for a Schwarzschild event horizon, there is n@limensional structures and their bifurcations. Taking an ap-
such thing as a volume inside the horizon since it depends opropriate time slice, this two-dimensional crease set provides
the global solution one chooses which could even render thg toroidal event horizon. In this sense, the spherical topology
volume infinite, for a Cauchy surface. of the event horizon is structurally unstable.

From one point of view, this is interpreted as that the o6 jt should be noted that the above observations do not
entropy is not of the black hole but of the event horizon thatmean that a black hole and its crease set are always highly

is the boundary of the black hole region. In this sense, Somgnisotropic. Since catastrophe theory suggests that the

authors have derived black hole entropy by. calcn_JIatlng_ thespherical topology changes under small perturbations on a
degrees of freedom only on the event horizon in various

quantum theories, e.g., in quantum geomé@y and by a corresponding microspopic scale, the degree of anisotropy
technique in the setting of AdS/CFT corresponddr&jeand would be very small in SOmE cases. For example, when al-
others discuss the statistical meaning of the boundary in thihost 'spherlcally symmetric matter cqllapses j[o an almost
context of entanglemerié]. Furthermore, the technique of SPherical black hole, on a microscopic scale its crease set
the Euclidean path integrfi6] is also on this basis, as the W!|| be highly d|storte_d and bifurcated and its event horizon
relevant contribution to black hole entropy comes fromWill have very complicated topology. On the contrary, on a
boundary integration at the event horizon. macroscopic scale, the crease set can be treated approxi-
On the other hand, the recently developed technique omately as a point and then the event horizon seems to have a
the D-brane to derive the black hole entropy seems to b&pherical topology.
related to the whole of the black hole spacetime in itB&Jf These aspects make us expect that the crease set will be
although it is not fully clear what is estimated by this deri- endowed with microcanonical entropy. In the present article,
vation. In this sense, it may be valid to regard the black holeve estimate the entropy of the crease set by analogy with a
entropy as the entropy of the black hole region, after all. chain polymer, since the one-dimensional crease set pos-
If the black hole entropy is really of the black hole region, sesses similar structure to a chain polyniand the two-
we will need a reason why it is proportional to the area of thedimensional one will be similar in microcanonical statistics
event horizon. In this article, we try to estimate the entropyAssuming that a multiply folded crease set forms zigzags
of the matter that has been absorbed into the black hole rdike a chain polymer, we can estimate the microcanonical
gion during black hole formation, relating it to the topologi- entropy of the crease set. Then we achieve the entropy of an
cal structure of its event horizon. Then we can show that th@almost spherical black hole that is coincident with the
black hole entropy is proportional to the area of the evenBekenstein-Hawking entropy. Finally, we are going to inter-
horizon. Here we never relate the entropy directly to the are@ret this entropy as the missing information on falling matter.
of the event horizon. The entropy concerns only the mass dh other words, the entropy counts the ways to form a final
the black hole. Moreover, this entropy can be regarded as thiglack hole.
count of the ways to form the final black hole. In the next section, we recall the way to calculate the
entropy of a chain polymer in a simple Ising model. The
third section shows how one can estimate the entropy asso-
*Email address: msiino@th.phys.titech.ac.jp ciated with the black hole from the viewpoint of its topologi-
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No"s This gives a simple model of elasticity. Indeed, from the
—a first law of thermodynamic§ dS=dU—fdl (T andU are
the temperature and the internal engrghe elastic forced
obeys the well known Hooke’s law in leading order:
. T( (?S) Tl )
dl U N a ’
| s
! namely, the force is proportional to the temperaftiré\ctu-
FIG. 1. Asimple Ising model of the elasticity of a chain polymer ally, a rubber band contracts when it is warmed up, while an
is exemplified. A chain polymer is composed fmonomers with ~ iron wire expands.
lengtha. Each monomer can be directed only to the left or the right.

Although the maximum length of the chain should N&, the Il. BLACK HOLE ENTROPY
highly folded chain has length<Na.

Now we estimate the entropy associated with the crease
cal structure. The final section is devoted to summary, disset of an event horizon. Here we should give the definition of

cussions, and speculations. the crease sdB]. We consider a null vector field on the
event horizon that is tangent to the null geodesics generator
Il. ENTROPY OF CHAIN POLYMER N of the event horizonK is not affinely parametrized, but

parametrized so as to be continuous even on the endpoint
In this section, we recall the simple Ising model of elas-where the caustic of appears. Then the endpoints)ofare
ticity of a chain polymef12]. Suppose a large numblirof  the zeros oK, which can become only past endpoints, since
monomers with a length form a chain polymer with a total \ must reach infinity in the future direction. Of course, using
lengthNa. Furthermore, suppose this polymer is folded intoan affine parametrizatior becomes ill defined at a subset
an arbitrary lengtd <Na. To give a simple model of fold- of the set of the endpoints. We call such a subsetthase
ing, we suppose that each element of the monomers can ket To be precise, we define the crease set by the set of the
directed only to the right or the left with equal probabilities endpoints contained by two or more null generators of the
as exemplified in Fig. 1. event horizon. Thus the set of the endpoints consists of the
In microcanonical statistics, the lengthis a parameter crease set and endpoints contained by one null generator. The
describing the state of the system. The number of allowedlosure of the crease set contains the set of the endpoints of

configurationsW(l) is given by the event horizon generators, and the event horizon is undif-
ferentiable ther¢7,8].
We 2N! 2N! n From Ref.[7], the spatial topology of an event horizon in
N_IN_! 1 1 ' a time slicing is determined only by the time slicing of the
<§N_ l7ajt| FN+l/a|! crease set. This implies that the crease set possesses all of the

topological information of the black hole. In other words, an

whereN_, andN__ are the number of right- and left-directed event horizon is completely determined once we know the
elements, respectively. Then, using the Stirling formulacrease set and all of the light rays starting from the crease
logN!=NlogN—N, the entropy of this polymer becomes  Se€t, since the event horizon should be their envelope. Hence

we expect that the crease set will give all of the global in-

S=logW formation about the event horizon, while the light rays can

be determined only by a local geometry. In this section, we

1 1 try to estimate the entropy associated with that global infor-
=NlogN— (EN_”a log| ZN~—1/a mation carried by the crease set of the event horizon.
In our point of view, the entropy of the crease set is
—(ENH/a log £N+I/a _ ) brought by the missing information of falling bodies_: when
2 2 they fall beyond the event horizon of a black hole. Since the

crease set is the multiple point of the generator of the event
Under the assumption that the lendtis much smaller than  horizon, its own structure will be changed provided that a
Na, this is approximated as falling body effects a congruence of the generators of the
event horizon when the falling body crosses it. Then both the

2 topology of the event horizon and the structure of the crease

S(1)=Nlog2— 2N a2 +O(N- (I/Nay?), (3) set reflect some information included in the configuration of

matter outside the black hole. If we suppose that the topol-

2 ogy of a black hole finally settles to a single spherical one

=5(1=0)— +O(N-(I/Na)®, (4) after all the outside matter has fallen into the black hole, this

2Na? information about the topology of the event horizon turns out

to be absorbed into the black hole and translated into the

where we have used log(k)=x—x%2+ - - - (x~1/Na<1). information of the crease set. Therefore we expect that the
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missing part of this crease set information will correspond to
the black hole entropy, and we try to estimate the entropy of

the crease set. )
. . evenf\horizon
To consider the degeneracy of the crease set, one might |
assign degrees of freedom to each Planckian scale segment crease 5

of the crease set as the simplest model. The crease set, how- ﬁﬁ L
ever, can be two, one, or zero dimensional. Each fundamen- | l
tal element becomes a Planckian area or length or vanishes,

black hole

respectively. For example, the entropy of a one-dimensional
crease set with a length will intuitively be estimated a$ @1

=log W=log(C""rl), whereC is the number of possible states ?
for each fundamental element. This is not what we expected,
sinceL could not be proportional to the area of the event
horizon in the case of a one-dimensional crease set.
On the contrary, by analogy with a chain polymer, we will

derive entropy of the crease set proportional to the area of
the event horizon in the following. To determine the entropy,
we count the logarithm of the microstate degeneracy. Al-
though there may be various models of the microstate, in the
present article we apply the following very simple Ising
model, similar to the chain polymer.

First, we consider only the case of a one-dimensional
crease set for simplicity since the case of a two-dimensional
crease set will be different only by a factor in the entropy. On

the other hand, it is concluded that the pointwise crease set is S =S (0)* Sl 1=l
not generic from catastrophe theof9—11]. This implies ‘BH ™ A0) * Scllna) SeiScllar) " Scllar)

that, even for an almost spherically symmetric collapse of bnax X bpa * Area =0

matter, the matter and spacetime are not rigorously spheri- . .

cally symmetric “in a microscopic scale” because of an an- FIG. 2. Two types of black hole formation are illustrated. The
isotropic small perturbation. This will cause a highly folded 'eft branch is an almost spherically symmetric collapse. A small

crease set, which is confined within a very small reglon.V°|ume elementy, with massm affects a generator of the event

Then it is not pointwise on a microscopic scale but on ahorlzon when it falls into the black hole. As illustrated on the top,

macroscopic scalésee the bottom left of Fig.)2 this effect causes bending of the crease set of the event horizon. If

. many small bodies fall into the black hole from random directions
There are many ways to fold and confine the crease sef, . . . . . .
Considering that a number of ideal small fundamental elefﬂ random time, the crease set is bent many times in various direc-

N S - tions and confined in a small region. The resultant black hole seems
ments of the crease set fold, this situation is very similar tg

. . . . . almost spherically symmetric on a macroscopic scale. On the other
the chain polymer discussed in the previous sectmom-

- i hand, the right branch is an extremely anisotropic collapse. Since
pare Fig. 1 and Fig.)2 Then we count the number of al- a0y of the falling bodies are ordered to be from a special direc-

lowed configurations and estimate the entropy, by analogyon, the bending effect will not make the crease set so small.
with the chain polymer.
In the case of the chain polymer, the entr& is given

by Eq. (4) and we think that the entropy of the crease3et that there is an upper boumg, for | since a black hole with

is the same aScp: infinitely largel seems to be unphysical. Then if we have an
upper bound ., (the right branch of Fig. 2 it is valid to
|2 regardS(l 4,0 as the zero point of the entropy of the black
Sc(1)=Scp(l)=Scp(0)— 5 (6) hole. Therefore the entropy of an almost spherical black hole
2Na is given by
wherel is the length of the crease sét.anda are the num-
ber and length, respectively, of the ideal fundamental ele- |r2nax
ment. Sgh(1=0)=Sc(1=0) = Sc(Imax = (7

5
In our discussion, the state with=0 (the left branch of 2Na
Fig. 2) is regarded as an almost spherically symmetric black
hole, since this state is macroscopically similar to a spherical We may expect that the upper bouhg,, is about a final
black hole with a zero-dimensiongpointwise crease set. black hole massV, since it is the only reasonable scale in
On the other hand, to make the black hole most anisotropigravitational dust collapse. Furthermore, the hoop conjecture
the collapsing matter must be most tilted in a special direcf13] requires that the length of the crease set should be
tion. This configuration will not allow any degeneracy of the bounded by ZrM [14]. Hence we assumk,,,=27M. In
microstate. Nevertheless, the black hole is not allowed t@ddition, we assumk,,,/a<<N in order to derive Eq(4) in
take such an arbitrary tilted configuration; rather, it is naturakhe previous section. The consistency and validity of this
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seems that this divergence is related to the divergence of the

many-body interaction. Then we require regularization for

this divergence. Since the territory of a child and all its de-
mother chain: N elements, length scendants \_Nould be limited around eachNohinges of t_he

At'i/—/l/ mother chain, we assume that the numbenif generation

Y descendants i8"N rather than BN)" as a regularization. By
e this assumption, the total length of the family becomes
N3"a' B'l and will converge so as to be embedded, since the
nth generation descendant has length. Then the total
number of degenerate microstates is given by

e
Event Horizon

Wige=W(1) - W(al)NE-W( a2 )N .. 8)

where thenth factor is the contribution of all(—1)th gen-
eration descendants. The entropy of the crease(®ets

M/m changed by a factor and now we are not worried about the
factor 1N any more: the total entropy is
Sctot= 109 Wiot
child chain: N elements, length o/ 12 (al)? (a?1)2
=S~ NB2—- .- +0(1%)

FIG. 3. The number of hinges of the mother chaijsince the 2Na? 2Na? 2Na?
number of falling volume elements isN=M (total mass)/
m(a mass of a volume). Bol@otted arrows are the segments of

the crease set forming the mothhild) chain. A child chain de- =So— 222\ N +a?fratfit . +a?B+
velops from the hinge of the mother chain with probabiftyEach
small volume element of matter falls into the black hole along the +O(|4)
arrows directed up. They cross the event horizon and affect its
generatorgnarrow vertical ling at exploding symbols. On the other B 1?
hand, three-point interactions affect the generators along the wavy ~S0 EPNY
lines. The child chain formsl hinges by these three-point interac- 1-a"f 2a
tions. 5
__ @B Ihax
condition will be discussed later. Consequently, we observe BH 1-a?pB 2a2’

that this entropy is proportional to the area of the event ho-
rizon AxM?2, whereS, is the sum of all-independent terms. On the third
By the way, Eq.(7) has an unfavorable facta®/N. Ex-  line, it is supposed tha\l is sufficiently large. Although the
pecting that this entropy coincides with the Bekenstein4nfinite sum might have any cutoff, it would change the re-
Hawking entropy,Na? should be on a scale dﬁ. This  sult only by a numerical factor of order of magnitude 1.
gives thais |, /\/N<I, asNis a very large number. Since  If we rigorously requireS= AldiG = aM2[13, the rela-
it is unreasonable to give a much smaller structure than théon
Planckian length to quantum spacetime, we cannot accept
such a smalk. 47°M? o8 wM?
This problem of the scale of the small segment is resolved 212 1— a2/3: 12’
by considering the branches of the crease set. As pointed out Pl I
in [9,11], there are possibilities that the crease set is branched )
at a hinge where the crease set can angle. We assume that a a’p _ i
new branch(child chain with a lengthal (« is less than 1, 1-a?p 27’
since a child should be smaller than its mother by definjtion
occurs at some hinges with probabiliy (see also Fig. B will determine o?8, since the hoop conjecture sag.,
and is composed df elements; this will be justified later. ~27M anda should naturally bép, .
The number of such a branch is given by the probability and Now we must discuss the case of a nonchainlike crease
the number of the mother’s hinges Aabl. set. Indeed, Ref410,9,11,15 tell us that it is important to
Moreover, there are also grandchildren and further deeonsider a crease set with two dimensions. The discussion of
scendants. Naively, the number nth generation descen- a two-dimensional crease set can be proceeded with as fol-
dants might be considered to bgN)" in geometrical pro- lows. Intuitively, the two-dimensional crease set has two in-
gression. However, this is not realistic because we willdependent degrees of freedom to fold. This will make the
require infinite volume to embed the whole family of the state counting the square of that of a one-dimensional crease
geometrical progressioX;"(8N)!. As suggested later, it set and its entropy twice as large. For further accurate esti-
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mation, it might be valid to discuss using the theory of ran-with probability 8. In addition, this child chain is also af-
dom surfaces. Similarly, in the case of the random surfaceected by another falling volume element through a three-
the regular term of its entropy aroure=0 is also propor- point interaction(among one event horizon generator, one
tional tol? [16]. Thus the elastic force is always proportional body making the child chain, and another bpdince gravi-
to the amount of its deformatidrsee Eq(5)] independently tation is a long range force. Therefore we consider that the
of its form, size, and dimensions. This is consistent with theninges of the child chain are formed by this three-point in-
general Hooke’s law, i.e., a stress tensor is proportional to geraction. It is well known that such many-body interactions
distortion tensor. This consistency makes us convinced thativerge and need regularization. Here we think that this regu-
our estimation is valid independently of the form, size, andarization corresponds to the assumption that the number of
dimensions. nth generation descendants@8N rather than BN)". Then
So we summary the estimation as the hinges of the child chain are assigned the two falling
volume elementsindicated by wavy lines in Fig.)3one of
A them made the child chain. Hence the child chain possesses
Sgy= F(n)G(aZ,B)—Z, (9) N hinges. Similarly, amth generation descendant chain also
15 forms aboutN hinges under the influence ofi ¢ 1) different
falling volume elements. These pictures give an explanation
whereF(n) and G(a?B) are numerical factors of order of for the formation and number of hinges of the descendant
magnitude 1, determined by the dimensions and branching athain.
the crease set, respectively. Now we consider the number of elemems-M/m, in-
Finally, we discuss the assumptions we have made abovéerited from the number of falling volume elements. The
Here we should discuss the meaning\band the validity of massm of the volume element d% should be much smaller
the assumptions about the size of it. In the present estimatiotan the Planckian mass so that it will not be a black hole but
we have supposed that the number of the mother’s elementsdinary matter. Then we have the following inequalities:
N is a fixed large number, and<d/a<I,,/a is much less
thanN. M M lmax |
One may be doubtful that these assumptions are consis- m 1, | |=a>5'
tent with the physical situation. To make this point clear, we P P

consider the relation betweel and the falling bodies as Therefore we have confirmed that all parameters are in a
follows and illustrated in Fig. 2. We consider an ideal pro-yreajistic range and the assumptions are consistent.

cess in which some small elements with a volujeand a The picture illustrated in Fig. 2 might be something kine-
massmfall into a black hole. The top of Fig. 2 illustrates that matical while the process we think of is dynamical. In other
a falling body gravitationally deforms the generator of thewords, the picture gives the interpretation that this black hole

event horizon, and consequently the crease set will form @ntropy counts the logarithm of the number of ways to form
hinge and be angled there. Here we note that the formatiogn almost spherical black hole.
of the hinge occurs before the falling of the body in the sense
of the usual spatial time slicing. Since the event horizon,
however, is defined as the boundary of a past set, the mass of
the falling body affects a past part of the event horizon along In the present article, we argued that the Bekenstein-
its null generators. Hawking entropy of the Schwarzschild black hole can be
If many bodies randomly fall into the black holsee the derived independently of the area of the event horizon as the
left branch of Fig. 2, the crease set will be repeatedly angledentropy of its crease set. This gives an interpretation to the
in various directions and finally confined into a small region.black hole entropy, i.e., it measures the missing topological
Therefore we guess that almost spherical collapse can occ(global information of the collapsing matter corresponding
through such a random falling process of a large number ofo the configuration of the falling volume elements in space-
small bodies. On the other hand, if the small bodies are naime.
random but ordered to be anisotropic in a special direction We considered only the Schwarzschild black hole as the
(the right branch of Fig. 2 the crease set is more spread andfinal state of gravitational collapse. One may feel that it is
an anisotropic black hole is formed. Hence the entropy of thémportant to extend the result to a rotating black hole. At
crease set is related to the randomness of the falling bodiepresent, however, we cannot imagine what shape of an event
To determineN, it is valid to relate the number of hinges of horizon is appropriate to compare with the Kerr black hole,
the crease set and the falling ideal volume elements with as the zero of entropy. The discussion of the chain polymer
volumelgI , into which the collapsing matter can be decom-should also be changed. To discuss these problems, we
posed. should relate the angular momentum to any character of the
Simply, we regard the number of collapsing ideal volumecrease set, as the mass of black hole has been related to the
elements as the number of hinges of the mother cNaiA  maximum length ,,,, of the crease set.
consistent interpretation of the child and descendant chain is Moreover, we would like to comment on the origin of the
the following (and see Fig. 83 When a falling body crosses entropy estimated in the present article. As discussed at the
event horizon generators, the mother chain is angled by thend of the previous section, the entropy is related to the
falling body directly. A child chain occur¢dotted arrows falling bodies. To be concrete, the entropy measures the dis-

(10

IV. SUMMARY, DISCUSSIONS, AND SPECULATIONS
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order of the position and velocity of the falling bodies. Of sumption |,,.x~27M from the hoop conjectuje The

course, this is not all the information that falling bodies mechanism of the failure of black hole formation or naked

carry. In other words, the black hole entropy could be di-singularity formation, which is the basis of the hoop conjec-

rectly related to only the entropy of this disorder. The blackture, might be realized by analogy with the existence of such

hole entropy is the logarithm of the number of possible con-an elastic limit.

figurations of falling matter to form a final Schwarzschild  As the reader has noticed, the present estimation does not

black hole, if we decompose the falling matter into idealwork in different spacetime dimensions. This is because of

small volume elementb*g, with massm<m,, and omit the the absence of the hoop conjecture in other spacetime dimen-

process where tilted black holes settle to a Schwarzschildions. In turn, that fact might lead to new conjectures in other

black hole by radiating gravitational waves. spacetime dimensions if we require that this estimation re-
Finally, we estimate the upper bound of a thermal elastigoroduce the Bekenstein-Hawking entropy also in other

force of the crease set. Substituting the Hawking temperaturgpacetime dimensions.

Ty~1M into f=—-TaoSal(l=1,.0, We observe thaff

~1/a%is ind_ependent olﬁ/l Although its realistic meanir_lg is ACKNOWLEDGMENT
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