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Topological derivation of black hole entropy by analogy with a chain polymer
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Department of Physics, Tokyo Institute of Technology, Oh-Okayama, Megro-ku, Tokyo 152-, Japan

~Received 16 January 2002; published 14 November 2002!

The generic crease set of an event horizon possesses anisotropic structure although most black holes are
dynamically stable. This fact suggests that a generic almost spherical black hole has a very crumpled crease set
on a microscopic scale although the crease set is similar to a pointwise crease set on a macroscopic scale. In
the present article, we count the number of such microstates of an almost spherical black hole by analogy with
an elastic chain polymer. This estimation of black hole entropy reproduces the well-known Bekenstein-
Hawking entropy of a Schwarzschild black hole.
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I. INTRODUCTION: A TOPOLOGICAL VIEWPOINT OF
EVENT HORIZONS

One of the most remarkable aspects of black hole entr
@1# is that it is not proportional to something like the volum
of the black hole but to the area of its event horizon, wh
entropy is an extensive variable in statistical mechanics. F
thermore, if one tries to find the appropriate volumelike va
able, even for a Schwarzschild event horizon, there is
such thing as a volume inside the horizon since it depend
the global solution one chooses which could even render
volume infinite, for a Cauchy surface.

From one point of view, this is interpreted as that t
entropy is not of the black hole but of the event horizon t
is the boundary of the black hole region. In this sense, so
authors have derived black hole entropy by calculating
degrees of freedom only on the event horizon in vario
quantum theories, e.g., in quantum geometry@2# and by a
technique in the setting of AdS/CFT correspondence@3#, and
others discuss the statistical meaning of the boundary in
context of entanglement@4#. Furthermore, the technique o
the Euclidean path integral@5# is also on this basis, as th
relevant contribution to black hole entropy comes fro
boundary integration at the event horizon.

On the other hand, the recently developed technique
the D-brane to derive the black hole entropy seems to
related to the whole of the black hole spacetime in itself@6#,
although it is not fully clear what is estimated by this de
vation. In this sense, it may be valid to regard the black h
entropy as the entropy of the black hole region, after all.

If the black hole entropy is really of the black hole regio
we will need a reason why it is proportional to the area of
event horizon. In this article, we try to estimate the entro
of the matter that has been absorbed into the black hole
gion during black hole formation, relating it to the topolog
cal structure of its event horizon. Then we can show that
black hole entropy is proportional to the area of the ev
horizon. Here we never relate the entropy directly to the a
of the event horizon. The entropy concerns only the mas
the black hole. Moreover, this entropy can be regarded as
count of the ways to form the final black hole.

*Email address: msiino@th.phys.titech.ac.jp
0556-2821/2002/66~10!/104006~6!/$20.00 66 1040
y

r-
-
o

on
e

t
e
e
s

e

of
e

e

,
e
y
e-

e
t
a

of
he

When we concentrate on the topological features of
event horizon, that can be reduced to the structure of
crease set of the event horizon@7#. On the crease set, two o
more generators of the event horizon intersect and the e
horizon is not smooth@8# ~a rigorous definition will be given
in the third section!. Furthermore, catastrophe theory@9–11#
tells that the generic crease set is composed not of the p
wise structure of a spherical black hole but of tw
dimensional structures and their bifurcations. Taking an
propriate time slice, this two-dimensional crease set provi
a toroidal event horizon. In this sense, the spherical topol
of the event horizon is structurally unstable.

Here it should be noted that the above observations do
mean that a black hole and its crease set are always hi
anisotropic. Since catastrophe theory suggests that
spherical topology changes under small perturbations o
corresponding microscopic scale, the degree of anisotr
would be very small in some cases. For example, when
most spherically symmetric matter collapses to an alm
spherical black hole, on a microscopic scale its crease
will be highly distorted and bifurcated and its event horiz
will have very complicated topology. On the contrary, on
macroscopic scale, the crease set can be treated app
mately as a point and then the event horizon seems to ha
spherical topology.

These aspects make us expect that the crease set w
endowed with microcanonical entropy. In the present artic
we estimate the entropy of the crease set by analogy wi
chain polymer, since the one-dimensional crease set
sesses similar structure to a chain polymer~and the two-
dimensional one will be similar in microcanonical statistic!.
Assuming that a multiply folded crease set forms zigza
like a chain polymer, we can estimate the microcanoni
entropy of the crease set. Then we achieve the entropy o
almost spherical black hole that is coincident with t
Bekenstein-Hawking entropy. Finally, we are going to inte
pret this entropy as the missing information on falling matt
In other words, the entropy counts the ways to form a fi
black hole.

In the next section, we recall the way to calculate t
entropy of a chain polymer in a simple Ising model. T
third section shows how one can estimate the entropy a
ciated with the black hole from the viewpoint of its topolog
©2002 The American Physical Society06-1
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MASARU SIINO PHYSICAL REVIEW D 66, 104006 ~2002!
cal structure. The final section is devoted to summary,
cussions, and speculations.

II. ENTROPY OF CHAIN POLYMER

In this section, we recall the simple Ising model of ela
ticity of a chain polymer@12#. Suppose a large numberN of
monomers with a lengtha form a chain polymer with a tota
lengthNa. Furthermore, suppose this polymer is folded in
an arbitrary lengthl !Na. To give a simple model of fold-
ing, we suppose that each element of the monomers ca
directed only to the right or the left with equal probabilitie
as exemplified in Fig. 1.

In microcanonical statistics, the lengthl is a parameter
describing the state of the system. The number of allow
configurationsW( l ) is given by

W5
2N!

N→!N←!
5

2N!

S 1

2
N2 l /aD ! S 1

2
N1 l /aD !

, ~1!

whereN→ andN← are the number of right- and left-directe
elements, respectively. Then, using the Stirling form
logN!.N logN2N, the entropy of this polymer becomes

S5 logW

.N logN2S 1

2
N2 l /aD logS 1

2
N2 l /aD

2S 1

2
N1 l /aD logS 1

2
N1 l /aD . ~2!

Under the assumption that the lengthl is much smaller than
Na, this is approximated as

S~ l !5N log 22
l 2

2Na2
1O„N•~ l /Na!4

…, ~3!

5S~ l 50!2
l 2

2Na2
1O„N•~ l /Na!4

…, ~4!

where we have used log(11x)5x2x2/21•••(x; l /Na!1).

FIG. 1. A simple Ising model of the elasticity of a chain polym
is exemplified. A chain polymer is composed ofN monomers with
lengtha. Each monomer can be directed only to the left or the rig
Although the maximum length of the chain should beNa, the
highly folded chain has lengthl !Na.
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This gives a simple model of elasticity. Indeed, from t
first law of thermodynamicsTdS5dU2 f dl ~T and U are
the temperature and the internal energy!, the elastic forcef
obeys the well known Hooke’s law in leading order:

f 5TS ]S

] l D
U

52
Tl

Na2
; ~5!

namely, the force is proportional to the temperatureT. Actu-
ally, a rubber band contracts when it is warmed up, while
iron wire expands.

III. BLACK HOLE ENTROPY

Now we estimate the entropy associated with the cre
set of an event horizon. Here we should give the definition
the crease set@8#. We consider a null vector fieldK on the
event horizon that is tangent to the null geodesics gener
l of the event horizon.K is not affinely parametrized, bu
parametrized so as to be continuous even on the endp
where the caustic ofl appears. Then the endpoints ofl are
the zeros ofK, which can become only past endpoints, sin
l must reach infinity in the future direction. Of course, usi
an affine parametrization,K becomes ill defined at a subs
of the set of the endpoints. We call such a subset thecrease
set. To be precise, we define the crease set by the set o
endpoints contained by two or more null generators of
event horizon. Thus the set of the endpoints consists of
crease set and endpoints contained by one null generator
closure of the crease set contains the set of the endpoin
the event horizon generators, and the event horizon is un
ferentiable there@7,8#.

From Ref.@7#, the spatial topology of an event horizon
a time slicing is determined only by the time slicing of th
crease set. This implies that the crease set possesses all
topological information of the black hole. In other words,
event horizon is completely determined once we know
crease set and all of the light rays starting from the cre
set, since the event horizon should be their envelope. He
we expect that the crease set will give all of the global
formation about the event horizon, while the light rays c
be determined only by a local geometry. In this section,
try to estimate the entropy associated with that global inf
mation carried by the crease set of the event horizon.

In our point of view, the entropy of the crease set
brought by the missing information of falling bodies whe
they fall beyond the event horizon of a black hole. Since
crease set is the multiple point of the generator of the ev
horizon, its own structure will be changed provided tha
falling body effects a congruence of the generators of
event horizon when the falling body crosses it. Then both
topology of the event horizon and the structure of the cre
set reflect some information included in the configuration
matter outside the black hole. If we suppose that the top
ogy of a black hole finally settles to a single spherical o
after all the outside matter has fallen into the black hole, t
information about the topology of the event horizon turns o
to be absorbed into the black hole and translated into
information of the crease set. Therefore we expect that

t.
6-2
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TOPOLOGICAL DERIVATION OF BLACK HOLE . . . PHYSICAL REVIEW D 66, 104006 ~2002!
missing part of this crease set information will correspond
the black hole entropy, and we try to estimate the entropy
the crease set.

To consider the degeneracy of the crease set, one m
assign degrees of freedom to each Planckian scale seg
of the crease set as the simplest model. The crease set,
ever, can be two, one, or zero dimensional. Each fundam
tal element becomes a Planckian area or length or vanis
respectively. For example, the entropy of a one-dimensio
crease set with a lengthL will intuitively be estimated asS
5 logW5log(CL/lpl), whereC is the number of possible state
for each fundamental element. This is not what we expec
since L could not be proportional to the area of the eve
horizon in the case of a one-dimensional crease set.

On the contrary, by analogy with a chain polymer, we w
derive entropy of the crease set proportional to the are
the event horizon in the following. To determine the entro
we count the logarithm of the microstate degeneracy.
though there may be various models of the microstate, in
present article we apply the following very simple Isin
model, similar to the chain polymer.

First, we consider only the case of a one-dimensio
crease set for simplicity since the case of a two-dimensio
crease set will be different only by a factor in the entropy.
the other hand, it is concluded that the pointwise crease s
not generic from catastrophe theory@9–11#. This implies
that, even for an almost spherically symmetric collapse
matter, the matter and spacetime are not rigorously sph
cally symmetric ‘‘in a microscopic scale’’ because of an a
isotropic small perturbation. This will cause a highly folde
crease set, which is confined within a very small regi
Then it is not pointwise on a microscopic scale but on
macroscopic scale~see the bottom left of Fig. 2!.

There are many ways to fold and confine the crease
Considering that a number of ideal small fundamental e
ments of the crease set fold, this situation is very similar
the chain polymer discussed in the previous section~com-
pare Fig. 1 and Fig. 2!. Then we count the number of a
lowed configurations and estimate the entropy, by anal
with the chain polymer.

In the case of the chain polymer, the entropySCP is given
by Eq. ~4! and we think that the entropy of the crease setSC
is the same asSCP :

SC~ l !5SCP~ l !5SCP~0!2
l 2

2Na2
, ~6!

wherel is the length of the crease set.N anda are the num-
ber and length, respectively, of the ideal fundamental e
ment.

In our discussion, the state withl 50 ~the left branch of
Fig. 2! is regarded as an almost spherically symmetric bl
hole, since this state is macroscopically similar to a spher
black hole with a zero-dimensional~pointwise! crease set.
On the other hand, to make the black hole most anisotro
the collapsing matter must be most tilted in a special dir
tion. This configuration will not allow any degeneracy of th
microstate. Nevertheless, the black hole is not allowed
take such an arbitrary tilted configuration; rather, it is natu
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that there is an upper boundl max for l since a black hole with
infinitely large l seems to be unphysical. Then if we have
upper boundl max ~the right branch of Fig. 2!, it is valid to
regardS( l max) as the zero point of the entropy of the blac
hole. Therefore the entropy of an almost spherical black h
is given by

SBH~ l 50![SC~ l 50!2SC~ l max!5
l max
2

2Na2
. ~7!

We may expect that the upper boundl max is about a final
black hole massM, since it is the only reasonable scale
gravitational dust collapse. Furthermore, the hoop conjec
@13# requires that the length of the crease set should
bounded by 2pM @14#. Hence we assumel max.2pM . In
addition, we assumel max/a!N in order to derive Eq.~4! in
the previous section. The consistency and validity of t

FIG. 2. Two types of black hole formation are illustrated. T
left branch is an almost spherically symmetric collapse. A sm
volume elementl pl

3 with massm affects a generator of the even
horizon when it falls into the black hole. As illustrated on the to
this effect causes bending of the crease set of the event horizo
many small bodies fall into the black hole from random directio
at random time, the crease set is bent many times in various d
tions and confined in a small region. The resultant black hole se
almost spherically symmetric on a macroscopic scale. On the o
hand, the right branch is an extremely anisotropic collapse. S
many of the falling bodies are ordered to be from a special dir
tion, the bending effect will not make the crease set so small.
6-3
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MASARU SIINO PHYSICAL REVIEW D 66, 104006 ~2002!
condition will be discussed later. Consequently, we obse
that this entropy is proportional to the area of the event
rizon A}M2.

By the way, Eq.~7! has an unfavorable factora2/N. Ex-
pecting that this entropy coincides with the Bekenste
Hawking entropy,Na2 should be on a scale ofl pl

2 . This
gives thata is l pl /AN! l pl asN is a very large number. Sinc
it is unreasonable to give a much smaller structure than
Planckian length to quantum spacetime, we cannot ac
such a smalla.

This problem of the scale of the small segment is resol
by considering the branches of the crease set. As pointed
in @9,11#, there are possibilities that the crease set is branc
at a hinge where the crease set can angle. We assume
new branch~child chain! with a lengtha l (a is less than 1,
since a child should be smaller than its mother by definiti!
occurs at some hinges with probabilityb ~see also Fig. 3!
and is composed ofN elements; this will be justified later
The number of such a branch is given by the probability a
the number of the mother’s hinges asbN.

Moreover, there are also grandchildren and further
scendants. Naively, the number ofnth generation descen
dants might be considered to be (bN)n in geometrical pro-
gression. However, this is not realistic because we w
require infinite volume to embed the whole family of th
geometrical progressionS i

`(bN) i . As suggested later, i

FIG. 3. The number of hinges of the mother chain isN, since the
number of falling volume elements isN5M (total mass)/
m(a mass of a volume). Bold~dotted! arrows are the segments o
the crease set forming the mother~child! chain. A child chain de-
velops from the hinge of the mother chain with probabilityb. Each
small volume element of matter falls into the black hole along
arrows directed up. They cross the event horizon and affec
generators~narrow vertical line! at exploding symbols. On the othe
hand, three-point interactions affect the generators along the w
lines. The child chain formsN hinges by these three-point intera
tions.
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seems that this divergence is related to the divergence o
many-body interaction. Then we require regularization
this divergence. Since the territory of a child and all its d
scendants would be limited around each ofN hinges of the
mother chain, we assume that the number ofnth generation
descendants isbnN rather than (bN)n as a regularization. By
this assumption, the total length of the family becom
NS i

`a ib i l and will converge so as to be embedded, since
nth generation descendant has lengthanl . Then the total
number of degenerate microstates is given by

Wtot5W~ l !•W~a l !Nb
•W~a2l !Nb2

•••, ~8!

where thenth factor is the contribution of all (n21)th gen-
eration descendants. The entropy of the crease set~7! is
changed by a factor and now we are not worried about
factor 1/N any more: the total entropy is

SCtot5 logWtot

5S02
l 2

2Na2
2

~a l !2

2Na2
Nb2

~a2l !2

2Na2
Nb22•••1O~ l 4!

5S02
l 2

2a2 S 1

N
1a2b1a4b21•••1a2nbn1••• D

1O~ l 4!

;S02
a2b

12a2b

l 2

2a2
,

SBH5
a2b

12a2b

l max
2

2a2
,

whereS0 is the sum of alll-independent terms. On the thir
line, it is supposed thatN is sufficiently large. Although the
infinite sum might have any cutoff, it would change the r
sult only by a numerical factor of order of magnitude 1.

If we rigorously requireS5A/4l pl
2 5pM2/ l pl

2 , the rela-
tion

4p2M2

2l pl
2

a2b

12a2b
5

pM2

l pl
2

,

a2b

12a2b
5

1

2p
,

will determine a2b, since the hoop conjecture saysl max
;2pM anda should naturally bel pl .

Now we must discuss the case of a nonchainlike cre
set. Indeed, Refs.@10,9,11,15# tell us that it is important to
consider a crease set with two dimensions. The discussio
a two-dimensional crease set can be proceeded with as
lows. Intuitively, the two-dimensional crease set has two
dependent degrees of freedom to fold. This will make
state counting the square of that of a one-dimensional cre
set and its entropy twice as large. For further accurate e

e
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vy
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TOPOLOGICAL DERIVATION OF BLACK HOLE . . . PHYSICAL REVIEW D 66, 104006 ~2002!
mation, it might be valid to discuss using the theory of ra
dom surfaces. Similarly, in the case of the random surfa
the regular term of its entropy aroundl 50 is also propor-
tional to l 2 @16#. Thus the elastic force is always proportion
to the amount of its deformation@see Eq.~5!# independently
of its form, size, and dimensions. This is consistent with
general Hooke’s law, i.e., a stress tensor is proportional
distortion tensor. This consistency makes us convinced
our estimation is valid independently of the form, size, a
dimensions.

So we summary the estimation as

SBH5F~n!G~a2b!
A

4l pl
2

, ~9!

whereF(n) and G(a2b) are numerical factors of order o
magnitude 1, determined by the dimensions and branchin
the crease set, respectively.

Finally, we discuss the assumptions we have made ab
Here we should discuss the meaning ofN and the validity of
the assumptions about the size of it. In the present estima
we have supposed that the number of the mother’s elem
N is a fixed large number, and 0, l /a, l max/a is much less
thanN.

One may be doubtful that these assumptions are con
tent with the physical situation. To make this point clear,
consider the relation betweenN and the falling bodies as
follows and illustrated in Fig. 2. We consider an ideal pr
cess in which some small elements with a volumel pl

3 and a
massm fall into a black hole. The top of Fig. 2 illustrates th
a falling body gravitationally deforms the generator of t
event horizon, and consequently the crease set will form
hinge and be angled there. Here we note that the forma
of the hinge occurs before the falling of the body in the se
of the usual spatial time slicing. Since the event horiz
however, is defined as the boundary of a past set, the ma
the falling body affects a past part of the event horizon alo
its null generators.

If many bodies randomly fall into the black hole~see the
left branch of Fig. 2!, the crease set will be repeatedly angl
in various directions and finally confined into a small regio
Therefore we guess that almost spherical collapse can o
through such a random falling process of a large numbe
small bodies. On the other hand, if the small bodies are
random but ordered to be anisotropic in a special direc
~the right branch of Fig. 2!, the crease set is more spread a
an anisotropic black hole is formed. Hence the entropy of
crease set is related to the randomness of the falling bod
To determineN, it is valid to relate the number of hinges o
the crease set and the falling ideal volume elements wi
volume l pl

3 , into which the collapsing matter can be deco
posed.

Simply, we regard the number of collapsing ideal volum
elements as the number of hinges of the mother chainN. A
consistent interpretation of the child and descendant cha
the following ~and see Fig. 3!. When a falling body crosse
event horizon generators, the mother chain is angled by
falling body directly. A child chain occurs~dotted arrows!
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with probability b. In addition, this child chain is also af
fected by another falling volume element through a thr
point interaction~among one event horizon generator, o
body making the child chain, and another body! since gravi-
tation is a long range force. Therefore we consider that
hinges of the child chain are formed by this three-point
teraction. It is well known that such many-body interactio
diverge and need regularization. Here we think that this re
larization corresponds to the assumption that the numbe
nth generation descendants isbnN rather than (bN)n. Then
the hinges of the child chain are assigned the two fall
volume elements~indicated by wavy lines in Fig. 3!; one of
them made the child chain. Hence the child chain posse
N hinges. Similarly, annth generation descendant chain al
forms aboutN hinges under the influence of (n11) different
falling volume elements. These pictures give an explana
for the formation and number of hinges of the descend
chain.

Now we consider the number of elementsN;M /m, in-
herited from the number of falling volume elements. T
massm of the volume element ofl pl

3 should be much smalle
than the Planckian mass so that it will not be a black hole
ordinary matter. Then we have the following inequalities:

N;
M

m
@

M

l pl
;

l max

l pl5a
.

l

a
. ~10!

Therefore we have confirmed that all parameters are i
realistic range and the assumptions are consistent.

The picture illustrated in Fig. 2 might be something kin
matical while the process we think of is dynamical. In oth
words, the picture gives the interpretation that this black h
entropy counts the logarithm of the number of ways to fo
an almost spherical black hole.

IV. SUMMARY, DISCUSSIONS, AND SPECULATIONS

In the present article, we argued that the Bekenste
Hawking entropy of the Schwarzschild black hole can
derived independently of the area of the event horizon as
entropy of its crease set. This gives an interpretation to
black hole entropy, i.e., it measures the missing topolog
~global! information of the collapsing matter correspondin
to the configuration of the falling volume elements in spa
time.

We considered only the Schwarzschild black hole as
final state of gravitational collapse. One may feel that it
important to extend the result to a rotating black hole.
present, however, we cannot imagine what shape of an e
horizon is appropriate to compare with the Kerr black ho
as the zero of entropy. The discussion of the chain polym
should also be changed. To discuss these problems,
should relate the angular momentum to any character of
crease set, as the mass of black hole has been related t
maximum lengthl max of the crease set.

Moreover, we would like to comment on the origin of th
entropy estimated in the present article. As discussed at
end of the previous section, the entropy is related to
falling bodies. To be concrete, the entropy measures the
6-5
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MASARU SIINO PHYSICAL REVIEW D 66, 104006 ~2002!
order of the position and velocity of the falling bodies. O
course, this is not all the information that falling bodi
carry. In other words, the black hole entropy could be
rectly related to only the entropy of this disorder. The bla
hole entropy is the logarithm of the number of possible c
figurations of falling matter to form a final Schwarzschi
black hole, if we decompose the falling matter into ide
small volume elementsl pl

3 with massm!mpl and omit the
process where tilted black holes settle to a Schwarzsc
black hole by radiating gravitational waves.

Finally, we estimate the upper bound of a thermal ela
force of the crease set. Substituting the Hawking tempera
TH;1/M into f 52T]S/] l ( l 5 l max), we observe thatf
;1/a2 is independent ofM. Although its realistic meaning is
not clear, this aspect coincides with the fact that the failure
Hooke’s law occurs independently of the scale or form of
elastic body. Here we speculate that this coincidence imp
the validity of the present discussions~in particular, the as-
-

v.

ev

10400
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sumption l max;2pM from the hoop conjecture!. The
mechanism of the failure of black hole formation or nak
singularity formation, which is the basis of the hoop conje
ture, might be realized by analogy with the existence of su
an elastic limit.

As the reader has noticed, the present estimation does
work in different spacetime dimensions. This is because
the absence of the hoop conjecture in other spacetime dim
sions. In turn, that fact might lead to new conjectures in ot
spacetime dimensions if we require that this estimation
produce the Bekenstein-Hawking entropy also in oth
spacetime dimensions.
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