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We consider the question raised by Unruh and Wald of whether mirrored boxes can self-accelerate in flat
spacetime(the “self-accelerating box paradox” From the point of view of the box, which perceives the
acceleration as an impressed gravitational field, this is equivalent to asking whether the box can be supported
by the buoyant force arising from its immersion in a perceived bath of theftdralih) radiation. The perfect
mirrors we study are of the type that rely on light internal degrees of freedom which adjust to and reflect
impinging radiation. We suggest that a minimum of one internal mirror degree of freedom is required for each
bulk field degree of freedom reflected. A short calculation then shows that such mirrors necessarily absorb
enough heat from the thermal bath that their increased mass prevents them from floating on the thermal
radiation. For this type of mirror the paradox is therefore resolved. We also observe that this failure of boxes
to “float” invalidates one of the assumptions going into the Unruh-Wald analysis of entropy balances involving
boxes lowered adiabatically toward black holes. Nevertheless, their broad argument can be maintained until the
box reaches a new regime in which box-antibox pairs dominate over massless fields as contributions to thermal
radiation.
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[. INTRODUCTION hard to see how it could fail to lead to a disturbing instability
of the vacuum and the possibilttyf perpetual motion ma-

Black hole entropy, Hawking radiation, and the general-chines. Thus, self-acceleration seems unphysical, and we
ized second law of thermodynamics are central foci of modhave referred to this issue in our title as “the self-
ern research in quantum gravity. Indeed, although the detailaccelerating box paradox.”
may differ, the existence of these phenomena is one of the We address this paradox in Sec. Il, where we consider a
few points on which the various approaches to quantumspecific type of mirror that operates through the use of light
gravity all seem to agree, including the stringy approachinternal degrees of freedom. For boxes with mirrored walls
[1,2], the causal set approa¢B,4], and the loop approach of this type, we resolve the self-acceleration paradox by
[5,6]. Many researchers believe that these phenomena aghowing that the mirrors necessarily heat up and in doing so
truly fundamental and that their investigation will reveal fur- acquire enough mass to overwhelm the “buoyant force” on
ther deep laws of nature. Certainly, black hole thermodynamthe box, no matter how great the acceleration. The danger of
ics has provided a fascinating and varied arena for nearly 30acuum instability and perpetual motion machines from this
years of research. quarter thus seems to be removed.

One of the most intriguing effects to emerge from this  However, it was the “floating box” effect that was used in
discussion is the experience of thermal radiation by an acce[8] to argue that the generalized second law could hold with-
erating object in flat and empty spacetiff@. This Unruh  out the imposition of novel entropy bound8] on matter
radiation has a temperatufeproportional to the acceleration fields. We therefore reconsider this issue in Sec. Ill. Al-
a, and it affects accelerating objects as one would expecthough this section is motivated by our study of the self-
setting off particle detectors and exerting pressure. In a disaccelerating box paradox, it constitutes a logically indepen-
cussion[8] of a potential violation(suggested by Bekenstein dent discussion that in no way relies on the results of the
[9]) of the generalized second law of thermodynamics, Unearlier sections. We find that a derivation very similar to that
ruh and Wald pointed out that the pressure on an acceleratingf [8] can be carried out up to a poitds long as the other
box will vary with position, and that the pressure differenceassumptions made there are retajnadowever, at depths
across the box must grow quickly with the acceleration. Folcomparable to what would have been the box's “floating
a perfectly reflecting box of unchanging mass there wouldhoint” the picture changes and one is forced to consider a
therefore be albox-dependentcritical accelerationa; at  regime in which “thermal radiation” is dominated by things
which the pressure difference would be big enough to maintike box-antibox pairs. This region is a plausible source of
tain the acceleration without the need for any additionakffects through which the second law might be maintained,
force. From the point of view of the box, it experiences abut we are unable to reach a definite conclusion on this ques-
gravitational field of strengtla., but the radiation fluid is tion.
sufficiently dense that the mirror simply floats. For a wide
but thin box, the critical acceleration will depend only on the
mass densityper unit volumg of the box. 1As the box passed=a., the “push” required to keep it accel-

Despite appearances, the existence of such an effegtating would change into a “pulltcorresponding to a negative net
would be consistent with energy conservation, from both thenertial masy Thus a box held at soma>a, could deliver an
inertial and accelerated perspectiy@. Nevertheless, it is infinite amount of work.
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Il. WHY MIRRORED BOXES DON'T FLOAT—SOME A. A conjecture and some evidence

MODELS AND A CONJECTURE The basis for our analysis of LIDOF mirrors will be the

We believe that the key to the self-acceleration paradofollowing conjecture: a perfect LIDOF mirror requires at
lies in a study of the mirrors themselves. If this is so, thenl€ast one internal field degree of freedom for each bulk de-
physical models of the mirrors are needed. Let us thereforgree of freedom that it will reflect. Specifically, the internal
consider a mirror that reflects radiation of a certain typedegrees of freedom of the mirror must be approximately de-
corresponding to excitations of a specific “bulk” fielg. scribed as a set of fields in a spacetime of one dimension less

One can imagine two mechanisms by which such a mirrofhan that of the bulk, and these internal fields must have a
could function. The first is that the mirror could representminimum of one helicity state for each helicity state of the
some sort of fundamental potential fgr. This might hap- bulk fields. The emphasis here is on the number of internal
pen, for example, if the mirror were itself a domain-wall degrees of freedom requiré@hile we have no proof of this
soliton of the fieldg, in which case the mass of the linear- conjecture, the following gedanken experiment provides a
ized perturbationss¢ would in general depend on position Certain amount of support. _
relative to the wall. Under certain circumstances, the scatter- Consider the scattering of an electromagnetic wave by an
ing of 8¢ off of the resulting potential might be strong, elegtron. One description of _thls process is that the wave
making the domain wall act as a good mirror. For lack of aexcites the electron, after which the electron re-radiates the

better term, we shall refer to such mirrors switonic mir- ~ Wave In a different direction. With enough electrons and
fors in the éiscussion below enough scattering, one can effectively create a mirror. Now if

Note, however, that the mirrors encountered in daily life V€ naively count degrees of freedom we find two velocity

are decidedly not of this sort. Instead, a standard silver mirgomponents for the electron gas, maiching the two helicity

or uncons by a rather ciferent mechaniunen aght 142 Of 1 refiected photons. Moreoyer, e negine i,
wave is incident on a silver mirror, the mobile electrons in P

the mirror rapidly adjust their configuration so as to cancelgneestgrli’bvi\:]e trtﬁgectgr? d\é?]lg;tey \ﬁl?:;gé ?tsiga;a::omglgei giflar
out the incoming electric field. The result is that the motion 9 ’ P ’

of the conduction electrons conspires to send radiation bacwesigalgsreez(?)%\r/"tzhi\ttvtvr?edeelgcr:?r%i ?:fo]:eﬁa(jsor?gtp'irsfgn;sin le
in the direction from whence the original signal arrived. Be- PP P J 9

cause the rapid reconfiguration of these electrons is essemiglectromagnenc field but to two such fields, EM1 and EM2,

they necessarily represent “light internal degrees of free—ahd suppose for simplicity that it has the same charge for

dom” (LIDOF) of the mirror, and we will call mirrors that téijlg 'I|_'|hen our m|rro_rdfor EhMtthIII also aﬁt as a mlrro:c E)I\r/ll
function along these linelsIDOF mirrors. - MOWeVET, consider what happens when a wave o

Of course, one could also imagine mirrors that operate viz?nd a wave of EM2 reach the electrons at the same time. If

a combination of these two mechanisms. One might also as e arrange for these waves to be exactly opposite in sign,

whether there could be some third mechanism through whicﬁ eir effepts on_the electrons will cancel and the ele_ctrons
a mirror could function. While we are not able to rule out will remain undisturbed. As a result, the electrons will not

this possibility, it is hard to imagine what this third mecha- react back on the fields and the waves will pass through the

nism might be. In the other direction, one could ask WhetheEgrg;rl:]ghéﬂgfridf'orsgghdggaimtlr{éS'ggs tlr(]aeoillecttcr)otﬂz rs]a\r/ne-
one might construe the first mechanism as a special case 9 » (NEY P y Y

metric combination of EM1 and EM2. The anti-symmetric
the second. combination does not interact with the electrons at all
In the rest of this section we shall address the fami“arwhence the mirror is transparent to its excitations This1
category of LIDOF mirrors and show that they necessarily P :

become heavy when placed in contact with a thermal ba,[q\ivould appear to be a general rule: coupling additional gauge

Due to their many internal degrees of freedom, they will 'ﬁlnds ]E?o;g(':\éertnaisnet"g;;?fgﬁ)ﬁ;ﬂtﬁs'no]t(ht?]ghr?;%\(fssgf%ofu'
absorb a significant quantity of heat from their environment; 9

so that their internal energy and their weight in a gravita—t;?r!gﬁb\rl]vs'thcéte Ige?glttrggatzr?;r ";??h'ggefﬁr}ggﬂt I';‘.ﬁg:eig:g'
tional field will both increase with temperature. We will see P 9 ginaty. '

that this effect is strong enough to overcome any buoyancgne cannot violate t_he conjecture in this way. However, more
force from the radiation fluid, whence the mirror cannot ubtle effects remain to be ruled out.

float. Thus, self-acceleration of such a mirror will not occur.
(While solitonic mirrors are not addressed in this section,
they will be the subject of several comments in Sec) IV.  We have argued above that a LIDOF mirror must have a
Although our concern in this section will be with self- significant number of internal degrees of freedom, which
acceleration in Minkowski spacetime, we note that almost alcan, at least effectively, be described as fields living in the
of our considerations will applynutatis mutandiso the case

of a (small box suspended in the vicinity of a black hole.

B. Weight and buoyancy in thermal equilibrium

3The counting here is oéffectivedegrees of freedom. Such de-
grees of freedom include, for example, those of weakly interacting
2Though in the end it might be that the interaction can still bequasiparticles describing the excitations of an underlying set of
described via an effective, frequency-dependent potential. fields or particles which themselves could be strongly coupled.

104004-2



PERFECT MIRRORS AND THE SELF-ACCELERATING . .. PHYSICAL REVIEW 66, 104004 (2002

world-volume of the mirror. Since these mirror fields area (d+1)-dimensional massless field.

responsible for reflecting the bulk fields, they must interact Let us first consider the heat absorbed by the mirror. We
strongly with the latter, and this should be enough to allowwill take the mirror to be much larger than the ambient ther-
them to come into thermal equilibrium with the bulk fieftls. mal wavelength, so that we may use a fluid approximation in
Thus, when the mirror is placed in a thermal bath, one wouldomputing the energy density of a thermally excited internal
expect the relevant internal degrees of freedom to thermalizBeld. Notice that, since we are treating this field ap(é

on a short time scale, with the result that the mirror will —1)+1]-dimensional system, the thickness of the mirror

absorb heat if initially it was cold. will be small compared to the thermal length scale—it is
A possible objection to this conclusion might be that therenly the lengths along the mirror face that must be large.
might exist types of scattering analogous to thésstzauer In this approximation, the energy density of @d—1)

effect. However, we will be considering only boxes whose ™ 1]-dimensional ma_ssless single-helicity bosonic field is
transverse dimensions are much greater than a Wavelﬁngthg'ven by the expressiofsee, e.g[11] for the 3+1 case:
of the thermal radiation they are reflecting. In this case, it

should be possible to think of the radiation as composed of Pd1= ;J' d(dfl)kL

wave packets much smaller than the box wall reflecting (2m)9t efert

them, and causality forbids such a packet from bouncing off

the box as a whole. We would thus expect that localized Vy_o »  xd71

excitations of the relevant internal field must resdit the = (Zw)dlﬁdfo Xex—l’ (2.1

opposite case of boxes much smaller thgncausality im-

poses no such restriction, but that case is anyway not aM&here 8= 1/T and we use units in which Boltzmann’s con-
nable to the analysis of this paper, because the fluid approxisiant and the speed of light are unity. Herdy ,
mation we will be using becqmes invalid. =27@=D2[(d—3)/2]! is the volume of the unitd—2

We have argued that the internal degrees of freedom of 8phere andv, is the energy of a particle with wave number
perfectly reflecting LIDOF mirror must evolve rapidly to a | "=, our massless field we have. of coursg=|K|, and we
temperature equal to that of the bath with which they are in, e sed this in the second line above, ,havi1ng also per-
contact. We will now use this property to derive a Iowerformed the change of variable= 8k
bound on the energy density of a perfect mirror in contact Suppose that we wish the mirror to have a proper accel-

with a heat bath. This excess energy is a function of the‘taration a, which is related to the ambient temperature

ambient temperature, and we will show it to be SUfﬁCientlythrough[ﬂ a=2m/ 4. Then the mirror needs to experience a
great that LIDOF mirrors can never float or self-accelerate.Co_moving force per unit area of

Given that the mirror helicity states must be in correspon-
dence with the bulk helicity states, it clearly suffices to treat

w d-1
one hglicity state at a time, becquse the'fL'J” heat absorbed by FIA=apy_,= \{;’:22 d+1f dx XX . (2.2
the mirror is just a sum over mirror helicity states, and the (2m)" B o e -1

full ambient pressure is a sum over the corresponding bulk ] )

helicity states. Now, what is the actual “buoyant” force per unit area on

In this section we will consider the case of masslesghe box supplied by the ambient thermal radiation? In dis-
fields, though some comments on the massive case will beussing this question, we will regard as “downward” the
made in Sec. IV. Moreover, we limit ourselves throughout todirection of the gravitational force felt by the box in its own
free (or almost freg fields, both in the mirror and in the rest frame. In the case of a box suspended in the vicinity of
ambient spacetimgOf course the interaction between bulk @ black hole horizon this terminology has a literal meaning,
and mirror fields is not taken to be wegakinally, we work but it is also convenient for the case of concern here—that of
in the adiabatic limit, so that the bulk and mirror fields will @ box accelerating in a flat background spacetime. Now, the
always be in equilibriuni. Considering a co-dimension one buoyant force is of course just the difference in pressure
mirror in a (d+ 1)-dimensional bulk spacetime, we are thenPetween the top and bottom of the box, which is bounded
left with a rather simple calculation involving the statistical @above by the ambient pressure on the mirror forming the

mechanics of &(d— 1)+ 1]-dimensional massless field and bottom of the boX. Strictly speaking, this pressure should be
calculated from the renormalized stress energy tensor of a

quantum field, with appropriate boundary conditions im-
“For a worked out example of such thermalization in a simple cas@osed at the walls of the box. However, since such results are

see[10]. Notice that no self-coupling of the internal degrees of NOt presently available we shall instead follow the approach
freedom is involved in this example. Indeed, there is only one suctPf [8] and assume that the ambient pressure is in fact equal to
degree of freedom—that of a simple harmonic oscillator—and itsthat of a thermal fluid in an enclosure of large volume.
self-coupling(nonlinearity is zero.

SMore generally our analysis will apply whenever the equilibra-
tion time is sufficiently short. If we are right about the rapid ther- ®Since this bound ignores the pressure on the top of the box, our
malization, this is not much of a restriction in practice. In any caseanalysis applies not only to a box lowered through a region in
consideration of the adiabatic limit is enough to rule out “floating” thermal equilibrium, but also to upward directed thermal radiation
self-acceleration, which would be a steady state condition. of the sort that is present in the Unruh “vacuum” near a black hole.
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Bekenstein has argu¢d?] that the pressure is somewhat formula forV, follows directly from the formular®?/(d/2)!
less due to inefficiencies in the scattering of finite wave-for the volume of the unit-ball (or “disk” ), which in turn
length radiation by the box. There may also be other “finitecan be looked up or proven by inductidn.
size effects” which are missed in the way we approximate Substituting this formula fof (d) converts Eq(2.4) into
the pressuré.However, since our goal is simply to remove
an effect deduced ifi8], it is consistent to use their fluid 1 Vy_p L(d+1)
descrlptl_on even if this somehow leads to an overestimate of (2m)2 V4, (d)
the ambient pressure.

In this approximation, the pressutlr free fields, as al-
ways is given by an integral much liké&.1) and we have

and the claimed bound then follows from the obvious in-
equality ¢(d)>¢(d+1) and the easily checked bound
Vd/VdflSﬂ- for d?l

Py= ! f dj 2k Thus, in all cases we find that the ambient pressure is
d(2m)¢ ghor1 insufficient to maintain the acceleration of the box.
_ Vi J'wdx x 2.3 IIl. BLACK HOLES AND THE GENERALIZED SECOND
d(2m)9pi+ilo " Tex—1’ ' LAW
Our task is now to compare the buoyant force to the Given thath[DOF_ mirrored box fails_ to float in any bath
weight of the box. From Eqg2.2) and(2.3) their ratio is of thermal radiation, it seems worthwhile to reconsider the
Bekenstein-Unruh-Wald discussion of whether the laws of
1 V4. f(d) thermodynamics, as applied to black holes, impose novel
(2m)2Vy_, f(d—1)d’ (2.4 entropy bounds on the matter in the unive(say of the form
in[9]). In[8], Unruh and Wald used the floating box effect in
where we have introduced the definition analyzing the implications of the generalized second law for

a process in which a perfectly reflecting box is lowered adia-

batically from infinity to some location near the horizon and
(2.9 then dropped into the black hole. They found that the second

law was exactly saturated if the box was dropped just at its
We claim that this ratio is less than X4for all d>1, re- floating point. With that choice of release point, the mass
ducing in particular tor2/180¢(3)=0.0456 for the most im- contributed to the black hole by the box augmented the black
portant case ofi=3. In other words the buoyancy is more NOl€’S entropy by an amount that exactly offset the disap-
than an order of magnitude smaller than the weight in alP€arance of the entropy contained in the box.

dimensions and more than 20 times smaller in13 dimen- However, since, according to our analysis, the box ab-
sions. sorbs heat from the thermal bath and thus increases its

In fact this is not hard to see, using the known formulas Weight, one can extract more energy during its descent than

in the Unruh-Wald analysis. As a result, by lowering the box
(de/ (d— 1) adiabatically and releasing it at the point at which the corre-
Vy=2m !

Xd

fd=fmdx )
(@ o e—1

> sponding Unruh-Wald box would float, one might expect to

be able to decrease the net entropy of the universe, in con-

and tradiction to the generalized second law of thermodynafhics.
In opposition to any such scenario, REE5] points out
f(d)y=d!{(d+1) that if the black hole system can be described as a standard
state of thermal equilibrium then no violation of the second
where{ is the Riemann zeta function: law can occur, regardless of the detailed behavior of any

perfect mirrors. However, this begs the question of whether
the posited description is appropriate and, if it is, of whether
the usual expressions for black hole entropy are consistent
with this description in the absence of novel entropy bounds.
[The formula forf(d) can be derived by expanding the de- Nor does it tell us what prevents the box from being lowered
nominator in Eq(2.5) and noting thaf ;dxx"e *=n!. The  to its erstwhile floating point as envisioned above with the
extraction of more energy than the second law can tolerate.
In the following, we explore to what extent the analysis of

1
é“(S):nZ;l@-

"Readers concerned about finite size efféd] due to the fact
that, even in flat spacetime, the scale over which the temperature of
the Unruh radiation changes is comparable to a thermal wavelength®As usual in these discussions, one means by “entropy of the
may consultf14], which provides some evidence that such effectsuniverse” the sum of all entropy external to the black liglavith
may be ignored. In the corresponding black hole case, there mighihe entropy belonging to the horizon area of the black holes them-
be further “finite size” effects that we have not accounted for aris-selves. In particular, one does not count explicitly the entropy of
ing from the spacetime curvature. any object that has fallen through a horizon.

104004-4



PERFECT MIRRORS AND THE SELF-ACCELERATING . .. PHYSICAL REVIEW 66, 104004 (2002

[8] can be preserved given the failure of boxes to float. Letemperaturé.(One is also assuming that the “chemical po-
us first consider the entropy balance while the box is beindential” is zero in the sense that no conservation law freezes
quasi-statically lowered. In this phase of the process, théhe abundance of any constituent of the fluiSubstituting
only change in entropy is that associated with the heat flovihis result in the above equation, we find
from the thermal atmosphere of the black hole into our mir-
Ebox . ( Erad )
T Srad

ror. Since heat will flow only in a direction that generates _
6S= T _Sbox

entropy, this should create no difficulties with the second
law.

It remains to analyze the second stage in which the box is :M' (3.3
dropped into the black hole. Just before this occurs, the box T
has some total energy and the black hole some total mass
M. (Here, the energies andM are measured relative to the whereF ., denotes the Helmholtz free energy of the box and

timelike Killing field with unit normalization at infinity.we ~ Fraa that of an equal volume of thermal radiation at tempera-

remark thatM at this stage may be smaller than when thetUr€ T- L o
We now recall that thermal radiation minimizes the free

box was far away, due to the energy that flowed from it, fixed B hat th

through the thermal atmosphere, and into the box during th&NEroy atfixed temperaturelf we assume that the presence
lowering process. Similarlye includes the heat that flowed of the box does not disturb the free-energy density of the
: S ; ) surrounding radiation, and that one can neglect the variation
into the box while it was being lowered along with any otherOf the latter between the top and bottom of the box, we can

energy th‘?‘t might have entereq the box. conclude thaF,,4<F,,yx and therefore thadS must be posi-
Assuming that the box carries no charge or angular mog, q

mentu_m, th first law of black.hole mechanics tells us that -lio obtain a physical picture of how this may happen, it is
dropping it into the black hole increases the latter's entropye|pful to recall that the free energy of an object controls its
by an amount probability to occur in a thermal ensemble. In other words,
the effective quantum field that describes boxes such as ours
will be thermally excited at temperatuik just as will any
55, _ € E (3.0) other quantum field near the black hole. When the region of
T, T ' space at temperatureis large compared to the size of the
box, thenF,,, should control the probability for boxes to
appear from thermal fluctuations.
whereT is the black hole's temperature relative to infinity ~ What we may conclude from this is not ttfago is some-
andE andT are thelocally measured energy of the box and how bounded below by some bound setyj . Instead, the
locally measured temperature of the thermal radiation. NotéMplication is that, wereFp,, to become sufficiently nega-
that E and T are related tee and T, by the same redshift tive, the thermal radiation would consist primarily of box-
factor, which therefore cancels in the ra(®1).

The locally measured enerdy consists of two pieces. _ » _
The first, which we shall calE,,, is the energy that the Ngar the horizon conditions are far from homogenepqs apd iso-
particular internal state of the box would possess in isolaticmtroplc. Rather the thermal wa_velength of massless radiation is com-

i X i . parable to the scale on which the locally measured temperature
BUI’ smcg It requires WOHPV to bring a box of volume/ varies. For this reason, one may be skeptical of using the Gibbs-
into the high pressuréP) environment of the thermal atmo- pyhem relation in the present context. On the other hand, the re-
sphere, the locally measured energy has a second contribgits of[ 14] encourage the belief that the pressure at a certain depth

tion, and is given in full only by the surB=E,,+PV. does in fact correspond to that of an unconfined thermal fluid at the
Taking into account the entrofy,, that disappears into appropriately redshifted temperature. As energy conservation relates
the black hole, the total change in entropy is thus the density to the change of pressure with depth, the energy density

would also be that of an unconfined thermal fluid. This would be
enough for the Gibbs-Duhem relation to hold.
E Epoxt PV 1%f course, this remark would be irrelevant if the “thermal at-
5S= 5Sbh_5box:? _SbOX:T —Spox- (3.2 mosphere”‘ of a black hc_JIe were not t_ruly described by a_thermal
ensemble in this sense, i.e. by a density operator of the Gibbs form
e A H which, by the usual arguments of statistical mechanics, is the
one that minimizes the free energy at fixed temperature. Evidence
We now make use of the Gibbs-Duhem relatiéhy= that this density operator correctly describes the fields surrounding
—E,aa+TSaq as in[8], which relates the pressure and vol- a black hole comes from the results of .66—18 and especially
ume of thermal radiation to its ener@rad and entropy [19-24 which indicate that the Hawking radiation is described by
Srag. Under the assumption that the radiation constitutes s density matrixfor the out-going modgs There is also strong
homogeneous and isotropic fluichose entropy and energy €Vidence from(25], [26] and[17] that any state of the quantum
are additive, this relation can be derived by integrating thé‘lelds in a fixed black hole geometfgnd contained in surrounding

. -~ walls) will evolve toward the Gibbs state possessing the
first law PdV=—dE, 4+ TdS,q at constant pressure and Bekenstein-Hawking temperature of the black hole.
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antibox pairs(as well as related flotsam, like fragments of tured bound on the number of internal degrees of freedom of
box wallg rather than ordinary massless quanta. Unfortu-a LIDOF mirror, several other questions are raised by our
nately, one’s understanding of such a “fluid” is minimal, and discussion. One of them concerns the other category of mir-
we have no real grounds on which to judge how well therors (“solitonic mirrors”) and whether one can also derive
assumptions we have had to make in the above analysis sugeneral constraints forbidding their self-acceleration. While
vive into this new regime. In particular it seems an openwe are not certain how this would work, it seems plausible
guestion whether anything like the Gibbs-Duhem relationthat a soliton which provides a strong reflecting potential for
would continue to hold. Thus, at this stage we are unable tgome field must itself incorporate a strong potential which in
demonstrate that the second law is maintained without a beturn would force it to have a large tensigand therefore a
ter understanding of the “fluid of boxes and box fragments.”large masp Another idea is that the effective description of
We will return to these questions in the discussion section.the soliton in terms of an effective potential might be con-

Notice that the discussion in this section was completelycealing light internal degrees of freedom which come into
independent of our LIDOF mirror model and should apply toplay in the course of reflecting external fields. A clear first
solitonic box walls as well. However, this in itself sheds nostep in investigating either of these ideas would be to study
light on the extent to which our resolution of the self- particular model systems.
acceleration paradox carries over to the case of solitonic A second question concerns the case of massive fields,
mirrors. which are significantly harder to excite when placed in con-

tact with a heat bath. How would the buoyancy compare with
the weight if massive fields were the only relevant oteesg.
IV. DISCUSSION because there were no massless fields in nature or because

In this paper we have addressed two separate but relat&" mirror was transparent to thePnOf course, if the mass is
issues stemming from consideration of classic thought exSMall compared to the thermal energyg<1) then such
periments concerning the generalized second law of thermdi€lds will behave as if they were massless. However, for
dynamics. The first was the question of whether perfectlyi€!ds with masses higher than the thermal energy scale the
reflecting boxes can self-accelerate in flat spacetwigch situation |s_rathe_r different. Considering a bu_lk field of mass
in essence is equivalent to the question of whether such!@nd & mirror field of the same maSsone finds that for
boxes can floaf8] in the thermal atmosphere of a black M3>1 the ambient pressure is
hole). Because the existence of such “runaway solutions” a2
would conflict with cherished beliefs like the stability of the p~g-Am m (4.1)
vacuum and the impossibility of a “free lunch,” one might B(d+2)/2' '
expect that they cannot actually occur.

In addressing this paradox, we limited ourselves to mirwhereas the heat absorbed by the mirror adds a weight per
rors that operate through light internal degrees of freedonarea of
(LIDOF mirrors) and suggested that such mirrors will re-
quire a minimum of one internal field degree of freedom W
(helicity state for each bulk field degree of freedofielicity VN B
statg to be reflected! Although we did not prove this asser-
tion, we gave a suggestive example along with supportin@Ve see that, in this case also, the additional weight is more
arguments. than sufficient to prevent self-acceleration.

Accepting this conjecture, we demonstrated that the heat- Some readers may feel that our analysis does not just
energy absorbed by such mirrors is more than sufficient tplace bounds on perfect mirrors, but shows instead that per-
prevent any self-acceleration resulting from the coupling tofect mirrors do not exist at all. They may point out that if the
massless fields in flat spacetime. It is interesting to note thahirror thermalizes with the exterior, it must also radiate ther-
our calculation leaves significant margin for error in the con-mally into the interior(and vice versa Thus, the mirror
jecture. For example, in 81 dimensions our conclusions couples the inside with the outside. This is of course true to
would survive even if the internal degrees of freedom weresome extent, but one did not need to count the internal de-
down by a factor of 20(It is also clear that one could grees of freedom to make this argument. The relevant ques-
weaken the claim by a factor ofd and still achieve the tion is whether the time scale for this energy flow can be
desired result. In fact, numerical calculations show that onenade arbitrarily long. Certainly, our arguments require that a
could weaken the inequality by a factor of the spatial dimen-minimum number of degrees of freedom interact with the
siond and that the result would still hold up tbon the order  bulk fields on a short time scale. That they need not interact
of a few hundred. equally quickly with the interior of the box can be made

In addition to the question of the validity of our conjec- clear by considering a layered mirror composed of several

~P\mpB>P. (4.2)

m) (d+1)/2

Hn addition the box wall should have at least one acoustic mode, ?One expects that a mirror field of greater mass would be unable
and this mode should also come into thermal equilibrium with anyto adjust sufficiently quickly to reflect the bulk field. On the other
ambient heat bath, for the same reasons of causality as for the othkand, making the mirror field lighter than the bulk field would only
modes. strengthen our case.
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copies of the simple mirrors studied above. The time scale When a box enters such a region several new occurrences
for transmitting energy between the interior and exterior willwould seem to be possible which miglar might noj inter-

grow without bounds as more and more mirrors are added t¥ene to protect the second law. First, there might be a sig-
the laminate3 nificant probability that our box would be destroyed by col-

In Sec. Ill we considered the implications of our earlier lision with an antibox. If this happened, we could extract no

conclusions for the generalized second law discussions cofdlther energy by trying to lower it adiabatically. Second,

ducted by Bekensteif®] and Unruh-Wald8], which histori- with boxes being produced thermally we might observe one

cally were the source from which the self-accelerating boxbelng emitted from the black hole—and when combined

aradox arose. Since the main point at issue in those discuW-ith the destruction of our own box by an antibox we might
P: ’ o P ell interpret this as our box “bouncing off” the thermal
sions was the relative importance of the buoyant force on

Atmosphere.
mirrored box, one might think that our results would modify — ~¢ (E)ourse such effects would not be needed if the analy-

the terms of the debate, and in that way perhaps resolve itgjs of Sec. 11l could be taken over unchanged to the new
In the event, however, it seems that the former has oCregime. The key point here is that if boxes now dominate the
curred without the latter. In particular, we constructed a varithermal radiation, we havy.,= F .4 as an identity, whence
ant of the derivation 0[8] which arrives at similar conclu- SS would vanish identica”y even if it were somehow mean-
SiOI’]S WIthOUt aSSUming that the bOX will f|0at. Our derivationingfu| to lower the box to this depth and drop it into the
is independent of Sec. Il and therefore applies equally well tgjack hole. In this way, one would again maintain the gener-
solitonic mirrors as to LIDOF mirrors. However, we now glized second law without appealing to novel entropy
recognize that the interesting regime is one in which theyounds. However, it is an open quesfibwhether the fluid
boxes themselves become an important constituent of thgodel we used in Sec. Il could be adequate for computing
thermal atmosphere. the “buoyant force” on the box in a domain where boxes
Let us reflect in more detail on what we have learnedand box fragmenisbecome a dominant component of the
from these latter calculations. Some boxes, such as thosfiermal radiatiort® We used such a model in at least three
satisfying the entropy boun8/E<27R of [9], were long  ways: to justify the “work” termPV in Eq. (3.2); to justify
ago established to be “safe” in the sense that lowering suclysing the Gibbs-Duhem relation, which depends on the local
a box into a black hole respects the second law even whefRomogeneity and isotropy of a fluid; and to justify the as-
the thermal atmOSphere of the black hole is ignored. In Ougumption that free energy Changes are additive when one
current language such boxes always hByg>0 since their  replaces the box by an equal volume of thermal radiaifon.
|arge size keeps the box far enough from the horizon that we The status of entropy boundm the sense of universal
have T<(27R)~*. Our calculation once again finds that pounds that would hold in an arbitrary theptpius remains
such boxes are safe and, furthermore, that the existence gfusive. There seems to exist neither a conclusive argument
such boxes is consistent with any additional assumptionghat they must hold nor a conclusive argument to the
about the black hole’s thermal atmosphere so long a§  contrary!’ The main contribution of the above analysis in
<0 (which in turn is equivalent to positivity of the pressure
if the Gibbs-Duhem relation holglsThe assumption that the
atmosphergand in particular the contributions of boxes and 14\iost of these uncertainties relate to “finite size effects” in the

antiboxe$ can be neglected amounts to takifg,y=0. broad sense of the term. See for example the commen&2h
However, if we imagine a box that violates the aboveabout the effects of finite wavelength on the scattering of thermal
entropy bound then, as it descends toward the horizon an@diation. And no one who harbored such doubts before is likely to
the ambient temperature increases, one may indeed entetba any happier when they are told that now one is talking about a
region whereF,,,<0. In this case, neglect of the thermal fluid of box-antibox pairs rather than photons.
atmosphere would lead to an apparent violation of the second**More generally, the critical question is whether the thermal at-
law. Similarly, suppose one makes some other assumption #osphere can provide sufficient buoyancy to ensure that the work
to the nature oF 4. For example, one might assume that 9ained by lowering the botincluding its mirrored wallsis not so
F,aq is dominated by the contributions from a certain cldss 9reat as to exceed the box’s initial entropy appropriately weighted
of states, leading to a relation of the foffp=F,,q. If the b){ethe black hole temperature. _ o
Gibbs-Duhem relation holds for this class of states, (B NotlceT also tha_t, even for more ordlne_lry thermal radiation, the
requires the restrictiof,,> F . for the generalized second fact that(in the regimes of interesthe b0)§ is never more than. one
law to hold. However, since the free energy controls the rel®" W0 thermal wavelengths from the horizon calls into question the
evance of an object or class of states to a thermal ensembl%?egouuicga?; 'ggr?(;'iggrfzealnt:zrg%?(exgﬁ':s and anisotropies induced
the existence Of a region Wltﬁc_> FPOX implies S'mP'y that . it used to be thought that a world with exponentially many spe-
thermal fluctuations in this region include box-antibox pairs

S cies N of particles/fields could serve as a counterexanielg.
in significant numbers and that the class of statemes not  [57)) put this also can be questioned, at least in the case of an area

in fact dominate their contribution to the free energy. bound likeS<A/G, as it neglects th&l-dependent renormalization
of Newton’s constant 8. As envisioned in connection with en-
tanglement entropj28] by [29] and[30], this correction would, if
I3Note, however, that the next few layers of our multi-layer mirror the arguments of29] are correct, more than compensate the con-
will also interact quickly with the bulk fields and thus absorb eventribution of a largeN to S. See, howevel,31] and[32] for com-
more heat from the thermal bath. ments on the ideas ¢29].
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this connection is probably to demonstrate that the question We wish to showT $,>Q so thatF,,,<E,—TS,. But

cannot be decided without consideration of a putative nevsince the heat flow occurred without work being ddire

regime in which thermal “radiation” would no longer be particular, without changing the volume of the boa local

dominated by massless fieltfsin opposition to earlier sug- application of the first law of thermodynamics yields

gestions thatin the context of adiabatic box loweringhe @

second law necessarily fails in the absence of entropy _ q(z

bounds, we have suggested plausible mechanisms for main- TSQ_TJ dzﬁ>Q' (4.4

taining the second law in this new regime. On the other hand,

we certainly have not analyzed these mechanisms fully and Ift the last step we have merely used the fact that the tem-

would not seem to be an easy task to do so. perature is greatest at the lowest point yet reached by the box
The attentive reader may point out that the discussion ifi-€., the current depitso thatT>T(z). Thus we see that for

[8] showed the second law to be only marginally satisfiedwhat would have been the marginal case, box-antibox pairs

when the box was filled with thermal radiation. Since morealready dominate the thermal radiation at the would-be float-

energy is removed from the system in our scenario than g point.

that 0f[8], the energy of the box should be less at any he|ght A final question is whether the results of Sec. Il above

and, if the box is dropped from the putative floating point, might not be germane in analyzing some of the “time ma-

less energy would be transferred to the black hole. Thus, onghines” that people have tried to imagine. While we know of

might wonder how we can avoid second law violations forno direct application, many of the “materials science” issues

this case. Clearly, to raise this objection one must tentativeljhat arise, for example, in attempts to hold open “worm-

assume that the thermal radiation mentioned above does nbgles” are similar to those involved in analyzing boxes with

include significant numbers of box-antibox pairs. impermeable, rigid walls, like those we have been consider-
However, without the inflow of heat into the walls, our ing in this paper. This suggests that a very general property

box was chosen to be indistinguishable from thermal radiaof such walls, like that conjectured in Sec. Il, could turn out

tion at the putative floating point. Thus, without this inflow, t0 be important in the “time machine” context as well.

it is exactly at this point that,,,=F,,q would first be

achieved. The issue just raised may be resolved if the net ACKNOWLEDGMENTS
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