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Perfect mirrors and the self-accelerating box paradox

Donald Marolf and Rafael D. Sorkin
Physics Department, Syracuse University, Syracuse, New York 13244

~Received 15 May 2002; published 11 November 2002!

We consider the question raised by Unruh and Wald of whether mirrored boxes can self-accelerate in flat
spacetime~the ‘‘self-accelerating box paradox’’!. From the point of view of the box, which perceives the
acceleration as an impressed gravitational field, this is equivalent to asking whether the box can be supported
by the buoyant force arising from its immersion in a perceived bath of thermal~Unruh! radiation. The perfect
mirrors we study are of the type that rely on light internal degrees of freedom which adjust to and reflect
impinging radiation. We suggest that a minimum of one internal mirror degree of freedom is required for each
bulk field degree of freedom reflected. A short calculation then shows that such mirrors necessarily absorb
enough heat from the thermal bath that their increased mass prevents them from floating on the thermal
radiation. For this type of mirror the paradox is therefore resolved. We also observe that this failure of boxes
to ‘‘float’’ invalidates one of the assumptions going into the Unruh-Wald analysis of entropy balances involving
boxes lowered adiabatically toward black holes. Nevertheless, their broad argument can be maintained until the
box reaches a new regime in which box-antibox pairs dominate over massless fields as contributions to thermal
radiation.

DOI: 10.1103/PhysRevD.66.104004 PACS number~s!: 04.20.2q, 04.60.2m, 04.70.Dy
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I. INTRODUCTION

Black hole entropy, Hawking radiation, and the gener
ized second law of thermodynamics are central foci of m
ern research in quantum gravity. Indeed, although the de
may differ, the existence of these phenomena is one of
few points on which the various approaches to quant
gravity all seem to agree, including the stringy approa
@1,2#, the causal set approach@3,4#, and the loop approach
@5,6#. Many researchers believe that these phenomena
truly fundamental and that their investigation will reveal fu
ther deep laws of nature. Certainly, black hole thermodyna
ics has provided a fascinating and varied arena for nearly
years of research.

One of the most intriguing effects to emerge from th
discussion is the experience of thermal radiation by an ac
erating object in flat and empty spacetime@7#. This Unruh
radiation has a temperatureT proportional to the acceleratio
a, and it affects accelerating objects as one would exp
setting off particle detectors and exerting pressure. In a
cussion@8# of a potential violation~suggested by Bekenstei
@9#! of the generalized second law of thermodynamics, U
ruh and Wald pointed out that the pressure on an accelera
box will vary with position, and that the pressure differen
across the box must grow quickly with the acceleration. F
a perfectly reflecting box of unchanging mass there wo
therefore be a~box-dependent! critical accelerationac at
which the pressure difference would be big enough to ma
tain the acceleration without the need for any additio
force. From the point of view of the box, it experiences
gravitational field of strengthac , but the radiation fluid is
sufficiently dense that the mirror simply floats. For a wi
but thin box, the critical acceleration will depend only on t
mass density~per unit volume! of the box.

Despite appearances, the existence of such an e
would be consistent with energy conservation, from both
inertial and accelerated perspectives@8#. Nevertheless, it is
0556-2821/2002/66~10!/104004~9!/$20.00 66 1040
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hard to see how it could fail to lead to a disturbing instabil
of the vacuum and the possibility1 of perpetual motion ma-
chines. Thus, self-acceleration seems unphysical, and
have referred to this issue in our title as ‘‘the se
accelerating box paradox.’’

We address this paradox in Sec. II, where we conside
specific type of mirror that operates through the use of li
internal degrees of freedom. For boxes with mirrored wa
of this type, we resolve the self-acceleration paradox
showing that the mirrors necessarily heat up and in doing
acquire enough mass to overwhelm the ‘‘buoyant force’’
the box, no matter how great the acceleration. The dange
vacuum instability and perpetual motion machines from t
quarter thus seems to be removed.

However, it was the ‘‘floating box’’ effect that was used
@8# to argue that the generalized second law could hold w
out the imposition of novel entropy bounds@9# on matter
fields. We therefore reconsider this issue in Sec. III. A
though this section is motivated by our study of the se
accelerating box paradox, it constitutes a logically indep
dent discussion that in no way relies on the results of
earlier sections. We find that a derivation very similar to th
of @8# can be carried out up to a point~as long as the othe
assumptions made there are retained!. However, at depths
comparable to what would have been the box’s ‘‘floati
point’’ the picture changes and one is forced to conside
regime in which ‘‘thermal radiation’’ is dominated by thing
like box-antibox pairs. This region is a plausible source
effects through which the second law might be maintain
but we are unable to reach a definite conclusion on this qu
tion.

1As the box passeda5ac , the ‘‘push’’ required to keep it accel-
erating would change into a ‘‘pull’’~corresponding to a negative ne
inertial mass!. Thus a box held at somea.ac could deliver an
infinite amount of work.
©2002 The American Physical Society04-1
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II. WHY MIRRORED BOXES DON’T FLOAT—SOME
MODELS AND A CONJECTURE

We believe that the key to the self-acceleration para
lies in a study of the mirrors themselves. If this is so, th
physical models of the mirrors are needed. Let us there
consider a mirror that reflects radiation of a certain ty
corresponding to excitations of a specific ‘‘bulk’’ fieldf.

One can imagine two mechanisms by which such a mi
could function. The first is that the mirror could represe
some sort of fundamental potential forf. This might hap-
pen, for example, if the mirror were itself a domain-wa
soliton of the fieldf, in which case the mass of the linea
ized perturbationsdf would in general depend on positio
relative to the wall. Under certain circumstances, the sca
ing of df off of the resulting potential might be strong
making the domain wall act as a good mirror. For lack o
better term, we shall refer to such mirrors assolitonic mir-
rors in the discussion below.

Note, however, that the mirrors encountered in daily l
are decidedly not of this sort. Instead, a standard silver m
ror functions by a rather different mechanism.2 When a light
wave is incident on a silver mirror, the mobile electrons
the mirror rapidly adjust their configuration so as to can
out the incoming electric field. The result is that the moti
of the conduction electrons conspires to send radiation b
in the direction from whence the original signal arrived. B
cause the rapid reconfiguration of these electrons is esse
they necessarily represent ‘‘light internal degrees of fr
dom’’ ~LIDOF! of the mirror, and we will call mirrors tha
function along these linesLIDOF mirrors.

Of course, one could also imagine mirrors that operate
a combination of these two mechanisms. One might also
whether there could be some third mechanism through wh
a mirror could function. While we are not able to rule o
this possibility, it is hard to imagine what this third mech
nism might be. In the other direction, one could ask whet
one might construe the first mechanism as a special cas
the second.

In the rest of this section we shall address the fami
category of LIDOF mirrors and show that they necessa
become heavy when placed in contact with a thermal b
Due to their many internal degrees of freedom, they w
absorb a significant quantity of heat from their environm
so that their internal energy and their weight in a gravi
tional field will both increase with temperature. We will se
that this effect is strong enough to overcome any buoya
force from the radiation fluid, whence the mirror cann
float. Thus, self-acceleration of such a mirror will not occ
~While solitonic mirrors are not addressed in this secti
they will be the subject of several comments in Sec. I!
Although our concern in this section will be with sel
acceleration in Minkowski spacetime, we note that almost
of our considerations will applymutatis mutandisto the case
of a ~small! box suspended in the vicinity of a black hole.

2Though in the end it might be that the interaction can still
described via an effective, frequency-dependent potential.
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A. A conjecture and some evidence

The basis for our analysis of LIDOF mirrors will be th
following conjecture: a perfect LIDOF mirror requires
least one internal field degree of freedom for each bulk
gree of freedom that it will reflect. Specifically, the intern
degrees of freedom of the mirror must be approximately
scribed as a set of fields in a spacetime of one dimension
than that of the bulk, and these internal fields must hav
minimum of one helicity state for each helicity state of t
bulk fields. The emphasis here is on the number of inter
degrees of freedom required.3 While we have no proof of this
conjecture, the following gedanken experiment provide
certain amount of support.

Consider the scattering of an electromagnetic wave by
electron. One description of this process is that the w
excites the electron, after which the electron re-radiates
wave in a different direction. With enough electrons a
enough scattering, one can effectively create a mirror. Now
we naively count degrees of freedom we find two veloc
components for the electron gas, matching the two helic
states of the reflected photons. Moreover, if we imagine t
the electrons reside in a superconductor instead of a no
metal, we trade the velocity vector for a scalar ‘‘Higgs’’ fie
describing the condensate, but since it is a complex sc
we again recognize two degrees of freedom per point.

Suppose now that the electron couples not just to a sin
electromagnetic field but to two such fields, EM1 and EM
and suppose for simplicity that it has the same charge
both. Then our mirror for EM1 will also act as a mirror fo
EM2. However, consider what happens when a wave of E
and a wave of EM2 reach the electrons at the same time
we arrange for these waves to be exactly opposite in s
their effects on the electrons will cancel and the electro
will remain undisturbed. As a result, the electrons will n
react back on the fields and the waves will pass through
mirror unhindered. Said differently, since the electrons ha
the same charge for both fields, they couple only to the sy
metric combination of EM1 and EM2. The anti-symmetr
combination does not interact with the electrons at
whence the mirror is transparent to its excitations. T
would appear to be a general rule: coupling additional ga
fields to a given set of charges results in the charges de
pling from certain linear combinations of the new set
fields, with the result that no more independent linear co
binations couple to the charges than originally. Therefo
one cannot violate the conjecture in this way. However, m
subtle effects remain to be ruled out.

B. Weight and buoyancy in thermal equilibrium

We have argued above that a LIDOF mirror must hav
significant number of internal degrees of freedom, wh
can, at least effectively, be described as fields living in

3The counting here is ofeffectivedegrees of freedom. Such de
grees of freedom include, for example, those of weakly interac
quasiparticles describing the excitations of an underlying se
fields or particles which themselves could be strongly coupled.
4-2
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PERFECT MIRRORS AND THE SELF-ACCELERATING . . . PHYSICAL REVIEW D66, 104004 ~2002!
world-volume of the mirror. Since these mirror fields a
responsible for reflecting the bulk fields, they must inter
strongly with the latter, and this should be enough to all
them to come into thermal equilibrium with the bulk fields4

Thus, when the mirror is placed in a thermal bath, one wo
expect the relevant internal degrees of freedom to therma
on a short time scale, with the result that the mirror w
absorb heat if initially it was cold.

A possible objection to this conclusion might be that the
might exist types of scattering analogous to the Mo¨ssbauer
effect. However, we will be considering only boxes who
transverse dimensions are much greater than a wavelengl
of the thermal radiation they are reflecting. In this case
should be possible to think of the radiation as composed
wave packets much smaller than the box wall reflect
them, and causality forbids such a packet from bouncing
the box as a whole. We would thus expect that localiz
excitations of the relevant internal field must result.~In the
opposite case of boxes much smaller thanl, causality im-
poses no such restriction, but that case is anyway not a
nable to the analysis of this paper, because the fluid appr
mation we will be using becomes invalid.!

We have argued that the internal degrees of freedom
perfectly reflecting LIDOF mirror must evolve rapidly to
temperature equal to that of the bath with which they are
contact. We will now use this property to derive a low
bound on the energy density of a perfect mirror in cont
with a heat bath. This excess energy is a function of
ambient temperature, and we will show it to be sufficien
great that LIDOF mirrors can never float or self-accelera

Given that the mirror helicity states must be in corresp
dence with the bulk helicity states, it clearly suffices to tre
one helicity state at a time, because the full heat absorbe
the mirror is just a sum over mirror helicity states, and t
full ambient pressure is a sum over the corresponding b
helicity states.

In this section we will consider the case of massle
fields, though some comments on the massive case wil
made in Sec. IV. Moreover, we limit ourselves throughout
free ~or almost free! fields, both in the mirror and in the
ambient spacetime.~Of course the interaction between bu
and mirror fields is not taken to be weak.! Finally, we work
in the adiabatic limit, so that the bulk and mirror fields w
always be in equilibrium.5 Considering a co-dimension on
mirror in a (d11)-dimensional bulk spacetime, we are th
left with a rather simple calculation involving the statistic
mechanics of a@(d21)11#-dimensional massless field an

4For a worked out example of such thermalization in a simple c
see @10#. Notice that no self-coupling of the internal degrees
freedom is involved in this example. Indeed, there is only one s
degree of freedom—that of a simple harmonic oscillator—and
self-coupling~nonlinearity! is zero.

5More generally our analysis will apply whenever the equilib
tion time is sufficiently short. If we are right about the rapid the
malization, this is not much of a restriction in practice. In any ca
consideration of the adiabatic limit is enough to rule out ‘‘floatin
self-acceleration, which would be a steady state condition.
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a (d11)-dimensional massless field.
Let us first consider the heat absorbed by the mirror.

will take the mirror to be much larger than the ambient th
mal wavelength, so that we may use a fluid approximation
computing the energy density of a thermally excited inter
field. Notice that, since we are treating this field as a@(d
21)11#-dimensional system, the thickness of the mirr
will be small compared to the thermal length scale—it
only the lengths along the mirror face that must be large

In this approximation, the energy density of a@(d21)
11#-dimensional massless single-helicity bosonic field
given by the expression~see, e.g.@11# for the 311 case!:

rd215
1

~2p!d21E d(d21)k
vk

ebvk21

5
Vd22

~2p!d21bdE0

`

dx
xd21

ex21
, ~2.1!

whereb51/T and we use units in which Boltzmann’s con
stant and the speed of light are unity. Here,Vd22
52p (d21)/2/@(d23)/2#! is the volume of the unitd22
sphere andvk is the energy of a particle with wave numb
k. For our massless field we have, of course,vk5uku, and we
have used this in the second line above, having also
formed the change of variablex5bk.

Suppose that we wish the mirror to have a proper ac
eration a, which is related to the ambient temperatu
through@7# a52p/b. Then the mirror needs to experience
co-moving force per unit area of

F/A5ard215
Vd22

~2p!d22bd11E0

`

dx
xd21

ex21
. ~2.2!

Now, what is the actual ‘‘buoyant’’ force per unit area o
the box supplied by the ambient thermal radiation? In d
cussing this question, we will regard as ‘‘downward’’ th
direction of the gravitational force felt by the box in its ow
rest frame. In the case of a box suspended in the vicinity
a black hole horizon this terminology has a literal meanin
but it is also convenient for the case of concern here—tha
a box accelerating in a flat background spacetime. Now,
buoyant force is of course just the difference in press
between the top and bottom of the box, which is bound
above by the ambient pressure on the mirror forming
bottom of the box.6 Strictly speaking, this pressure should b
calculated from the renormalized stress energy tensor
quantum field, with appropriate boundary conditions im
posed at the walls of the box. However, since such results
not presently available we shall instead follow the approa
of @8# and assume that the ambient pressure is in fact equ
that of a thermal fluid in an enclosure of large volume.

e
f
h
s

-

,

6Since this bound ignores the pressure on the top of the box,
analysis applies not only to a box lowered through a region
thermal equilibrium, but also to upward directed thermal radiat
of the sort that is present in the Unruh ‘‘vacuum’’ near a black ho
4-3
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DONALD MAROLF AND RAFAEL D. SORKIN PHYSICAL REVIEW D 66, 104004 ~2002!
Bekenstein has argued@12# that the pressure is somewh
less due to inefficiencies in the scattering of finite wav
length radiation by the box. There may also be other ‘‘fin
size effects’’ which are missed in the way we approxim
the pressure.7 However, since our goal is simply to remov
an effect deduced in@8#, it is consistent to use their fluid
description even if this somehow leads to an overestimat
the ambient pressure.

In this approximation, the pressure~for free fields, as al-
ways! is given by an integral much like~2.1! and we have

Pd5
1

d~2p!dE ddk
vk

ebvk21

5
Vd21

d~2p!dbd11E0

`

dx
xd

ex21
. ~2.3!

Our task is now to compare the buoyant force to
weight of the box. From Eqs.~2.2! and ~2.3! their ratio is

1

~2p!2

Vd21

Vd22

f ~d!

f ~d21!d
, ~2.4!

where we have introduced the definition

f ~d!5E
0

`

dx
xd

ex21
. ~2.5!

We claim that this ratio is less than 1/4p for all d.1, re-
ducing in particular top2/180z(3)50.0456 for the most im-
portant case ofd53. In other words the buoyancy is mor
than an order of magnitude smaller than the weight in
dimensions and more than 20 times smaller in 311 dimen-
sions.

In fact this is not hard to see, using the known formul

Vd52p (d11)/2Y S d21

2 D !

and

f ~d!5d! z~d11!

wherez is the Riemann zeta function:

z~s!5 (
n51

`
1

ns .

@The formula forf (d) can be derived by expanding the d
nominator in Eq.~2.5! and noting that*0

`dxxne2x5n!. The

7Readers concerned about finite size effects@13# due to the fact
that, even in flat spacetime, the scale over which the temperatu
the Unruh radiation changes is comparable to a thermal wavele
may consult@14#, which provides some evidence that such effe
may be ignored. In the corresponding black hole case, there m
be further ‘‘finite size’’ effects that we have not accounted for ar
ing from the spacetime curvature.
10400
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formula forVd follows directly from the formulapd/2/(d/2)!
for the volume of the unitd-ball ~or ‘‘disk’’ !, which in turn
can be looked up or proven by induction.#

Substituting this formula forf (d) converts Eq.~2.4! into

1

~2p!2

Vd21

Vd22

z~d11!

z~d!

and the claimed bound then follows from the obvious
equality z(d).z(d11) and the easily checked boun
Vd /Vd21<p for d>1.

Thus, in all cases we find that the ambient pressure
insufficient to maintain the acceleration of the box.

III. BLACK HOLES AND THE GENERALIZED SECOND
LAW

Given that a LIDOF mirrored box fails to float in any ba
of thermal radiation, it seems worthwhile to reconsider t
Bekenstein-Unruh-Wald discussion of whether the laws
thermodynamics, as applied to black holes, impose no
entropy bounds on the matter in the universe~say of the form
in @9#!. In @8#, Unruh and Wald used the floating box effect
analyzing the implications of the generalized second law
a process in which a perfectly reflecting box is lowered ad
batically from infinity to some location near the horizon a
then dropped into the black hole. They found that the sec
law was exactly saturated if the box was dropped just at
floating point. With that choice of release point, the ma
contributed to the black hole by the box augmented the bl
hole’s entropy by an amount that exactly offset the dis
pearance of the entropy contained in the box.

However, since, according to our analysis, the box
sorbs heat from the thermal bath and thus increases
weight, one can extract more energy during its descent t
in the Unruh-Wald analysis. As a result, by lowering the b
adiabatically and releasing it at the point at which the cor
sponding Unruh-Wald box would float, one might expect
be able to decrease the net entropy of the universe, in c
tradiction to the generalized second law of thermodynami8

In opposition to any such scenario, Ref.@15# points out
that if the black hole system can be described as a stan
state of thermal equilibrium then no violation of the seco
law can occur, regardless of the detailed behavior of a
perfect mirrors. However, this begs the question of whet
the posited description is appropriate and, if it is, of wheth
the usual expressions for black hole entropy are consis
with this description in the absence of novel entropy boun
Nor does it tell us what prevents the box from being lower
to its erstwhile floating point as envisioned above with t
extraction of more energy than the second law can tolera

In the following, we explore to what extent the analysis

of
th

s
ht
-

8As usual in these discussions, one means by ‘‘entropy of
universe’’ the sum of all entropy external to the black hole~s! with
the entropy belonging to the horizon area of the black holes th
selves. In particular, one does not count explicitly the entropy
any object that has fallen through a horizon.
4-4
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PERFECT MIRRORS AND THE SELF-ACCELERATING . . . PHYSICAL REVIEW D66, 104004 ~2002!
@8# can be preserved given the failure of boxes to float.
us first consider the entropy balance while the box is be
quasi-statically lowered. In this phase of the process,
only change in entropy is that associated with the heat fl
from the thermal atmosphere of the black hole into our m
ror. Since heat will flow only in a direction that generat
entropy, this should create no difficulties with the seco
law.

It remains to analyze the second stage in which the bo
dropped into the black hole. Just before this occurs, the
has some total energye and the black hole some total ma
M. ~Here, the energiese andM are measured relative to th
timelike Killing field with unit normalization at infinity.! We
remark thatM at this stage may be smaller than when t
box was far away, due to the energy that flowed from
through the thermal atmosphere, and into the box during
lowering process. Similarly,e includes the heat that flowe
into the box while it was being lowered along with any oth
energy that might have entered the box.

Assuming that the box carries no charge or angular m
mentum, the first law of black hole mechanics tells us t
dropping it into the black hole increases the latter’s entro
by an amount

dSbh5
e

TH
5

E

T
~3.1!

whereTH is the black hole’s temperature relative to infini
andE andT are thelocally measured energy of the box an
locally measured temperature of the thermal radiation. N
that E and T are related toe and TH by the same redshif
factor, which therefore cancels in the ratio~3.1!.

The locally measured energyE consists of two pieces
The first, which we shall callEbox , is the energy that the
particular internal state of the box would possess in isolat
But, since it requires workPV to bring a box of volumeV
into the high pressure~P! environment of the thermal atmo
sphere, the locally measured energy has a second cont
tion, and is given in full only by the sumE5Ebox1PV.

Taking into account the entropySbox that disappears into
the black hole, the total change in entropy is thus

dS5dSbh2Sbox5
E

T
2Sbox5

Ebox1PV

T
2Sbox . ~3.2!

We now make use of the Gibbs-Duhem relation,PV5
2Erad1TSrad as in@8#, which relates the pressure and vo
ume of thermal radiation to its energyErad and entropy
Srad . Under the assumption that the radiation constitute
homogeneous and isotropic fluidwhose entropy and energ
are additive, this relation can be derived by integrating
first law PdV52dErad1TdSrad at constant pressure an
10400
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temperature.9 ~One is also assuming that the ‘‘chemical p
tential’’ is zero in the sense that no conservation law free
the abundance of any constituent of the fluid.! Substituting
this result in the above equation, we find

dS5S Ebox

T
2SboxD2S Erad

T
2SradD

5
Fbox2Frad

T
, ~3.3!

whereFbox denotes the Helmholtz free energy of the box a
Frad that of an equal volume of thermal radiation at tempe
ture T.

We now recall that thermal radiation minimizes the fr
energy at fixed temperature.10 If we assume that the presenc
of the box does not disturb the free-energy density of
surrounding radiation, and that one can neglect the varia
of the latter between the top and bottom of the box, we c
conclude thatFrad,Fbox and therefore thatdS must be posi-
tive.

To obtain a physical picture of how this may happen, it
helpful to recall that the free energy of an object controls
probability to occur in a thermal ensemble. In other wor
the effective quantum field that describes boxes such as
will be thermally excited at temperatureT just as will any
other quantum field near the black hole. When the region
space at temperatureT is large compared to the size of th
box, thenFbox should control the probability for boxes t
appear from thermal fluctuations.

What we may conclude from this is not thatFbox is some-
how bounded below by some bound set byFrad . Instead, the
implication is that, wereFbox to become sufficiently nega
tive, the thermal radiation would consist primarily of bo

9Near the horizon conditions are far from homogeneous and
tropic. Rather the thermal wavelength of massless radiation is c
parable to the scale on which the locally measured tempera
varies. For this reason, one may be skeptical of using the Gib
Duhem relation in the present context. On the other hand, the
sults of@14# encourage the belief that the pressure at a certain d
does in fact correspond to that of an unconfined thermal fluid at
appropriately redshifted temperature. As energy conservation re
the density to the change of pressure with depth, the energy de
would also be that of an unconfined thermal fluid. This would
enough for the Gibbs-Duhem relation to hold.

10Of course, this remark would be irrelevant if the ‘‘thermal a
mosphere’’ of a black hole were not truly described by a therm
ensemble in this sense, i.e. by a density operator of the Gibbs f
e2b H which, by the usual arguments of statistical mechanics, is
one that minimizes the free energy at fixed temperature. Evide
that this density operator correctly describes the fields surroun
a black hole comes from the results of e.g.@16–18# and especially
@19–24# which indicate that the Hawking radiation is described
this density matrix~for the out-going modes!. There is also strong
evidence from@25#, @26# and @17# that any state of the quantum
fields in a fixed black hole geometry~and contained in surrounding
walls! will evolve toward the Gibbs state possessing t
Bekenstein-Hawking temperature of the black hole.
4-5
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antibox pairs~as well as related flotsam, like fragments
box walls! rather than ordinary massless quanta. Unfor
nately, one’s understanding of such a ‘‘fluid’’ is minimal, an
we have no real grounds on which to judge how well t
assumptions we have had to make in the above analysis
vive into this new regime. In particular it seems an op
question whether anything like the Gibbs-Duhem relat
would continue to hold. Thus, at this stage we are unabl
demonstrate that the second law is maintained without a
ter understanding of the ‘‘fluid of boxes and box fragment
We will return to these questions in the discussion sectio

Notice that the discussion in this section was complet
independent of our LIDOF mirror model and should apply
solitonic box walls as well. However, this in itself sheds
light on the extent to which our resolution of the se
acceleration paradox carries over to the case of solito
mirrors.

IV. DISCUSSION

In this paper we have addressed two separate but re
issues stemming from consideration of classic thought
periments concerning the generalized second law of ther
dynamics. The first was the question of whether perfec
reflecting boxes can self-accelerate in flat spacetime~which
in essence is equivalent to the question of whether s
boxes can float@8# in the thermal atmosphere of a blac
hole!. Because the existence of such ‘‘runaway solution
would conflict with cherished beliefs like the stability of th
vacuum and the impossibility of a ‘‘free lunch,’’ one migh
expect that they cannot actually occur.

In addressing this paradox, we limited ourselves to m
rors that operate through light internal degrees of freed
~LIDOF mirrors! and suggested that such mirrors will r
quire a minimum of one internal field degree of freedo
~helicity state! for each bulk field degree of freedom~helicity
state! to be reflected.11 Although we did not prove this asse
tion, we gave a suggestive example along with suppor
arguments.

Accepting this conjecture, we demonstrated that the h
energy absorbed by such mirrors is more than sufficien
prevent any self-acceleration resulting from the coupling
massless fields in flat spacetime. It is interesting to note
our calculation leaves significant margin for error in the co
jecture. For example, in 311 dimensions our conclusion
would survive even if the internal degrees of freedom w
down by a factor of 20.~It is also clear that one could
weaken the claim by a factor ofAd and still achieve the
desired result. In fact, numerical calculations show that
could weaken the inequality by a factor of the spatial dim
siond and that the result would still hold up tod on the order
of a few hundred.!

In addition to the question of the validity of our conje

11In addition the box wall should have at least one acoustic mo
and this mode should also come into thermal equilibrium with a
ambient heat bath, for the same reasons of causality as for the
modes.
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tured bound on the number of internal degrees of freedom
a LIDOF mirror, several other questions are raised by
discussion. One of them concerns the other category of
rors ~‘‘solitonic mirrors’’ ! and whether one can also deriv
general constraints forbidding their self-acceleration. Wh
we are not certain how this would work, it seems plausi
that a soliton which provides a strong reflecting potential
some field must itself incorporate a strong potential which
turn would force it to have a large tension~and therefore a
large mass!. Another idea is that the effective description
the soliton in terms of an effective potential might be co
cealing light internal degrees of freedom which come in
play in the course of reflecting external fields. A clear fi
step in investigating either of these ideas would be to st
particular model systems.

A second question concerns the case of massive fie
which are significantly harder to excite when placed in co
tact with a heat bath. How would the buoyancy compare w
the weight if massive fields were the only relevant ones~e.g.
because there were no massless fields in nature or bec
our mirror was transparent to them!? Of course, if the mass is
small compared to the thermal energy (mb!1) then such
fields will behave as if they were massless. However,
fields with masses higher than the thermal energy scale
situation is rather different. Considering a bulk field of ma
m and a mirror field of the same mass,12 one finds that for
mb@1 the ambient pressure is

P;e2bm
md/2

b (d12)/2
, ~4.1!

whereas the heat absorbed by the mirror adds a weight
area of

W

A
;e2bmS m

b D (d11)/2

;PAmb@P. ~4.2!

We see that, in this case also, the additional weight is m
than sufficient to prevent self-acceleration.

Some readers may feel that our analysis does not
place bounds on perfect mirrors, but shows instead that
fect mirrors do not exist at all. They may point out that if th
mirror thermalizes with the exterior, it must also radiate th
mally into the interior ~and vice versa!. Thus, the mirror
couples the inside with the outside. This is of course true
some extent, but one did not need to count the internal
grees of freedom to make this argument. The relevant qu
tion is whether the time scale for this energy flow can
made arbitrarily long. Certainly, our arguments require tha
minimum number of degrees of freedom interact with t
bulk fields on a short time scale. That they need not inter
equally quickly with the interior of the box can be mad
clear by considering a layered mirror composed of seve

e,
y
her

12One expects that a mirror field of greater mass would be una
to adjust sufficiently quickly to reflect the bulk field. On the oth
hand, making the mirror field lighter than the bulk field would on
strengthen our case.
4-6
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copies of the simple mirrors studied above. The time sc
for transmitting energy between the interior and exterior w
grow without bounds as more and more mirrors are adde
the laminate.13

In Sec. III we considered the implications of our earli
conclusions for the generalized second law discussions
ducted by Bekenstein@9# and Unruh-Wald@8#, which histori-
cally were the source from which the self-accelerating b
paradox arose. Since the main point at issue in those dis
sions was the relative importance of the buoyant force o
mirrored box, one might think that our results would mod
the terms of the debate, and in that way perhaps resolve

In the event, however, it seems that the former has
curred without the latter. In particular, we constructed a va
ant of the derivation of@8# which arrives at similar conclu
sions without assuming that the box will float. Our derivati
is independent of Sec. II and therefore applies equally we
solitonic mirrors as to LIDOF mirrors. However, we no
recognize that the interesting regime is one in which
boxes themselves become an important constituent of
thermal atmosphere.

Let us reflect in more detail on what we have learn
from these latter calculations. Some boxes, such as th
satisfying the entropy boundS/E,2pR of @9#, were long
ago established to be ‘‘safe’’ in the sense that lowering s
a box into a black hole respects the second law even w
the thermal atmosphere of the black hole is ignored. In
current language such boxes always haveFbox.0 since their
large size keeps the box far enough from the horizon that
have T<(2pR)21. Our calculation once again finds th
such boxes are safe and, furthermore, that the existenc
such boxes is consistent with any additional assumpti
about the black hole’s thermal atmosphere so long asFrad
,0 ~which in turn is equivalent to positivity of the pressu
if the Gibbs-Duhem relation holds!. The assumption that th
atmosphere~and in particular the contributions of boxes a
antiboxes! can be neglected amounts to takingFrad50.

However, if we imagine a box that violates the abo
entropy bound then, as it descends toward the horizon
the ambient temperature increases, one may indeed en
region whereFbox,0. In this case, neglect of the therm
atmosphere would lead to an apparent violation of the sec
law. Similarly, suppose one makes some other assumptio
to the nature ofFrad . For example, one might assume th
Frad is dominated by the contributions from a certain clasC
of states, leading to a relation of the formFC5Frad . If the
Gibbs-Duhem relation holds for this class of states, Eq.~3.3!
requires the restrictionFbox.FC for the generalized secon
law to hold. However, since the free energy controls the
evance of an object or class of states to a thermal ensem
the existence of a region withFC.Fbox implies simply that
thermal fluctuations in this region include box-antibox pa
in significant numbers and that the class of statesC does not
in fact dominate their contribution to the free energy.

13Note, however, that the next few layers of our multi-layer mirr
will also interact quickly with the bulk fields and thus absorb ev
more heat from the thermal bath.
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When a box enters such a region several new occurre
would seem to be possible which might~or might not! inter-
vene to protect the second law. First, there might be a
nificant probability that our box would be destroyed by co
lision with an antibox. If this happened, we could extract
further energy by trying to lower it adiabatically. Secon
with boxes being produced thermally we might observe o
being emitted from the black hole—and when combin
with the destruction of our own box by an antibox we mig
well interpret this as our box ‘‘bouncing off’’ the therma
atmosphere.

Of course, such effects would not be needed if the ana
sis of Sec. III could be taken over unchanged to the n
regime. The key point here is that if boxes now dominate
thermal radiation, we haveFbox5Frad as an identity, whence
dS would vanish identically even if it were somehow mea
ingful to lower the box to this depth and drop it into th
black hole. In this way, one would again maintain the gen
alized second law without appealing to novel entro
bounds. However, it is an open question14 whether the fluid
model we used in Sec. III could be adequate for comput
the ‘‘buoyant force’’ on the box in a domain where box
~and box fragments! become a dominant component of th
thermal radiation.15 We used such a model in at least thr
ways: to justify the ‘‘work’’ termPV in Eq. ~3.2!; to justify
using the Gibbs-Duhem relation, which depends on the lo
homogeneity and isotropy of a fluid; and to justify the a
sumption that free energy changes are additive when
replaces the box by an equal volume of thermal radiation16

The status of entropy bounds~in the sense of universa
bounds that would hold in an arbitrary theory! thus remains
elusive. There seems to exist neither a conclusive argum
that they must hold nor a conclusive argument to
contrary.17 The main contribution of the above analysis

14Most of these uncertainties relate to ‘‘finite size effects’’ in th
broad sense of the term. See for example the comments in@12#
about the effects of finite wavelength on the scattering of ther
radiation. And no one who harbored such doubts before is likely
be any happier when they are told that now one is talking abo
fluid of box-antibox pairs rather than photons.

15More generally, the critical question is whether the thermal
mosphere can provide sufficient buoyancy to ensure that the w
gained by lowering the box~including its mirrored walls! is not so
great as to exceed the box’s initial entropy appropriately weigh
by the black hole temperature.

16Notice also that, even for more ordinary thermal radiation,
fact that~in the regimes of interest! the box is never more than on
or two thermal wavelengths from the horizon calls into question
adequacy of ignoring the inhomogeneities and anisotropies indu
by boundary conditions at the box walls.

17It used to be thought that a world with exponentially many sp
cies N of particles/fields could serve as a counterexample~e.g.
@27#!, but this also can be questioned, at least in the case of an
bound likeS,A/G, as it neglects theN-dependent renormalization
of Newton’s constant 1/G. As envisioned in connection with en
tanglement entropy@28# by @29# and @30#, this correction would, if
the arguments of@29# are correct, more than compensate the co
tribution of a largeN to S. See, however,@31# and @32# for com-
ments on the ideas of@29#.
4-7
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this connection is probably to demonstrate that the ques
cannot be decided without consideration of a putative n
regime in which thermal ‘‘radiation’’ would no longer b
dominated by massless fields.18 In opposition to earlier sug
gestions that~in the context of adiabatic box lowering! the
second law necessarily fails in the absence of entr
bounds, we have suggested plausible mechanisms for m
taining the second law in this new regime. On the other ha
we certainly have not analyzed these mechanisms fully an
would not seem to be an easy task to do so.

The attentive reader may point out that the discussion
@8# showed the second law to be only marginally satisfi
when the box was filled with thermal radiation. Since mo
energy is removed from the system in our scenario than
that of @8#, the energy of the box should be less at any hei
and, if the box is dropped from the putative floating poi
less energy would be transferred to the black hole. Thus,
might wonder how we can avoid second law violations
this case. Clearly, to raise this objection one must tentativ
assume that the thermal radiation mentioned above does
include significant numbers of box-antibox pairs.

However, without the inflow of heat into the walls, ou
box was chosen to be indistinguishable from thermal rad
tion at the putative floating point. Thus, without this inflow
it is exactly at this point thatFbox5Frad would first be
achieved. The issue just raised may be resolved if the
effect of the heat inflow is to lower the free energy of t
box, so that this transition occurs higher in the black hol
thermal atmosphere.

To see that this is the case, we divide the energyEbox into
E0, the locally measured energy of the box before it w
lowered toward the black hole andQ, the total heat that
flowed into the box while being lowered. We further wri
Q5*q(z)dz where q(z) represents the locally measure
heat that flowed into the box between depthsz and z1dz.
Similarly, we divide the entropy of the box into the initia
entropyS0 present before the box was lowered and the
tropy gainSQ resulting from the heat absorbed by the bo
The free energy of the box is thus

Fbox5E02TS01Q2TSQ . ~4.3!

18Notice that the analysis in Sec. II of whether a mirrored box c
self-accelerate/float would also have to be reopened in such
gime.
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We wish to showTSQ.Q so thatFbox,E02TS0. But
since the heat flow occurred without work being done~in
particular, without changing the volume of the box!, a local
application of the first law of thermodynamics yields

TSQ5TE dz
q~z!

T~z!
.Q. ~4.4!

In the last step we have merely used the fact that the t
perature is greatest at the lowest point yet reached by the
~i.e., the current depth! so thatT.T(z). Thus we see that for
what would have been the marginal case, box-antibox p
already dominate the thermal radiation at the would-be flo
ing point.

A final question is whether the results of Sec. II abo
might not be germane in analyzing some of the ‘‘time m
chines’’ that people have tried to imagine. While we know
no direct application, many of the ‘‘materials science’’ issu
that arise, for example, in attempts to hold open ‘‘worm
holes’’ are similar to those involved in analyzing boxes w
impermeable, rigid walls, like those we have been consid
ing in this paper. This suggests that a very general prop
of such walls, like that conjectured in Sec. II, could turn o
to be important in the ‘‘time machine’’ context as well.
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