
PHYSICAL REVIEW D 66, 104002 ~2002!
Oscillations of general relativistic superfluid neutron stars
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We develop a general formalism to treat, in general relativity, the nonradial oscillations of a superfluid
neutron star about static~non-rotating! configurations. The matter content of these stars can, as a first approxi-
mation, be described by a two-fluid model: one fluid is the neutron superfluid, which is believed to exist in the
core and inner crust of mature neutron stars; the other fluid is a conglomerate of all charged constituents~crust
nuclei, protons, electrons, etc.!. We use a system of equations that governs the perturbations both of the metric
and of the matter variables, whatever the equation of state for the two fluids. The entrainment effect is
explicitly included. We also take the first step towards allowing for the superfluid to be confined to a part of the
star by allowing for an outer envelope composed of ordinary fluid. We derive and implement the junction
conditions for the metric and matter variables at the core-envelope interface, and briefly discuss the nature of
the involved phase transition. We then determine the frequencies and gravitational-wave damping times for a
simple model equation of state, incorporating entrainment through an approximation scheme which extends
present Newtonian results to the general relativistic regime. We investigate how the quasinormal modes of a
superfluid star are affected by changes in the entrainment parameter, and unveil a series of avoided crossings
between the various modes. We provide a proof that, unless the equation of state is very special, all modes of
a two-fluid star must radiate gravitationally. We also discuss the future detectability of pulsations in a super-
fluid star and argue that it may be possible~given advances in the relevant technology! to use gravitational-
wave data to constrain the parameters of superfluid neutron stars.
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I. INTRODUCTION

Ever since the realization that Cepheids are stars un
going radial pulsation@1#, the oscillation of stars has been a
important research area. With much improved sensitivity,
servations over the last few years have established a plet
of pulsating stars. The best case by far is provided by the
for which it is known @2# that many high order pressurep
modes, and perhaps also the gravityg modes and the Coriolis
restoredr modes, are excited. By combining observation
data with theoretical models researchers have been ab
infer details of the Sun’s internal structure, e.g. the sou
speed at different depths. These impressive results of
called ‘‘helioseismology’’ provide inspiration for further re
search into stellar oscillations and the hope that ‘‘asteros
mology’’ @3# will help further unveil details of the structur
of distant stars. The purpose of this paper is to advance
modelling of non-radial oscillations of non-rotating, old an
cold neutron stars that contain superfluid components.

Within the framework of general relativity oscillatin
compact stars provide an interesting potential source
gravitational radiation. There are several scenarios in wh
one would expect a neutron star to pulsate wildly, e.g. f
lowing its formation in a gravitational collapse, and it
interesting to ask whether the associated gravitational wa
could be detected on Earth. Should this be the case, one
hope to use the gravitational-wave data to probe the st
interior and possibly put constraints on the supranuc
equation of state@4,5#.
0556-2821/2002/66~10!/104002~22!/$20.00 66 1040
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In the last few years much attention has been focusse
gravitational-wave driven mode instabilities in rapidly rota
ing stars. Ever since the seminal work of Chandrasek
Friedman and Schutz@6–8# in the 1970s it has been know
that gravitational waves can drive various modes of osci
tion unstable, and recently it has been shown that thr
modes are particularly susceptible to this instability@9,10#.
Most astrophysicalr-mode scenarios regard hot young ne
tron stars, but it has also been proposed@11# that the insta-
bility may operate in mature accreting neutron stars, e.g
low-mass X-ray binaries. These stars are expected to h
core temperatures well below the superfluid transition te
perature, and hence any detailedr-mode model would need
to account for superfluidity. This is particularly importa
since mutual friction may provide a strong dissipati
mechanism on any mode in a superfluid star@12#. In addition
to this, it has been argued that the presence of a visc
boundary layer at the base of the crust of a mature neu
star will lead to a very strong damping on ther modes@13#.
While the issue of mutual friction has been discussed
Lindblom and Mendell@14# there are as yet no studies o
dissipation due to a ‘‘realistic’’ core-crust interface, which
likely to involve the transition from a regime where supe
fluid neutrons co-exist with a lattice of crust nuclei to a r
gion composed of superfluid neutrons and~possibly super-
conducting! protons.

Further motivation for our current work is provided b
results of attempts to model the equation of state at su
©2002 The American Physical Society02-1
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nuclear densities. Many modern equation of state calc
tions ~within relativistic mean field theory! predict a sizable
hyperon fraction at high densities. However, the hyperons
as an effective ‘‘refrigerant’’ which means that the star wou
cool very fast. In fact, it has been argued that the presenc
hyperons would lead to core temperatures well below th
indicated by observations. The favored resolution to t
problem corresponds to the hyperons being superfluid
addition, neutron stars may have cores composed of de
fined quarks which may also pair into exotic superflu
states. In other words, if we want to understand the dynam
of the core of a realistic mature neutron star we have to al
for one~or more! partially decoupled superfluid componen

The need for an improved understanding of these pr
lems was recently emphasized by the suggestion that
presence of hyperons in the deep core would lead to a st
bulk viscosity which could potentially completely suppre
the unstabler modes@15,16#. This suggestion brings ma
difficult issues to the top of the agenda. For example, a
tailed study of unstable modes must necessarily accoun
the fact that a superfluid component may move relative to
normal fluid component. One might expect this to have
significant effect on the estimates of time scales for an
stable mode. Furthermore, as has been pointed out by An
sson and Comer@17#, one would expect new classes ofr
modes~and indeed other inertial modes! to exist in a super-
fluid star. This means that the superfluid problem is likely
be richer than the ordinary, single fluid, one. Given that th
have not yet been any detailed investigations into these
sues it may be premature to draw any definite conclusi
regarding the effect that superfluidity may have on mo
instabilities.

It is clear that a considerable amount of work on st
with one, or several, superfluid components remains to
done before we can claim to have an understanding of p
sible instabilities in mature neutron stars. These proble
provide strong motivation for our current work.

Studies of oscillating superfluid stars were pioneered
Epstein@18#, who was the first to suggest that there ought
exist modes of oscillation that are unique to the superflu
These modes have since been calculated both in Newto
theory@19–21# and general relativity@22,23#. It is now well
established that a simple two-fluid model of a superfluid n
tron star core has two families of fluid pulsation modes. T
first of these is essentially the standard pressurep modes, for
which the two fluids tend to move together. The superfl
modes, on the other hand, are distinguished by the fact
the two fluids are~to some extent! counter-moving@22,17#.
Another distinguishing characteristic of the superfluid mod
is that their mode frequencies have a fundamental dep
dence on entrainment. Andersson and Comer@17# have used
a local analysis of the Newtonian superfluid equations
show that the modes are essentially acoustic in nature,
frequencies that qualitatively depend on the stellar par
eters as

vs
2;

mp

mp*
l ~ l 11!

r 2 cp
2 ~1!

wherecp is ~roughly! the speed of sound in the proton flui
10400
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mp andmp* are the bare and effective proton masses, resp
tively, r is the radial coordinate, andl is the index of the
relevant spherical harmonicYlm(u,f). These results have
recently been confirmed by detailed mode calculations@21#.
The strong dependence of the superfluid modes on par
eters that are difficult to constrain otherwise suggest a s
egy that may be used in conjunction with future observatio
to narrow down the theoretical uncertainties@23#. Specifi-
cally, an observational determination of the mode frequ
cies of an oscillating neutron star could perhaps be use
constrain the proton effective mass in dense nuclear ma
This would have immediate implications for BCS energy g
calculations since the effective mass is part of the requ
information ~see, for instance, Khodel, Khodel, and Cla
@24#!.

In this paper we concentrate on the equations that
scribe polar perturbations~even parity! of a general relativ-
istic superfluid neutron star, using as our starting point
formalism developed by Comer, Langlois, and Lin@22#. The
neutron star is assumed to consist of two distinct region
core consisting of matter in superfluid states and an enve
of ordinary fluid matter. We report progress in three imp
tant directions. First, we have obtained the first ever res
for gravitational-wave damping rates of the superfluid os
lation modes. This is important as it allows us to assess
relevance of these modes for gravitational-wave astrono
Secondly, we have developed a framework in which a sup
fluid region can be matched to an ordinary fluid regi
~Lindblom and Mendell@19# have employed a similar mode
in the Newtonian regime!. The introduction of an ordinary
fluid envelope is the first step towards allowing for the pre
ence of superfluids that are confined to distinct regions in
star. However, it is important to point out that since we
not incorporate elasticity in our model the envelope does
play the same role as the crust of a mature neutron sta
essence, our model corresponds to a star in which the fl
degrees of freedom contain a conglomerate ‘‘proton’’ flu
~consisting of nuclei and electrons in the envelope, and e
trons and superconducting protons in the core! that extends
from the surface to the center of the star and superfluid n
trons that exist only in the core. We work out the releva
junction conditions at the core-envelope interface and de
mine the quasinormal modes for such a neutron star mo
Thirdly, we have included a simple model for the so-call
entrainment effect, based on an explicit equation of state
an approximation that assumes that the fluid velocities
small compared to the speed of light. This allows us to p
vide the first detailed results concerning the effect that
trainment has on the oscillation modes of a superfluid s
As we will show, the modes undergo a series of so-cal
‘‘avoided crossings’’ when the strength of entrainment is v
ied.

The main body of the paper begins with a discussion
Sec. II, of the basic formalism used to describe non-rad
linearized oscillations of general relativistic superfluid ne
tron stars. This contains a discussion of the backgrou
static spherically symmetric equilibrium configurations, a
the introduction of the variables that are used to model
non-radial oscillations. We also describe the key details
2-2
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the numerical approach we have used to solve the linear
Einstein or superfluid field equations. The equation of st
and inclusion of the entrainment effect are described in S
III, and the results of our numerical analysis are presente
Sec. IV. In Sec. V we prove that all pulsation modes o
superfluid star must radiate gravitational waves, unless
equation of state belongs to a very special class. Finally,
consider in Sec. VI the question of whether or not superfl
modes, excited, for instance, during a pulsar glitch, can
reliably extracted from gravitational-wave data. Some fi
remarks are offered in the concluding Sec. VII. For clarity
presentation and emphasis of the main physical results
have relegated some of the formal, mathematical detail
appendixes. Appendix A is devoted to a derivation of t
junction conditions used to tie together the core with
envelope. In Appendix B we present an analytical equat
of state that can be used to incorporate the lowest-orde
fects of entrainment. Finally, in Appendix C a new method is
presented which can be used to accurately determine l
lived quasinormal modes. We will be using geometriz
units ~except in Appendix B where the speed of light is r
stored! and Misner, Thorne and Wheeler~MTW! @25# con-
ventions throughout the paper.

II. PERTURBATIONS OF SUPERFLUID STARS

In this section we summarize the equations that gov
the equilibrium configurations of the superfluid core and
normal fluid envelope. What must be determined in the c
are the neutron and proton number densities, and two m
coefficients. In the envelope only the proton number den
remains but there are still two metric coefficients to spec
We also describe the complicated set of coupled linear
turbation equations that need to be integrated, and outline
computational strategy that we have adopted. In what
lows, the center of the star is at radial coordinater 50, the
core-envelope interface will be atr 5Rc , and the surface a
r 5R.

A. General relativistic superfluid formalism

The formalism to be used here, and motivation for it, h
been described in great detail elsewhere@22,26–33#. Hence,
we will only mention the key features here. The cent
quantity of the superfluid formalism is the so-called mas
function L. It depends on the three scalarsn252nmnm,
p252pmpm and x252pmnm that can be formed from the
conserved neutron (nm) and proton (pm) number density cur-
rents. The master function is such that, when the two flu
are co-moving,2L(n2,p2,x2) corresponds to the total the
modynamic energy density. Once the master function is p
vided~see Sec. IV for a simple analytic equation of state! the
stress-energy tensor is given by

Tn
m5Cdn

m1pmxn1nmmn , ~2!

where

C5L2nrmr2prxr ~3!

is the generalized pressure, and
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mn5Bnn1Apn , ~4!

xn5Ann1Cpn , ~5!

are the chemical potential covectors. We have also in
duced the partial derivatives

A52
]L

]x2 , B522
]L

]n2 , C522
]L

]p2 . ~6!

The momentum covectorsmn and xn are dynamically, and
thermodynamically, conjugate tonn andpn. The two covec-
tors also make manifest the so-called entrainment effect
affects the dynamics of a superfluid neutron star in a cru
way. It is easy to see that the momentum of one constitu
(mn , say! carries along some of the mass current of the ot
constituent ifAÞ0 ~sincemn is a linear combination ofnn

andpn). On the other hand, ifA50, i.e. if the master func-
tion does not depend onx2, then there is no entrainment.

While the standard one-fluid problem can be expres
solely in terms of the Einstein equations, with the fluid equ
tions of motion being automatically satisfied ‘‘by virtue o
the Bianchi identities,’’ the two-fluid problem is differen
Because of the additional dynamic degrees of freedom a
ciated with the second fluid we need to use also~a subset of!
the fluid equations of motion. The equations that need to
solved, in addition to the Einstein field equations, are t
‘‘continuity’’ equations

¹mnm5¹mpm50. ~7!

These equations represent conservation of the superfluid
trons and the protons separately. Thise means that we ig
‘‘transfusion’’ from one component to the other due to, f
example, weak interactions@31#. This is likely to be a rea-
sonable approximation for the time scales and amplitu
that are relevant for nonradial neutron star pulsation. We a
have two Euler-type equations

nm¹[mmn]5pm¹[mxn]50. ~8!

B. Equilibrium models

In order to determine the background fluid configurati
we need to evaluate the associated metric. We take our e
librium configurations to be spherically symmetric and sta
so the metric can be written in the Schwarzschild form

ds252endt21eldr21r 2~du21sin2udf2!. ~9!

The two metric coefficients are determined from two co
ponents of the Einstein equations, which can be written

l85
12el

r
28prelL,

n852
12el

r
18prelC, ~10!
2-3
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where a prime represents a radial derivative, and it is to
understood thatL5L(n,p) andC5C(n,p) in the interval
0<r<Rc and L5L(p) and C5C(p) in the intervalRc
<r<R.

The equations that determine the radial profiles ofn(r )
andp(r ) in the core have been derived in Comer, Langlo
and Lin @22#. They follow from Eq.~8!, and can be written

A 0
0p81B 0

0n81
1

2
~Bn1Ap!n850,

C 0
0p81A 0

0n81
1

2
~Cp1An!n850, ~11!

where

A 0
05A12

]B
]p2

np12
]A
]n2

n212
]A
]p2

p21
]A
]x2

pn,

B 0
05B12

]B
]n2

n214
]A
]n2

np1
]A
]x2

p2,

C 0
05C12

]C
]p2

p214
]A
]p2

np1
]A

]x2 n2. ~12!

In the coefficients above one setsx25np after the partial
derivatives are taken for the equilibrium configuration.

For the particular model equation of state we use in
numerical calculations the above equations require that
two fluids have a common surface~i.e. n→0 asp→0) if one
assumes chemical equilibrium. The oscillations of such m
els were studied in@22#. Here we want to consider mode
such that the two-fluid regime is enclosed within a sin
fluid envelope. It is easy to build such a model by relaxi
the assumption of chemical equilibrium in the core. By us
such a configuration as background for our perturbat
study we are ignoring ‘‘transfusion’’ between the various p
ticle species which would otherwise lead to chemical eq
librium being restored on the weak interaction time scale

Our models are such that the superfluid neutron num
density is zero in the envelope. Hence, the only matter eq
tion is
10400
e
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C 0
0p81

1

2
Cpn850, ~13!

where now

C522
]L

]p2, C 0
005C12p2

]C
]p2

. ~14!

There are three sets of ‘‘boundary’’ conditions that must
dealt with: a set at the center, one at the interface, and
remaining one at the surface of the star. In view of Eq.~10!,
requiring a non-singular behavior at the center of the s
will impose that l(0)50, and consequentlyl8(0) and
n8(0) must also vanish. This in turn implies, in view of E
~11!, thatp8(0) andn8(0) have to vanish as well. Although
our analysis of the junction conditions at the interface allo
for other possibilities, our numerical calculations assume t
the phase transition that leads to the formation of superfl
neutrons is second order. In other words, we consider
energy density to be continuous atRc . From the analysis
presented in Appendix A, we see that the two metric coe
cients and the pressure must then also be continuous. We
also assume that the proton number density and the pr
chemical potential are continuous at the interface. At the s
face, we will only consider configurations that satisfyp(R)
50. A smooth joining of the interior spacetime to
Schwarzschild vacuum exterior at the surface of the star
plies that the total massM of the system is given by

M524pE
0

R

r 2 L~r !dr ~15!

and thatC(R)50.

C. The linearized field equations

It is well known that all non-trivial pulsation modes of
nonrotating fluid star correspond to polar pertubations~often
referred to as ‘‘even parity’’!. In the so-called Regge
Wheeler gauge@34#, the corresponding metric componen
are
re
dgmn52eivtF enr lH0~r ! ivr l 11H1~r ! 0 0

ivr l 11H1~r ! elr lH0~r ! 0 0

0 0 r l 12K~r ! 0

0 0 0 r l 12sin2uK~r !

G Pl~cosu!, ~16!

wherePl(cosu) are the Legendre polynomials and we have used the fact that it is sufficient to consider them50 case since
the star is spherical@the perturbed variables depend onf as exp(imf)]. This decomposition will be applied to both the co
and the envelope.

Writing the neutron and proton four-currents asnm5num andpm5pvm, whereumum521 andvmvm521, one can show
that in the core the independent components are
2-4
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dui5e2n/2
]

]t
djn

i , dv i5e2n/2
]

]t
djp

i , ~17!

where

djn
r 5e2l/2r l 21Wn~r !Ple

ivt,

djn
u52r l 22Vn~r !

]

]u
Ple

ivt, ~18!

and

djp
r 5e2l/2r l 21Wp~r !Ple

ivt,

djp
u52r l 22Vp~r !

]

]u
Ple

ivt. ~19!

The Lagrangian variations in the neutron and proton num
densities can be written as, respectively,

Dn

n
5dn1n8e2l/2r l 21Wn ,

Dp

p
5dp1p8e2l/2r l 21Wp , ~20!

and the conservation equations~7! for the particle number
currents yield

Dn

n
52r l S e2l/2F l 11

r 2 Wn1
1

r
Wn8G1

l ~ l 11!

r 2 Vn

2
1

2
H02K D , ~21!
10400
er

Dp

p
52r l S e2l/2F l 11

r 2 Wp1
1

r
Wp8G

1
l ~ l 11!

r 2 Vp2
1

2
H02K D . ~22!

Thus, all matter variables can be expressed in terms of
velocity variablesWn,p and Vn,p . In the envelope the only
independent matter variables areWp andVp .

The set of perturbation equations that we solve in
superfluid core have already been listed in@22#, but since our
core-envelope problem requires a slightly different meth
of solution we repeat the relevant equations here. We a
need these equations for the analysis in Sec. V.

First we define~in analogy with Lindblom and Detweil-
er’s @35,36# approach to the one-fluid problem! two new
variables as

Xn[nFen/2

2
mH01e2n/2v2~BnVn1ApVp!G

2e(n2l)/2
n8

r
~B 0

0nWn1A 0
0pWp!, ~23!

and

Xp[pFen/2

2
xH01e2n/2v2~CpVp1AnVn!G

2e(n2l)/2
p8

r
~C 0

0pWp1A 0
0nWn!. ~24!

Then we find that the Einstein and superfluid field equatio
yield an algebraic constraint equation
elF22 l 2 l 2

r 2 2
3

r 2 ~12e2l!28pCGH01F2v2

en
2

l ~ l 11!

2
elS 12e2l

r 2
18pC D GH1

1F22el2nv21el
l 21 l 22

r 2 1e2lS 12e2l

r 2
18pC D S 12

3

2
~12e2l!24pr 2C D GK116pel2n/2~Xn1Xp!50,

~25!

and a system of coupled ordinary differential equations~where we use the definitionD 0
05B 0

0C 0
02(A 0

0)2):

H185
el

r
H01Fl82n8

2
2

l 11

r GH11
el

r
K216p

el

r
~mnVn1xpVp!, ~26!

K85
H0

r
1

l ~ l 11!

2r
H11Fn8

2
2

l 11

r GK28p
el/2

r
@mnWn1xpWp#, ~27!

Wn85
el/2r

2
H01el/2rK 2el/2

l ~ l 11!

r
Vn2S l 11

r
1

n8

n DWn1
C 0

0

n2D 0
0 @e(l2n)/2rXn1n8~B 0

0nWn1A 0
0pWp!#

2
A 0

0

npD 0
0 @e(l2n)/2rXp1p8~A 0

0nWn1C 0
0pWp!#, ~28!
2-5
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Wp85
el/2r

2
H01el/2rK 2el/2

l ~ l 11!

r
Vp2S l 11

r
1

p8

p DWp1
B 0

0

p2D 0
0 @e(l2n)/2rXp1p8~C 0

0pWp1A 0
0nWn!#

2
A 0

0

npD 0
0 @e(l2n)/2rXn1n8~A 0

0pWp1B 0
0nWn!#, ~29!

Xn852
l

r
Xn1

en/2

2 FnmS 1

r
2n8D2n8~B 0

0n1A 0
0p!GH01mnFen/2

4

l ~ l 11!

r
1

v2

2
re2n/2GH11en/2FmnS n8

4
2

1

2r D
2~B 0

0n1A 0
0p!n8GK1

l ~ l 11!

r 2 en/2n8~B 0
0nVn1A 0

0pVp!2e(l2n)/2
v2

r
n~BnWn1ApWp!24pe(l1n)/2

mn

r

3~mnWn1xpWp!1e2(l2n)/2F2
n8

r
~B 0

08nWn1A 0
08pWp!1S 2n8

r 2
1

l82n8

2r
n82

n9

r D ~B 0
0nWn1A 0

0pWp!G ,

~30!

Xp852
l

r
Xp1

en/2

2 FpxS 1

r
2n8D2p8~C 0

0p1A 0
0n!GH01xpFen/2

4

l ~ l 11!

r
1

v2

2
re2n/2GH11en/2FxpS n8

4
2

1

2r D
2~C 0

0p1A 0
0n!p8GK1

l ~ l 11!

r 2 en/2p8~C 0
0pVp1A 0

0nVn!2e(l2n)/2
v2

r
p~CpWp1AnWn!24pe(l1n)/2

xp

r

3~xpWp1mnWn!1e2(l2n)/2F2
p8

r
~C 0

08pWp1A 0
08nWn!1S 2p8

r 2
1

l82n8

2r
p82

p9

r D ~C 0
0pWp1A 0

0nWn!G . ~31!

The equations for the ordinary fluid envelope are obtained by taking then50 limit of the field equations. It is, however, no
quite as straightforward as lettingn→0 in the above set of two-fluid perturbation equations. The reason for this is that we
in places divided through byD 0

0 which vanishes in the one-fluid limit.
In the one-fluid case, the constraint equation becomes

elF22 l 2 l 2

r 2 2
3

r 2 ~12e2l!28pCGH01F2v2

en
2

l ~ l 11!

2
elS 12e2l

r 2
18pC D GH1

1F22el2nv21el
l 21 l 22

r 2 1e2lS 12e2l

r 2
18pC D S 12

3

2
~12e2l!24pr 2C D GK116pel2n/2Xp50. ~32!

The other two equations for the metric are

H185
el

r
H01Fl82n8

2
2

l 11

r GH11
el

r
K216p

el

r
xpVp ,

K85
H0

r
1

l ~ l 11!

2r
H11Fn8

2
2

l 11

r GK28p
el/2

r
xpWp . ~33!

The final two equations are for the fluid and they take the form
104002-6
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Wp85
el/2r

2
H01el/2rK 2el/2

l ~ l 11!

r
Vp2

l 11

r
Wp1

e(l2n)/2r

p2C 0
0

Xp ,

Xp852
l

r
Xp1

en/2

2 FpxS 1

r
2n8D2p8C 0

0pGH01xpFen/2

4

l ~ l 11!

r
1

v2

2
re2n/2GH1

1en/2FxpS n8

4
2

1

2r D2C 0
0pp8GK1

l ~ l 11!

r 2 en/2p8C 0
0pVp2e(l2n)/2

v2

r
Cp2Wp24pe(l1n)/2

~xp!2

r
Wp

1e2(l2n)/2F2
p8

r
C 0

08pWp1S 2p8

r 2
1

l82n8

2r
p82

p9

r D C 0
0pWpG , ~34!
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Xp5pFen/2

2
xH01e2n/2v2~CpVp!G

2e(n2l)/2
p8

r
~C 0

0pWp!. ~35!

This set of equations is identical to that previously us
@36,35# to study the oscillations of normal fluid neutron sta
for a range of supranuclear equations of state.

At the center of the star, the conditions are those given
Appendix A of Comer, Langlois, and Lin@22#, i.e. all func-
tions are regular. At the surface, the conditions are the o
fluid conditions used by Detweiler and Lindblom@36,35#.
The main difference here concerns the interface. The deta
treatment of the interface is discussed in Appendix A.
find that the relativistic junction conditions imply that th
three metric perturbationsH0 ,H1 andK must be continuous
at the interface. We assume thatWn(Rc) is free to vary at the
interface, i.e., the value it takes at the interface is determi
by the general solution produced for the core. We also
sume thatXn(Rc)50, which will be shown below to be
consistent with the chosen equation of state. From the res
presented in Appendix A, we see that two conditions rem
One of these is thatXp must be continuous at the interfac
Recalling that we assume the proton number density
proton chemical potential to be continuous at the interfa
i.e. that we have a second order phase transition, the
condition is thatWp must also be continuous at the interfac

D. Computational strategy

Even though our strategy for integrating the perturbat
equations is similar to that used by Comer, Langlois, and
@22# there are some subtleties associated with the presen
the one-fluid envelope. Hence, it is worthwhile outlining t
approach we have taken to the problem. In the core the
turbation equations can be written as the matrix equation

dY

dr
5Q•Y, ~36!

where
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Y5$H1 ,K,Wn ,Wp ,Xn ,Xp% ~37!

is an abstract six-dimensional vector field. The 636 matrix
Q depends onl, v, the background fields, and the variou
coefficientsA, A 0

0, etc. As was shown by Comer, Langloi
and Lin one need only specify the set of valu
$K(0),Wn(0),Wp(0)% at the center of the star. The remai
ing variables,H1(0), Xn(0), andXp(0), then follow from
the r→0 limit of the perturbation equations. All of the sec
ond derivatives,H19(0), K9(0), etc. are likewise determined
This means that, in order to provide information required
construct the general solution, an integration starting fr
the center must generate three linearly independent solut
Y1 , Y2, and Y3. The corresponding general solution ca
thus be written

Y~r !5(
i 51

3

ciY i~r !, ~38!

whereci ( i 51,2,3) are constants to be determined.
In the envelope the problem is equivalent to the stand

one for a single fluid and our strategy is identical to that
Lindblom and Detweiler@36,35#. We write the perturbation
equations as

dỸ

dr
5Q̃•Ỹ, ~39!

where

Ỹ5$H1 ,K,Wp ,Xp% ~40!

and the matrixQ̃ can be deduced from Eqs.~32!–~34!. At the
surface of the star our solution must satisfy the single c
dition Xp(R)50 ~cf. @35,36#!. This means that we must gen
erate three linearly independent solutions in the envelo
The general solution can therefore be written

Ỹ~r !5(
i 54

6

ciỸ i~r !. ~41!

At the core-envelope interface we must enforce the ad
tional condition thatXn(Rc)50. We also know, from the
2-7
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analysis in Appendix A, that the variablesH1 , K, Wp andXp

should all be continuous across the interface. This means
only the function valueWn(Rc) remains unspecified. This is
however, as it should be since the interface represents a ‘
boundary’’ for the superfluid neutrons.~An analogy can be
made with the water-air interface of the oceans, where
water oscillation is free at the interface.! Our strategy for
solving the problem is based on two steps. First we conti
the three solutions from the envelope into the core assum
in addition thatWn(Rc)50. Then we determine a fourt
solution~needed to generate the general solution in the c!
by assuming thatWn(Rc)Þ0, but that all the other variable
vanish at the interface. This means that we have determ
a general solution of form

Y~r !5(
i 54

7

ciY i~r !, ~42!

whereY i(Rc)5Ỹ i(Rc) for i 54 –6.
The remaining step is to match the various solutions

some pointr 5r m in the core 0<r m<Rc . At r m we must
have

(
i 51

3

ciY i~r m!5(
i 54

7

ciY i~r m!. ~43!

Once we have provided the overall normalization~by speci-
fying one of theci coefficients!, this problem can readily be
solved for the remaining coefficients. This completes the
lution of the interior problem.

To determine the global solution we must also solve
the exterior metric perturbations. This problem reduces
that of integrating the Zerilli equation, cf.@22#. Finally, in
order to find a quasinormal mode~QNM! of the system we
need to identify solutions that correspond to purely outgo
waves at spatial infinity. Our method for determining lon
lived QNMs is described in Appendix C.

III. AN ANALYTICAL ENTRAINMENT MODEL

In order to extend the previous work by Comer, Langlo
and Lin@22# we want to construct a sensible equation of st
that incorporates the entrainment effect. This effect ari
whenever there is a coupling between two interpenetra
fluids, and has the net result that the momentum of one fl
is not simply proportional to that fluid’s velocity. Rather, it
a linear combination of the velocities of both fluids. Henc
when one constituent starts to flow it will necessarily indu
a momentum in the other. However, the entrainment effec
poorly understood, and there are as yet no completed rel
istic models that we can base our discussion on.~The prob-
lem is currently being considered by Comer and Joynt,
we are hopeful that a fully relativistic formalism will soon b
available.! The involved microphysics is, in fact, so unce
tain that the best strategy corresponds to introducing s
convenient parametrization and then studying whethe
variation in the chosen parameters affects the overall pro
ties of the star and/or its modes of pulsation.
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We noted earlier, in Sec. II, that the two chemical pote
tial covectorsmm andxm make manifest the entrainment e
fect by being linear combinations of the conserved four c
rents,nm and pm. Ultimately, this traces back to the mast
function L depending explicitly on the ‘‘entrainment var
able’’ x2. Its presence in the background and perturbat
equations listed in Sec. II is most apparent through the va
of the coefficientsA andA 0

0. In the following we will use an
expansion in terms ofx2 as outlined in Appendix B. At the
heart of this expansion are the dimensionless ratios of
neutron and proton three velocities with respect to the sp
of light. This expansion makes sense since one would ex
these ratios to be extremely small under most circumstan
Then the expansion becomes particularly accurate. The e
tion of state so constructed should have applications to
studies of neutron star QNMs, with both static spherica
symmetric and slowly rotating backgrounds. We thus expa
the master function as

L~n2,p2,x2!5(
i 50

`

l i~n2,p2!~x22np! i , ~44!

wherex22np is expected to be small with respect tonp. It
should be noted that there are combinations other thanx2

2np that could be used in the expansion, the most obvi
being those that are dimensionless, say, (x22np)/np. These
combinations are, however, not convenient in that theA, B,
etc. coefficients require that partial derivatives with resp
to n2 and p2 be taken. The effect of this is that the expa
sions forA, B, etc. would then not take the same form as E
~44! above, since every derivative would bring in extra fa
tors of x2 outside the terms@(x22np)/np# i . A quick glance
at Appendix B shows that if we use an expansion based
x22np the basic form of the expansion is preserved for
coefficients that enter the field equations.

In order to make contact with the Newtonian studies
oscillating superfluid stars we will adopt the particular e
trainment model used by Lindblom and Mendell@14#. To do
this, a point of connection must be made between the c
ficients used in the general relativistic superfluid equatio
and the corresponding Newtonian equations. This connec
can be made by taking the Newtonian limit of the gene
relativistic superfluid equations and then comparing the
namical variables~as in@17#!. In this way the density matrix
componentsrnn , rpp , andrnp of the Newtonian formalism
~cf. @37#! can be directly connected to the analytical entra
ment coefficientl1 of the general relativistic formalism~cf.
Appendix B! and the particle number densitiesn andp. Fol-
lowing this strategy we find thatl1 can be written as

l152
c2mnmp

rnp
2 2rnnrpp

rnp , ~45!

where

mnn5rnn1rnp, mpp5rpp1rnp , ~46!

where mn(p) is the neutron~proton! mass. The particular
model of Lindblom and Mendell@14# sets
2-8
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rnp52emnn, ~47!

wheree is a constant. In the following we will refer toe as
the ‘‘entrainment parameter.’’ From the analysis of Pr
Comer and Andersson@38# one can infer that

e5
mpp

mnn S mp

mp*
21D , ~48!

where mp* is the proton effective mass. Given that 0
<mp* /mp<0.8 ~see, for instance, Sjo¨berg @39#! ‘‘typical’’
values for a neutron star core may lie in the range 0.04<e
<0.2. In the following we take this range as being ‘‘phys
cally reasonable.’’

At this point it is relevant to note that, after all the n
merical work described in this paper had been comple
Prix et al. @38# developed an alternative description of e
trainment. While we could, in principle, have adopted o
formulas here to this new description we have decided no
do this. Such a change would not have affected our disc
sion or the implications of our results in any way.

IV. NUMERICAL RESULTS

A. An analytical equation of state

We will now apply our formalism to a simple model equ
tion of state. We consider the case where each core fluid~at
the lowest order in the expansion presented in Appendix!
behaves as a relativistic polytrope, i.e. we take

l0~n2,p2!52mnn2snnbn2mpp2sppbp. ~49!

This master function is clearly separable inn and p. Using
the formalism developed in Appendix B, the relevant coe
cients are ~for the equilibrium configurations wherex2

5np)

A5e
mnmp

mpp1e~mnn1mpp!
, A 0

050, ~50!

B5
mn

n
1snbnnbn222e

mnmpp/n

mpp1e~mnn1mpp!
,

B 0
05snbn~bn21!nbn22, ~51!

and

C5
mp

p
1spbppbp222e

mnmpn/p

mpp1e~mnn1mpp!
,

C 0
05spbp~bp21!pbp22. ~52!

The pressure and chemical potentials of the core are

C5sn~bn21!nbn1sp~bp21!pbp,

m5mn1snbnnbn21,

x5mp1spbppbp21. ~53!
10400
,

d,

r
to
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Furthermore, one can verify that these coefficients and t
modynamic variables are such that the variableXn must van-
ish at the core-envelope interface, cf. Eq.~23!.

Of course, we must also consider what happens in
envelope. This problem is much simplified because entra
ment is not relevant in the one-fluid case. We get

L~p2!52mpp2sppbp. ~54!

The relevant coefficients are

C5
mp

p
1spbppbp22, C 0

05spbp~bp21!pbp22,

~55!

and the pressure and chemical potential are given by

C5sp~bp21!pbp,

x5mp1spbppbp21. ~56!

We have considered two stellar models. The first mode
identical to model 2 of Comer, Langlois, and Lin@22#, and
has no envelope. The second model has a significant e
lope, and a more realistic~slightly smaller! proton fraction in
the core. The relevant parameters that determine the
models are listed in Table I. In particular, the features of
core/envelope model are illustrated in Fig. 1. The figu
shows the radial profiles of the background neutron and p
ton particle number densities,n(r ) and p(r ), respectively.
The model has been constructed to have the following f
tures that are reckoned to be characteristic of real neu
stars:~i! a mass of about 1.4M ( , ~ii ! a total radius of about
10 km, ~iii ! an envelope of roughly 1 km thickness, and~iv!
a central proton fraction of about 10%.

B. Quasinormal modes

We have calculated the relevant fluid QNMs for our tw
stellar models, and various values of the entrainment par
etere. To put the results in context, it is useful to recall th
basic features of the mode spectrum of a non-rotating, o
nary fluid neutron star. Despite the ordinary fluid system

TABLE I. Parameters describing our stellar models I and
Model I is identical to model 2 of@22#, and has no envelope. Mode
II, on the other hand, has an envelope of roughly 1 km and could
seen as a slightly more realistic neutron star model.

Model I Model II

sn /mn 0.2 0.22
sp /mn 0.5 1.95
bn 2.5 2.01
bp 2.0 2.38
nc (fm23) 1.3 1.21
pc (fm23) 0.741 0.22
M /M ( 1.355 1.37
R(km) 7.92 10.19
Rc (km) — 8.90
2-9
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ing the simplest possible description of the matter in a n
tron star, there is an impressive array of modes. In additio
the expectedf and p modes, which are acoustic in natur
there exist the so-calledw modes@41# which are primarily
due to oscillations of spacetime itself, with little coupling
the fluid of the star. If the equation of state has more than
parameter, and can be considered stratified—for instance
cause of a varying proton fraction—then the star can a
support low-frequencyg modes@42#.

One might expect that the essential doubling of the fl
degrees of freedom due to the presence of a superfluid c
ponent might simply lead to a doubling of the families
modes of oscillation. However, it should not come as a gr
surprise that thew modes in a superfluid neutron star loo
very much like those of the ordinary fluid case@22#. There is
no doubling of modes: Thew modes are a feature of spac
time itself and depend on the curvature induced by the ba
ground fluid rather than the actual nature of the fluid. Bu
is perhaps surprising that the simple expectation of m
doubling is not completely realized for the modes that
due to matter oscillations. As mentioned in the Introducti
it has long been known that the additional fluid degree
freedom leads to the presence of a new set of modes
have been dubbed superfluid modes. They are analogo
the ordinary fluidp modes in that they are predominate
acoustic in nature, cf. Eq.~1!. The situation regardingg
modes is more confusing. Not only are there no new se
pulsatingg modes due to superfluidity, the standard set t
one might expect to exist because of the varying proton fr
tion do not exist either. Inspired by Lee’s@20# numerical
results, Andersson and Comer@17# have used a local analys
of the mode spectrum to show that theg modes disappea
from the spectrum of pulsating modes. They prove that

FIG. 1. The radial profiles of the neutron and proton backgrou
particle number densities,n and p, respectively, for model II. The
model has been constructed to accord well with a 1.4M ( neutron
star determined using the modern equation of state calculate
Akmal, Pandharipande and Ravenhall@40#. For reference, we show
as horizontal lines the number densities at which Akmalet al. sug-
gest that~i! neutron drip occurs,~ii ! there is an equal number o
nuclei and neutron gas, and~iii ! the crust-core interface is located
It should be noted that the latter should not coincide with our co
envelope interface since one would expect there to be a re
where crust nuclei are penetrated by a neutron superfluid.
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‘‘missing’’ g modes exist as two independent sets of deg
erate modes in the space of time-independent perturbat
~the zero-frequency subspace!. Their degeneracy will pre-
sumably be broken if one were to consider a two-fluid s
tem governed by a three parameter equation of state. We
to discuss this issue in detail elsewhere.

Since thew modes are largely unaffected by superfluidi
and we do not expect pulsatingg modes, we focus our dis
cussion on the ordinary fluidf and p modes as well as the
superfluids modes. We mentioned in the Introduction th
there are two characteristics that distinguish thes modes
from their ordinary fluid counterparts:~i! counter-motion of
the neutrons with respect to the protons, and~ii ! a strong
dependence on the parameters of entrainment. We will le
until the next section the discussion on the effects of entra
ment. Hence, we first consider the spectrum of fluid mo
for a model withA50. In Fig. 2 we provide a graph of th
incoming wave amplitude~see Appendix C! versus the real
part of the mode frequency for our superfluid model I. A
discussed in detail in Appendix C, a QNM corresponds
those particular solutions where there is no incoming wav
infinity. Hence, the QNM frequencies correspond to the de
minima that can be seen in Fig. 2. The main feature to no
is the presence of twice as many slowly damped fluid mo
as in the ordinary fluid case, cf. Fig. 6 of@22#.

In the earlier work of Comer, Langlois, and Lin@22#,
there was no attempt at determining the gravitational-w
damping times for either the ordinary fluid or the superflu
modes. The reason for this was the difficulty in determini
complex QNM frequencies with imaginary parts that are
ders of magnitude smaller than the real parts. To deal w
this problem, we have developed a new method, which
outlined in Appendix C. The results we obtain for mode
are given in Table II. As one can see, the ordinary flu
modes have damping rates that are consistent with wha
known from calculations of ordinary fluid neutron sta
@35,36#. It should also be noticed that most of the superflu
modes have gravitational-wave damping rates that are s
lar to the high orderp modes. This is to be contrasted with

d

by

-
on

FIG. 2. This figure shows the asymptotic amplitudeAin as a
function of the~real! frequencyvM for our model I. The slowly
damped QNMs of the star show up as zeros ofAin , i.e. deep
minima in the figure. The first few ‘‘ordinary’’ and ‘‘superfluid’’
modes are identified in the figure, cf. Table III.
2-10
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TABLE II. The oscillation frequency and the associated damping rate~in terms of the real and imaginar
parts ofvM ) for the first few fluid pulsation modes of model I. Thew modes for this model can be found i
Table III of @22#.

Mode f s0 p1 s1 p2 s2

Re vM 0.137 0.157 0.306 0.354 0.585 0.688
Im vM 7.231025 4.231027 6.631026 5.231026 3.231027 5.531028
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recent suggestion, cf. Ref.@43#, that the superfluid modes o
a uniform density model will not radiate gravitationally. I
fact, in Sec. V we provide a proof that all QNMs of a supe
fluid starmustradiate unless the equation of state belongs
a very restricted class. This means that the superfluid mo
could, at least in principle, be relevant for gravitational-wa
asteroseismology. This possibility will be discussed furth
in Sec. VI.

So far we have mainly discussed the results obtained
model I, for which there is no envelope. When we turn
model II, which has an ordinary fluid envelope of roughly
km, we find that the results do not change qualitatively.
particular, we donot find that new modes arise because
the presence of the envelope. At first this may seem a l
bit surprising. Especially since it is well known that an ela
tic crust supports several additional sets of modes. Howe
in our case the absence of new modes is due to the natu
the phase transition at the core-envelope interface. We h
chosen the phase transition to be second order, which m
that the number density of the protons remains smooth as
superfluid neutron component vanishes~at r→Rc). Should
we have taken the phase transition to be first order, i.e.
lowed for a jump in the proton number density atRc , our
calculations would have unveiled a set of interfaceg modes.

C. The effect of entrainment—avoided mode crossings

The two main goals of the work presented in this pa
were ~i! to allow for the presence of a core-envelope tran
tion, and thus in principle be able to consider cases where
superfluid constituent is confined only to a part of the s
and ~ii ! to determine how entrainment affects the QNM fr
quencies. As we will now discuss, the effect of entrainm
can be considerable.
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We have carried out a series of calculations for mode
and entrainment parameters in the ‘‘physical range’’ 0.
,e,0.2. A sample of results are given in Table III. Liste
there are the oscillation frequencies and associated dam
rates for the first few pulsation modes of model II and thr
different values ofe. First of all it is relevant to compare th
results for the case of vanishing entrainment to those
model I, cf. Table II. Recall that the main difference betwe
models I and II is that the latter includes an ordinary flu
envelope. Nevertheless, it is clear from the numerical res
that the QNMs of the two models are qualitatively qu
similar. When we turn to the effect of varying the entrai
ment parameter we find that the superfluid mode frequen
shift considerable, while the ordinary fluid modes rema
virtually unchanged. This is not a surprising result given t
discussion in Ref.@17# and Eq.~1!. It is also relevant to note
that the gravitational-wave damping rates can be stron
affected by a change ine.

As we will now discuss, the effect that a varying entrai
ment has on the damping rate of the modes can be un
stood from the results illustrated in Figs. 3 and 4. Figure
shows how the oscillation frequencies for the first few mod
change as the entrainment parameter is varied within the
ceptable range. The modes that have ordinary fluid beha
i.e. for which the neutrons and protons ‘‘flow together,’’
the limit of vanishing entrainment are shown as solid lines
the figure whereas the superfluid modes, where the neut
and protons are largely counter-moving, are given by
dashed lines. The main feature of the figure is the presenc
so-called avoided crossings. For the higher order mo
~near the top of the figure! there are points in the (e,RevM )
plane where the solid and dashed lines approach each o
but rather than crossing they diverge from each other.
e
at, while
TABLE III. The oscillation frequency and the associated damping rate~in terms of the real and imaginary parts ofvM ) for the first few
fluid pulsation modes of model II. We show results for three different values of the entrainment parametere. These correspond to the cas
of no entrainment as well as the upper and lower limits for the range that we take as ‘‘physically realistic.’’ From this data we see th
the ordinary fluid modes are hardly at all affected by the entrainment, the superfluid mode frequencies vary by as much as 10% ase is varied
within the realistic range.

Mode f s0 p1 s1 p2 s2 p3 s3

e50 RevM 0.112 0.124 0.252 0.288 0.379 0.424 0.502 0.554
Im vM 4.931025 8.931026 1.331025 1.431025 8.031028 1.331027 1.531028 1.731029

e50.04 RevM 0.113 0.130 0.253 0.299 0.382 0.442 0.507 0.577
Im vM 5.331025 5.331026 1.431025 8.531027 9.231028 1.231027 1.231028 4.331029

e50.2 RevM 0.113 0.149 0.257 0.328 0.394 0.491 0.523 0.639
Im vM 5.531025 3.231026 1.431025 3.231027 1.031027 1.231027 2.331029 1.231028
2-11
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interesting aspect of these avoided crossings can be gle
from Fig. 4, which shows the Lagrangian variationsDn and
Dp for the particular modes that correspond to the pointsae
andbe , e50,0.1,0.2, of Fig. 3. For modea the two fluids are
largely counter-moving ase→0, and for modeb the two

FIG. 3. This figure shows how the frequencies of the fluid p
sation modes for our model II vary with the entrainment parame
e. The modes shown as solid lines are such that the two fluids
essentially comoving in thee→0 limit, while the modes shown a
dashed lines are countermoving. As is apparent from the data
higher order modes exhibit avoided crossings ase varies. Recall
that the range taken as ‘‘physically relevant’’ is 0.04<e<0.2. We
indicate byae andbe the particular modes for which the eigenfun
tions are shown in Fig. 4.

FIG. 4. An illustration of the fact that the modes exchange pr
erties during an avoided crossing. We consider two modes, lab
by ae andbe ~cf. Fig. 3!. The mode eigenfunctions are represen
by the two Lagrangian number density variations,Dn andDp ~solid
and dashed lines, respectively!. For modea the two fluids are es-
sentially countermoving in thee→0 limit ~it is a superfluid mode!,
while the two fluids comove for modeb ~it is similar to a standard
p mode!. After the avoided crossing~which takes place roughly a
e50.1) the two modes have exchanged properties.
10400
ed

fluids are then comoving. However, ase→0.2 we see that
the modes have changed character in that it is now moda
that is comoving and modeb that is counter-moving. This
exchange of character of modes is a characteristic of avo
crossings familiar from other problems in stellar pulsati
theory@44#. The presence of avoided crossings between s
lar pulsation modes is familiar from many other situation
but we believe that our results provide the first hard evide
for the presence of this phenomenon in superfluid stars.

From general post-Newtonian arguments, one would
pect the co-moving modes to radiate gravitational wa
more efficiently than the counter-moving superfluid mod
Thus it is not surprising to find that the damping rate o
superfluid mode increases as entrainment is varied and
avoided crossing is approached. In the present context,
effect is probably not distinct enough to be of great releva
but one can argue that it may be of great importance
closely related problems. As has been argued recently@17#,
avoided crossings may be at the heart of recent calculat
of the effect of superfluidity on ther-mode instability. Lind-
blom and Mendell@14# have analyzed the effect of mutua
friction damping on ther modes using the same entrainme
model as we employ here. They found that mutual fricti
was, in general, not effective at damping ther modes. How-
ever, they also found~cf. their Fig. 6! that the mutual friction
damping time could be very small for particular values ofe.
We believe that a proper explanation of this result can
obtained via the avoided crossings phenomenon. The b
idea is that mutual friction should be most effective whe
ever the neutrons and protons are counter-moving, as for
superfluid modes. Andersson and Comer@17# have shown
that there are two sets ofr modes that are quite analogous
the ordinary fluid and superfluid modes discussed in this
per in the sense that one set has the neutrons and pro
comoving whereas the other set has them countermov
Although avoided crossings between these two classesr
modes in a superfluid star have not yet been demonstra
we believe that our current results provide strong support
the idea by demonstrating the presence of avoided cross
in a closely connected situation. We thus assert that the
ticular values ofe for with Lindblom and Mendell find small
mutual friction damping times correspond to stellar mod
for which the two classes of superfluidr modes are close to
an avoided crossing. The veracity of this argument rema
to be confirmed by detailed calculations that we plan to ca
out in the future.

V. ARE THERE NON-RADIATIVE MODES
IN SUPERFLUID NEUTRON STARS?

In this section we digress somewhat and focus our at
tion on a question of principle: Is it possible to have QNM
that do not radiate gravitationally in a superfluid star? T
question is motivated by the simple fact that, while eve
non-radial motion induced in a one-fluid system must lead
the emission of gravitational waves, the situation could c
ceivably be different in the two-fluid case. One can imag
the possibility that the two fluids move in such a way that t
average mass-density flux vanishes identically. In fact, as
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have discussed elsewhere@17#, the superfluid modes are e
sentially of this nature and it has been argued by Sedra
and Wasserman@43# that this could mean that these mod
will not radiate. Of course, one must not forget that, in t
post-Newtonian picture, gravitational waves are associa
with both mass and current multipoles. Thus even the
treme case of a two-fluid oscillation such that the ma
multipoles vanish identically is likely to radiate through th
induced currents. Thus it may be very difficult to set the t
fluids into motion without generating gravitational wave
10400
n

d
x-
-

.

And this is, indeed, the way that it turns out. As we w
prove below, a two-fluid star will~in general! have no non-
radiative~non-axisymmetric! modes.

We consider the superfluid perturbation equations in
special case where the metric is left completely unperturb
i.e. when no gravitational radiation is created. Assuming
given, fixed non-rotating background, we can obtain the c
responding field equations by setting to zero the three me
perturbationH0 , H1, and K. This results in the following
nine equations for six matter variables, cf. Eqs.~25!–~31!:
05Xn1Xp , ~57!

05mnVn1xpVp , ~58!

05mnWn1xpWp , ~59!

Wn852el/2
l ~ l 11!

r
Vn2S l 11

r
1

n8

n DWn1
C 0

0

n2D 0
0 @e(l2n)/2rXn1n8~B 0

0nWn1A 0
0pWp!#

2
A 0

0

npD 0
0 @e(l2n)/2rXp1p8~A 0

0nWn1C 0
0pWp!#, ~60!

Wp852el/2
l ~ l 11!

r
Vp2S l 11

r
1

p8

p DWp1
B 0

0

p2D 0
0 @e(l2n)/2rXp1p8~C 0

0pWp1A 0
0nWn!#

2
A 0

0

npD 0
0 @e(l2n)/2rXn1n8~A 0

0pWp1B 0
0nWn!#, ~61!

Xn852
l

r
Xn1

l ~ l 11!

r 2 en/2n8~B 0
0nVn1A 0

0pVp!2e(l2n)/2
v2

r
n~BnWn1ApWp!1e2(l2n)/2

3F2
n8

r
~B 0

08nWn1A 0
08pWp!1S 2n8

r 2
1

l82n8

2r
n82

n9

r D ~B 0
0nWn1A 0

0pWp!G , ~62!

Xp852
l

r
Xp1

l ~ l 11!

r 2 en/2p8~C 0
0pVp1A 0

0nVn!2e(l2n)/2
v2

r
p~CpWp1AnWn!1e2(l2n)/2

3F2
p8

r
~C 0

08pWp1A 0
08nWn!1S 2p8

r 2
1

l82n8

2r
p82

p9

r D ~C 0
0pWp1A 0

0nWn!G , ~63!
arly
not
m

ions
with

Xn[ne2n/2v2~BnVn1ApVp!

2e(n2l)/2
n8

r
~B 0

0nWn1A 0
0pWp!, ~64!

and
Xp[pe2n/2v2~CpVp1AnVn!

2e(n2l)/2
p8

r
~C 0

0pWp1A 0
0nWn!. ~65!

It is clear that, unless some of these equations are line
dependent the problem is overdetermined and we can
have a non-trivial solution. In order to show that the proble
is in general overdetermined, we use the first three equat
above to rewriteWp , Vp , andXp in terms ofWn , Vn , and
2-13
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Xn , and then substitute the resultant expressions into
remaining six equations. Remarkably, one finds that E
~62! and~63! yield exactly the same result when this subs
tution is done. One also finds that Eqs.~23! and ~24! yield
the same result after the substitution. We are thus left w
Eqs. ~60! and ~61!. After the substitution, these equation
yield the following two equations forWn :

Wn852el/2
l ~ l 11!

r
Vn2

l 11

r
Wn

1
A 0

0

D 0
0 S A 0

02
m

x
C 0

0D S n8

n
2

p8

p DWn

1e(l2n)/2r S C 0
0p1A 0

0n

pn2D 0
0 D Xn , ~66!

Wn852el/2
l ~ l 11!

r
Vn2

l 11

r
Wn

2
B 0

0

D 0
0 S C 0

02
x

m
A 0

0D S n8

n
2

p8

p DWn

1e(l2n)/2r
x

mS B 0
0n1A 0

0p

pn2D 0
0 D Xn . ~67!

In the manipulations we have used repeatedly the ba
ground equations~11! and

m852
1

2
mn8, x852

1

2
xn8. ~68!

In order to complete the argument in a clear way, we rest
ourselves to the case of vanishing entrainment and sepa
equations of state, i.e. we concentrate on the caseA5A 0

0

50. This is not at all necessary, but it simplifies the analy
considerably. Taking the difference between Eqs.~66! and
~67! we require

B 0
0C 0

0S n8

n
2

p8

p DWn1
e(l2n)/2r

pn2 S C 0
0p2

x

m
B 0

0nDXn50

~69!

in order for the problem not to be over-determined. Using
definition of Xn we can rewrite this equation as

el/22nrv2BS C 0
02

nx

pm
B 0

0DVn

1
B 0

0

p S n8B 0
0 x

m
2p8C 0

0DWn50. ~70!

Now using the fact thatx[Cp and m[Bn in the case of
vanishing entrainment, we have
10400
e
s.
-

h

k-

ct
ble

s

e

el/22nrv2~BC 0
02CB 0

0!Vn

1
B 0

0

B S CB 0
0 n8

n
2BC 0

0 p8

p DWn

5el/22nrv2~BC 0
02CB 0

0!Vn50. ~71!

To arrive at the last equality we have employed the ba
ground identities~11! again. Clearly, we are now left with
two possibilities. EitherVn vanishes, or the equation of sta
must be such that

BC 0
02CB 0

050. ~72!

In the first case one can show that the corresponding solu
for Wn is

Wn}
1

nrl 11
. ~73!

This solution is physically unacceptable since it diverges
the center of the star. In other words, ifVn50 we must also
haveWn50, i.e. the trivial solution. It is easy to show tha
the second case requires that the master function be such

8p2
]L

]n2

]

]p2S ]L

]p2D28n2
]L

]p2

]

]n2 S ]L

]n2D50. ~74!

This is clearly a very particular form. We have thus prov
that the QNMs of a superfluid starmust radiate unless the
equation of state belongs to a very special class. The obv
exceptions are~i! when the master function takes the form

L5snn21spp2, ~75!

~ii ! wheneverL depends onn andp in identical ways, and
~iii ! whenn andp are both constant~which is the particular
case considered by Sedrakian and Wasserman@43#!.

It also is worth pointing out that the calculation in th
section was carried out within the Regge-Wheeler gauge,
given possible gauge issues one may worry that this me
that the result is of limited validity. However, the result w
hold in general since we can easily construct gauge-invar
quantities ~such as the Zerilli function! that represent the
gravitational-wave degrees of freedom from the metric p
turbations calculated in any particular gauge. In our case
trivial to see that, if all metric perturbations vanish iden
cally the Zerilli function will be identically zero and no
gravitational waves will emerge from the system.

VI. DETECTABLE GRAVITATIONAL WAVE SIGNALS?

Given that a new generation of gravitational-wave det
tors are likely to be operating at their projected levels
sensitivity within the next year, it is appropriate to conclu
this paper with a brief discussion of a possible future ap
cation of our results. Suppose that the various modes
superfluid neutron star were excited to an amplitude s
that the associated gravitational-wave signal could be
tected. To what extent would it then be possible to solve
2-14
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inverse problem and deduce information concerning the
perfluid parameters? In other words, can we hope to
‘‘gravitational-wave asteroseismology’’ to probe the sup
fluid interior of mature neutron stars? This question has
cently been discussed by two of us@23#, and therefore we
only provide a brief background here.

As has already been discussed by Kokkotaset al. @5#, the
detection of gravitational-wave signals from pulsations
newly born neutron stars could be used to infer the mass
radius of the star. This information would put strong co
straints on the supranuclear equation of state. However,
proposed strategy relies on releasing an energy equivale
something like 1025M (c2 through the QNMs. This would
make the gravitational waves marginally detectable with
second generation detector@such as the Laser interferometr
Gravitational Wave Observatory~LIGOII !#. To assume tha
this amount of energy is radiated may not be unreason
for the wildly pulsating object formed through a strong
asymmetric supernova collapse, but it is difficult to think
a mechanism whereby the oscillations of a mature~and thus
superfluid! neutron star core will be excited to a simila
level. Instead, we take as a ‘‘reasonable’’ order of magnitu
estimate the energy associated with a typical pulsar gli
The released energy can then be estimated as

DE'IVDV'~102621028!IV2 ~76!

whereV52p/P is the rotation rate of the star, andP is the
observed pulsar period. In this formula it is appropriate
use the moment of inertiaI;1045 g cm2 of the entire star,
since the spin-up incurred during the glitch remains on ti
scales that are much longer than the estimated coupling
scale between the crust and the core fluid. By combining
above formula with the data for typical glitches in the Cr
and Vela pulsars, cf. Table IV, we arrive at estimates of
energy associated with typical glitches that accord well w
suggestions in the literature@45,46#.

As is evident from Table IV, we expect a glitch to b
associated with energies of the order of 10213

210212M (c2. In the following we will assume that a simi
lar energy is channeled through the various pulsation mo
This then allows us to use the formulas obtained by Kok
tas et al. @5# to estimate, for a given detector configuratio
the attainable signal-to-noise ratio.

Assume that the gravitational-wave signal from a neut
star pulsation mode takes the form of a damped sinuso
i.e.

h~ t !5Ae2(t2T)/tdsin@2p f ~ t2T!# for t.T ~77!

wheref is the frequency of the QNM,td is its characteristic
damping time, andT is the arrival time of the signal at th

TABLE IV. Data for archetypal glitching pulsars.

PSR P ~ms! d ~kpc! DV/V DE/M (c2

Crab 33 2 1028 2310213

Vela 89 0.5 1026 3310212
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detector@thush(t)50 for t,T]. Using standard results fo
the gravitational-wave flux@5#, the amplitudeA of the signal
can be expressed in terms of the total energy radia
through the mode:

A'7.6310224A DE

10212M (c2

1 s

td
S 1 kpc

d D
3S 1 kHz

f D . ~78!

The signal-to-noise ratio for this signal can be estima
from @5#

S S

ND 2

5
4Q2

114Q2

A 2td

2Sn
~79!

where the ‘‘quality factor’’ isQ5p f td andSn is the spectral
noise density of the detector.

We now combine these estimates with the QNMs fro
Table II. The relevant frequencies and damping times in k
and ms, respectively, are given in Table V. When we co
pare the obtained estimates to the new generation of la
scale interferometric detectors it immediately becomes c
that these signals would be too weak to be detected. Th
illustrated in Fig. 5 where we compare the dimensionle
strain Af Sn for various detector configurations to the es
mated strain caused by the QNM signals.

This does not, however, mean that we should give up
the main idea behind this analysis. We simply have to
knowledge that we are likely to require significant improv
ments in technology if we are to be able to make this int
viable approach. But it seems inevitable that the availa
technology will improve over the next decades. In fact, va
ous groups are already discussing possible improvemen
detector sensitivity that may be achievable in the future.
order to illustrate the levels that are being discussed,
consider the so-called EURO detector, for which the sen
tivity has been estimated by Sathyaprakash and Schutz~for
further details see@47#!. We consider two possible configu
rations.~It should be noted that the noise estimates have b
revised since the analysis presented in@23#. This changes the
estimated signal-to-noise ratios but does not affect the g

TABLE V. The frequency and damping rate for the first fe
modes of our Model I~which is identical to model 2 of Comeret al.
@22#!. We also show the gravitational-wave signal-to-noise rat
resulting from the ‘‘glitch model’’ discussed in the main text. Th
results correspond to an advanced shot-noise limited EURO de
tor with knee frequencyf k55 kHz. The lower estimate is for a
Crab glitch while the upper estimate follows from the Vela data

Mode f (kHz) td(s) S/N

f 3.29 0.092 1.2–19
p1 7.34 1.01 0.4–5.6

s0 3.76 15.75 1.0–16
s1 8.49 1.29 0.3–4.4
2-15
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eral conclusions.! For the first configuration the sensitivity a
high frequencies is limited by the photon shot noise. Th
Sathyaprakash and Schutz suggest that

Sn'10250F3.63109

f 4 1
1.33105

f 2

11.331023f kS 11
f 2

f k
2D G Hz21 ~80!

where we take the knee frequencyf k to be 5 kHz in order to
‘‘tune’’ the detector to typical neutron star oscillation fre
quencies. The second configuration reaches beyond this
by running several narrow-banded~cryogenic! interferom-
eters as a ‘‘xylophone.’’ This leads to a spectral noise den

Sn'10250F3.63109

f 4 1
1.33105

f 2 G Hz21. ~81!

The corresponding noise curves are illustrated, and c
pared to the current generation of interferometers, in Fig
It is immediately clear from Fig. 5 that a EURO detect
would be a superb instrument for studying pulsating neut
stars. This means that previously suggested strategies@5# for
unveiling the supranuclear equation of state may eventu
be put to the test. In fact, as is clear from the estimate
Table V, where we list the signal-to-noise ratio estima
from Eq. ~79!, one should also be able to detect the sup
fluid oscillation modes. The various modes would be marg
ally detectable given this level of excitation and a third ge
eration detector limited by the photon shotnoise. If this lim
can be surpassed by configuring several narrow-banded
terferometers as a xylophone, the achievable signal-to-n

FIG. 5. The spectral noise density for the new generation
laser-interferometric gravitational-wave detectors that will co
online in the next few years~thin lines! is compared to speculativ
estimates for the futuristic EURO detector~thick lines!. A key fea-
ture of this advanced configuration is that it may operate sev
narrow-banded interferometers as a xylophone, thus reaching
sensitivity at kHz frequencies. We also indicate the effect
gravitational-wave amplitudes from the glitch-induced mode os
lations discussed in the text~as represented byheff'Af tdA/2).
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ratio will be excellent. In fact, it is easy to show that fo
modes withQ@1 and frequencies in the kHz regime~i.e. a
typical neutron star oscillation mode! the relevant signal-to-
noise ratio is essentially independent of the exact mode
quency and damping rate. Using Eqs.~78! and ~81! we find
that

S

N
'150A DE

10212M (c2S 1 kpc

d D . ~82!

This means that our glitch estimates would lead to a sign
to-noise ratio in the range 33–515. Hence, it seems plaus
that one will be able to infer the parameters of neutron s
superfluidity. In addition, one might hope to shed light on t
mechanism for pulsar glitches.

We can also confirm that, provided that the modes can
detected, the oscillation frequencies can be extracted w
good accuracy from the data. By combining Eqs.~11! and
~12! from Kokkotaset al. @5# with Eq. ~79! one can obtain a
formula for the signal to noise required to determine t
mode frequency with a relative errors f / f . We get ~since
Q@1 for the modes under consideration! a relation

S S

ND'0.33S 1 s

td
D S 1 kHz

f D S s f

f D 21

. ~83!

From this relation we can deduce that a detection with sig
to noise of~say! 10 would enable one to infer the fluid mod
frequencies with an accuracy of the order of a percent or
With this level of precision one should be able to distingu
clearly between the ‘‘normal fluid’’f and p modes and the
superfluids modes. In other words, in addition to having th
information required to infer the mass and radius of the s
@5#, we could also hope to constrain the parameters of n
tron star superfluidity.

VII. CONCLUSIONS

The main motivation behind the work presented in th
paper is the fact that neutron star physics is not adequa
modelled within Newtonian gravity. It is well known tha
Newtonian results differ greatly from the correct relativis
ones already at the level of determining the mass and ra
of a star with a prescribed central density from a given ‘‘r
alistic’’ equation of state. As far as the QNMs of the star a
concerned, Newtonian studies are useful since they hel
understand the physics of different classes of modes. Bu
the same time it is clear that if we require a detailed mode
the oscillation spectrum of an astrophysical neutron star
must approach the problem from the relativistic point
view. This is particularly crucial if we are interested in th
gravitational-wave damping rates. Furthermore, since ma
neutron stars are likely to contain several superfluid com
nents, it is important that we develop a framework for mo
elling multi-fluid systems in full general relativity. The
present paper represents significant progress towards
goal.

We have considered a core-envelope model, with su
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fluid neutrons being present only in the core of the star wh
the outer region is composed of an ordinary fluid. Our mo
includes a simple, yet reasonable, model for entrainment
we have shown how neighboring QNMs undergo avoid
crossings as the entrainment parameter is varied. Finally
have ruled out the possibility that a two-fluid star could ha
non-radiative pulsation modes, and discussed the pos
detection of gravitational-wave signals from oscillating s
perfluid neutron stars.

In the near future, our aim is to turn our attention to t
oscillations of rotating superfluid stars. This is an exciti
problem area, since various modes of oscillation may
driven unstable by the emission of gravitational waves.
particular recent interest are the so-calledr modes, and the
damping due to superfluid mutual friction. In a recent pa
Lindblom and Mendell@14# showed that mutual friction wa
effective at damping unstabler modes only for very particu-
lar values of the entrainment parameter. Andersson
Comer@17# have speculated that this peculiar behavior mi
be due to the existence of avoided crossings between
classes ofr modes~analogous to the two classes of acous
fluid modes discussed in the present paper!. The results of
the present paper lend support to this idea. Yet it is clear
our understanding of the various involved issues is far fr
complete, and that a considerable amount of work remain
be done before we can model the dynamics of rotating
perfluid neutron stars in a ‘‘realistic’’ way.
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APPENDIX A: THE JUNCTION CONDITIONS

In this appendix will be presented a geometrical appro
to deriving the junction conditions that must be used
smoothly join together an inner superfluid core with an e
terior normal fluid envelope. The junction conditions will b
obtained via an analysis of the first and second fundame
forms associated with the~in general, timelike! hypersur-
faces given by the level surfaces of the generalized pres
C, cf. Eq. ~3!. ~One might consider using the level surfac
of other scalar quantities, such as either of the particle n
ber densities, or the Master functionL. However, we believe
that the pressure is the most natural choice from both m
ematical and physical points of view.! If there are no ‘‘delta-
function-like’’ discontinuities in the pressure, then the fir
and second fundamental forms will be continuous through
the star@25#. Turning the problem around, by demanding t
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continuity of the first and second fundamental forms
smooth joining at the core-envelope interface can
achieved.

Consider that the level surfaces ofC are timelike, i.e. the
normal to these surfaces is given by

N m5
gmn¹nC

A¹mC¹mC
, ~A1!

whereNmN m51. The so-called first fundamental formgmn

~i.e. the induced three-metric! of these level surfaces is

gmn5'm
s'n

tgst , ~A2!

where the ‘‘perp’’ operator'm
s is given by

'm
s5dm

s2N sNm . ~A3!

The second fundamental formKmn ~i.e. the extrinsic curva-
ture! of the level surfaces is defined as

Kmn52'm
s'n

t¹(sNt) , ~A4!

where the parentheses imply symmetrization of the indic
Let us consider the pressure to be of form

C~ t,r ,u!5C0~r !1dC~ t,r ,u!. ~A5!

The components of the unit normalN m are thus found to be

N 052el/22n
dĊ

C08
1e2(l/21n)dg01,

N 15e2l/2~12dg11/2el!,

N 25
el/2

r 2

dC ,u

C08
,

N 350. ~A6!

The non-zero components of the first fundamental form a

g0052en1dg00, g015dg012el
dĊ

C08
,

g1252el
dC ,u

C08
, g225r 21dg22,

g335sin2ur 21dg33, ~A7!

and we also find
2-17
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K005
n8

2
en2l/22el/2

dC̈

C08
1

1

el/2
dġ012

1

2el/2
dg008

1
n8

4
en23l/2dg11,

K015
n8

2 S el/2
dĊ

C08
2e2l/2dg01D ,

K0252el/2S dĊ,u

C08
2

1

2el
dg01,uD ,

K125
el/2

r

dC ,u

C08
,

K2252
r

el/2
2el/2

dC ,uu

C08
2

1

2el/2 S dg228 2
r

el
dg11D ,

K3352sin2uS r

el/2
1cotuel/2

dC ,u

C08

1
1

2 sin2uel/2
dg338 2

r

2e3l/2
dg11D , ~A8!

for the non-trivial components of the second fundamen
form.

Given that a smooth background can be constructed in
pendently of the oscillations, we can assume that the ba
ground and linearized pieces ofgmn andKmn are separately
continuous at the core-envelope interface. We will consi
the background pieces first. For clarity of presentation
matter and metric variables in the envelope will be dist
guished by a tilde. The continuity of the first fundamen
form thus yields for the background

n~Rc!5 ñ~Rc!, ~A9!

and continuity of the second fundamental form implies

n8~Rc!5 ñ8~Rc!, el(Rc)5el̃(Rc). ~A10!

Using the background Einstein equations, and defining

e2l5122m~r !/r , e2l̃5122m̃~r !/r , ~A11!

where

m~r !524pE
0

r

r 2L0~r !dr,

m̃~r !524pE
Rc

r

r 2L̃0~r !dr1C, ~A12!

we find that the background junction conditions implyC

5m(Rc) andC0(Rc)5C̃0(Rc), whereC̃0 and2L̃0 are the
10400
l
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pressure and energy density of the envelope, respective
is also useful to note that the Tolman-Oppenheimer-Volk
equations for the core and envelope imply

C08~Rc!

C̃08~Rc!
5

C0~Rc!2L0~Rc!

C̃0~Rc!2L̃0~Rc!
. ~A13!

Before dealing with the linear perturbations, it will be co
venient to write out the linearized pressure as a function
the fundamental matter and metric variables, for both
core and the envelope. We have used the field equation
help simplify the formulas. The final forms are~for the radial
dependence!

dC5F n8

2rel/2
~mnWn1xpWp!2

1

en/2
~Xn1Xp!G r l

~A14!

and

dC̃5F ñ8

2rel̃/2
x̃ p̃W̃p2

1

eñ/2
X̃pG r l ~A15!

where we have again put a tilde over all the linearized va
ables associated with the envelope. Now, it can be seen
the junction conditions imply that the metric perturbatio
are continuous at the core-envelope interface, i.e.

H0~Rc!5H̃0~Rc!,

H1~Rc!5H̃1~Rc!,

K~Rc!5K̃~Rc!. ~A16!

The matter variables, on the other hand, must satisfy
conditions, which are

x̃~Rc! p̃~Rc!W̃p~Rc!5m~Rc!n~Rc!Wn~Rc!

1x~Rc!p~Rc!Wp~Rc! ~A17!

and

X̃p~Rc!5
C̃0~Rc!2L̃0~Rc!

C0~Rc!2L0~Rc!
@Xn~Rc!1Xp~Rc!#

2
n8~Rc!e

(n(Rc)2l(Rc))/2

2Rc

3S C̃0~Rc!2L̃0~Rc!

C0~Rc!2L0~Rc!
21D x̃~Rc!p̃~Rc!W̃p~Rc!.

~A18!

It is important to notice that the junction conditions donot

imply that dC5dC̃ at the core-envelope interface, b
rather thatdC/C085dC̃/C̃08 . This fact is the clearest dem
onstration why a geometrical approach is crucial for obta
ing the correct junction conditions, since this particular res
2-18
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is a direct consequence of the fact that Schwarzschild-
coordinates cause derivative discontinuities whenever the
ergy density is not continuous. If it is the case thatL0(Rc)
5L̃0(Rc), then we can see from Eq.~A13! that the junction
conditionswill imply dC5dC̃. Having a continuous energ
density also implies thatX̃p(Rc)5Xn(Rc)1Xp(Rc).

APPENDIX B: THE ANALYTICAL EQUATION OF STATE

In this appendix we develop the analytical equation
state used in the main part of the text. The essential stra
is to introduce an expansion based on the assumption tha
fluid velocities are small compared to the speed of light. T
is a reasonable assumption for neutron star pulsations.

1. A Local Analysis of the Entrainment Parameter

Recall that the entrainment variablex2 is given byx25
2nmpm . It is convenient to write each conserved fou
current as in the main text:

nr5nur, pr5pvr, ~B1!

except that now we takeurur52c2 andvrvr52c2 where
c is the speed of light. Iftn andtp denote the proper times o
the neutron and proton fluid elements, respectively, then
world lines of each fluid element are obtained from the fu
tions

xn
m~tn!5„t~tn!,xn

i ~tn!…,

xp
m~tp!5„t~tp!,xp

i ~tp!…. ~B2!

The ‘‘unit’’ four-velocities are thus given by

um5
dxn

m

dtn
, vm5

dxn
m

dtp
. ~B3!

Consider, for the moment, a region within the fluid that
small enough that the gravitational field does not cha
appreciably across the region. In this case, a loc
Minkowski coordinate system can be set up and the me
can be approximated by the flat metric:

ds252d~ct!21d i j dxidxj . ~B4!

Letting un
i 5dxn

i /dt and vp
i 5dxp

i /dt, as well as un
2

5d i j un
i un

j and vp
25d i j vp

i vp
j , one can show that the four

velocity components can be written as

u05
c

A12~un /c!2
, ui5

un
i

A12~un /c!2
, ~B5!

and

v05
c

A12~vp /c!2
, v i5

vp
i

A12~vp /c!2
. ~B6!

With this decomposition one finally obtains for the entra
ment variable
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x25npS 12d i j ~un
i /c!~vp

j /c!

A12~un /c!2A12~vp /c!2D . ~B7!

If it is the case that the individual three-velocities are sm
with respect to the speed of light, i.e. that

uun
i u

c
!1,

uvp
i u

c
!1, ~B8!

then it will be true thatx2'np to leading order in the ratios
un /c and vp /c. This basic fact will be at the heart of th
expansion considered below.

2. The Analytical Equation of State

Given what was just discussed, it makes sense to cons
equations of state that can be expanded like

L~n2,p2,x2!5(
i 50

`

l i~n2,p2!~x22np! i , ~B9!

sincex22np is small with respect tonp. In terms of this
expansion, one can show the following for theA, A 0

0, etc.
coefficients that appear in the field equations:

A52(
i 51

`

i l i~n2,p2!~x22np! i 21,

B52
1

n

]l0

]n
2

p

n
A2

1

n(i 51

`
]l i

]n
~x22np! i ,

C52
1

p

]l0

]p
2

n

p
A2

1

p (
i 51

`
]l i

]p
~x22np! i ,

A 0
052

]2l0

]p]n
2(

i 51

`
]2l i

]p]n
~x22np! i ,

B 0
052

]2l0

]n2 2(
i 51

`
]2l i

]n2 ~x22np! i ,

C 0
052

]2l0

]p2 2(
i 51

`
]2l i

]p2 ~x22np! i . ~B10!

It is important to note thatA 0
0 vanishes if the master functio

is such thatl i are separable inn andp.
The utility of this expansion is especially apparent for t

quasinormal mode calculations, because when any of the
efficients are evaluated on the background, then one setx2

5np, and thus only the first fewl i are needed. In fact, in
our analysis we only retainl0 andl1, where the latter con-
tains the information concerning the entrainment effect.
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APPENDIX C: AN ACCURATE METHOD
FOR DETERMINING LONG-LIVED QNMS

The problem of calculating quasinormal modes of relat
istic systems, such as black holes and neutron stars,
many ways far from trivial. In general, a strategy for findin
QNMs has to involve a prescription for imposing a pu
outgoing wave boundary condition at infinity for a line
second-order differential equation. In the context of t
present paper the relevant equation is that derived by Ze
@48#:

F d2

dr
*
2 1v22V~r !GZ50. ~C1!

Here r * is the standard tortoise coordinate and we have
sumed that the perturbed quantities have a harmonic de
dence on time, i.e. behave as exp(ivt). The effective potential
V(r ) is rather complicated but here we need only know t
it is such that the behavior of a general solution at spa
infinity ~as r * →1`) is

Z;Aout~v!e2 ivr
* 1Ain~v!eivr

* . ~C2!

A QNM of the system is a solution that combines som
physical constraints~no waves coming out of the event ho
rizon in the case of a black hole or a regular solution to
equations for the interior of a star! with purely outgoing
waves,Ain(vn)50, at infinity. Two typical difficulties arise
in the determination of such mode solutions. Both are du
the fact that the QNMs are damped by gravitational radiat
emission, and thus the QNM frequencyvn must be complex
~with a positive imaginary part unless the mode is unstab!.
This means that an outgoing-wave solution to Eq.~C1! will
be exponentially growing asr * →1` and one would, in
principle, need exponentially high numerical precision
discard the ingoing solution. This problem is particula
challenging for rapidly damped modes, like those of bla
holes and the neutron starw modes@49–51#. A second diffi-
culty that arises is relevant for thep modes of a neutron stars
The high orderp modes are damped very slowly by gravit
tional radiation. Thus, the characteristic frequencies are s
that the imaginary part is many orders of magnitude sma
than the real part. Although not as conceptually challeng
as the first QNM problem, the difficulty associated with e
tremely small imaginary parts typically prohibits the dete
mination of any but the first few of the neutron starp modes.
In this appendix we describe a new method for dealing w
this problem. The various mode results presented in the m
body of the paper were obtained using this method.

Let us assume that our relativistic system has a QNM w
complex frequencyvn . Then the solution to the Zerilli equa
tion is such thatAin(vn)50 as r * →` whereasAout(vn)
Þ0 asymptotically. From the fact that the frequency appe
squared in all the relevant perturbation equations~see Sec. II!
we can draw two general conclusions:~i! another outgoing-
wave mode is characterized by2v̄n ~where the bar repre
sents complex conjugation!, and ~ii ! time reversal of an
outgoing-wave mode leads to a solution that correspond
purely ingoing waves at infinity. That is, a solution such th
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at infinity, Aout(2vn)50 while Ain(2vn)Þ0. Moreover, it
follows that a second such solution corresponds tov̄n . As
we will demonstrate below, this information can be very us
ful when trying to identify normal-mode frequencies th
have small imaginary parts.

Most schemes for determining QNMs are based on
merical constructions of the ratiok5Aout/Ain . Assuming
that

Ain~v!;~v2vn! ~C3!

close to a QNM one can try to iterate for the zero ofAin
using a standard scheme such as Mu¨ller’s method. This strat-
egy works fine for rapidly damped modes~and typically also
for the fluid f mode!, but does usually not provide a reliab
estimate for an imaginary part that is several orders of m
nitude smaller than the real part. An alternative method
inspired by resonant scattering problems in quantum the
Letting vn5an1 ibn ~with an andbn both positive! we can
easily identify the real partan from the position of the mini-
mum of the standard ‘‘Breit-Wigner resonance’’ in a graph
loguAinu, cf. the example shown in Fig. 6. It is not all tha
simple to extract the imaginary part, however. To do this o
must approximate the half-width of the peak, e.g. by cu
fitting. To achieve satisfactory precision in this process is
trivial.

To devise a better scheme for determining the damp
rate of a very long-lived QNM, we employ the two gener
properties we deduced earlier. From these it is clear tha
we have a zero ofAin close to the real frequency axis, the
must also be a zero ofAout on the opposite side of the axis
How does that alter the above results? Close to a zero ofAout
we will have

Aout~v!;~v2v̄n!. ~C4!

FIG. 6. A graph of the incoming wave amplitudeAin vs the real
part of the frequency. In the left panel we see a standard ‘‘Br
Wigner resonance.’’ The right panel illustrates the properties of
phase of the ration of the asymptotic amplitudes. We use the lo
tion of the two poles and zeros to deduce the frequency and da
ing rate of a long-lived pulsation mode.
2-20
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Then we immediately see that the absolute value of the r
between the asymptotic amplitudes,k, is a smooth, slowly
varying function of the frequency. But if we consider i
phase, we find some interesting and useful features. We
~for real v)

k'g
v2an1 ibn

v2an2 ibn
~C5!

whereg5g r1 ig i is a complex ‘‘constant,’’ and therefore

Im k

Re k
'

g i@~v2an!22bn
2#12g rbn~v2an!

g r@~v2an!22bn
2#22g ibn~v2an!

. ~C6!

From this we see that, instead of having a singularity av
5an we now have a function with two zeros and two pol
on the real frequency axis, cf. Fig. 6. Provided that the c
culation of the asymptotic amplitudes can be done with s
ficiently high precision, the location of these zeros (z1,2) and
poles (p1,2) can readily be deduced. Given this informatio
one can show that
lio

ot

ys

-

10400
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an'
p1p22z1z2

p11p22z12z2
~C7!

bn'@an~z11z2!2an
22z1z2#1/2

~C8!

g r

g i
'

2bn

p11p122an

5
1

2bn
@2an2z12z2#. ~C9!

It should be pointed out that one gets four equations for
real and imaginary parts of the QNM frequency, as well
the ratio g r /g i . The last equality above can therefore
used as a ‘‘sanity check’’ on the calculation. In essence
provides information about the accuracy of the obtain
quantitites. In practice, this method works very well ev
when the imaginary part of the frequency is more than ei
orders of magnitude smaller than the real part, cf. the res
in Table III.
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