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We develop a general formalism to treat, in general relativity, the nonradial oscillations of a superfluid
neutron star about statioon-rotating configurations. The matter content of these stars can, as a first approxi-
mation, be described by a two-fluid model: one fluid is the neutron superfluid, which is believed to exist in the
core and inner crust of mature neutron stars; the other fluid is a conglomerate of all charged conétitugnts
nuclei, protons, electrons, ecWe use a system of equations that governs the perturbations both of the metric
and of the matter variables, whatever the equation of state for the two fluids. The entrainment effect is
explicitly included. We also take the first step towards allowing for the superfluid to be confined to a part of the
star by allowing for an outer envelope composed of ordinary fluid. We derive and implement the junction
conditions for the metric and matter variables at the core-envelope interface, and briefly discuss the nature of
the involved phase transition. We then determine the frequencies and gravitational-wave damping times for a
simple model equation of state, incorporating entrainment through an approximation scheme which extends
present Newtonian results to the general relativistic regime. We investigate how the quasinormal modes of a
superfluid star are affected by changes in the entrainment parameter, and unveil a series of avoided crossings
between the various modes. We provide a proof that, unless the equation of state is very special, all modes of
a two-fluid star must radiate gravitationally. We also discuss the future detectability of pulsations in a super-
fluid star and argue that it may be possibdven advances in the relevant technolpgy use gravitational-
wave data to constrain the parameters of superfluid neutron stars.
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I. INTRODUCTION In the last few years much attention has been focussed on
gravitational-wave driven mode instabilities in rapidly rotat-
Ever since the realization that Cepheids are stars undeing stars. Ever since the seminal work of Chandrasekhar,
going radial pulsatiofil], the oscillation of stars has been an Friedman and Schuf®—§] in the 1970s it has been known
important research area. With much improved sensitivity, 0bhat gravitational waves can drive various modes of oscilla-
servations over the last few years have_establ;shed a plethofg unstable, and recently it has been shown that rthe
of pulsating stars. The best case by far is provided by the Suﬁllodes are particularly susceptible to this instabily10].

for which it is known[2] that many high order pressupe : .
modes, and perhaps also the gragityodes and the Coriolis Most astrophyslcat-mode scenarios regard hot young neu-
restoredr modes, are excited. By combining observationallfon Stars, but it has also been propoged] that the insta-

data with theoretical models researchers have been able RYity may operate in mature accreting neutron stars, e.g. in
infer details of the Sun’s internal structure, e.g. the soundoWw-mass X-ray binaries. These stars are expected to have
Speed at different depths These impressive results of S&.Ore temperatures We” belOW the SuperﬂUId transition tem-
called “helioseismology” provide inspiration for further re- perature, and hence any detailechode model would need
search into stellar oscillations and the hope that “asteroseig0 account for superfluidity. This is particularly important
mology” [3] will help further unveil details of the structure since mutual friction may provide a strong dissipative
of distant stars. The purpose of this paper is to advance ounechanism on any mode in a superfluid $i]. In addition
modelling of non-radial oscillations of non-rotating, old and to this, it has been argued that the presence of a viscous
cold neutron stars that contain superfluid components. boundary layer at the base of the crust of a mature neutron
Within the framework of general relativity oscillating star will lead to a very strong damping on thenodes[13].
compact stars provide an interesting potential source ofhile the issue of mutual friction has been discussed by
gravitational radiation. There are several scenarios in whicliindblom and Mendel[14] there are as yet no studies of
one would expect a neutron star to pulsate wildly, e.g. fol-dissipation due to a “realistic” core-crust interface, which is
lowing its formation in a gravitational collapse, and it is likely to involve the transition from a regime where super-
interesting to ask whether the associated gravitational wavetuid neutrons co-exist with a lattice of crust nuclei to a re-
could be detected on Earth. Should this be the case, one caion composed of superfluid neutrons afpassibly super-
hope to use the gravitational-wave data to probe the star'sonducting protons.
interior and possibly put constraints on the supranuclear Further motivation for our current work is provided by
equation of statg4,5]. results of attempts to model the equation of state at supra-
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nuclear densities. Many modern equation of state calculam, andm; are the bare and effective proton masses, respec-
tions (within relativistic mean field theopypredict a sizable tively, r is the radial coordinate, andis the index of the
hyperon fraction at high densities. However, the hyperons aglevant spherical harmoni¥,,(6,$). These results have
as an effective “refrigerant” which means that the star wouldrecently been confirmed by detailed mode calculati@is.
cool very fast. In fact, it has been argued that the presence gfj,e strong dependence of the superfluid modes on param-
hyperons would lead to core temperatures well below thosgyers that are difficult to constrain otherwise suggest a strat-
indicated by observations. The favored rgsolutlon to_ thlsegy that may be used in conjunction with future observations
problem corresponds to the hyperons being superfluid. 1y "harrow down the theoretical uncertaintiks]. Specifi-
addition, neutron stars may have cores composed of decogyly an observational determination of the mode frequen-
fined quarks which may also pair into exotic superfluid cjes of an oscillating neutron star could perhaps be used to
states. In other words, if we want to understand the dynamicg,nsirain the proton effective mass in dense nuclear matter.
of the core of a realistic mature neutron star we have to allowris would have immediate implications for BCS energy gap
for one(or more partially decoupled superfluid components. cicyjations since the effective mass is part of the required
The need for an improved understanding of these proby¢ormation (see, for instance, Khodel, Khodel, and Clark
lems was recently emphasized by the suggestion that thegy)
presence of hyperons in the deep core would lead to a strong |, this paper we concentrate on the equations that de-
bulk viscosity which could potentially com_pletely SUPPressgeribe polar perturbation@ven parity of a general relativ-
the unstabler modes|[15,16. This suggestion brings may stic superfluid neutron star, using as our starting point the
d|ff|cult issues to the top of the agenda. For e>_<ample, a desormalism developed by Comer, Langlois, and [22]. The
tailed study of unstable modes must necessarily account f9fetron star is assumed to consist of two distinct regions: a
the fact that a superfluid component may move relative to the e consisting of matter in superfluid states and an envelope
normal fluid component. One might expect this to have &y ordinary fluid matter. We report progress in three impor-
significant effect on the estimates of time scales for an uUngynt girections. First, we have obtained the first ever results
stable mode. Furthermore, as has been pointed out by Andeg gravitational-wave damping rates of the superfluid oscil-
sson and Comef17], one would expect new classes of |5tion modes. This is important as it allows us to assess the
modes(and indeed other inertial modet® exist in a sUper-  rejevance of these modes for gravitational-wave astronomy.
fluid star. This means that the superfluid problem is likely tOSecondIy, we have developed a framework in which a super-
be richer than the ordinary, single fluid, one. Given that thergy ;iq region can be matched to an ordinary fluid region
have not yet been any detailed investigations into these iS(Lindblom and Mendel[19] have employed a similar model
sues it. may be premature to dravy any definite conclusion§, the Newtonian regime The introduction of an ordinary
regarding the effect that superfluidity may have on mode;,ig envelope is the first step towards allowing for the pres-
|nstap|l|t|es. . ence of superfluids that are confined to distinct regions in the
tis clear that a considerable amount of work on starsyar However, it is important to point out that since we do
with one, or several, superfluid components remains to b incorporate elasticity in our model the envelope does not
done before we can claim to have an understanding of possjay the same role as the crust of a mature neutron star. In
sible instabilities in mature neutron stars. These pmb'eméssence, our model corresponds to a star in which the fluid
provide strong motivation for our current work. degrees of freedom contain a conglomerate “proton” fluid
Studies of oscillating superfluid stars were pioneered byconsisting of nuclei and electrons in the envelope, and elec-
Epstein[18], who was the first to suggest that there ought to;;5ns and superconducting protons in the gdhat extends
exist modes of oscillation that are unique to the superfluidfom the surface to the center of the star and superfluid neu-
These modes have since been calculated both in Newtonigp,ns that exist only in the core. We work out the relevant
theory[19-21] and general relativity22,23. Itis now well  ;nction conditions at the core-envelope interface and deter-
established that a simple two-fluid model of a superfluid neusnine the quasinormal modes for such a neutron star model.
tron star core has two_families of fluid pulsation modes. TheThirdIy, we have included a simple model for the so-called
first of these is essentially the standard prespuredes, for  entrainment effect, based on an explicit equation of state and
which the two fluids tend to move together. The superfluidy, 5nhroximation that assumes that the fluid velocities are
modes, on the other hand, are distinguished by the fact thaly4)| compared to the speed of light. This allows us to pro-
the two fluids argto some extentcounter-movind 22,17, yide the first detailed results concerning the effect that en-
Another distinguishing characteristic of the superfluid modes;zinment has on the oscillation modes of a superfluid star.
is that their que frequencies have a fundamental depenks e will show, the modes undergo a series of so-called
dence on entrainment. Andersson and Cof@f have used  «\gided crossings” when the strength of entrainment is var-
a local analysis of the Newtonian superfluid equations tqgqq.
show that the modes are essentially acoustic in nature, with The main body of the paper begins with a discussion, in
frequencies that qualitatively depend on the stellar paramsec. ||, of the basic formalism used to describe non-radial,

eters as linearized oscillations of general relativistic superfluid neu-
, My ll+1) tron stars. This contains a discussion of the background,

W T 2 Cp (1) static spherically symmetric equilibrium configurations, and

. the introduction of the variables that are used to model the

wherec,, is (roughly) the speed of sound in the proton fluid, non-radial oscillations. We also describe the key details of
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the numerical approach we have used to solve the linearized w,=Bn,+Ap,, (4)
Einstein or superfluid field equations. The equation of state
and inclusion of the entrainment effect are described in Sec. x,=An,+Cp,, (5)

[Il, and the results of our numerical analysis are presented in

Sec. IV. In Sec. V- we prove that all pulsation modes of 856 the chemical potential covectors. We have also intro-
super_flmd star must radiate graV|tat|ona_I waves, u_nless thg,ced the partial derivatives

equation of state belongs to a very special class. Finally, we

consider in Sec. VI the question of whether or not superfluid IA aA IA

modes, excited, for instance, during a pulsar glitch, can be A=——, B=—2—, (=—-2—. (6)
reliably extracted from gravitational-wave data. Some final 28 an Ip

remarks are offered in the concluding Sec. VII. For clarity of .

presentation and emphasis of the main physical results, weh® momentum covectorg, and x,, are dynamically, and
have relegated some of the formal, mathematical details tf!€rmodynamically, conjugate tw’ andp”. The two covec-
appendixes. Appendix A is devoted to a derivation of thetors also make manifest the so-called entrainment effect that
junction conditions used to tie together the core with theaff€cts the dynamics of a superfluid neutron star in a crucial
envelope. In Appendix B we present an analytical equatiofVa- It is easy to see that the momentum of one constituent
of state that can be used to incorporate the lowest-order ef#», Say carries along some of the mass current of the other
fects of entrainment. Finally, in AppendC a new method is ~ constituent ifA=0 (sincex, is a linear combination ofi,
presented which can be used to accurately determine long@dPp,). On the other hand, =0, i.e. if the master func-
lived quasinormal modes. We will be using geometrizediion does not depend axf, then there is no entrainment.

stored and Misner, Thorne and Wheel@TW) [25] con-  Solely in terms of the Einstein equations, with the fluid equa-
ventions throughout the paper. tions of motion being automatically satisfied “by virtue of

the Bianchi identities,” the two-fluid problem is different.
Because of the additional dynamic degrees of freedom asso-
ciated with the second fluid we need to use dBsubset of

In this section we summarize the equations that goverithe fluid equations of motion. The equations that need to be
the equilibrium configurations of the superfluid core and thesolved, in addition to the Einstein field equations, are two
normal fluid envelope. What must be determined in the corécontinuity” equations
are the neutron and proton number densities, and two metric
coefficients. In the envelope only the proton number density V,n#=V,p#*=0. @)
remains but there are still two metric coefficients to specify.
We also describe the complicated set of coupled linear peffhese equations represent conservation of the superfluid neu-
turbation equations that need to be integrated, and outline thteons and the protons separately. Thise means that we ignore
computational strategy that we have adopted. In what fol“transfusion” from one component to the other due to, for
lows, the center of the star is at radial coordinateO, the  example, weak interactio81]. This is likely to be a rea-
core-envelope interface will be a&ER., and the surface at sonable approximation for the time scales and amplitudes
r=R. that are relevant for nonradial neutron star pulsation. We also

have two Euler-type equations

II. PERTURBATIONS OF SUPERFLUID STARS

A. General relativistic superfluid formalism

n*Vy, =pHy, =0. 8
The formalism to be used here, and motivation for it, has (k] = PE VX ®

been described in great detail elsewhig®,26—33. Hence,

we will only mention the key features here. The central B. Equilibrium models

quantity of the superfluid formalism is the so-called master | order to determine the background fluid configuration
function A. It depends on the three scalaté=—n,n", e need to evaluate the associated metric. We take our equi-

p?=—p,p* andx?= —p,n* that can be formed from the |ipriym configurations to be spherically symmetric and static,

conserved neutrom(*) and proton p*) number density cur- g the metric can be written in the Schwarzschild form
rents. The master function is such that, when the two fluids

are co-moving— A (n?,p?,x?) corresponds to the total ther- ds?=—e’dt?+erdr?+r3(d 6+ sirfod ¢?). 9
modynamic energy density. Once the master function is pro-
vided (see Sec. IV for a simple analytic equation of stdite  The two metric coefficients are determined from two com-

stress-energy tensor is given by ponents of the Einstein equations, which can be written
T,=Vé,+ptx, +n“u,, 2 1—e
N = —8mrerA,
where r
\P:A_nplup_prp (3) l_e)\
. . [ + A
is the generalized pressure, and v r Bmreny, (10
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where a prime represents a radial derivative, and it is to be 1
understood that = A (n,p) and¥ =¥ (n,p) in the interval cop’+ 5Cpr'=0, (13)
O0=r=<R., and A=A(p) and ¥ =W¥(p) in the interval R,
=sr<R.
The equations that determine the radial profilesngf) ~ Where now
andp(r) in the core have been derived in Comer, Langlois,
and Lin[22]. They follow from Eq.(8), and can be written c= _25_;\2, 680=C+2p2(j—02. (14)

Adp'+B5n’ + %(BnJrAp)v’:O,
There are three sets of “boundary” conditions that must be
1 dealt with: a set at the center, one at the interface, and the
Cop'+Adn'+ E(Cp-f—.An)v’ =0, (11)  remaining one at the surface of the star. In view of @d),
requiring a non-singular behavior at the center of the star
will impose that A\(0)=0, and consequently.’(0) and

where : . TSR
v'(0) must also vanish. This in turn implies, in view of Eq.
9B A A 9A (12, thatp’(0) andn’(0) have to vanish as well. Although
AS=A+ 2—np+2—n*+2—p*+ —pn, our analysis of the junction conditions at the interface allows
d an p IX for other possibilities, our numerical calculations assume that
the phase transition that leads to the formation of superfluid
0 B , JA IA neutrons is second order. In other words, we consider the
Bo=B+2—n+4—np+—p°, - i i
on2 on2 Ix2 energy density to be continuous Bt. From the analysis
presented in Appendix A, we see that the two metric coeffi-
cients and the pressure must then also be continuous. We will
0 ac dA dA :
Cco=c+ 2_2p2+ 4—2np+ —n2, (12 also assume that the proton number density and the proton
p ox chemical potential are continuous at the interface. At the sur-
face, we will only consider configurations that satigfR)
In the coefficients above one setd=np after the partial =0. A smooth joining of the interior spacetime to a
derivatives are taken for the equilibrium configuration. Schwarzschild vacuum exterior at the surface of the star im-

For the particular model equation of state we use in ouplies that the total masdl of the system is given by
numerical calculations the above equations require that the
two fluids have a common surfa@ee. n—0 asp—0) if one R
assumes chemical equilibrium. The oscillations of such mod- M= —47TJ r2 A(rydr (15
els were studied ih22]. Here we want to consider models 0
such that the two-fluid regime is enclosed within a single
fluid envelope. It is easy to build such a model by relaxingand that¥(R)=0.
the assumption of chemical equilibrium in the core. By using
such a configuration as background for our perturbation
study we are ignoring “transfusion” between the various par-
ticle species which would otherwise lead to chemical equi- It is well known that all non-trivial pulsation modes of a
librium being restored on the weak interaction time scale. nonrotating fluid star correspond to polar pertubati@ften
Our models are such that the superfluid neutron numbereferred to as “even parity): In the so-called Regge-
density is zero in the envelope. Hence, the only matter equaAheeler gaugg34], the corresponding metric components

C. The linearized field equations

tion is are
|
e'r'Ho(r)  iwr'"H (1) 0 0
- ior' TIH (r)  eM'Ho(r) 0 0
69,,=—¢€ 0 0 F42K (1) 0 P,(cos#), (16)
0 0 0 r'*2sir? oK (r)

whereP|(cos#) are the Legendre polynomials and we have used the fact that it is sufficient to consider thease since
the star is sphericdthe perturbed variables depend @¢mas expime)]. This decomposition will be applied to both the core
and the envelope.

Writing the neutron and proton four-currentsres=nu* andp*=pv*, whereu ,u*=—1 andv ,v*=—1, one can show
that in the core the independent components are
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A P . g Ap l+1 1
i A= v2___ g¢ [ | — _ ¢l a2 RV V4
su=e oot ovi=e ook, (17) >=rle —2—Wp+rwp}
h I(1+1 1
where +(_rr)vp_§H0_K) (22)

5§L:e—)\/2r|—lwn(r)Pleiwt'
Thus, all matter variables can be expressed in terms of the
velocity variablesw, , andV,, ;. In the envelope the only
independent matter variables arg, andV/,.
The set of perturbation equations that we solve in the
and superfluid core have already been listeddg], but since our
o n2l—1 ot core-envelope problem requires a slightly different method
oép=e T Wy (r)P el of solution we repeat the relevant equations here. We also
need these equations for the analysis in Sec. V.
5§g: _rl—zvp(r){% Peiet, (19 ,First we defing(in analogy with Lin_dblom and Detweil-
er's [35,36 approach to the one-fluid problentwo new

. - . variables as
The Lagrangian variations in the neutron and proton number

4 1-2 d i wt
Sén=—1""2Vo(r) 25 P, (18)

densities can be written as, respectively, g2
Xn=n| - pHo+e "2w(BnV,+ ApV,)
An —N2,1-1
—=dén+n'e Mr' T W,, ,
n (v—x)/zn 0 0
—e T(BOanJrAOpr), (23
Ap
-r_ ra—N2,.1-1
5 Sp+p'e M Tiw,, 20 g
and the conservation equatiofi for the particle number _ v2 w2 2
currents yield Xp=P| 5 XHoTe " (CpVp+AnVy)
An [+1 1 1 I(+1) !
T:—r'(e‘“z - W, + Fwn%__z_r Vv, —e(ufx)/sz(cngijAgan). (29
1 Then we find that the Einstein and superfluid field equations
— -Hg— K/, (21 . . i .
2 yield an algebraic constraint equation
|
J2-1-17" 3 N 20 1(1+1) [1-e™*
r r e’ 2 r2

L 12+1—-2 ) 1-e 3 B ) e
+| —2eM Tw?+ et 2 + et S—+87¥ 1—5(1—e M =42 | |K+16mer VA(X,+ X,) =0,
r
(25
and a system of coupled ordinary differential equatiomsere we use the definitioPg=B3C5— (A9)?):
et N=v o 1+1 et et
H{'=—Hg+ 5 —T Hi+ TK—l&TT(,LLnVn'F)(pr), (26)
. Ho 1(1+1) v 1+1 N eM? Wt oW .
=ty it |5 K= 87— [unWo+ xpWy], 27
eMr I(1+1 I+1 n’ 3
Wn’z—Ho+e“2rK—e“2( )Vn— —w,+ — [e®2r X +n"(BanW,+ AgpW,) ]
2 r r n?D
Ag (N—=v)/2 ' 0 0
- 0[e rXp+ P (AgnW,+CopWy)1, (28
npD,
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0

eMor [(1+1) I+1 p’ By -
Wy’ = ——Ho+eVorK —eM2——v,—| — o Wet IOng[e“ D2 X+ p' (COPWyp+ AINW,) ]
Ag (N=v)/2 ’ 0 0
_ npDO[e rXn+n'(AgpWy+ BonW,) ], (29
0
vl2 vl2 2 ’
X ’——l—X .8 nu S —n'(B3n+AJp) [Ho+ pn ¢ I(Hl)ntw—re"”2 Hy+e"q un L
n r’onto2 r 0 0 0 4 r 2 ! 4 2r
I(1+1 w? n
—(BSn+ASp)n’ K+—( 2 )e”’zn’(BgnVnJrAngp)—e(”‘”)’ZTn(Ban+Apr)—47Te(“”)’2MT
n’' 2n’ N —p! n”
><(,u,an+)(pr)+e()‘”)’2{—T(Bg’nWH+A8’pr)+ IR n'—T)(BgnwnJrAgpwp)],
(30)
vl2 v/2 2 ’
Xy = —ix 48 pxl == |~ p’(€%p+A%n) [Ho+ xp| L) | @ iz, 4 o2 XP vor
p PEA R r 0 0 0 4 2 ! 4 2r
I(1+1 w?
—(Cop+ASn)p’ K+—( - )e”’zp’(Cgpvp+A8nVn)—e(”*”)’ZTp(Cpr+Aan)—47re(“”)’2XTp
o, p/ ’ ’ Zp/ N — ! , p//
X (XPWp+ unW,) +e ( )/2{_7(08 pr+A8 an)+(r—2+ o P —T)(CgpwanAgan)]. (31

The equations for the ordinary fluid envelope are obtained by taking=& limit of the field equations. It is, however, not
quite as straightforward as lettimg— 0 in the above set of two-fluid perturbation equations. The reason for this is that we have
in places divided through b which vanishes in the one-fluid limit.

In the one-fluid case, the constraint equation becomes

2—1-12 3

A 2 —r—z(l—ef}‘)—SW‘I’

+ 87V Hl

e Ho+

o 2

202 1(1+1) A(1—eA
e
e’ 2

r

_a A

[24]—2

—2e V24 et 2 +e2\ K+ 167Te}‘_V/ZXp=O. (32

+

3
+87T\P> ( 1-— E(l—e‘”)—4wr2‘lf

r

The other two equations for the metric are

et N=—v' I+1 et A
Hl,_THO 2 _T H1+_K_16’7T_vap,
. Ho 1(1+1) v’ |+1K g eM? W 23
=5t R T XPWp. (33

The final two equations are for the fluid and they take the form
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eMar I(1+1) I+1 e 12
r_ N2 N2
W,'= > Hote ' TrK—e ; Vy— ; W, + 200 Xp s
P~Co
X, = Lx +eV/2 ——v'|=p'Cop|Ho+ eV/ZI(IJF1)+“)—2re—V’2H
p r p 2 pX r v p Op 0 Xp 4 r 2 1
vl 1o+, @ (xp)?
+ev/2 XP(Z— E) —Cgpp K + r2 ev/2p Cgpvp_e(x V)IZTCpZWp_47Te()\+ v)/2 . Wp
o p/ Zp/ )\r_ V’ p/r
+ N=v)2| _ I »0/ B L r_ 7 0
e rC0 pW, 2 o P T CobPW, |, (34
|
where Y={Hy,K,W,,W,,X,,Xp} (37)
X = e"? H “2,2( is an abstract six-dimensional vector field. The & matrix
p= Pl 5 xHote e (CpVp) Q depends on, w, the background fields, and the various

, coefficientsA, Ag, etc. As was shown by Comer, Langlois,
_e(v—x)/zp_(copw ) (35) and Lin one need only specify the set of values

ro o {K(0),W,(0),W,(0)} at the center of the star. The remain-

ing variables,H,(0), X,(0), andX,(0), then follow from

This set of equations is identical to that previously usedher—0 limit of the perturbation equations. All of the sec-

[36,35 to study the oscillations of r_10rma| fluid neutron stars ond derivativesH’;(0), K”(0), etc. are likewise determined.
for a range of supranuclear equations of state. __This means that, in order to provide information required to
At the center of the star, the conditions are those given ionstruct the general solution, an integration starting from

Appendix A of Comer, Langlois, and Lif@2], i.e. all func-  the center must generate three linearly independent solutions

tions are regular. At the surface, the conditions are the oney, vy, andY,. The corresponding general solution can
fluid conditions used by Detweiler and Lindblof86,35.  thus be written

The main difference here concerns the interface. The detailed

treatment of the interface is discussed in Appendix A. We 3

find that the relativistic junction conditions imply that the Y()=2, ¢Yi(r), (39
three metric perturbatiorid,,H,; andK must be continuous =1
at the interface. We assume thsl(R,) is free to vary at the herec, (i=1,2,3) are constants to be determined.
interface, i.e., the value it takes at the interface is determinew ; T

by th | soluti duced for th We al In the envelope the problem is equivalent to the standard
y the general solution produced for the core. We also asgpg for g single fluid and our strategy is identical to that of

sume thatX,(R.)=0, which will be shown below to be |inqpiom and Detweilef36,35. We write the perturbation
consistent with the chosen equation of state. From the resu'@quations as

presented in Appendix A, we see that two conditions remain.
One of these is thaX, must be continuous at the interface.

day . -
Recalling that we assume the proton number density and d—=Q.Y, (39
proton chemical potential to be continuous at the interface, r
i.e. that we have a second order phase transition, the laﬂhere
condition is thatW, must also be continuous at the interface.
Y={H,K,W,, X} (40)

D. Computational strategy

Even though our strategy for integrating the perturbation2nd the matr>xQ can be deduced from Eq82)—(34). At the
equations is similar to that used by Comer, Langlois, and Lirfurface of the star our solution must satisfy the single con-
[22] there are some subtleties associated with the presence @ifion X,(R) =0 (cf. [35,36)). This means that we must gen-
the one-fluid envelope. Hence, it is worthwhile outlining the€erate three linearly independent solutions in the envelope.
approach we have taken to the problem. In the core the pefhe general solution can therefore be written
turbation equations can be written as the matrix equation

6
dy V(=2 ¢Yi(r). (4D
ar-QY. (36) =

At the core-envelope interface we must enforce the addi-
where tional condition thatX,(R;)=0. We also know, from the
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analysis in Appendix A, that the variablel , K, W, andX, . We noted earlier, in Sec. I, that. the two chemical poten-
should all be continuous across the interface. This means thi@l covectorsu,, andy, make manifest the entrainment ef-
only the function valuaWV,(R,) remains unspecified. This is, fect by being linear combinations of the conserved four cur-
however, as it should be since the interface represents a “fréé€nts,n* and p*. Ultimately, this traces back to the master
boundary” for the superfluid neutrongAn analogy can be function A depending explicitly on the “entrainment vari-
made with the water-air interface of the oceans, where th@ble” X?. Its presence in the background and perturbation
water oscillation is free at the interfageOur strategy for ~equations listed in Sec. Il is most apparent through the values
solving the problem is based on two steps. First we continu€f the coefficientsd and.AJ. In the following we will use an

the three solutions from the envelope into the core assumingxpansion in terms of? as outlined in Appendix B. At the

in addition thatwW,(R.)=0. Then we determine a fourth heart of this expansion are the dimensionless ratios of the
solution(needed to generate the general solution in the)coreneutron and proton three velocities with respect to the speed
by assuming thatV,(R.) # 0, but that all the other variables Of light. This expansion makes sense since one would expect

vanish at the interface. This means that we have determindfiese ratios to be extremely small under most circumstances.
a general solution of form Then the expansion becomes particularly accurate. The equa-

tion of state so constructed should have applications to the
! studies of neutron star QNMs, with both static spherically
Y(f)zz CiYi(r), (42)  symmetric and slowly rotating backgrounds. We thus expand
=4 the master function as

whereY;(R.)=Y;(R,) fori=4-6. o .

The remaining step is to match the various solutions at A(n?,p2x3) =2 Ni(n?,p?)(x3—np), (44)
some pointr=r, in the core G=r,<R.. At r,, we must i=0
have

wherex?—np is expected to be small with respectrip. It

3 7 should be noted that there are combinations other #fan
2 CiYi(rm):z CYi(rm). 43 —np that could be usgd in t_he expansion, the most obvious
=1 =4 being those that are dimensionless, sag{(np)/np. These

, ) ) combinations are, however, not convenient in that.thes,
Once we have provided the overall normalizatloy speci- ot coefficients require that partial derivatives with respect
fying one of thec; coefficients, this problem can readily be {5 n2 ang p2 be taken. The effect of this is that the expan-
solved for the remaining coefficients. This completes the sogjqng forA, B3, etc. would then not take the same form as Eq.

lution of the interior problem. (44) above, since every derivative would bring in extra fac-
To determine the global solution we must also solve foryy < 4fy2 outside the termB(x2—np)/np]'. A quick glance

the exterior metric perturbations. This problem reduces tg; Appendix B shows that if we use an expansion based on

that of integrating the Zerilli equation, cf22]. Finally, in — ,2_ )y he hasic form of the expansion is preserved for all
order to find a quasinormal mod®NM) of the system we coefficients that enter the field equations.

need to identify solutions that correspond to purely outgoing | grder to make contact with the Newtonian studies of
waves at spatial infinity. Our method for determining long- ,qcjjating superfiuid stars we will adopt the particular en-

lived QNMs is described in Appendix C. trainment model used by Lindblom and Menddl4]. To do
this, a point of connection must be made between the coef-
ll. AN ANALYTICAL ENTRAINMENT MODEL ficients used in the general relativistic superfluid equations
and the corresponding Newtonian equations. This connection
In order to extend the previous work by Comer, Langlois,can be made by taking the Newtonian limit of the general
and Lin[22] we want to construct a sensible equation of stateelativistic superfluid equations and then comparing the dy-
that incorporates the entrainment effect. This effect arisesamical variablesas in[17]). In this way the density matrix
whenever there is a coupling between two interpenetratingomponents,, ppp, andp,, of the Newtonian formalism
fluids, and has the net result that the momentum of one fluidcf. [37]) can be directly connected to the analytical entrain-
is not simply proportional to that fluid’s velocity. Rather, it is ment coefficient; of the general relativistic formalisref.
a linear combination of the velocities of both fluids. Hence,Appendix B and the particle number densitinsandp. Fol-
when one constituent starts to flow it will necessarily inducelowing this strategy we find that, can be written as
a momentum in the other. However, the entrainment effect is

poorly understood, and there are as yet no completed relativ- czmnmp
istic models that we can base our discussion(@he prob- M==—5———Pnp; (45)
lem is currently being considered by Comer and Joynt, and Pnp™ PnPpp

we are hopeful that a fully relativistic formalism will soon be
available) The involved microphysics is, in fact, so uncer-
tain thqt the best strategy corresponds to mt_roducmg some MaN=Pant Prp MpP=Ppp+ Prip. (46)
convenient parametrization and then studying whether a

variation in the chosen parameters affects the overall propewhere m,,, is the neutron(protor) mass. The particular
ties of the star and/or its modes of pulsation. model of Lindblom and Mende[l14] sets

where
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Pnp= — €My, (47)

wheree is a constant. In the following we will refer te as

PHYSICAL REVIEW D 66, 104002 (2002

TABLE |. Parameters describing our stellar models | and II.
Model | is identical to model 2 df22], and has no envelope. Model
I, on the other hand, has an envelope of roughly 1 km and could be

the “entrainment parameter.” From the analysis of Prix, Seen as a slightly more realistic neutron star model.
Comer and Anderssdr38] one can infer that

Model | Model Il

myp [ m
- pp(_f_l)’ (48  onlm, 0.2 0.22
myn \ mg op/my, 0.5 1.95
_ , . Bn 25 2.01
where m’; is the proton effective mass. Given that 0.3 20 238
<mj/m,=<0.8 (see, for instance, Sjerg[39]) “typical” ncp(fm*3) 13 121
values for a neutron star core may lie in the range €.64 |, (-3 0.741 0.22
<0.2. In the following we take this range as being “physi- \j/\ 1.355 1.37
cally reasonable.” R(km) 7.92 10.19
At this point it is relevant to note that, after all the nu- 8.90

k I
merical work described in this paper had been complete(fC( m)
Prix et al. [38] developed an alternative description of en-

trainment. While we could, in principle, have adopted ourfyrthermore, one can verify that these coefficients and ther-
formulas here to this new description we have decided not tehodynamic variables are such that the variatjemust van-

do this. Such a change would not have affected our discussh at the core-envelope interface, cf. E2Q).

sion or the implications of our results in any way.

IV. NUMERICAL RESULTS

A. An analytical equation of state

We will now apply our formalism to a simple model equa-

Of course, we must also consider what happens in the
envelope. This problem is much simplified because entrain-
ment is not relevant in the one-fluid case. We get

A(p?)=—myp—o,pPr. (54)

tion of state. We consider the case where each core @id 1 he relevant coefficients are

the lowest order in the expansion presented in Appendix B

behaves as a relativistic polytrope, i.e. we take
Ao(N%,p?)=—myn—o,nfr—mp—o,pPr. (49

This master function is clearly separablernrand p. Using

the formalism developed in Appendix B, the relevant coeffi-

cients are(for the equilibrium configurations wher&?
=np)

mymp,

A: 1
€ m,p-+ e(myn+m,p)

AS=0, (50)

m,myp/n
myp+e(myn+myp) ’

m
B= Tn—l—a-nﬂnnﬁn_z—e

Bg:anﬂn(ﬂn_l)n3"72, (51
and
_my 6-2_ m,myn/p
c= p T opBpp empp+e(mnn+mpp) :
Cg:a’pﬁp(ﬁp_l)pﬁpiz- (52

The pressure and chemical potentials of the core are
V=0,Bn— l)nﬁn"' O'p(,Bp_ 1)po,
/J«:mn""o'nlgnnﬁnil!

X=My+ o pBpPe~t. (53

m
= ?p—ka'pﬁpp’gpﬂv Co=0pBy(Bp—1)pP 72,
(55)

and the pressure and chemical potential are given by
¥ =op(Bp—1)p,

X=My+ 0, BepPr . (56)

We have considered two stellar models. The first model is
identical to model 2 of Comer, Langlois, and Li#2], and
has no envelope. The second model has a significant enve-
lope, and a more realistislightly smallej proton fraction in
the core. The relevant parameters that determine the two
models are listed in Table I. In particular, the features of the
core/envelope model are illustrated in Fig. 1. The figure
shows the radial profiles of the background neutron and pro-
ton particle number densitieg(r) and p(r), respectively.
The model has been constructed to have the following fea-
tures that are reckoned to be characteristic of real neutron
stars:(i) a mass of about 1M, (ii) a total radius of about
10 km, (ii ) an envelope of roughly 1 km thickness, aiiv)
a central proton fraction of about 10%.

B. Quasinormal modes

We have calculated the relevant fluid QNMs for our two
stellar models, and various values of the entrainment param-
etere. To put the results in context, it is useful to recall the
basic features of the mode spectrum of a non-rotating, ordi-
nary fluid neutron star. Despite the ordinary fluid system be-
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FIG. 1. The radial profiles of the neutron and proton background FIG. 2. This figure shows the asymptotic amplitudg as a
particle number densities, and p, respectively, for model IIl. The function of the(rea) frequencywM for our model I. The slowly
model has been constructed to accord well with aMlodneutron ~ damped QNMs of the star show up as zerosAqgf, i.e. deep
star determined using the modern equation of state calculated byinima in the figure. The first few “ordinary” and “superfluid”
Akmal, Pandharipande and RavenHal)]. For reference, we show modes are identified in the figure, cf. Table IIl.
as horizontal lines the number densities at which Aketadl. sug-
gest that(i) neutron drip occurs(ii) there is an equal number of “Missing” g modes exist as two independent sets of degen-
nuclei and neutron gas, ariii ) the crust-core interface is located. erate modes in the space of time-independent perturbations
It should be noted that the latter should not coincide with our core{the zero-frequency subspacé&heir degeneracy will pre-
envelope interface since one would expect there to be a regioaumably be broken if one were to consider a two-fluid sys-
where crust nuclei are penetrated by a neutron superfluid. tem governed by a three parameter equation of state. We plan

to discuss this issue in detail elsewhere.
ing the simplest possible description of the matter in a neu- Since thew modes are largely unaffected by superfluidity,
tron star, there is an impressive array of modes. In addition tand we do not expect pulsatimgmodes, we focus our dis-
the expected and p modes, which are acoustic in nature, cussion on the ordinary fluifl and p modes as well as the
there exist the so-calledr modes[41] which are primarily  superfluids modes. We mentioned in the Introduction that
due to oscillations of spacetime itself, with little coupling to there are two characteristics that distinguish thenodes
the fluid of the star. If the equation of state has more than onérom their ordinary fluid counterpart$t) counter-motion of
parameter, and can be considered stratified—for instance, bthe neutrons with respect to the protons, digl a strong
cause of a varying proton fraction—then the star can alselependence on the parameters of entrainment. We will leave
support low-frequency modes[42]. until the next section the discussion on the effects of entrain-

One might expect that the essential doubling of the fluidment. Hence, we first consider the spectrum of fluid modes
degrees of freedom due to the presence of a superfluid confier a model with A=0. In Fig. 2 we provide a graph of the
ponent might simply lead to a doubling of the families of incoming wave amplitudésee Appendix Cversus the real
modes of oscillation. However, it should not come as a greapart of the mode frequency for our superfluid model I. As
surprise that thev modes in a superfluid neutron star look discussed in detail in Appendix C, a QNM corresponds to
very much like those of the ordinary fluid cg22]. There is  those particular solutions where there is no incoming wave at
no doubling of modes: Ther modes are a feature of space- infinity. Hence, the QNM frequencies correspond to the deep
time itself and depend on the curvature induced by the backminima that can be seen in Fig. 2. The main feature to notice
ground fluid rather than the actual nature of the fluid. But itis the presence of twice as many slowly damped fluid modes
is perhaps surprising that the simple expectation of modes in the ordinary fluid case, cf. Fig. 6 §12].
doubling is not completely realized for the modes that are In the earlier work of Comer, Langlois, and Li22],
due to matter oscillations. As mentioned in the Introductionthere was no attempt at determining the gravitational-wave
it has long been known that the additional fluid degree ofdamping times for either the ordinary fluid or the superfluid
freedom leads to the presence of a new set of modes thatodes. The reason for this was the difficulty in determining
have been dubbed superfluid modes. They are analogous ¢omplex QNM frequencies with imaginary parts that are or-
the ordinary fluidp modes in that they are predominately ders of magnitude smaller than the real parts. To deal with
acoustic in nature, cf. Eq(l). The situation regardingg  this problem, we have developed a new method, which is
modes is more confusing. Not only are there no new set ofutlined in Appendix C. The results we obtain for model |
pulsatingg modes due to superfluidity, the standard set thatire given in Table 1l. As one can see, the ordinary fluid
one might expect to exist because of the varying proton fracmodes have damping rates that are consistent with what is
tion do not exist either. Inspired by Lee[20] numerical known from calculations of ordinary fluid neutron stars
results, Andersson and Coniéi7] have used a local analysis [35,36]. It should also be noticed that most of the superfluid
of the mode spectrum to show that tgemodes disappear modes have gravitational-wave damping rates that are simi-
from the spectrum of pulsating modes. They prove that théar to the high ordep modes. This is to be contrasted with a
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TABLE II. The oscillation frequency and the associated damping(rateerms of the real and imaginary
parts ofwM) for the first few fluid pulsation modes of model I. Tihemodes for this model can be found in
Table Il of [22].

Mode f So p1 Sy P2 S,
Re wM 0.137 0.157 0.306 0.354 0.585 0.688
Im oM 7.2x10°° 4.2x10°7 6.6x10°° 5.2x10°® 3.2x10°7 5.5%x10°8

recent suggestion, cf. Rg#3], that the superfluid modes of We have carried out a series of calculations for model Il
a uniform density model will not radiate gravitationally. In and entrainment parameters in the “physical range” 0.04
fact, in Sec. V we provide a proof that all QNMs of a super-<e<0.2. A sample of results are given in Table IlI. Listed
fluid starmustradiate unless the equation of state belongs tqhere are the oscillation frequencies and associated damping
a very restricted class. This means that the superfluid modegtes for the first few pulsation modes of model Il and three
could, at least in principle, be relevant for gravitational-wavegifferent values ok. First of all it is relevant to compare the
asteroseismology. This possibility will be discussed furtherogits for the case of vanishing entrainment to those for
in Sec. VI. , , , model |, cf. Table II. Recall that the main difference between
So far we have mainly discussed the results obtained fop,,qeis | and 11 is that the latter includes an ordinary fluid
model I, for which there is no envelope. When we turn toenvelope. Nevertheless, it is clear from the numerical results

model I, which has an ordinary fluid envelope of roughly 1 o .
km, we find that the results do not change qualitatively. Inthat. the QNMs of the two models are qu_alltatlvely qu.|te
similar. When we turn to the effect of varying the entrain-

particular, we donot find that new modes arise because of

the presence of the envelope. At first this may seem a Iittlém?nt para.meter we ﬁn(.j that the s.uperfluid. mode frequencjes
bit surprising. Especially since it is well known that an elas-s.hlft considerable, Wh'l.e _the ordinary _fl_wd modes_ remain
tic crust supports several additional sets of modes. HoweveY'.rtua"y. un<_:hanged. This is not a surprising result given the
in our case the absence of new modes is due to the nature IIS(EU;]SIOFI n _I;Qetf[ﬂ]land Eqd(l)' It. IS als? reIevanl; to r:ote |
the phase transition at the core-envelope interface. We havad ; g t(_):]raw i'ona "wave damping rates can be strongly
chosen the phase transition to be second order, which meaft eAc € y.ﬁ‘ c andg.e 18. the effect that . irai
that the number density of the protons remains smooth as the \r/]ve Wi nﬁwd IScuss, the € ?Ch a zijvarymg sn raw(;—
superfluid neutron component vanishesr—R;). Should ment has on the damping rate of the modes can be under-

we have taken the phase transition to be first order, i.e. aﬁLOOd fLom :Ee resg:lltstlnlufstrated n F|?s. tﬁ afnd t‘:" F|gurg 3
lowed for a jump in the proton number density Rt, our Shows how the osciliation Irequencies for the 1irst Tew modes

- : . change as the entrainment parameter is varied within the ac-
calculations would have unveiled a set of interfgamodes. ceptable range. The modes that have ordinary fluid behavior,
i.e. for which the neutrons and protons “flow together,” in
the limit of vanishing entrainment are shown as solid lines in

The two main goals of the work presented in this papeithe figure whereas the superfluid modes, where the neutrons
were (i) to allow for the presence of a core-envelope transi-and protons are largely counter-moving, are given by the
tion, and thus in principle be able to consider cases where théashed lines. The main feature of the figure is the presence of
superfluid constituent is confined only to a part of the starso-called avoided crossings. For the higher order modes
and (ii) to determine how entrainment affects the QNM fre- (near the top of the figujehere are points in thee(Re wM)
guencies. As we will now discuss, the effect of entrainmeniplane where the solid and dashed lines approach each other,
can be considerable. but rather than crossing they diverge from each other. An

C. The effect of entrainment—avoided mode crossings

TABLE lIl. The oscillation frequency and the associated damping (iateerms of the real and imaginary partsofM) for the first few
fluid pulsation modes of model Il. We show results for three different values of the entrainment paranidiese correspond to the case
of no entrainment as well as the upper and lower limits for the range that we take as “physically realistic.” From this data we see that, while
the ordinary fluid modes are hardly at all affected by the entrainment, the superfluid mode frequencies vary by as much assl®fiexs
within the realistic range.

Mode f So p1 S, P2 S, P3 S3

=0 Re wM 0.112 0.124 0.252 0.288 0.379 0.424 0.502 0.554
Im oM  4.9x10°° 8.9x10°% 1.3x10° 1.4x10° 8.0x10°% 1.3x107 15x10% 1.7x10°

€=0.04 RewM 0.113 0.130 0.253 0.299 0.382 0.442 0.507 0.577
Im oM  5.3x10°° 53x10°°% 1.4x10° 85x1077 9.2x10% 1.2x1077 1.2x10% 4.3x10°°

€=02 RewM 0.113 0.149 0.257 0.328 0.394 0.491 0.523 0.639
ImwM  55x107° 3.2x10°°% 14x10° 3.2x107 1.0x1077 12107 2.3x10°° 1.2x10°8
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fluids are then comoving. However, as»0.2 we see that
the modes have changed character in that it is now naode
that is comoving and mode that is counter-moving. This
exchange of character of modes is a characteristic of avoided
crossings familiar from other problems in stellar pulsation
theory[44]. The presence of avoided crossings between stel-
lar pulsation modes is familiar from many other situations,
but we believe that our results provide the first hard evidence
for the presence of this phenomenon in superfluid stars.
From general post-Newtonian arguments, one would ex-
pect the co-moving modes to radiate gravitational waves
more efficiently than the counter-moving superfluid modes.
Thus it is not surprising to find that the damping rate of a
7 superfluid mode increases as entrainment is varied and an
0 . A . A , avoided crossing is approached. In the present context, this
0 0.1 0.2 effect is probably not distinct enough to be of great relevance
€ but one can argue that it may be of great importance in
FIG. 3. This figure shows how the frequencies of the fluid puI-CIOS.e'y relateq problems. As has been argued recghily .
sation modes for our model Il vary with the entrainment paramete voided crossings may b_e at the heart Of rece?‘.‘ CaI(_:uIatlons
e. The modes shown as solid lines are such that the two fluids ar f the effect of superfluidity on themode instability. Lind-
essentially comoving in the— 0 limit, while the modes shown as b!om and Me_ndel[14] have a”a'y,zed the effect of n_”lutual
dashed lines are countermoving. As is apparent from the data, tH&iCtion damping on the: modes using the same entrainment
higher order modes exhibit avoided crossingseagaries. Recall Model as we employ here. They found that mutual friction
that the range taken as “physically relevant’ is 0:04<0.2. We  Was, in general, not effective at damping themodes. How-
indicate bya, andb, the particular modes for which the eigenfunc- €ver, they also founctf. their Fig. 6 that the mutual friction
tions are shown in Fig. 4. damping time could be very small for particular valuesof
We believe that a proper explanation of this result can be

interesting aspect of these avoided crossings can be glean8 ta"ﬁed via the av0|_de_d Crossings phenomenon_. The basic
. . . . Idea is that mutual friction should be most effective when-
from Fig. 4, which shows the Lagrangian variatioks and

Ap for the particular modes that correspond to the points ever the neutrons and protons are counter-moving, as for the
andb,_, €=0,0.1,0.2, of Fig. 3. For modethe two fluids are superfluid modes. Andersson and Com&¥] have shown

largely counter-moving ag—0, and for modeb the two that thgre are tyvo sets ofmodqs that are quite analc_)gou_s to
’ the ordinary fluid and superfluid modes discussed in this pa-
per in the sense that one set has the neutrons and protons
comoving whereas the other set has them countermoving.
Although avoided crossings between these two classes of
. modes in a superfluid star have not yet been demonstrated,
i we believe that our current results provide strong support for
\/\/\r ----------- A& --f the idea by demonstrating the presence of avoided crossings
i | in a closely connected situation. We thus assert that the par-
; ticular values ofe for with Lindblom and Mendell find small
mutual friction damping times correspond to stellar models
for which the two classes of superfluidnodes are close to
an avoided crossing. The veracity of this argument remains
to be confirmed by detailed calculations that we plan to carry
out in the future.

TTAT T T TTT
AN

[=]

P I P NI
0 02 04 06 08 1 0 02 04 06 08

0 - » V. ARE THERE NON-RADIATIVE MODES
il I NI T il (PR PR P
0 0204 0608 1 0 0204 0608 1 0 02 04 06 08 1 IN SUPERFLUID NEUTRON STARS?

FIG. 4. An illustration of the fact that the modes exchange prop- . In this section we digress somewhat and focus our atten-
erties during an avoided crossing. We consider two modes, labeldd®n On @ question of principle: Is it possible to have QNMs
by a, andb, (cf. Fig. 3. The mode eigenfunctions are representedthat do not radiate gravitationally in a superfluid star? The
by the two Lagrangian number density variatios,andAp (solid ~ duestion is motivated by the simple fact that, while every
and dashed lines, respectivelffor modea the two fluids are es- Nnon-radial motion induced in a one-fluid system must lead to
sentially countermoving in the—0 limit (it is a superfluid mode  the emission of gravitational waves, the situation could con-
while the two fluids comove for mode (it is similar to a standard ~ceivably be different in the two-fluid case. One can imagine
p mods. After the avoided crossingvhich takes place roughly at the possibility that the two fluids move in such a way that the
€=0.1) the two modes have exchanged properties. average mass-density flux vanishes identically. In fact, as we
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have discussed elsewhdiE7], the superfluid modes are es- And this is, indeed, the way that it turns out. As we will
sentially of this nature and it has been argued by Sedrakiaprove below, a two-fluid star wiliin general have no non-
and Wassermaf43] that this could mean that these modesradiative (non-axisymmetric modes.

will not radiate. Of course, one must not forget that, in the We consider the superfluid perturbation equations in the
post-Newtonian picture, gravitational waves are associategpecial case where the metric is left completely unperturbed,
with both mass and current multipoles. Thus even the exie. when no gravitational radiation is created. Assuming a
treme case of a two-fluid oscillation such that the massgiven, fixed non-rotating background, we can obtain the cor-
multipoles vanish identically is likely to radiate through the responding field equations by setting to zero the three metric
induced currents. Thus it may be very difficult to set the twoperturbationH,, H;, and K. This results in the following
fluids into motion without generating gravitational waves. nine equations for six matter variables, cf. E(5)—(31):

0=Xp+Xp, (57
0=punV,+xpV,, (58)
0= 1N Wy + XPW, 59
I(1+1) I+1 n’ cy
Wn’=—e“2( . vn—( —+ Wyt nzgo[e("_”)/zrxn+n’(Bgan+A8pr)]
0
Ag
- S[eA X o+ p (AW, +CopW,) ], (60)
npD,
, 1(1+1) l+1 p’ B - /
W, =—eM——V,—| — o Wt 2Do[e<x D2 X+ p (COPWyp+ AGNW,) ]
0
Ag
- s[e® 2 ' (AGpW,+ BonW,) ], (61)
npDg
| [(1+1 w?
Xn’=—FXn+ (r2 )e”’zn’(BgnVnJrAngp)—e(”*”)’zTn(BanJrApr)+e*(”*”)’2
n" o 0 I AP LU D 0
X _T(BO NWh+Ag' pW,) + r_2+ or n - (BonW,+AgpW,) |, (62)
I [(1+1) o w? o
Xp' == = Xpt —7—e"?p’(CopVp+ AgnVy) — e ™2 p(CpW,+ AnW,) +e~ ()72
! 2 ! )\,—V/ "
x| = 2 c8rpw+ AWy + | 2+ p'— 2] (C8pW,+ AW, |, 63
r r2 2r r
|
with Xp=pe "2w?(CpV,+AnV,)
p/
_aw=NF_ 0 0
X,=ne "2w?(BnV,+ApV,) e —(CopWp+ AgnWh). (65
n’ . . .
_alr=NR2 120 0 It is clear that, unless some of these equations are linearly
e BonW,+ W,), 64 . .
r (BonWa+.AopW) ©4 dependent the problem is overdetermined and we cannot

have a non-trivial solution. In order to show that the problem
is in general overdetermined, we use the first three equations
and above to rewriteV,, V,, andX, in terms ofW,, V,, and
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X,, and then substitute the resultant expressions into the eh2—vy wZ(Bcg_cgg)vn
remaining six equations. Remarkably, one finds that Egs.

(62) and(63) yield exactly the same result when this substi- 9 on’ 0P’

A : ; +— | CBy——BCy—|W
tution is done. One also finds that Eq23) and (24) yield B s 0 /TN
the same result after the substitution. We are thus left with

Egs. (60) and (61). After the substitution, these equations =eM2 ' 2(BCS—-CBYV,=0. (72)

yield the following two equations fow,,: ) .
To arrive at the last equality we have employed the back-

I(I+1)V |+1W ground identities(11) again. Clearly, we are now left with

W = — M2 two possibilities. EitheW, vanishes, or the equation of state
n n n
r r must be such that
Ag M n p’ 0_rB0=
+D_8(A8_ Koo (F_F " BCS—CBY=0. (72
o . In the first case one can show that the corresponding solution
Cop+Agn for W, is
Jre(””)’zr(—0 5 OO ) ns (66) "
pn DO 1
Whot ——. (73
, LU+ 1+l nr
W,=—e V,— W, , o . . -
r r This solution is physically unacceptable since it diverges at
RO , , the center of the star. In other wordsMjj=0 we must also
_ —g(CO— 1A0> n_ p_)W haveW,,=0, i.e. the trivial solution. It is easy to show that
Dy O won p)o" the second case requires that the master function be such that
0 0
x| Bgn+Agp N 9 [ IA N 9 [ IA
+ah w2 A 70 7T0F . 2 T 1 g2 | | =0.
e L or?D? Xn (67) 8p° o2 op2| 3p2 n op2 an? | an? 0. (79

) . This is clearly a very particular form. We have thus proven
In the manipulations we have used repeatedly the backna the QNMs of a superfluid stanustradiate unless the
ground equationgll) and equation of state belongs to a very special class. The obvious
exceptions aréi) when the master function takes the form

pw=—suv xX'=ooxvh (68) A=o,n?+o,p?, (75)

(i) wheneverA depends om andp in identical ways, and
In order to complete the argument in a clear way, we restrictjji) whenn andp are both constantwhich is the particular
ourselves to the case of vanishing entrainment and separallgse considered by Sedrakian and Wasseri#ha.
equations of state, i.e. we concentrate on the cdseAg It also is worth pointing out that the calculation in this
=0. This is not at all necessary, but it simplifies the analysissection was carried out within the Regge-Wheeler gauge, and
considerably. Taking the difference between E@&) and  given possible gauge issues one may worry that this means
(67) we require that the result is of limited validity. However, the result will
hold in general since we can easily construct gauge-invariant

n p’ e =12 X quantities(such as the Zerilli functionthat represent the
6808<—— —) W, + 5 (Cgp— —Bgn)xnzo gravitational-wave degrees of freedom from the metric per-
n.np pn H turbations calculated in any particular gauge. In our case it is

(69 trivial to see that, if all metric perturbations vanish identi-
cally the Zerilli function will be identically zero and no
in order for the problem not to be over-determined. Using thegravitational waves will emerge from the system.
definition of X, we can rewrite this equation as
VI. DETECTABLE GRAVITATIONAL WAVE SIGNALS?

eh2— ”erB(Cg— n_XBg)Vn Given that a new generation of gravitational-wave detec-
tors are likely to be operating at their projected levels of
sensitivity within the next year, it is appropriate to conclude
120X 150 i i ief di i i i-
n'By=——p CO)WnZO- (70 this paper with a brief discussion of a possible future appli
K cation of our results. Suppose that the various modes of a
superfluid neutron star were excited to an amplitude such
Now using the fact thay=Cp and u=Bn in the case of that the associated gravitational-wave signal could be de-
vanishing entrainment, we have tected. To what extent would it then be possible to solve the

BO
. Bo
p
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TABLE IV. Data for archetypal glitching pulsars. TABLE V. The frequency and damping rate for the first few
modes of our Model {(which is identical to model 2 of Comet al.
PSR P (ms d (kpo) AQ/IQ AE/Moc? [22]). We also show the gravitational-wave signal-to-noise ratios

s 13 resulting from the “glitch model” discussed in the main text. The
Crab 33 2 10 2x10 results correspond to an advanced shot-noise limited EURO detec-
Vela 89 0.5 10° 3x10°* tor with knee frequencyf,=5 kHz. The lower estimate is for a
Crab glitch while the upper estimate follows from the Vela data.

inverse problem and deduce information concerning the Suyde f(kHz) t4(s) S/N
perfluid parameters? In other words, can we hope to use

“gravitational-wave asteroseismology” to probe the super-f 3.29 0.092 1.2-19
fluid interior of mature neutron stars? This question has rep: 7.34 1.01 0.4-5.6
ccre”ntlyrbsi%n dlsbcrlijsfsgd l;yrtW(r)‘doL {;83], and therefore we s 3.76 15.75 10-16
only provice a brief backgrou ere. S; 8.49 1.29 0.3-4.4

As has already been discussed by Kokkagal.[5], the
detection of gravitational-wave signals from pulsations in

”e".V'y born neutron stars could b? used to infer the mass an&’etector[thus h(t)=0 for t<T]. Using standard results for
rad|ys of the star. This mformanon would put strong CONthe gravitational-wave fluks], the amplitudeA of the signal
straints on the suprarjuclear equajuon of state. However,t n be expressed in terms of the total energy radiated
proposed strategy relies on releasing an energy equivalent {Hrough the mode:

something like 10°Mc? through the QNMs. This would '
make the gravitational waves marginally detectable with a AE 1 91 Koc
second generation detecfsuch as the Laser interferometric A~7.6X10 2% _5( P )
Gravitational Wave Observator§.IGOII)]. To assume that 10 Myc? ta | d
this amount of energy is radiated may not be unreasonable
for the wildly pulsating object formed through a strongly
asymmetric supernova collapse, but it is difficult to think of
a mechanism whereby the oscillations of a matared thus
superfluid neutron star core will be excited to a similar The signal-to-noise ratio for this signal can be estimated
level. Instead, we take as a “reasonable” order of magnituddrom [5]

estimate the energy associated with a typical pulsar glitch. ) ) )

The released energy can then be estimated as ( S) 4Q° Aty (79

N/ ~1+4Q2 25,

1 kHz
><( ) (78

f

AE~IQAQ~(10 °—10 8)10? (76)
where the “quality factor” isQ= wfty andS, is the spectral

whereQ) =2x/P is the rotation rate of the star, aftdis the  noise density of the detector.
observed pulsar period. In this formula it is appropriate to We now combine these estimates with the QNMs from
use the moment of inertie~10*° g cn? of the entire star, Table Il. The relevant frequencies and damping times in kHz
since the spin-up incurred during the glitch remains on timeand ms, respectively, are given in Table V. When we com-
scales that are much longer than the estimated coupling tingare the obtained estimates to the new generation of large-
scale between the crust and the core fluid. By combining thecale interferometric detectors it immediately becomes clear
above formula with the data for typical glitches in the Crabthat these signals would be too weak to be detected. This is
and Vela pulsars, cf. Table 1V, we arrive at estimates of thellustrated in Fig. 5 where we compare the dimensionless
energy associated with typical glitches that accord well withstrain \/ﬁ for various detector configurations to the esti-
suggestions in the literatufd5,44. mated strain caused by the QNM signals.

As is evident from Table IV, we expect a glitch to be  This does not, however, mean that we should give up on
associated with energies of the order of "3 the main idea behind this analysis. We simply have to ac-
—10 M c?. In the following we will assume that a simi- knowledge that we are likely to require significant improve-
lar energy is channeled through the various pulsation modesnents in technology if we are to be able to make this into a
This then allows us to use the formulas obtained by Kokko-viable approach. But it seems inevitable that the available
taset al. [5] to estimate, for a given detector configuration, technology will improve over the next decades. In fact, vari-
the attainable signal-to-noise ratio. ous groups are already discussing possible improvements in

Assume that the gravitational-wave signal from a neutrordetector sensitivity that may be achievable in the future. In
star pulsation mode takes the form of a damped sinusoidagrder to illustrate the levels that are being discussed, we
ie. consider the so-called EURO detector, for which the sensi-

tivity has been estimated by Sathyaprakash and Sdfftz
h(t)=Ae " Dagin27f(t—T)] for t>T (770  further details se@47]). We consider two possible configu-
rations.(It should be noted that the noise estimates have been
wheref is the frequency of the QNMy is its characteristic revised since the analysis presentef28]. This changes the
damping time, and' is the arrival time of the signal at the estimated signal-to-noise ratios but does not affect the gen-
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ratio will be excellent. In fact, it is easy to show that for
modes withQ>1 and frequencies in the kHz reginfiee. a
typical neutron star oscillation mogéhe relevant signal-to-
noise ratio is essentially independent of the exact mode fre-
quency and damping rate. Using E¢88) and(81) we find

that
S 150 [ AE / 1 kpc) @
N 10 M2l d )

This means that our glitch estimates would lead to a signal-

24 i L to-noise ratio in the range 33-515. Hence, it seems plausible
00 1000 10000 that one will be able to infer the parameters of neutron star

superfluidity. In addition, one might hope to shed light on the

echanism for pulsar glitches.

We can also confirm that, provided that the modes can be

detected, the oscillation frequencies can be extracted with

good accuracy from the data. By combining E¢kl) and

EURO xylophone

)

W
i
1

FIG. 5. The spectral noise density for the new generation otm
laser-interferometric gravitational-wave detectors that will come
online in the next few yearghin lines is compared to speculative

estimates for the futuristic EURO detecithick lines. A key fea- . .
ture of this advanced configuration is that it may operate severaﬁlz) from Kokkotaset al. [5] with Eq. (79) one can obtain a

narrow-banded interferometers as a xylophone, thus reaching higiprmula for the signal to noise required to determine the
sensitivity at kHz frequencies. We also indicate the effectiveMode frequency with a relative erreri/f. We get(since
gravitational-wave amplitudes from the glitch-induced mode oscil-Q>1 for the modes under consideratjan relation

lations discussed in the tefds represented byg~ \TtyA/2).

S 1 s\(1 kHz\[o¢) !
eral conclusiong.For the first configuration the sensitivity at (N) ~0-3{ t_) (T T) . (83
high frequencies is limited by the photon shot noise. Then d
Sathyaprakash and Schutz suggest that From this relation we can deduce that a detection with signal
to noise of(say 10 would enable one to infer the fluid mode
oy 3.6% 10° 1.3x10° frequencies with an accuracy of the order of a percent or so.
Sy~10 T With this level of precision one should be able to distinguish

clearly between the “normal fluidf and p modes and the
. superfluids modes. In other words, in addition to having the
Hz (80)  information required to infer the mass and radius of the star
[5], we could also hope to constrain the parameters of neu-

where we take the knee frequeniiyto be 5 kHz in order to  tron star superfluidity.

“tune” the detector to typical neutron star oscillation fre-

qguencies. The second configuration reaches beyond this limit VIl. CONCLUSIONS
by running several narrow-bandddryogeni¢ interferom-
eters as a “xylophone.” This leads to a spectral noise densi%a

2

+1.3x10 3| 1+ 7
k

The main motivation behind the work presented in this
per is the fact that neutron star physics is not adequately
modelled within Newtonian gravity. It is well known that
Newtonian results differ greatly from the correct relativistic
ones already at the level of determining the mass and radius
of a star with a prescribed central density from a given “re-
The corresponding noise curves are illustrated, and comalistic” equation of state. As far as the QNMs of the star are
pared to the current generation of interferometers, in Fig. 5concerned, Newtonian studies are useful since they help us
It is immediately clear from Fig. 5 that a EURO detector understand the physics of different classes of modes. But at
would be a superb instrument for studying pulsating neutrorthe same time it is clear that if we require a detailed model of
stars. This means that previously suggested strat€gjdsr  the oscillation spectrum of an astrophysical neutron star we
unveiling the supranuclear equation of state may eventuallynust approach the problem from the relativistic point of
be put to the test. In fact, as is clear from the estimates iwiew. This is particularly crucial if we are interested in the
Table V, where we list the signal-to-noise ratio estimatedgravitational-wave damping rates. Furthermore, since mature
from Eq. (79), one should also be able to detect the superneutron stars are likely to contain several superfluid compo-
fluid oscillation modes. The various modes would be marginhents, it is important that we develop a framework for mod-
ally detectable given this level of excitation and a third gen-elling multi-fluid systems in full general relativity. The
eration detector limited by the photon shotnoise. If this limitpresent paper represents significant progress towards this
can be surpassed by configuring several narrow-banded iigoal.
terferometers as a xylophone, the achievable signal-to-noise We have considered a core-envelope model, with super-

Hz 1. (81

o 36X10°  1.3x10°
Sn%lO f4 + f2
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fluid neutrons being present only in the core of the star whilecontinuity of the first and second fundamental forms a
the outer region is composed of an ordinary fluid. Our modebmooth joining at the core-envelope interface can be
includes a simple, yet reasonable, model for entrainment anachieved.

we have shown how neighboring QNMs undergo avoided Consider that the level surfacesfare timelike, i.e. the
crossings as the entrainment parameter is varied. Finally, weormal to these surfaces is given by

have ruled out the possibility that a two-fluid star could have

non-radiative pulsation modes, and discussed the possible

detection of gravitational-wave signals from oscillating su- Nﬂzﬂ (A1)
perfluid neutron stars. AL

In the near future, our aim is to turn our attention to the
oscillations of rotating superfluid stars. This is an excitingwhereNMJ\/"=1. The so-called first fundamental forg),,
problem area, since various modes of oscillation may béi.e. the induced three-metjiof these level surfaces is
driven unstable by the emission of gravitational waves. Of
particular recent interest are the so-caltethodes, and the e
damping due to superfluid mutual friction. In a recent paper Yur=L bk bor
Lindblom and Mendel[14] showed that mutual friction was
effective at damping unstabtemodes only for very particu-
lar values of the entrainment parameter. Andersson and
Comer{17] have speculated that this peculiar behavior might L9=687-NN,. (A3)
be due to the existence of avoided crossings between two e
classes of modes(analogous to the two classes of acousticThe second fundamental fort,, (i.e. the extrinsic curva-
fluid modes discussed in the present pap€he results of ture) of the level surfaces is defined as
the present paper lend support to this idea. Yet it is clear that
our understanding of the various involved issues is far from
complete, and that a considerable amount of work remains to

be done before we can model the dynamics of rotating su- h h h imol o f the indi
perfluid neutron stars in a “realistic” way. where the parentheses imply symmetrization of the indices.

Let us consider the pressure to be of form

(A2)

where the “perp” operator ;; is given by

2
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APPENDIX A: THE JUNCTION CONDITIONS

In this appendix will be presented a geometrical approach AN3=0. (AB)
to deriving the junction conditions that must be used to
smoothly join together an inner superfluid core with an €x—rpg non-zero components of the first fundamental form are
terior normal fluid envelope. The junction conditions will be
obtained via an analysis of the first and second fundamental

forms a_lssomated with thén general, timelikg h_ypersur- Yoo=—€"+ 8900, Yor= 5901—e”—,,

faces given by the level surfaces of the generalized pressure v,

W, cf. Eq.(3). (One might consider using the level surfaces

of other scalar quantities, such as either of the particle num- S¥

ber densities, or the Master functian However, we believe Y= —¢e 0 V22=12+ 8055,

that the pressure is the most natural choice from both math- Vo

ematical and physical points of viewf there are no “delta-

function-like” discontinuities in the pressure, then the first Y33=SINfOr?+ 5933, (A7)

and second fundamental forms will be continuous throughout
the staf25]. Turning the problem around, by demanding theand we also find
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pressure and energy density of the envelope, respectively. It
is also useful to note that the Tolman-Oppenheimer-Volkov
equations for the core and envelope imply

\I,(,)( Rc) _ \PO( Rc) - AO( Rc)
TR Wo(R)—Ag(Re)

(A13)

Koo — V_' M2 e M2sg Before dealing with the linear perturbations, it will be con-
01— 2 ) o1 venient to write out the linearized pressure as a function of
the fundamental matter and metric variables, for both the
SV 1 core and the envelope. We have used the field equations to
Koo=— eA/Z( _”__59010) , help simplify the formulas. The final forms affer the radial
v, 2et ’ dependence
e)\/2 SU P v’ 1
= =15 T FXPWp) = —5 (Xt Xp)
0
(A14)
r ov 1 r
RPN VSl L L (N L S and
K2z o2 v 2e>"2< 5922 o 5911) ,
~ V' ~— 1o,
2re)\/2xp ev/ZXp r (A15)

r 4
Kas=— sm20< —+ cotae”zq,—’e

!

0

where we have again put a tilde over all the linearized vari-

1 r ables associated with the envelope. Now, it can be seen that
+— N 5953~ 350911 (A8)  the junction conditions imply that the metric perturbations
2 sirf ge 2e are continuous at the core-envelope interface, i.e.
for the non-trivial components of the second fundamental Ho(R.)=Ho(Re)

form.

Given that a smooth background can be constructed inde-
pendently of the oscillations, we can assume that the back-
ground and linearized pieces ¢f,, andK ,, are separately
continuous at the core-envelope interface. We will consider
the background pieces first. For clarity of presentation th
matter and metric variables in the envelope will be distin-
guished by a tilde. The continuity of the first fundamental
form thus yields for the background

Hi(Ro)=H1(R),
K(Ro)=K(Ry). (A16)

“The matter variables, on the other hand, must satisfy two
conditions, which are

X(ROP(R)OW,(R,) = w(RIN(R) Wi (Re)
»(R)=7(Ry), (A9) + X(R)P(RYW(R,) (AL7)

and continuity of the second fundamental form implies and

V'(R)=7"(Ry), e Rd=g\Ro, (A10) To(R)— Ao(R)
p(Rc)_ Vo(Ro) — Ao(Re )[Xn(Rc)+Xp(Rc)]

Using the background Einstein equations, and defining
VI(RC)e(V(RC)f)x(RC))IZ

2R,

To(Re)—Ao(Re)
\PO( Rc) - AO( Rc)

e M=1-2m(r)/r, e ‘=1-2m(r)/r, (All)

where

1 X(Re)P(Re) Wp(Re).

= — ' 2
m(r) 4wfor Ao(r)dr, (A18)

It is important to notice that the junction conditions it
imply that s¥=45V¥ at the core-envelope interface, but
rather thatéW /W ;= 6W/¥{. This fact is the clearest dem-

onstration why a geometrical approach is crucial for obtain-
ing the correct junction conditions, since this particular result

ﬁn(r):—4wfr r?Ao(r)dr+C, (A12)
RC

we find that the background junction conditions imply
=m(R) andW¥o(R.) =¥ (R,), whereW, and— A, are the
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is a direct consequence of the fact that Schwarzschild-like j

. . ) T 1- 5,,(u /c)(vylc)
coordinates cause derivative discontinuities whenever the en- x2=n (B7)
ergy density is not continuous. If it is the case thaf(R.) \/1 (Up/e)*V1=(vplc)?

=Ao(R.), then we can see from EA13) that the junction
conditionswill imply 8% = 6¥. Having a continuous energy
density also implies thaX,(R.) = Xn(Re) + Xp(Re)-

If it is the case that the individual three-velocities are small
with respect to the speed of light, i.e. that

Jup oyl

APPENDIX B: THE ANALYTICAL EQUATION OF STATE e <1 (B8)
c ' c '

In this appendix we develop the analytical equation of
state used in the main part of the text. The essential strate
is to introduce an expansion based on the assumption that t
fluid velocities are small compared to the speed of light. This
is a reasonable assumption for neutron star pulsations.

ﬁen it will be true tha®~np to leading order in the ratios
u,/c anduvy/c. This basic fact will be at the heart of the
expansion con5|dered below.

1. A Local Analysis of the Entrainment Parameter 2. The Analytical Equation of State

Recall that the entrainment variabtd is given byx?= Given what was just discussed, it makes sense to consider

—n*p,. It is convenient to write each conserved four- €quations of state that can be expanded like
current as in the main text:

nP: nup, pP: pvP, (Bl) A(nzapzlxz):;) )\i(nzlpz)(xz_np)ii (Bg)

except that now we take’u,= —c? andv”vp:—c where

cis the speed of light. If, andrp denote the proper times of Sincex”—np is small with respect top. In terms of this
the neutron and proton fluid elements, respectively, then thexpansion, one can show the following for the Ag, etc.
world lines of each fluid element are obtained from the func-coefficients that appear in the field equations:

tions

©

Xﬁ(Tn):(t(Tn)yxin(Tn)), A:_Z i )\i(nZ’pZ)(XZ_np)ifl,
=1
Xg( 7'p) =(t( Tp) ,le( 7'p))- (B2)
“ el HT H 1 (9)\ 1 -
The “unit” four-velocities are thus given by - _°_ Ly N
B =N 21 (x?>—np)',
dxi dxi
Ut=——, ov#= . (B3)
dr, dr, 1 0N, 1
. . . . . C=————— ——2—(x —np)’,
Consider, for the moment, a region within the fluid that is pap p

small enough that the gravitational field does not change
appreciably across the region. In this case, a locally

2 * 2
Minkowski coordinate system can be set up and the metric A%= — I"No _2 I\ (x2—np)|
can be approximated by the flat metric: O opan 1 gpan ’
ds?=—d(ct)?+ &;dx'dx’. (B4) .
e 9*No » PN, i
Lettlng ul =dx, /dt and v,=dx/dt, as well as uj 0=~ JnZ ~ & gnz X —np),
= 6;u ul and up 5|,vpu1p, one can show that the four-
veI00|ty components can be written as "
o Ao 2N .
c J Cd=——7 2 —7(x*~np)". (B10)
0_ i n p i=1 p
U=———, U=—F—7———= (B5)

J1—(u,/c)?’ Vi—(u,/c)?’
It is important to note that 3 vanishes if the master function

and is such that\; are separable in andp.
The utility of this expansion is especially apparent for the
»0= - p (B6) qug;inormal mode calculations, because when any of the co-
m ' m ' efficients are evaluated on the background, then onexdets
=np, and thus only the first few; are needed. In fact, in
With this decomposition one finally obtains for the entrain-our analysis we only retaing and\ 4, where the latter con-
ment variable tains the information concerning the entrainment effect.

c . v
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APPENDIX C: AN ACCURATE METHOD :
FOR DETERMINING LONG-LIVED QNMS log | A,

—
log|Im x/Rex|

The problem of calculating quasinormal modes of relativ-
istic systems, such as black holes and neutron stars, is il
many ways far from trivial. In general, a strategy for finding
QNMs has to involve a prescription for imposing a pure
outgoing wave boundary condition at infinity for a linear
second-order differential equation. In the context of the
present paper the relevant equation is that derived by Zerilli
[48]:

2

dr?

*

+w?=V(r)|Z=0. (C1

L | L L L L 1 N L N
0.1122 0.1124 0.1126 0.1124 0.1126
Herer, is the standard tortoise coordinate and we have as: Re oM Re oM

sumed that the perturbed quantities have a harmonic depen- FIG. 6. A graph of the incoming wave amplitude, vs the real

dence on time, i.e. behave as exi). The effective potential a4 of the frequency. In the left panel we see a standard “Breit-
V(r) is rather complicated but here we need only know thaiyjgner resonance.” The right panel illustrates the properties of the
it is such that the behavior of a general solution at spatiajase of the ration of the asymptotic amplitudes. We use the loca-
infinity (asr,— +) is tion of the two poles and zeros to deduce the frequency and damp-

: ; ing rate of a long-lived pulsation mode.
Z~Ag(@)e T+ A, (w)e“Tx. c2 ™ givedp

A QNM of the system is a solution that combines someat infinity, Aq,{ — w,) =0 while Ajy(— w,) #0. Moreover, it
physical constraint$no waves coming out of the event ho- follows that a second such solution correspondssto As
rizon in the case of a black hole or a regular solution to thaye will demonstrate below, this information can be very use-
equations for the interior of a syawith purely outgoing ful when trying to identify normal-mode frequencies that
waves,Ai,(w,) =0, at infinity. Two typical difficulties arise have small imaginary parts.
in the determination of such mode solutions. Both are due to  Most schemes for determining QNMs are based on nu-
the fact that the QNMs are damped by gravitational radiatiormerical constructions of the rati@=A,/A;,. Assuming
emission, and thus the QNM frequeney, must be complex that
(with a positive imaginary part unless the mode is unsjable
This means t_hat an ou_tgoing-wave solution to Egyl) wiII_ A(@)~(0—wp) (C3
be exponentially growing as, —+« and one would, in
principle, need exponentially high numerical precision to )
discard the ingoing solution. This problem is particularly €/0S€ 10 & QNM one can try to iterate for the zeroAf
challenging for rapidly damped modes, like those of blackuSing & standard scheme such adlgfts method. This strat-
holes and the neutron starmodes[49—51. A second diffi- €9y Works fine for rapidly damped modemnd typically also
culty that arises is relevant for tiiemodes of a neutron stars. [0 the fluidf mode, but does usually not provide a reliable
The high ordeip modes are damped very slowly by gravita- e_stlmate for an imaginary part that is several qrders of mag-
tional radiation. Thus, the characteristic frequencies are suciitude smaller than the real part. An alternative method is
that the imaginary part is many orders of magnitude smallef1SPiréd by resonant scattering problems in quantum theory.
than the real part. Although not as conceptually challengind-€tting @n= an+iB, (with «, and 8, both positivg we can
as the first QNM problem, the difficulty associated with ex-€2sily identify the real pai; from the position of the mini-
tremely small imaginary parts typically prohibits the deter-mum of the standard “Breit-Wigner resonance” in a graph of
mination of any but the first few of the neutron stamodes.  109lAn|, cf. the example shown in Fig. 6. It is not all that
In this appendix we describe a new method for dealing withSimPple to extract the imaginary part, however. To do this one
this problem. The various mode results presented in the maiffust approximate the half-width of the peak, e.g. by curve
body of the paper were obtained using this method. fitting. To achieve satisfactory precision in this process is not
Let us assume that our relativistic system has a QNM witdrvial. » _
complex frequencys,, . Then the solution to the Zerill equa- 10 devise a better scheme for determining the damping
tion is such thatA,(w,)=0 asr, —x whereasAy{®n) rate of avery long-lived QI\!M, we employ t_he_ two general_
+0 asymptotically. From the fact that the frequency appeargropertles we deduced earlier. From these it is cle_ar that, if
squared in all the relevant perturbation equaties Sec. )] We have a zero ok, close to the real frequency axis, there
we can draw two general conclusiors: another outgoing- must also be a zero &, on the opposite side of the axis.
wave mode is characterized by;n (where the bar repre- How does that alter the above results? Close to a zefq @f

: X oA we will have
sents complex conjugatignand (i) time reversal of an
outgoing-wave mode leads to a solution that corresponds to o
purely ingoing waves at infinity. That is, a solution such that, Ag( @)~ (0—wp). (C9
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Then we immediately see that the absolute value of the ratio P1P2— 212,

between the asymptotic amplitudes, is a smooth, slowly an~ m (C7)
varying function of the frequency. But if we consider its v A2
phase, we find some interesting and useful features. We get Bo~[an(z1+2y) — a’— 2,2,
(for real w) (C8)
w—apti
gy 220 B (C5) Ve 2B
®=an=1pn Yi P1tp1—2a;,
wherey= v, +ivy, is a complex “constant,” and therefore
=—[2an—2,—2,]. (C9Y

2B

Im x yil(0—a)’= B2+ 2 Bo(w—ap)
Re kv [(0—an)?—B2l—2yBo(w—ay)’ It should be pointed out that one gets four equations for the
real and imaginary parts of the QNM frequency, as well as
From this we see that, instead of having a singularitywat the ratio y,/vy;. The last equality above can therefore be
=ay, we now have a function with two zeros and two polesused as a “sanity check” on the calculation. In essence, it
on the real frequency axis, cf. Fig. 6. Provided that the calprovides information about the accuracy of the obtained
culation of the asymptotic amplitudes can be done with sufquantitites. In practice, this method works very well even
ficiently high precision, the location of these zerag4 and  when the imaginary part of the frequency is more than eight
poles (p; 5 can readily be deduced. Given this information orders of magnitude smaller than the real part, cf. the results

(C6)

one can show that
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