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Recoil momentum spectrum in directional dark matter detectors
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Directional dark matter detectors will be able to record the recoil momentum spectrum of nuclei hit by dark
matter WIMPs. We show that the recoil momentum spectrum is the Radon transform of the WIMP velocity
distribution. This allows us to obtain analytic expressions for the recoil spectra of a variety of velocity
distributions. We comment on the possibility of inverting the recoil momentum spectrum and obtaining the
three-dimensional WIMP velocity distribution from data.
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. INTRODUCTION tested, and a 10 frdetector is under consideration.
In addition to merely using directionality for background
The identification of dark matter is one of the major opendiscrimination, what can be learned about WIMP properties
questions in physics, astrophysics, and cosmology. Receifittm the directionality of WIMP detectors? It is obvious that
cosmological observations together with constraints frondifferent WIMP velocity distributions give rise to different
primordial nucleosynthesis point to the presence of nonbaryrecoil distributions in both energy and recoil direction. Copi,
onic dark matter in the universe. The nature of this nonbaryHeo, and Kraus§10], and then Copi and Kraug41], have
onic dark matter is still unknown. examined the possibility of distinguishing various WIMP ve-
One of the preferred candidates for nonbaryonic dark matlocity distributions using a likelihood analysis of the result-
ter is a weakly interacting massive partid/IMP). Sub-  ing recoil spectra, which they generated through a Monte
stantial efforts have been dedicated to WIMP searches in th€arlo program. They have concluded that a discrimination
past decadefl]. A particularly active ared2] are WIMP  among common velocity distributions is possible with a rea-
direct searches, in which low-background devices are used ®onable number of detected events.
search for the nuclear recoil caused by the elastic scattering Here we want to gain insight into the properties of the
of galactic WIMPs with nuclei in the detect¢8]. In these nuclear recoil spectra in energy and direction. For this pur-
searches, characteristic signatures of a WIMP signal are uspese, we develop a simple formalism that relates the WIMP
ful in discriminating a WIMP signal against background.  velocity distribution to the distribution of recoil momenta.
AWIMP signature which was pointed out very eail is  We find that the recoil momentum spectrum is the Radon
an annual modulation of the direct detection rate caused biransform of the velocity distributiofsee Eqs(17)—(19) be-
the periodic variation of the Earth velocity with respect tolow]. We apply this analytical tool to a series of velocity
the WIMP “sea” while the Earth goes around the Sun. Thedistributions, and discover for example how the recoil mo-
typical amplitude of this modulation is 5%. A modulation mentum spectrum of a stream of WIMPs differs from that of
with these characteristics was observed by the DAMA Col-a Maxwellian velocity distribution. With our gained insight,
laboration[5], but in light of recent resultf5,7], its interpre-  we suggest that if a WIMP signal is observed in directional
tation as a WIMP signal is currently in question. Different, detectors in the future, it may be possible to invert the mea-
and possibly clearer, WIMP signatures would be beneficial.sured recoil momentum spectrum and reconstruct the WIMP
A stronger modulation, with an amplitude that may reachvelocity distribution from data.
100%, was pointed out by Spergel in 19@8. Spergel no- In Sec. Il we describe the general kinematics of elastic
ticed that because of the Earth’s motion around the Sun th&/IMP-nucleus scattering, and in Sec. Il we obtain our main
most probable direction of the nuclear recoils changes wittiormula for the nuclear recoil momentum spectrum. Sections
time, describing a full circle in a year. In particular this pro- IV and V contain general considerations and examples of
duces a strong forward-backward asymmetry in the angulaRadon transforms of velocity distributions. Finally, Sec. VI
distribution of nuclear recoils. discusses the possibility of inverting the recoil momentum
Unfortunately it has been very hard to build WIMP detec- spectrum to recover the WIMP velocity distribution. The Ap-
tors sensitive to the direction of the nuclear recoils. A prom-pendices contain useful mathematical formulas for the com-
ising development is the DRIFT detectt®]. The DRIFT  putation and inversion of 3-dimensional Radon transforms.
detector consists of a negative ion time projection chamber,
fche_ gas in the phamber servin_g both as WIMP target and as Il. WIMP-NUCLEUS ELASTIC SCATTERING
ionization medium for observing the nuclear recoil tracks.
The direction of the nuclear recoil is obtained from the ge- Consider the elastic collision of a WIMP of masswith
ometry and timing of the image of the recoil track on thea nucleus of mas#/ in the detector(see Fig. 1 Let the
chamber end-plates. A 1 *hprototype has been successfully arrival velocity of the WIMP at the detector lve and neglect
the initial velocity of the nucleus. After the collision, the
WIMP is deflected by an angl@’ to a velocityv’, and the
*Electronic address: pxg26@po.cwru.edu nucleus recoils with momenturg and energyE=q?%/2M.
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mV andF(q) are confusingly called form factoisEquation(8)

is valid for both spin-dependent and spin-independent
WIMP-nucleus interactions, although, andF(q) have dif-
ferent expressions in the two cases. For example, for spin-
WIMP /. independent interactions with a nucleus witprotons and
A—Z neutrons,

scattered

incoming WIMP

——,—,— e e - - — - - -+ —%————
- : 2
mv o
nucleus \ 7 00="—[ZGl+(A-Z)GIP%, ©)
where G! and G{ are the scalar four-fermion couplings of
3 the WIMP with pointlike protons and neutrons, respectively
(see Ref.[12)). If the nucleus can be approximated by a
FIG. 1. Kinematics of elastic WIMP-nucleus scattering. sphere of uniform density, its form factor is
Let 6 denote the angle between the initial WIMP veloocity F(a)= 9[sin(gR)—qRcogqR)]? 10
and the direction of the nuclear recqil Energy and momen- (a)= (qR)® ' (10
tum conservation impose the following relations:
11 X o “ where
M =-m =,
270 727 Tam R=[0.91A13+0.3]x 10" % cm (11)
mv’cos6’ =mu —q cosd, (2)  is (an approximation tothe nuclear radius. More realistic
o ) expressions for spin-independent form factors, and formulas
my’sing’=qsiné. (3 for spin-dependent cross sections, can be found, e.g., in Refs.
12-15.
Eliminating #” by summing the squares of Eq®) and(3), [ 3
mzv 12— (mv — q 0030)2-1- (q sin 0)2 Ill. RECOIL MOMENTUM SPECTRUM
=m?v?—2muq cosf+q?, (4) Equations(5) and(8) can be combined to give the differ-

ential recoil spectrum in both energy and direction, i.e. the
and using this expression to eliminaté from Eq.(1), gives  recoil momentunrspectrum. We define it as the double dif-
ferential event rate, in events per unit time per unit detector
q=2puv COs¥, (5 mass, differentiated with respect to the nuclear recoil energy
E and the nuclear recoil direction
where

mM dR (12)
K m+m © dEd,

is the reduced WIMP-nucleus mass. We deduce that the ma :herequ denotes an infinitesimal solid angle around the

nitude g of the recoil momentum, and the recoil eners; irectiong.
vary inqthe range 8y The double differential rate follows from the double dif-

ferential cross section
2uv?
0<g=Qma=2uv, OsEsEpy= ™ (7 do

dg?dQ

(13

Equation(5) will be exploited in the following section to
express the recoil momentum distribution in a simple mathy; st through the change of differentiatio®=2MdE, and
ematical form. For this purpose, we also need the expressiafien through multiplication by the numbiirof nuclei in the
for the WIMP-nucleus scattering cross section. We write th§jetector. division by the detector magsN, and multiplica-
differential WIMP-nucleus scattering cross section as tion by the flux of WIMPs with velocitiew in the velocity

space elemerd®y,
do oy
——3S(q), (8

d_qz_ o nuf(v)d3. (14)

where gy is the total scattering cross section of the WIMP Heren=p/m is the WIMP number density; is the WIMP
with a (fictitious) pointlike nucleus, an®(q)=|F(q)|? isa  mass density, anfi(v) is the WIMP velocity distribution in
nuclear form factor normalized so thgt0)=1. [Both S(q) the frame of the detector, normalized to unit integral.
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The double differential cross section is obtained as fol- As a check of our formalism, we show that integrating our
lows. Azimuthal symmetry of the scattering around thebasic equation(17) over recoil directions reproduces the
WIMP arrival direction givesl() ;=2 d cosé. The relation  usual expression for the recoil energy spectdiRidE. Ap-
between co® and q in Eg. (5), cosf=g/2uv, can be im- plying Eqg. (A12) in Appendix A to our expression for the
posed through a Diraé function, 6(cosf#—ag/2uv). Thus differential rate, we find

d do 1
o a2 2 RSO W
q q q dE 2/_1,2 v>ql2u U .
~ 00S8(q) q
- 87 v S| v coso— ﬂ ' (19 This is the usual expression of the recoil energy spectrum

(cf. Eq. (8.3 in Ref.[14]).
This is correctly normalized as can be seen by integration of

the expression in the middie ovdl. _IV. COMPUTING THE RECOIL MOMENTUM SPECTRUM
Summarizing, the double differential event rate per unit

time per unit detector mass is We have cast the nuclear recoil momentum spectrum in
terms of a Radon transform. Now we can take advantage of

dR N do 3 the properties of Radon transforms, some of which are listed

=2M N nv f(v)dv in the Appendices, t t il t t -

dEdQ, MN dqdeq in the Appendices, to compute recoil momentum spectra ana

Iytically. In this section we give some general considerations,

nooS(q) q and in the next section we give explicit examples of analytic
=—J S| v cosf— —) f(v)d3v. (16) recoil momentum spectra.
A1 p? 2u
We write it as A. Isotropic distributions
When the WIMP velocity distribution is isotropid(v)
dR NoeS(q). R _ . . . 2
= > 1 (vg,0). (17) —f(v), the recoil spectrum is also isotropid,(w,w)
dEdQq  47p =f(w). From the definition of Radon transform, Ed.9),
Here . %
f(W)=2’7TJ f(v)vdv. (21
q ME v
vq=2—= —2 (18)
® 2p We would have obtained the same result starting from Eq.
is the minimum velocity a WIMP must have to impart a (A12).
recoil momentuny to the nucleus, or equivalently to deposit
an energyE=q?%/2M, as can be seen from E(). More- B. Moving observer

over, WIMP velocity distributions are often given in the galac-

tic rest frame, while we are interested in the recoil momen-
f(w,v”v)=f S(v-w—w)f(v)d%, (199  tum spectrum in the laboratory frame of the detector. The

change of velocity frame can be performed either on the
velocity distribution before computing the Radon transform
or on the Radon transform computed in the galactic rest
frame. The latter is often easier to compute, and the change
of reference frame can be done simply as follows.

The WIMP velocitiesv,, and vg, in the laboratory and

galactic rest frames, respectively, are related by

is the 3-dimensional Radon transform of the velocity distri-

bution functionf(v). We note in passing thdt has units of
inverse speed.

Equation(17) is the main result of this paper. It states
that, apart from a normalizing factor, the recoil momentum
spectrum is the Radon transform of the WIMP velocity dis-
tribution. The Radon transform is a linear integral transform Viab=Vga— Viab. (22
(see Refs[16,17]), which was introduced in two dimensions
by Radon in 1917[18]. The Radon transform has been
widely studied for its use in solving differential equations,
and especially in two dimensions, for its medical applica-

tions in computer tomography. Geometricafigw, W) is the
integral of the functionf(v) on a plane orthogonal to the
directionw at a distancev from the origin. For reference,
some mathematical properties of the Radon transform are R ~

given in the Appendices. Flan(W, W) = f ga( W+ Vap W,W). (23

whereV,y, is the velocity of the laboratory with respect to
the galactic rest frame. This velocity transformation is a
translation in velocity space, and we can use Ef) in
Appendix A to relate the Radon transforms in the galactic
and laboratory frames,
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Thus the recoil momentum spectrum in the laboratory frame 600
is given directly in terms of the Radon transforfrgg,(w,v”v) A8
of the WIMP velocity distribution in the galactic rest frame
by o 200
i
dR naOS(q)f RV (24 = 0
= galUq lab-9:4),
dEdQ, 4772 2 _san
with vy=0q/2u as before. -400
-600
C. Rotated observer 200 0 200 400 600

If we rotate the coordinate system, we see from B®) W Lkm/s]

in Appendix A that the recoil momentum spectrum is simply

rotated, with the magnitude of the recoil momentum remain- FIG. 2. Probability density distribution of the nuclear recoil mo-
ing the same, as expected. mentum in the recoil planen( ,w,), assuming a stream of WIMPs

with velocity (v, ,vy,v,)=(400 km/s,0,0). The full \f,,w, ,w.)
distribution can be obtained by revolution around theaxis. The
recoil momenta describe a sphere in recoil space.

We give some examples of recoil momentum spectra cor-
responding to common velocity distributions. We obtain the If the detector has velocity',,, we can use Eq23) to
recoil spectra for streams of particles and for isotropic andind the Radon transform in the laboratory frame,
anisotropic Gaussian distributions with and without bulk ve-

locities. 1 F{ [W+W- V)2

Fa tan(W, W) = ex
M. lab (27705)1/2 20'3

V. EXAMPLES OF RECOIL MOMENTUM SPECTRA

(29

A. A WIMP stream or flow

WI?\—/Ihlf §|mﬁlest case is that qfha Ean'de S”ela”? |r: Wu'.ch aIINotice thatw- V,,;, is the projection of the velocity of the
s in the stream move with the same velodityIn this  pseryer in the direction of the nuclear recoil. This expres-

case, sion coincides with, but is simpler than, the analogous ex-
forearl V)= 8(V—V) (25) pression obtained byAeIeAmentary methods in R&f.(cosy
in Ref.[8] is cosy=—w-V,y).
and The recoil momentum distribution for a Maxwellian dis-
tribution is shown in Fig. 3, assuming a velocity dispersion
fereant W, W) = S(V-W—w). (26)  of 300 km/s and an observer moving at 220 km/s in direction
—X. The distribution is symmetric around the observer ve-
The recoil spectrum of a stream with velochyis concen- locity. The figure shows the section in the,(,w,) plane
trated on a sphere of radivg2, centered inV/2 and passing only. The full distribution can be obtained by symmetry.
through the origin. The stream velociyis a diameter of the

sphere. 600
Figure 2 shows thew, ,w,) section of the recoil momen-
tum spectrum of a stream of WIMPs arriving from the left 400
with velocity V,=400 km/s. The full distribution is obtained - B0
through a rotation around the, axis. The pattern of recoil o
momenta forms a sphere. k) 0
>
B. Maxwellian distribution & =200
A Maxwellian distribution with velocity dispersionr,, —400
for(v) ! v? 27) 000 550 200 400 600
V)= ————exg — —|, -
M (27705)3/2 20, w [km/s]

is a particular case of isotropic distribution, and we can use FIG. 3. Probability density distribution of the nuclear recoil mo-
Eq. (21) above to compute its Radon transform. We find ~ mentum in the recoil planew,w,), assuming a Maxwellian ve-
locity distribution of WIMPs with velocity dispersion 300 km/s, and
~ 1 w2 a detector moving with velocity\y,V,,V,)=(—220 km/s,0,0).
fu(w)= i Rl b (29 Lighter areas have higher probability. The fullr(,w, ,w,) distri-
(2may) 20 bution can be obtained by revolution around tiagaxis.
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Equation (29) illustrates the reason for writing(w, W)

instead off(w) (see Appendix for more detajlsThe func-
tion fMJab(O,vAv) assumes different values for different direc-

PHYSICAL REVIEW D 66, 103513(2002

distribution the second. This suggests that it may be possible
to distinguish different kinds of WIMP velocity distributions

just by examining the pattern of recoil momenta. Subtle dif-

ferences among velocity distributions may be revealed by a

tiOﬂSW; the functionf (W) would therefore be multivalued at maximum likelihood ana|y5is of the Corresponding recoil

the origin.

C. Truncated Maxwellian distribution

We may truncate a Maxwellian distribution at the escap

speetv osey
1 v?
Fru(v)= Nes&2w$>3’zex+z_of’ Ve
0, otherwise,
(30
with

v 2v
Nee= erf esc | \/: eSCx
V20, T o,

Then we have

_ UéSC (31)
20'5 .

Fru(w) - v
W)= ——————iexg — —
™ Nes&Zﬂ'a'ﬁ)l/Z 20'3
(32)

D. Non-isotropic Gaussian distribution

spectrg 10,11].
More ambitiously, we may think of recovering the WIMP
velocity distribution by inverting the measured recoil mo-

dnentum spectrum. Indeed, if we know the nuclear form fac-

tor of the detector nuclei, then for any fixed WIMP mass we
can estimate the Radon transform of the WIMP velocity dis-
tribution from the measured recoil momentum spectrum,
modulo a normalization constalit Equation(17) can in fact

be written as

f(og.d)=k T IR 35
(vg, D= S(q) dEdo,’ (35

enabling us to obtain a measurement of the Radon transform

T‘(vq,d) of the WIMP velocity distribution from the mea-
sured recoil spectrudR/dEd(),. We may be able to invert
this Radon transform and obtain the WIMP velocity distribu-
tion f(v), again modulo a normalization constant. Finally,
we may be able to fix the normalization constant either by
normalizingf(v) to unit integral or better by examining the
detector efficiency as a function of WIMP velocity.

There are several analytic formulas for the inversion of
three-dimensional Radon transforms. Some of these formulas
are collected in Appendix B for convenience. Most of the
analytical inversion formulas can be converted into numeri-

The recoil-momentum spectrum corresponding to an aneal algorithms[19]. However, any inversion algorithm we
isotropic Gaussian distribution can also be obtained analytiwere able to find in the literature is suited only to a large
cally. An anisotropic Gaussian distribution with variance ma-amount of data in recoil momentum space, since they all

trix o® and mean velocity is given by
f V)= ——>—
caustV) (873deta?) V2

F{ (v—=\V)To 2(v—V)
Xexp — 2 .

(33

We are using matrix notatiory’ being the transpose of,
etc. Using the Fourier slice theorem, actually E414), we

assume that it would be possible to define a discretized ver-

sion of f(w,w). This is not the case for directional dark
matter searches, where the total number of events is not un-
der the control of the experimentalist and is expected to be
rather small.

New inversion algorithms suited to small numbers of
events are therefore needed if one wants to reconstruct the
WIMP velocity distribution using data from directional de-
tectors. As a first attempt in this direction, we have devised
the following simple algorithm. Divide the WIMP velocity

find the Radon transform of the anisotropic Gaussian to bespace into small cellS,,, m=1, ... M, and assume that the

f Gausé W, W) = m
N 2w |

This is another example of a function which assumes dif-

ferent values atv=0 according to the directiow.

VI. RECONSTRUCTING THE VELOCITY DISTRIBUTION

WIMP velocity distributionf(v) is constant over each of
these small cells, with valug, in cell S,,. To each recorded
eventj with measured recoil momentuiy, j=1,... N,
associate the plarfé; in WIMP velocity space defined by the
equation

P; is the plane orthogonal to the recoil directi&pand ata
distancew; =q;/2u from the origin. Velocity vectors on this
plane are all the WIMP velocities that can produce the ob-
served nuclear recoil. Let

The recoil spectrum of a stream and a Maxwellian veloc-

ity distribution are very different: a sphere the first, a smooth

ajm=aredS,NP)), (37)
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1 e for a WIMP stream, a Maxwellian, a truncated Maxwellian,
C ] and a non-isotropic Gaussian. We found in particular that a
0.5 F - stream of WIMPs produces a characteristic spherical pattern
r . of nuclear recoils. A Maxwellian distribution gives instead a
o 0 - smooth recoil pattern. Other velocity distributions lead to
C ] more complicated spectra.
—05 o B The analytic expressions we found for the nuclear recoil
C ] spectra will facilitate the discrimination of different velocity
) T distributions through likelihood analysis. In addition, it may

-1 -05 0 05 be possible to invert the measured momentum spectrum to
Va reconstruct the local WIMP velocity distribution from data.
For this purpose, we have presented an algorithm to recover
the velocity distribution from a small number of recorded
events. We have successfully recovered a simulated velocity
distribution with just 100 generated events.
We expect that the tools we have presented will be useful
for the design and analysis of directional WIMP detectors.

—_

FIG. 4. Reconstructed velocity distribution of two WIMP
streams with velocities (0,0,0.5) and (G;®.2) (in arbitrary units.
Only the @ ,v,) section is shown.

the area of the intersection of the plaRg with the cell S,
(see Appendix C for an explicit expressjoRor each everjt
assign weighg;, to them-th cell. Sum the weights over the
events, AszJN:lajm, essentially counting how many
planes cross any given cell. Take the discrete Laplacian of This research was supported in part by the National Sci-
the sum of the weights, and keep only those cells whosgnce Foundation under Grant No. PHY99-07949 at the Kavli

values exceed a predetermined threshold. The resulting disnstitute for Theoretical Physics, University of California,
tribution of cell values is our estimate of the WIMP velocity santa Barbara.
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distribution.
T(_) test the capabilities of our algorithm, we sirr_1u_|ated the ApPPENDIX A: SOME MATHEMATICS OF THE RADON
recoil spectrum due to two streams of WIMPs arriving at the TRANSEORM
detector from opposite directions, with velocities
(Vix,V1y,V1,) =(0,0,0.5) and ¥,V ,V,,)=(0,0,-0.2) In this appendix we collect some useful mathematical

(in arbitrary unitg. We generated 100 events, and applied theproperties of the 3-dimensional Radon transform. We denote
previous algorithm with 6% cells in velocity space and a the 3-dimensional Radon transform of a functibv) by
threshold of 0.1. We found that only two cells in velocity ?‘(w,\?v). It is defined by

space are above threshold, and they correspond exactly to the

location of the simulated streams. Figure 4 plots the, A -
section of the reconstructed velocitg distrigution%ﬁ;) im- f(W’W):f Sw—w-v)f(v)d®. (A1)
pressive that we were able to recover this velocity distribu-
tion with only 100 events. It is easy to see that the Radon transform is linear,
We leave further studies of our simple algorithm, and the .
development of other algorithms, to future work. fitfo=f+f,. (A2)
VII. CONCLUSIONS 1. A remark on notation

Directional detectors for WIMP dark matter searches will  One may be tempted to writgw) for f(w,W), after all
be able to measure not only the energy but also the directio—\ww. This notation may however be ambiguous and

of the nuclear recoils caused by the elastic scattering of gashould be used with care. Indeed, one must keep in mind that

lactic WIMPs with .nuclei in .the detector. 'This directional {he Radon transform as defined in HA1) is a function of
capability will help in separating a WIMP signal from back- hq magnitudew and the directionv separately. In other

ground, and will also provide a measurement of the recoil PP PP N
momentum spectrum as compared to just the recoil ener O”i's’ one may havé(O,w);&f(O,w ) for wa ' Ngmely,
spectrum. (0,w) may assume different values for different directions.

To gain insight into the properties of recoil momentum This will not be reflected in the notatiof{w), which would
spectra, we have devised a simple formalism for the analytigeadf(0) at the origin, independently of the directian In

computation of recoil momentum spectra from WIMP veloc- o6 \ordsF (w) would be a multiple-valued function at the
ity distributions. Mathematically, the recoil momentum spec- . . Math tically. the distinction betwedfw w d
trum is the 3-dimensional Radon transform of the veIocity?”g'n_' ) athematica y,. € distinction be we QN’W)Aar_]
distribution. f(w) is important, and is expressed by saying that,w) is
Well-established mathematical properties of the Radorlefined onRx S? while f(w) is defined onR®. For our ap-
transform allow the computation of analytical expressionsplication, however, the distinction is of little concern, since
for recoil spectra associated to several common WIMP vethe problematic originv=0 corresponds to the region of
locity distributions. As examples we presented recoil spectraanishingly small recoil momenta, which is experimentally
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inaccessible. We have nevertheless used the mathematically

correct notation throughout for clarity.

2. Change of coordinates

Under linear transformations of the coordinate axes,
transforms as

v—V'=Av+b, (A3)
where A is a X 3 non-singular matrix and is a constant
vector. A velocity distribution functiori(v) transforms so as
to keep the number of particles in a volum#& invariant:

f'(v)d3 ' =f(v)d%. (A4)

Hence,

fr(v") f(A~1(v' —Db)), (A5)

" [detA

where det A is the determinant of A, and Ais the inverse

of A. To find the relation between the Radon transforms of

f(v) andf’(v"), we change integration variable from to v
in the definition, Eq(A1),

f’(w',v“v'):f S(w' —w' v (v)d3’
:J S(w'—W' - Av—w'-b)f(v)d%

= f S(w'—w'-b—ATW' -v)f(v)d3

=f(w' —W'-b,ATW), (A6)
where A is the transpose of A. Thus
frow' w)=f(w' —w'-b,ATW"). (A7)
In particular, under a pure rotation R,
frow' wh=Ff(w', R W), (A8)
and under a pure translatidm
Frow' wh=f(w' —w'-b,w’). (A9)

3. Transformation of derivatives

The following relations hold for derivatives of the Radon

transform[herev=(v,v,,v3) andw= (W ,W,,Ws3)]

AN A10
My ~Wk G (A10)
ot i 0 f All
W, ow'k (ALD)
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4. Integration over angles

We find the following expression for the integral of the
Radon transfornf (w,w) over the directionsv:

f f(w,v‘v)dﬂﬁfj5(v.\7v—w)f(v)d3v dQ,,

:f U S(v-W—w)dQ,,
g

x f(v)d3

f(v)d3

1
wa (v cosy—w)d cosy
-1

(A12)

5. Fourier slice theorem

There is a connection between the Radon transform and
the Fourier transform. Taking the Fourier transform of the

definition, Eq.(A1), with respect tow at fixedw gives

fmd)\ei"‘f()\,\fv):f f(v)e'™ vd3y. (A13)

— o0

This equation goes under the name of Fourier slice theorem.
The right-hand side is just the Fourier transform fgf/)
evaluated atw, while the left-hand side is the Fourier trans-
form of f(w,w) at fixedWw.

Inverting the Fourier transform in the left-hand side of the
Fourier slice theorem, we have

1 (= . .
f(w,w)zzf_ dte—'Wtf f(v)e™WVvddy. (A14)

This alternative expression of the Radon transform actually
serves as its definition when functions are replaced by distri-
butions(in the mathematical sense, see R&fl)).

6. Expansion into spherical harmonics

Let us expand (v) and its Radon transforrf(w,w) into

spherical harmonic¥ (V) and Y,,(W), respectively. We
have

f(V)=2 fim(0)Yim(V),

Im

(A15)
and

%(W,m:% (W) Yy (W). (A16)
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The coefficients of the spherical harmonic expansions are

related by
%lm(w)zzwj P,( )f|m(v)vdv, (A17)

whereP,(x) is a Legendre polynomial of ordér These ex-

PHYSICAL REVIEW D66, 103513 (2002

2. Inversion through spherical harmonics

Another inversion method is through an expansion in
spherical harmonics. Referring to E§8.15) and(A16), one
can prove the following inversion formula

fim(v)=— P|( ) im(w)dw, (B4)

2w

pressions are useful when the velocity distributions are not

isotropic.

Equations(A17) can be proven using the decomposition

of the &-function in Legendre polynomials
" 21+1 A
S(V-W—1)=6(1—-1), ——PIOPI(V-W), (A18)
[

the addition theorem for spherical harmonics

Py = 5 1. E Yin()Yim(W),  (A19)
and the orthogonality of the spherical harmonics
f |rmr(V)YIm(V)dQ _5I’I m'm: (AZO)

which lead to the relation

f5(\7-\7v—t)Y,m(\7)dQv=2w0(1—t)P|(t)Y|m(\7\/).
(A21)

APPENDIX B: INVERSION FORMULAS FOR THE
RADON TRANSFORM

1. Inversion using the Laplacian

An inversion formula for the Radon transform is

1 &
fv=-——

fvww)dQ ,
82 ov? ( "

(B1)

where#?/9v? is the Laplacian irv. It can also be written in
terms of f”(w, W) = 92f (w,W)/ow? as

fv)= - — ff'% )0 (B2)
V)= — — V- W,W)dQ,, .
82

The inversion formulgB1) can be proven by inverting the
Fourier transform off(v) in the Fourier slice theorem, Eq.

(A13), then integrating separately inand w, and finally
using the relation

f 2edlt= — 762)(x), (B3)
0

where 6?)(x) is the second derivative of the Diratfunc-
tion.

where P|(x) is a Legendre polynomial andf/ (w)
=d?f,,/dw?, the second derivative df{w) with respect to
W.

Equation (B4) is proven along the same lines as Eg.

(A17), starting from Eq(B2) written as

1 “NEM ~
f(v)=—ﬁf S(w—v-w)f"(w,w)dwdQ,,. (B5)

3. Inversion through Fourier transforms

The Fourier slice theorem, EGA13), can be made into an
algorithm for the numerical evaluation of the inverse Radon
transform. Typically one would use fast Fourier transforms.

4. Inversion through the adjoint operator

Equation(B1) can also be made into an algorithm. For
each giverv, the integration ird(},, amounts to an integra-
tion over the sphere of diameterand passing through the
origin (a “stream spherej, with integration measure
d cos@2)d¢ in spherical coordinates centered at the center
of the sphere and north pole ¥yn The final Laplacian can be
computed numerically as the difference between the central
value and the average value of its six nearest neighbors.

5. Algebraic inversion via discretization

An algebraic inversion method is the followidd7, p.

96]. Suppose that the valué§ j= ..N, corresponding
to the pomtswj,wl are known. In med|cal applications, the
pomtswj,wJ form a grid or other structure in space, and the

fJ s are the measured signal intensities. In our case, the num-
ber of detected events may be quite small, in which case we
may Ietwj,\fvj be the actual measurement of a nuclear recoil
momentum, withj varying over the number of events, and

f =1/e;, whereg; is the efficiency for detecting evepnt
By definition of Radon transform we have

(B6)

where the integral is taken over the planevispace defined
by the equation

iLoVew=w;. (B7)

P; is the plane orthogonal to the recoil directixﬁ@ and at a

distancew; from the origin. Now suppose théfv) has com-
pact support, meaning that it vanishes fef> something.
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This is a technical simplification that is valid in practice

PHYSICAL REVIEW D 66, 103513(2002

i=1,...N. (B12)

since real velocity distributions are always truncated at some

large velocity (e.g. at the escape speed from the galaxy
Divide thev space into small cells,,, m=1,... M, and
assume thaf(v) is constant over each of these small cells,
with valuef,, in cell S,,. This is the discretizing approxima-
tion. Let

ajm=aredS,NP;), (B8)
the area of the intersection of the plaRg with the cell Sy,
(see Appendix C for an explicit expressjor\ discretized
version of Eq.(B6) is then

Here a’=3.a’ and a=(aj;, ... aju). Finally let the
next update be**=f{) Referencg17] attributes this
method to Kaczmarz.

APPENDIX C: AREA OF THE INTERSECTION BETWEEN
A PLANE AND A CELL

For future reference, we give here the expression for the

area of the intersection of a plane with a rectangular cell.

Assume theX,y,z) space is divided into rectangular cells

of sidesh,, hy, andh, alongx, y, andz, respectively. Let the

> Ajmfm=1;. (B9  (i,j,k)-th cell S, be centered atxo+ihy,yo+jhy,zg
m +kh,),
In matrix form
R ([ 1 o1
Af=T, (BlO) I_E hx+X0<X< H—E hX+X0,
whereA= (@) is anNXM matrix, f=(fy, ... fy)" and ( 1 ( 1
23 3 i) — = h,+ye<y<|j+=z|h,+
f=(f,,....f\)". This is a system of linear equations for Sic:y |17 5/ Hyosy={i+3]hy*tyo,  (C)
that can be solved by inverting. Since fewa,, differ from 1 1
zero,A is a sparse matrix, and it is convenient to solve this (k— > h,+ zO<z<(k+ > h,+z,.
system iteratively. Fixo, 0<w<?2. Let the initial guess be \
(© and thek-th update be&f®. From f¥ compute the fol-
lowing vectors successively: Let P be the plane defined by
(K) — £(k)
for =17 (B11) P oxX+ oY+ w,z=p. (C2
f}k)=f§"_)1+%(fj—aff}"_)1)aj, Then the area of the intersection of the plaPavith the
a (i,],k)-th cell S is
([ 0, it PVKZ+K2+K2>3/2,
1
— if P<|K| and K=0,
Ks
aredS; NP)=hnhh,x¢ 1 P?+K? C3
ASjkNP)=hhyh, 4 — > if p<|K| and K<O0, €3
Ks  KiKoKj
1 (K-P)?
L K=PT g bk,
Kz 2K KoK
where
P:|p_wx(X0+ihx)_wy(y0+jhy)_wz(zo+khz)|v (CH
1
K=5(Ks=Ky=Ky), (CH

andKy, K, andK; are the quantitieth,w,|, |hyo,|, and|h,w
the limit of smallK, the last case in EC3) becomes

Ko+ Ks—
2K,K

,| sorted in order of increasing magnitude,<K,<Kj. In

2P
(C6)
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