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Recoil momentum spectrum in directional dark matter detectors
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Case Western Reserve University, Department of Physics, 10900 Euclid Avenue, Cleveland, Ohio 44106-7079
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Directional dark matter detectors will be able to record the recoil momentum spectrum of nuclei hit by dark
matter WIMPs. We show that the recoil momentum spectrum is the Radon transform of the WIMP velocity
distribution. This allows us to obtain analytic expressions for the recoil spectra of a variety of velocity
distributions. We comment on the possibility of inverting the recoil momentum spectrum and obtaining the
three-dimensional WIMP velocity distribution from data.
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I. INTRODUCTION

The identification of dark matter is one of the major op
questions in physics, astrophysics, and cosmology. Re
cosmological observations together with constraints fr
primordial nucleosynthesis point to the presence of nonb
onic dark matter in the universe. The nature of this nonba
onic dark matter is still unknown.

One of the preferred candidates for nonbaryonic dark m
ter is a weakly interacting massive particle~WIMP!. Sub-
stantial efforts have been dedicated to WIMP searches in
past decades@1#. A particularly active area@2# are WIMP
direct searches, in which low-background devices are use
search for the nuclear recoil caused by the elastic scatte
of galactic WIMPs with nuclei in the detector@3#. In these
searches, characteristic signatures of a WIMP signal are
ful in discriminating a WIMP signal against background.

A WIMP signature which was pointed out very early@4# is
an annual modulation of the direct detection rate caused
the periodic variation of the Earth velocity with respect
the WIMP ‘‘sea’’ while the Earth goes around the Sun. T
typical amplitude of this modulation is 5%. A modulatio
with these characteristics was observed by the DAMA C
laboration@5#, but in light of recent results@6,7#, its interpre-
tation as a WIMP signal is currently in question. Differen
and possibly clearer, WIMP signatures would be benefic

A stronger modulation, with an amplitude that may rea
100%, was pointed out by Spergel in 1988@8#. Spergel no-
ticed that because of the Earth’s motion around the Sun
most probable direction of the nuclear recoils changes w
time, describing a full circle in a year. In particular this pr
duces a strong forward-backward asymmetry in the ang
distribution of nuclear recoils.

Unfortunately it has been very hard to build WIMP dete
tors sensitive to the direction of the nuclear recoils. A pro
ising development is the DRIFT detector@9#. The DRIFT
detector consists of a negative ion time projection cham
the gas in the chamber serving both as WIMP target an
ionization medium for observing the nuclear recoil trac
The direction of the nuclear recoil is obtained from the g
ometry and timing of the image of the recoil track on t
chamber end-plates. A 1 m3 prototype has been successfu
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tested, and a 10 m3 detector is under consideration.
In addition to merely using directionality for backgroun

discrimination, what can be learned about WIMP propert
from the directionality of WIMP detectors? It is obvious th
different WIMP velocity distributions give rise to differen
recoil distributions in both energy and recoil direction. Co
Heo, and Krauss@10#, and then Copi and Krauss@11#, have
examined the possibility of distinguishing various WIMP v
locity distributions using a likelihood analysis of the resu
ing recoil spectra, which they generated through a Mo
Carlo program. They have concluded that a discriminat
among common velocity distributions is possible with a re
sonable number of detected events.

Here we want to gain insight into the properties of t
nuclear recoil spectra in energy and direction. For this p
pose, we develop a simple formalism that relates the WI
velocity distribution to the distribution of recoil momenta
We find that the recoil momentum spectrum is the Rad
transform of the velocity distribution@see Eqs.~17!–~19! be-
low#. We apply this analytical tool to a series of veloci
distributions, and discover for example how the recoil m
mentum spectrum of a stream of WIMPs differs from that
a Maxwellian velocity distribution. With our gained insigh
we suggest that if a WIMP signal is observed in direction
detectors in the future, it may be possible to invert the m
sured recoil momentum spectrum and reconstruct the WI
velocity distribution from data.

In Sec. II we describe the general kinematics of elas
WIMP-nucleus scattering, and in Sec. III we obtain our ma
formula for the nuclear recoil momentum spectrum. Sectio
IV and V contain general considerations and examples
Radon transforms of velocity distributions. Finally, Sec.
discusses the possibility of inverting the recoil momentu
spectrum to recover the WIMP velocity distribution. The A
pendices contain useful mathematical formulas for the co
putation and inversion of 3-dimensional Radon transform

II. WIMP-NUCLEUS ELASTIC SCATTERING

Consider the elastic collision of a WIMP of massm with
a nucleus of massM in the detector~see Fig. 1!. Let the
arrival velocity of the WIMP at the detector bev, and neglect
the initial velocity of the nucleus. After the collision, th
WIMP is deflected by an angleu8 to a velocityv8, and the
nucleus recoils with momentumq and energyE5q2/2M .
©2002 The American Physical Society13-1
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Let u denote the angle between the initial WIMP velocityv
and the direction of the nuclear recoilq. Energy and momen
tum conservation impose the following relations:

1

2
mv25

1

2
mv82 1

q2

2M
, ~1!

mv8cosu85mv2q cosu, ~2!

mv8sinu85q sinu. ~3!

Eliminating u8 by summing the squares of Eqs.~2! and ~3!,

m2v825~mv2q cosu!21~q sinu!2

5m2v222mvq cosu1q2, ~4!

and using this expression to eliminatev8 from Eq.~1!, gives

q52mv cosu, ~5!

where

m5
mM

m1M
~6!

is the reduced WIMP-nucleus mass. We deduce that the m
nitude q of the recoil momentum, and the recoil energyE,
vary in the range

0<q<qmax[2mv, 0<E<Emax[
2m2v2

M
. ~7!

Equation~5! will be exploited in the following section to
express the recoil momentum distribution in a simple ma
ematical form. For this purpose, we also need the expres
for the WIMP-nucleus scattering cross section. We write
differential WIMP-nucleus scattering cross section as

ds

dq2
5

s0

qmax
2

S~q!, ~8!

wheres0 is the total scattering cross section of the WIM
with a ~fictitious! pointlike nucleus, andS(q)5uF(q)u2 is a
nuclear form factor normalized so thatS(0)51. @Both S(q)

FIG. 1. Kinematics of elastic WIMP-nucleus scattering.
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andF(q) are confusingly called form factors.# Equation~8!
is valid for both spin-dependent and spin-independ
WIMP-nucleus interactions, althoughs0 andF(q) have dif-
ferent expressions in the two cases. For example, for s
independent interactions with a nucleus withZ protons and
A2Z neutrons,

s05
m2

p
@ZGs

p1~A2Z!Gs
n#2, ~9!

whereGs
p and Gs

n are the scalar four-fermion couplings o
the WIMP with pointlike protons and neutrons, respective
~see Ref.@12#!. If the nucleus can be approximated by
sphere of uniform density, its form factor is

F~q!5
9@sin~qR!2qRcos~qR!#2

~qR!6
, ~10!

where

R.@0.91A1/310.3#310213 cm ~11!

is ~an approximation to! the nuclear radius. More realisti
expressions for spin-independent form factors, and formu
for spin-dependent cross sections, can be found, e.g., in R
@12–15#.

III. RECOIL MOMENTUM SPECTRUM

Equations~5! and~8! can be combined to give the differ
ential recoil spectrum in both energy and direction, i.e.
recoil momentumspectrum. We define it as the double d
ferential event rate, in events per unit time per unit detec
mass, differentiated with respect to the nuclear recoil ene
E and the nuclear recoil directionq̂,

dR

dEdVq
, ~12!

wheredVq denotes an infinitesimal solid angle around t
direction q̂.

The double differential rate follows from the double di
ferential cross section

ds

dq2dVq

~13!

first through the change of differentialsdq252MdE, and
then through multiplication by the numberN of nuclei in the
detector, division by the detector massMN, and multiplica-
tion by the flux of WIMPs with velocitiesv in the velocity
space elementd3v,

nv f ~v!d3v. ~14!

Heren5r/m is the WIMP number density,r is the WIMP
mass density, andf (v) is the WIMP velocity distribution in
the frame of the detector, normalized to unit integral.
3-2
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The double differential cross section is obtained as
lows. Azimuthal symmetry of the scattering around t
WIMP arrival direction givesdVq52p d cosu. The relation
between cosu and q in Eq. ~5!, cosu5q/2mv, can be im-
posed through a Diracd function,d(cosu2q/2mv). Thus

ds

dq2dVq

5
ds

dq2

1

2p
dS cosu2

q

2mv D
5

s0S~q!

8pm2v
dS v cosu2

q

2m D . ~15!

This is correctly normalized as can be seen by integration
the expression in the middle overdVq .

Summarizing, the double differential event rate per u
time per unit detector mass is

dR

dEdVq
52M

N

MNE ds

dq2dVq

n v f ~v!d3v

5
ns0S~q!

4pm2 E dS v cosu2
q

2m D f ~v!d3v. ~16!

We write it as

dR

dEdVq
5

ns0S~q!

4pm2
f̂ ~vq ,q̂!. ~17!

Here

vq5
q

2m
5AME

2m2
~18!

is the minimum velocity a WIMP must have to impart
recoil momentumq to the nucleus, or equivalently to depos
an energyE5q2/2M , as can be seen from Eq.~7!. More-
over,

f̂ ~w,ŵ!5E d~v•ŵ2w! f ~v!d3v, ~19!

is the 3-dimensional Radon transform of the velocity dis
bution functionf (v). We note in passing thatf̂ has units of
inverse speed.

Equation ~17! is the main result of this paper. It state
that, apart from a normalizing factor, the recoil momentu
spectrum is the Radon transform of the WIMP velocity d
tribution. The Radon transform is a linear integral transfo
~see Refs.@16,17#!, which was introduced in two dimension
by Radon in 1917@18#. The Radon transform has bee
widely studied for its use in solving differential equation
and especially in two dimensions, for its medical applic
tions in computer tomography. Geometrically,f̂ (w,ŵ) is the
integral of the functionf (v) on a plane orthogonal to th
direction ŵ at a distancew from the origin. For reference
some mathematical properties of the Radon transform
given in the Appendices.
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As a check of our formalism, we show that integrating o
basic equation~17! over recoil directions reproduces th
usual expression for the recoil energy spectrumdR/dE. Ap-
plying Eq. ~A12! in Appendix A to our expression for the
differential rate, we find

dR

dE
5

ns0S~q!

2m2 E
v.q/2m

f ~v!

v
d3v. ~20!

This is the usual expression of the recoil energy spectr
~cf. Eq. ~8.3! in Ref. @14#!.

IV. COMPUTING THE RECOIL MOMENTUM SPECTRUM

We have cast the nuclear recoil momentum spectrum
terms of a Radon transform. Now we can take advantag
the properties of Radon transforms, some of which are lis
in the Appendices, to compute recoil momentum spectra a
lytically. In this section we give some general consideratio
and in the next section we give explicit examples of analy
recoil momentum spectra.

A. Isotropic distributions

When the WIMP velocity distribution is isotropic,f (v)
5 f (v), the recoil spectrum is also isotropic,f̂ (w,w)
5 f̂ (w). From the definition of Radon transform, Eq.~19!,

f̂ ~w!52pE
w

`

f ~v !vdv. ~21!

We would have obtained the same result starting from
~A12!.

B. Moving observer

WIMP velocity distributions are often given in the gala
tic rest frame, while we are interested in the recoil mome
tum spectrum in the laboratory frame of the detector. T
change of velocity frame can be performed either on
velocity distribution before computing the Radon transfo
or on the Radon transform computed in the galactic r
frame. The latter is often easier to compute, and the cha
of reference frame can be done simply as follows.

The WIMP velocitiesvlab and vgal in the laboratory and
galactic rest frames, respectively, are related by

vlab5vgal2V lab, ~22!

whereV lab is the velocity of the laboratory with respect t
the galactic rest frame. This velocity transformation is
translation in velocity space, and we can use Eq.~A9! in
Appendix A to relate the Radon transforms in the galac
and laboratory frames,

f̂ lab~w,ŵ!5 f̂ gal~w1V lab•ŵ,ŵ!. ~23!
3-3
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Thus the recoil momentum spectrum in the laboratory fra
is given directly in terms of the Radon transformf̂ gal(w,ŵ)
of the WIMP velocity distribution in the galactic rest fram
by

dR

dEdVq
5

ns0S~q!

4pm2
f̂ gal~vq1V lab•q̂,q̂!, ~24!

with vq5q/2m as before.

C. Rotated observer

If we rotate the coordinate system, we see from Eq.~A8!
in Appendix A that the recoil momentum spectrum is simp
rotated, with the magnitude of the recoil momentum rema
ing the same, as expected.

V. EXAMPLES OF RECOIL MOMENTUM SPECTRA

We give some examples of recoil momentum spectra c
responding to common velocity distributions. We obtain t
recoil spectra for streams of particles and for isotropic a
anisotropic Gaussian distributions with and without bulk v
locities.

A. A WIMP stream or flow

The simplest case is that of a particle stream in which
WIMPs in the stream move with the same velocityV. In this
case,

f stream~v!5d~v2V! ~25!

and

f̂ stream~w,ŵ!5d~V•ŵ2w!. ~26!

The recoil spectrum of a stream with velocityV is concen-
trated on a sphere of radiusV/2, centered inV/2 and passing
through the origin. The stream velocityV is a diameter of the
sphere.

Figure 2 shows the (wx ,wy) section of the recoil momen
tum spectrum of a stream of WIMPs arriving from the le
with velocity Vx5400 km/s. The full distribution is obtaine
through a rotation around thewx axis. The pattern of recoi
momenta forms a sphere.

B. Maxwellian distribution

A Maxwellian distribution with velocity dispersionsv ,

f M~v !5
1

~2psv
2!3/2

expF2
v2

2sv
2G , ~27!

is a particular case of isotropic distribution, and we can
Eq. ~21! above to compute its Radon transform. We find

f̂ M~w!5
1

~2psv
2!1/2

expF2
w2

2sv
2G . ~28!
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If the detector has velocityV lab, we can use Eq.~23! to
find the Radon transform in the laboratory frame,

f̂ M,lab~w,ŵ!5
1

~2psv
2!1/2

expF2
@w1ŵ•V lab#

2

2sv
2 G . ~29!

Notice thatŵ•V lab is the projection of the velocity of the
observer in the direction of the nuclear recoil. This expr
sion coincides with, but is simpler than, the analogous
pression obtained by elementary methods in Ref.@8# (cosg

in Ref. @8# is cosg52ŵ•V̂ lab).
The recoil momentum distribution for a Maxwellian dis

tribution is shown in Fig. 3, assuming a velocity dispersi
of 300 km/s and an observer moving at 220 km/s in direct
2x. The distribution is symmetric around the observer v
locity. The figure shows the section in the (wx ,wy) plane
only. The full distribution can be obtained by symmetry.

FIG. 2. Probability density distribution of the nuclear recoil m
mentum in the recoil plane (wx ,wy), assuming a stream of WIMP
with velocity (vx ,vy ,vz)5(400 km/s,0,0). The full (wx ,wy ,wz)
distribution can be obtained by revolution around thewx axis. The
recoil momenta describe a sphere in recoil space.

FIG. 3. Probability density distribution of the nuclear recoil m
mentum in the recoil plane (wx ,wy), assuming a Maxwellian ve-
locity distribution of WIMPs with velocity dispersion 300 km/s, an
a detector moving with velocity (Vx ,Vy ,Vz)5(2220 km/s,0,0).
Lighter areas have higher probability. The full (wx ,wy ,wz) distri-
bution can be obtained by revolution around thewx axis.
3-4
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Equation ~29! illustrates the reason for writingf̂ (w,ŵ)
instead off̂ (w) ~see Appendix for more details!. The func-
tion f̂ M,lab(0,ŵ) assumes different values for different dire
tionsŵ; the functionf̂ (w) would therefore be multivalued a
the origin.

C. Truncated Maxwellian distribution

We may truncate a Maxwellian distribution at the esca
speedvesc,

f TM~v !5H 1

Nesc~2psv
2!3/2

expF2
v2

2sv
2G , v,vesc,

0, otherwise,

~30!

with

Nesc5erfS vesc

A2sv
D 2A2

p

vesc

sv
expF2

vesc
2

2sv
2G . ~31!

Then we have

f̂ TM~w!5
1

Nesc~2psv
2!1/2H expF2

w2

2sv
2G2expF2

vesc
2

2sv
2G J .

~32!

D. Non-isotropic Gaussian distribution

The recoil-momentum spectrum corresponding to an
isotropic Gaussian distribution can also be obtained ana
cally. An anisotropic Gaussian distribution with variance m
trix s2 and mean velocityV is given by

f Gauss~v!5
1

~8p3dets2!1/2

3expF2
~v2V!Ts22~v2V!

2 G . ~33!

We are using matrix notation,vT being the transpose ofv,
etc. Using the Fourier slice theorem, actually Eq.~A14!, we
find the Radon transform of the anisotropic Gaussian to

f̂ Gauss~w,ŵ!5
1

~2p ŵTs2ŵ!1/2

3expF2
@w2ŵ•V#2

2ŵTs2ŵ
G . ~34!

This is another example of a function which assumes
ferent values atw50 according to the directionŵ.

VI. RECONSTRUCTING THE VELOCITY DISTRIBUTION

The recoil spectrum of a stream and a Maxwellian vel
ity distribution are very different: a sphere the first, a smo
10351
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distribution the second. This suggests that it may be poss
to distinguish different kinds of WIMP velocity distribution
just by examining the pattern of recoil momenta. Subtle d
ferences among velocity distributions may be revealed b
maximum likelihood analysis of the corresponding rec
spectra@10,11#.

More ambitiously, we may think of recovering the WIM
velocity distribution by inverting the measured recoil m
mentum spectrum. Indeed, if we know the nuclear form f
tor of the detector nuclei, then for any fixed WIMP mass w
can estimate the Radon transform of the WIMP velocity d
tribution from the measured recoil momentum spectru
modulo a normalization constantK. Equation~17! can in fact
be written as

f̂ ~vq ,q̂!5K
4pm2

S~q!

dR

dEdVq
, ~35!

enabling us to obtain a measurement of the Radon transf
f̂ (vq ,q̂) of the WIMP velocity distribution from the mea
sured recoil spectrumdR/dEdVq . We may be able to inver
this Radon transform and obtain the WIMP velocity distrib
tion f (v), again modulo a normalization constant. Final
we may be able to fix the normalization constant either
normalizing f (v) to unit integral or better by examining th
detector efficiency as a function of WIMP velocity.

There are several analytic formulas for the inversion
three-dimensional Radon transforms. Some of these form
are collected in Appendix B for convenience. Most of t
analytical inversion formulas can be converted into nume
cal algorithms@19#. However, any inversion algorithm w
were able to find in the literature is suited only to a lar
amount of data in recoil momentum space, since they
assume that it would be possible to define a discretized
sion of f̂ (w,ŵ). This is not the case for directional dark
matter searches, where the total number of events is not
der the control of the experimentalist and is expected to
rather small.

New inversion algorithms suited to small numbers
events are therefore needed if one wants to reconstruc
WIMP velocity distribution using data from directional de
tectors. As a first attempt in this direction, we have devis
the following simple algorithm. Divide the WIMP velocity
space into small cellsSm , m51, . . . ,M , and assume that th
WIMP velocity distribution f (v) is constant over each o
these small cells, with valuef m in cell Sm . To each recorded
event j with measured recoil momentumqj , j 51, . . . ,N,
associate the planePj in WIMP velocity space defined by th
equation

Pj : 2mv•q̂j5qj . ~36!

Pj is the plane orthogonal to the recoil directionq̂j and at a
distancewj5qj /2m from the origin. Velocity vectors on this
plane are all the WIMP velocities that can produce the
served nuclear recoil. Let

ajm5area~SmùPj !, ~37!
3-5
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the area of the intersection of the planePj with the cellSm
~see Appendix C for an explicit expression!. For each eventj,
assign weightajm to them-th cell. Sum the weights over th
events, Am5( j 51

N ajm , essentially counting how man
planes cross any given cell. Take the discrete Laplacian
the sum of the weights, and keep only those cells wh
values exceed a predetermined threshold. The resulting
tribution of cell values is our estimate of the WIMP veloci
distribution.

To test the capabilities of our algorithm, we simulated t
recoil spectrum due to two streams of WIMPs arriving at
detector from opposite directions, with velocitie
(V1x ,V1y ,V1z)5(0,0,0.5) and (V2x ,V2y ,V2z)5(0,0,20.2)
~in arbitrary units!. We generated 100 events, and applied
previous algorithm with 643 cells in velocity space and
threshold of 0.1. We found that only two cells in veloci
space are above threshold, and they correspond exactly t
location of the simulated streams. Figure 4 plots the (vx ,vz)
section of the reconstructed velocity distribution. It is im
pressive that we were able to recover this velocity distri
tion with only 100 events.

We leave further studies of our simple algorithm, and
development of other algorithms, to future work.

VII. CONCLUSIONS

Directional detectors for WIMP dark matter searches w
be able to measure not only the energy but also the direc
of the nuclear recoils caused by the elastic scattering of
lactic WIMPs with nuclei in the detector. This direction
capability will help in separating a WIMP signal from bac
ground, and will also provide a measurement of the rec
momentum spectrum as compared to just the recoil ene
spectrum.

To gain insight into the properties of recoil momentu
spectra, we have devised a simple formalism for the anal
computation of recoil momentum spectra from WIMP velo
ity distributions. Mathematically, the recoil momentum spe
trum is the 3-dimensional Radon transform of the veloc
distribution.

Well-established mathematical properties of the Rad
transform allow the computation of analytical expressio
for recoil spectra associated to several common WIMP
locity distributions. As examples we presented recoil spe

FIG. 4. Reconstructed velocity distribution of two WIM
streams with velocities (0,0,0.5) and (0,0,20.2) ~in arbitrary units!.
Only the (vx ,vz) section is shown.
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for a WIMP stream, a Maxwellian, a truncated Maxwellia
and a non-isotropic Gaussian. We found in particular tha
stream of WIMPs produces a characteristic spherical pat
of nuclear recoils. A Maxwellian distribution gives instead
smooth recoil pattern. Other velocity distributions lead
more complicated spectra.

The analytic expressions we found for the nuclear rec
spectra will facilitate the discrimination of different velocit
distributions through likelihood analysis. In addition, it ma
be possible to invert the measured momentum spectrum
reconstruct the local WIMP velocity distribution from dat
For this purpose, we have presented an algorithm to reco
the velocity distribution from a small number of recorde
events. We have successfully recovered a simulated velo
distribution with just 100 generated events.

We expect that the tools we have presented will be us
for the design and analysis of directional WIMP detectors
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APPENDIX A: SOME MATHEMATICS OF THE RADON
TRANSFORM

In this appendix we collect some useful mathemati
properties of the 3-dimensional Radon transform. We den
the 3-dimensional Radon transform of a functionf (v) by
f̂ (w,ŵ). It is defined by

f̂ ~w,ŵ!5E d~w2ŵ•v! f ~v!d3v. ~A1!

It is easy to see that the Radon transform is linear,

f 11 fˆ 25 f̂ 11 f̂ 2 . ~A2!

1. A remark on notation

One may be tempted to writef̂ (w) for f̂ (w,ŵ), after all
w5wŵ. This notation may however be ambiguous a
should be used with care. Indeed, one must keep in mind
the Radon transform as defined in Eq.~A1! is a function of
the magnitudew and the directionŵ separately. In other
words, one may havef̂ (0,ŵ)Þ f̂ (0,ŵ8) for ŵÞŵ8. Namely,
f̂ (0,ŵ) may assume different values for different direction
This will not be reflected in the notationf̂ (w), which would
read f̂ (0) at the origin, independently of the directionŵ. In
other words,f̂ (w) would be a multiple-valued function at th
origin. Mathematically, the distinction betweenf̂ (w,ŵ) and
f̂ (w) is important, and is expressed by saying thatf̂ (w,ŵ) is
defined onR3S2 while f̂ (w) is defined onR3. For our ap-
plication, however, the distinction is of little concern, sin
the problematic originw50 corresponds to the region o
vanishingly small recoil momenta, which is experimenta
3-6
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inaccessible. We have nevertheless used the mathemat
correct notation throughout for clarity.

2. Change of coordinates

Under linear transformations of the coordinate axesv
transforms as

v→v85Av1b, ~A3!

where A is a 333 non-singular matrix andb is a constant
vector. A velocity distribution functionf (v) transforms so as
to keep the number of particles in a volumed3v invariant:

f 8~v8!d3v85 f ~v!d3v. ~A4!

Hence,

f 8~v8!5
1

udet Au
f „A21~v82b!…, ~A5!

where det A is the determinant of A, and A21 is the inverse
of A. To find the relation between the Radon transforms
f (v) and f 8(v8), we change integration variable fromv8 to v
in the definition, Eq.~A1!,

f̂ 8~w8,ŵ8!5E d~w82ŵ8•v8! f 8~v8!d3v8

5E d~w82ŵ8•Av2ŵ8•b! f ~v!d3v

5E d~w82ŵ8•b2ATŵ8•v! f ~v!d3v

5 f̂ ~w82ŵ8•b,ATŵ8!, ~A6!

where AT is the transpose of A. Thus

f̂ 8~w8,ŵ8!5 f̂ ~w82ŵ8•b,ATŵ8!. ~A7!

In particular, under a pure rotation R,

f̂ 8~w8,ŵ8!5 f̂ ~w8,R21ŵ8!, ~A8!

and under a pure translationb,

f̂ 8~w8,ŵ8!5 f̂ ~w82ŵ8•b̂,w8!. ~A9!

3. Transformation of derivatives

The following relations hold for derivatives of the Rado
transform@herev5(v1 ,v2 ,v3) and ŵ5(ŵ1 ,ŵ2 ,ŵ3)]

] f̂

]vk
5ŵk

] f̂

]w
, ~A10!

] f̂

]ŵk
52

]

]w
vk f̂ . ~A11!
10351
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4. Integration over angles

We find the following expression for the integral of th
Radon transformf̂ (w,ŵ) over the directionsŵ:

E f̂ ~w,ŵ!dVw5E E d~v•ŵ2w! f ~v!d3v dVw

5E F E d~v•ŵ2w!dVwG f ~v!d3v

5E F2pE
21

1

d~v cosg2w!d cosgG
3 f ~v!d3v

5E 2p

v
u~v2uwu! f ~v!d3v

52pE
v.uwu

f ~v!

v
d3v. ~A12!

5. Fourier slice theorem

There is a connection between the Radon transform
the Fourier transform. Taking the Fourier transform of t
definition, Eq.~A1!, with respect tow at fixed ŵ gives

E
2`

1`

dleilt f̂ ~l,ŵ!5E f ~v!eit ŵ•vd3v. ~A13!

This equation goes under the name of Fourier slice theor
The right-hand side is just the Fourier transform off (v)
evaluated attŵ, while the left-hand side is the Fourier tran
form of f̂ (w,ŵ) at fixed ŵ.

Inverting the Fourier transform in the left-hand side of t
Fourier slice theorem, we have

f̂ ~w,ŵ!5
1

2pE2`

`

dte2 iwtE f ~v!eit ŵ•vd3v. ~A14!

This alternative expression of the Radon transform actu
serves as its definition when functions are replaced by dis
butions~in the mathematical sense, see Ref.@17#!.

6. Expansion into spherical harmonics

Let us expandf (v) and its Radon transformf̂ (w,ŵ) into
spherical harmonicsYlm( v̂) and Ylm(ŵ), respectively. We
have

f ~v!5(
lm

f lm~v !Ylm~ v̂!, ~A15!

and

f̂ ~w,ŵ!5(
lm

f̂ lm~w!Ylm~ŵ!. ~A16!
3-7
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The coefficients of the spherical harmonic expansions
related by

f̂ lm~w!52pE
w

`

Pl S w

v D f lm~v !vdv, ~A17!

wherePl(x) is a Legendre polynomial of orderl. These ex-
pressions are useful when the velocity distributions are
isotropic.

Equations~A17! can be proven using the decompositi
of the d-function in Legendre polynomials

d~ v̂•ŵ2t !5u~12t !(
l

2l 11

2
Pl~ t !Pl~ v̂•ŵ!, ~A18!

the addition theorem for spherical harmonics

Pl~ v̂•ŵ!5
4p

2l 11 (
m52 l

l

Ylm* ~ v̂!Ylm~ŵ!, ~A19!

and the orthogonality of the spherical harmonics

E Yl 8m8
* ~ v̂!Ylm~ v̂!dVv5d l 8 ldm8m , ~A20!

which lead to the relation

E d~ v̂•ŵ2t !Ylm~ v̂!dVv52pu~12t !Pl~ t !Ylm~ŵ!.

~A21!

APPENDIX B: INVERSION FORMULAS FOR THE
RADON TRANSFORM

1. Inversion using the Laplacian

An inversion formula for the Radon transform is

f ~v!52
1

8p2

]2

]v2E f̂ ~v•ŵ,ŵ!dVw , ~B1!

where]2/]v2 is the Laplacian inv. It can also be written in
terms of f̂ 9(w,ŵ)5]2 f̂ (w,ŵ)/]w2 as

f ~v!52
1

8p2E f̂ 9~v•ŵ,ŵ!dVw . ~B2!

The inversion formula~B1! can be proven by inverting th
Fourier transform off (v) in the Fourier slice theorem, Eq
~A13!, then integrating separately int and ŵ, and finally
using the relation

E
0

`

t2eitxdt52pd (2)~x!, ~B3!

whered (2)(x) is the second derivative of the Diracd func-
tion.
10351
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2. Inversion through spherical harmonics

Another inversion method is through an expansion
spherical harmonics. Referring to Eqs.~A15! and~A16!, one
can prove the following inversion formula

f lm~v !52
1

2pvE0

v
Pl S w

v D f̂ lm9 ~w!dw, ~B4!

where Pl(x) is a Legendre polynomial andf̂ lm9 (w)

5d2 f̂ lm /dw2, the second derivative off̂ (w) with respect to
w.

Equation ~B4! is proven along the same lines as E
~A17!, starting from Eq.~B2! written as

f ~v!52
1

8p2E d~w2v•ŵ! f̂ 9~w,ŵ!dwdVw . ~B5!

3. Inversion through Fourier transforms

The Fourier slice theorem, Eq.~A13!, can be made into an
algorithm for the numerical evaluation of the inverse Rad
transform. Typically one would use fast Fourier transform

4. Inversion through the adjoint operator

Equation~B1! can also be made into an algorithm. F
each givenv, the integration indVw amounts to an integra
tion over the sphere of diameterv and passing through th
origin ~a ‘‘stream sphere’’!, with integration measure
d cos(u/2)df in spherical coordinates centered at the cen
of the sphere and north pole inv. The final Laplacian can be
computed numerically as the difference between the cen
value and the average value of its six nearest neighbors

5. Algebraic inversion via discretization

An algebraic inversion method is the following@17, p.
96#. Suppose that the valuesf̂ j , j 51, . . . ,N, corresponding
to the pointswj ,ŵj are known. In medical applications, th
pointswj ,ŵj form a grid or other structure in space, and t
f̂ j ’s are the measured signal intensities. In our case, the n
ber of detected events may be quite small, in which case
may letwj ,ŵj be the actual measurement of a nuclear rec
momentum, withj varying over the number of events, an
f̂ j51/« j , where« j is the efficiency for detecting eventj.

By definition of Radon transform we have

E
Pj

f ~v!d3v5 f̂ j , ~B6!

where the integral is taken over the plane inv space defined
by the equation

Pj : v•ŵj5wj . ~B7!

Pj is the plane orthogonal to the recoil directionŵj and at a
distancewj from the origin. Now suppose thatf (v) has com-
pact support, meaning that it vanishes foruvu. something.
3-8



e
m
y

lls
-

hi

the
.
ls

RECOIL MOMENTUM SPECTRUM IN DIRECTIONAL . . . PHYSICAL REVIEW D 66, 103513 ~2002!
This is a technical simplification that is valid in practic
since real velocity distributions are always truncated at so
large velocity ~e.g. at the escape speed from the galax!.
Divide the v space into small cellsSm , m51, . . . ,M , and
assume thatf (v) is constant over each of these small ce
with value f m in cell Sm . This is the discretizing approxima
tion. Let

ajm5area~SmùPj !, ~B8!

the area of the intersection of the planePj with the cellSm
~see Appendix C for an explicit expression!. A discretized
version of Eq.~B6! is then

(
m

ajmf m5 f̂ j . ~B9!

In matrix form

A f5 f̂ , ~B10!

whereA5(ajm) is an N3M matrix, f 5( f 1 , . . . ,f M)T and
f̂ 5( f̂ 1 , . . . ,f̂ N)T. This is a system of linear equations forf
that can be solved by invertingA. Since fewajm differ from
zero,A is a sparse matrix, and it is convenient to solve t
system iteratively. Fixv, 0,v,2. Let the initial guess be
f (0) and thek-th update bef (k). From f (k) compute the fol-
lowing vectors successively:

f 0
(k)5 f (k), ~B11!

f j
(k)5 f j 21

(k) 1
v

aj
2 ~ f̂ j2aj

Tf j 21
(k) !aj ,
10351
e
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j 51, . . . ,N. ~B12!

Here aj
25(majm

2 and aj5(aj 1 , . . . ,ajM ). Finally let the
next update bef (k11)5 f N

(k) . Reference@17# attributes this
method to Kaczmarz.

APPENDIX C: AREA OF THE INTERSECTION BETWEEN
A PLANE AND A CELL

For future reference, we give here the expression for
area of the intersection of a plane with a rectangular cell

Assume the (x,y,z) space is divided into rectangular cel
of sideshx , hy , andhz alongx, y, andz, respectively. Let the
( i , j ,k)-th cell Si jk be centered at (x01 ihx ,y01 jhy ,z0
1khz),

Si jk :5
S i 2

1

2Dhx1x0,x,S i 1
1

2Dhx1x0 ,

S j 2
1

2Dhy1y0,y,S j 1
1

2Dhy1y0 ,

S k2
1

2Dhz1z0,z,S k1
1

2Dhz1z0 .

~C1!

Let P be the plane defined by

P:vxx1vyy1vzz5p. ~C2!

Then the area of the intersection of the planeP with the
( i , j ,k)-th cell Si jk is
area~Si jkùP!5hxhyhz35
0, if PAK1

21K2
21K3

2.A3/2,

1

K3
, if P<uKu and K>0,

1

K3
2

P21K2

K1K2K3
, if P<uKu and K,0,

1

K3
2

~K2P!2

2K1K2K3
, if P.uKu,

~C3!

where

P5up2vx~x01 ihx!2vy~y01 jhy!2vz~z01khz!u, ~C4!

K5
1

2
~K32K22K1!, ~C5!

andK1 , K2, andK3 are the quantitiesuhxvxu, uhyvyu, anduhzvzu sorted in order of increasing magnitude,K1<K2<K3. In
the limit of smallK1, the last case in Eq.~C3! becomes

K21K322P

2K2K3
. ~C6!
3-9
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