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Instability of spacelike and null orbifold singularities
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Time dependent orbifolds with spacelike or null singularities have recently been studied as simple models of
cosmological singularities. We show that their apparent simplicity is an illusion: the introduction of a single
particle causes the spacetime to collapse to a strong curvature sing@abiyg crunch, even in regions
arbitrarily far from the particle.
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I. INTRODUCTION argue that in fact these orbifold singularities are highly un-
stable. Given their application to both M theory and string

Understanding the physics at cosmological singularitiegheory, we will consider generdD dimensional orbifolds.
has long been a challenge for string theory. One of the maifror a simple boost, the identification acts on a two dimen-
open questions is whether tinfas we know it simply be- sional subspace, so there &e- 2 flat transverse directions.
gins and ends, or do quantum effects produce a kind ofoOr the null orbifold, the identification involves three dimen-
bounce, with a well defined semiclassical spacetime on th&ions, so there ar® —3 transverse directions. We will show
other side(One of the earliest attempts to apply string theorythat the addition of even aingle particle, localized in the
to cosmology, the pre-big bang scenafib], requires a transverse d[rect|pns, causes the entire universe to collapse
bounce) In order to study this question, it is natural to start iNto a spacelike singularity. The basic mechanism is the am-
with the simplest examples of solutions with cosmologicalPlification of the energy of particles in the collapsing uni-
singularities: time dependent orbifolds. These are quotient¥erse, a point that has been emphasized by many others go-
of flat spacetime by boost®r combinations of boosts and iNg back to Ref[2]. We will analyze the effects of this first
rotations. Since the spacetimes are locally flat, they are exin the context of general relativity, finding evidence for the
act classical solutions to string theory and string propagatiofollapse, and then argue that this effect can be seen in the
is relatively easy to study. Given that the singularities ofString amplitudes of Ref.10]. Unfortunately, this does not
ordinary orbifolds are harmless in string theory, one might'esolve the question of what happens at cosmological singu-
expect the same would be true here. However, argumentdrities in string theory. It just shows t_hat orbifolds are not
were given many years ago that this would not be the casee@lly any simpler than other cosmological models. One must
[2]. learn to deal with the strong curvature effects.

Recently, interest has been refocussed on this question by While this was being written, several related papers ap-
the ekpyrotic cosmolog§], which require§4] that the uni- ~ Peared. Referencfl2] shows that ahomogeneougnergy
verse contract to a singularity and then reexpand. The ekpyjlstrlputlon in the transverse dlre_ctlons causes the null orbi-
rotic singularity is spacelike and corresponds to orbifoldingfold singularity to become spacelike. Referenfe3, 14 ex-
by a simple boost. The cyclic universe mof&) has a simi- teénd the analysis of LMS to the nonsingular orbifold in
lar orbifold singularity. It has been argued that from someWhich the null boost is accompanied by a spacelike shift, and
points of view this singularity is rather gent6,7], while include remarks about the back regctlon_that overlap W.I'[h
from other points of view it is nof8].! One difficulty with ~ ours. We should also note other discussions of Lorentzian

this orbifold is that the resulting spacetime has closed time0rbifolds, of flat and curved spacetimgkb].
like curves. As a warmup, Liu, Moore, and Seibékd/S)
[10] have sf[udigd the orbifold by a_nuII bod&t,11]. This has_ Il GENERAL RELATIVITY ARGUMENT FOR THE
no closed timelike curves, though it does have a submanifold BIG CRUNCH
with closed null curves, and a null singularity. It also has the
advantage of being supersymmetric. LMS study four-string In this section we use general relativity to study the effect
amplitudes in this space, and finds that they are nonsingulaf introducing a single particle into the orbifolds with time-
except for exceptional momenta. They do not study the backke and null singularities. The basic idea is to go to the
reaction and so are not able to conclude whether there is @vering space, and view the single particle on the orbifold
bounce or not. as an infinite collection of particles in Minkowski spacetime
In this paper we will reexamine this question, and will all related by the appropriate boost. If the gravitational inter-
action of these particles produces a singularity, the same
must be true for a single particle on the orbifold. Because of
L1t was noted in[9] that metric perturbations become large nearthe large boosts involved, the rest mass of the particle can be
the orbifold singularity. neglected. We will therefore consider massless particles.
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A. Preliminaries o 1 o
" — —(P—P)* 13
We begin with the basic system of two massless particles XEN) = Z(P P)fx+a
with momentaP* andP* in D spacetime dimensions. Lbt

be the impact parameter in the center of mass frame. Since _(P+|~3)Ma'(P+ P) ®)

the center of mass energy squaregds—2P- P, the condi- 2P-P

tion that the particles approach within their Schwarzschild

radius and form a black hole is Now take the difference between these two trajectories and

compute the norm. The norm depends)onX, and mini-

D-3
Gys>b @) mizing with respect to this parameter yields

up to coefficients of order 1. This heuristic condition can be

justified in general relativity as follows. The gravitational b2=Y2—w (6)
field of a single massless particle is given by a shock wave P-P

called the Aichelberg-Sex| metrfd 6]. For D>4, the metric

IS where Y#=a*—2a*. Sincea* anda* are arbitrary points

along the geodesics, one can ¥ét equal to the difference
- L betweenany pair of points on the respective trajectories,
ds’=—2dy"dy +dy*+ W&(y*)(dy*)z Y#=X*(\)—X*(\). This does not change the impact pa-
) rameter becauselE(ﬁ) is invariant under shiftingy# by any
multiple of P# or P*.

where . is proportional to the energy of the particle. n

=4, the metric is similar, with the power law dependence in B. Two examples
the last term replaced by a log. The curvature is concentrated
on a null plane_, and falls off as one moves away from thq\/linkowski spacetime quotiented by a boost, times a flat
particle. The high energy collision of two particles can betransverse space. The spacetime is

described in the center of mass frame by superposing two '
such shock waves in the past. This is possible, despite the ds?= —2dy*dy” +dy? (7)
nonlinearities of general relativity, because the spacetime is

flat in front of each shock wave. After the particles collide, \ith the identification

the exact solution is not known. But if the impact parameter
is small enough, there are trapped surfaces in the spacetime
when the particles collidgl7]. It follows from the singular-

ity theorems that a singularity must form. Assuming cosmic . . :
censorship, the singularity must be inside a black hole. IrlL_Or all "?tegefsi‘ and some COT‘S‘W- This o_rb|fol_d has
four spacetime dimensions, a trapped surface has been fou ged points ay” =0,y =0 which is a spacelike singular-

18] provided the impact pbarameter satisfies the badidn ity. It consists of four regions, two.with closed timelike
[18]p pact p oa curves® As mentioned above, we will study the effect of

high i i f h f f
igher dimensions, a trapped surface has been found for adding a single massless patrticle to this orbifold by going to

=0 [18]. The size of the trapped surface is of order the h X n has th inal icle
Schwarzschild radius for the given energy, so one again efl)€ covering space where one has the original particle to-

pects a black hole to form wheneviersatisfies Eq(1), but gether with an infinite number of boosted images. The mo-
this has not yet been rigorously shown. ' mentum of thenth image is related to the original momen-

+ apnt a—Napx— i
It will be useful to have a general formula for the impacttum (p".p ,p) .by (€" P .€ "“p".p). On the covering
parameterb in the center of mass frame, given two null space, a sufficient condition for the formation of a black
geodesics hole, and therefore a spacelike singularity, is that any pair of

images satisfy the conditiofll). Consider say the original
~ o~ e~ particle and itsith image. Their center of mass energy grows
XE(N) =P\ +a¥,  XK(N) =P\ t+ak. () like s~coshna. To compute the impact parameter, we use
Eq. (6). It is convenient to choose the affine parametgo
This is easily obtained as follows. Projecting each trajectoryanish atX*=0, soa™=0. ThenY? only depends on the

into the subspace orthogonal B¥*+P#, which is at con- transverse components afwhich are independent of The

We now consider our first example: two dimensional

(yy ,y)=(e"y e "y y) (8

stant time in the center of mass frame, we get n dependent contribution t8-Y is —P"a"(1—e ") for
1 ~
XH(N)— E(P_ P)#\+a* 2To avoid this, one might consider just the past and future wedges.
Since this is not a true orbifoldt is a quasiorbifold in the termi-
_ a (P+5) nology of Ref.[19]) there are no methods as yet for studying such
—(P+P)#—mx—, (4) a space in string theory, or even for showing that it exists as a
2P-P solution.
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the original particle and-P*a ™ (e"*— 1) for thenth image.
This implies that for largén|, the impact parameter is inde-
pendent ofn.

It follows that for largen the condition(1) for formation

PHYSICAL REVIEW D66, 103512 (2002

One might wonder whether the intersections at smailler
might introduce nonlinear effects that would prevent the for-
mation of larger black holes at largar This should not be
the case, because the trapped surface corresponding to larger

of a black hole is always satisfied. Moreover, by taking largen is at larger radius, spacelike separated from the region of

enoughn, the Schwarzschild radius

RSD*3~G(p+p—)1/2ena/2 (9)

nonlinearity. In fact, the combined effect of multiple shocks
goes the other way: if we consider the total center of mass
energy of the firsh images of each particle, then one finds
that (in, e.g., the null orbifold

becomes arbitrarily large, so that the black hole occupies all

of space. In other words, the entire spacetime ends in a cur-

Scn?, bxn®, R273~Gn?p™ (14)

vature singularity and one has a big crunch. It has often been
noted that the spacetime inside a black hole is analogous &b R, grows even more quickly with.

an (anisotropi¢ cosmology with a big crunch. When the

The collision of two shock waves changes the spacetime

black hole is arbitrarily large so there is no spacetime outsidenly to the future of their intersection. We now ask whether

the horizon, this analogy becomes exact.

the orbifold singularity indeed lies to the future of the inter-

We now show that the same thing happens for the nulkection of two shocks. A null particlB“\ +a* generates a

orbifold, which is described by

ds?=—2dx"dx™ +dx?+ dx? (10
with the identification
X=(x",%,x",X)
=X,
=(x*,x+nx",x" +nx+n’*/2x). (12)

Note that theD — 3 transverse coordinatesare not affected
by the identification. The fixed points arexat=0, x=0 and
form a null singularity. There is a similar identification of the
momenta
P=(p".p.p".p)
= Pn

=(p*,p+np*,p” +np+n?pt/2p). (12

(Note Xo=X and Py=P by definition)

shock wave consisting of all pointg* satisfyingP - (x—a)
=0. Thenth boosted image produces the shock wé&yge
-(x—ap)=0. SinceP-a=P,-a, by Lorentz invariance, the
intersection of the two shocks must satisty,(- P)-x=0.
For the null orbifold, this implies
(np+n?p*t/2)x*=np*x. (15)
Depending on the sign of one can take either positive or
negative to insure that™<0. Note that for larggn|, x*
=0O(1/n|). Since every point withx™ >0 lies to the future
of every point withx™ <0 [10], it is clear that the entire
region to the future of the orbifold singularity lies to the
future of the intersection of the shocks.
For the boost orbifold8) the condition P,—P)-y=0
yields
ply =py'e " (16)
Sincey™ andy~ always have the same sign, the intersection
never occurs in the region of closed timelike curves. If we
substitute Eqg.(16) into the condition for a single shock,

As before, a massless particle in this orbifold can be deP-(y—a)=0, we obtain

scribed by an infinite collection of particles on the covering

space. If we focus on one particle wi{\) =P\ +a and its
nth image, the center of mass energy is

Sp=—2P-P,=2p*p, +0(n)=n*p*)?, (13
and so the center of mass energy grows.akb compute the
impact parameter, we again choose the affine parameter
vanish atX" =0, soa*=0. One quickly verifies tha¥? is
independent oh, and that in the second term of E&) both
numerator and denominator are of orar so that the im-
pact parameter does not grow with Once again, one pro-
duces black holes with arbitrarily large size by takimguf-
ficiently large.

17

If the right hand side is negative, the orbifold singularity lies
to the future of the intersection of the shocks for all images
n. If the right hand side is positive, it lies to the past. How-
ever even in this case, it is not possible for a particle to
fwopagate into the future cone before it encounters strong
curvature. If we ask when the trajectoB/\ +a* collides
with the image shockP,-(y—a,)=0, a short calculation
shows that the affine parameteis negative(for positiven)
and so the collision occurs in the past cone.

It is somewhat counterintuitive that a single particle can
change the geometry at arbitrary distance. In particular, it

(e "+1)p yt=p-y-P-a.

Thus, in both cases, a single particle induces a gravitamight appear to violate causality. To see that this is not the
tional collapse everywhere in spacetime. Essentially, thease, and make the above result more plausible, we present
gravitational shock wave of the particle wraps infinitely another argument which leads to the same conclusion. For
many times through the identified space and intersects itsetfefiniteness, we will consider the null orbifold. Suppose we
infinitely many times, and successive intersections are instart with a massive particle rather than a masslesytbee

creasingly energetic.

above argument still goes though essentially unchanged
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This particle produces a gravitational perturbation which asingular plane waves studied j21]. For the null orbifold
large distances is described by the linearized Schwarzschildl), it is clear that the image trajectories in the covering
solution, space are simply translated indirection and have exactly
the same momentum. Parallel null particles never form a
ds?=—dt?+dr?+r2dQ3_, black hole. The gravitational back reaction is described by a
single shock wave at one valuef, with a profile that is a
dt2+ 1 (dr2+r2dQ%,2) . (18 Iin.ear superpositio.n of the shock wave for egch particle. In
D-3 this one nongeneric case there is no singularity.

ro D-3

+

On the covering space, we have an infinite number of par- o
ticles which produce a field at large transverse distance C. Generalizations
which is just the sum of the Schwarzschild perturbation of There is a generalization of the null orbifold which regu-

each one. In terms of the above null coordinates(x” |ates the singularity. If one adds a commuting spacelike shift
+X7)2,r2=(x"—x")2/2+x2+x2. Itis easy to show that to the null boost, then there are no fixed points. The identi-
this sum diverges fox™ =x=0 and any transverse separa- fication is now

tion x2. Since we start with a particle at=0, it clearly

passes through the fixed point surface=0x=0, so all of (x*x,x7,x)=(x* x+nx" X" +nx+n?x*/2x+nd).

its images agree at this point. Thus the radial distarfcem (19
each is the same and one has an infinite number of copies of

a perturbation of strengthr§/r)°~3. Actually the diver-
gence is stronger than this, since the particles have a relati . : S ;
boost. If one takes the perturbatiétg) in the rest frame of . efo.metncglly,' there is a compact direction Wh'.Ch starts at
the nth image, and translates back into the original coordi—Inflnlte radius in the past, c_on_tr_acts down to a sizeé given by
nates, one finds e.gd& )2—(dx™ +ndx+n2dx"/2)? so d and then expands out_ to infinity. What haQ)pens if one add_s
different components of the perturbation pick up extra pow-a single massless particle to a null brane? The extra shift

ers ofn. Of course, once the perturbation becomes large, Ongoles n|c_)|t svﬁethrﬂilehceniﬁr oi1;nmarsts netne;fgy toIr:V\,ioﬂ']ma}?ne patr-
can no longer trust the linearized approximation, but this cles. roweve as the important efiect that the impac

clearly shows why strong gravitational fields can arise from arameter now grows Imearl_y Wm'! The resul_t depe_nds_n
single particle even at large transverse distince he total dimensiorD. Consider first a chain of identical

One can also show that the perturbation becomes Iarg%Olnt masses, each W,;t_hg mabs. If the sgparat|0dq| IS
even when the initial particle has#0 atx*=0. From our Smaller tharRs whereRg™“~GM, there will be a cylindri-
earlier argument we know that the minimum separation beal €vent horizon surrounding the masses, .e.,a black string.
tween the original particle and itsth image is independent | N€ transverse size of the black stnng_R§ ~GM/[d|.
of n. This minimum separation may be reached at different! NS transverse size can also be obtained as follows. The
times for different images. Nevertheless, focusing on just thé0tal mass clearly grows linearly with distance along the
initial particle and one image, at the time of minimum sepa-Chain. But inD>4 dimensions, the Schwarzschild radius
ration, the field at a large transverse distance will include th@rows more slowly. So at most a finite r;umber of masses
sum of two Schwarzschild perturbations with essentially thecontribute to form a black hole. SettiRf ~*=GMn equal
samer. Since certain components of the perturbation ardo (nd)®~*, solving forn and substituting back in, one finds
multiplied by powers ofn, for any transverse distance, one thatRs agrees with the transverse size of the black string.
can choosea large enough so that the perturbation is larger The only difference between this chain and the null brane
than 1. is that, in the center of mass frame, the energy of each par-

In the above, we considered a generic particle with  ticle in the chain grows linearly witm, so the total mass
#0. The situation is different if one introduces a particle grows liken?. It follows that forD=5, no black hole forms
with p*=0, so the trajectory lies in a null surface of con- for large shift, and an infinite mass black hole forms for
stantx*. Since the total momentum must be null, the onlysmall shift, as before. Ib>5, the situation is different. A
nonzero component can Ipe . In our first orbifold, obtained large shift again produces no singularities, but even a small
by quotienting by a simple boost, the description of this parshift will produce only a finite size black hole. Outside this
ticle in the covering space is an infinite series of parallelolack hole, there will not be a big crunch. The spacetime will
particles converging tx* =0 with increasing energy. The approach the null brane at large distances. The size of the
gravitational shock waves of these particles do not intersecBlack hole can be estimated as follows. A black hole of size
and the entire spacetime can be viewed as a time dependegt Will contain nimages wherd&s=n|d|. Since the mass of
pp wave. However, since the energy of the particles divergethe n images is of orden®p™, we have
asx*—0 thepp wave becomes singular there, much like the

Vgﬂs has been called a “null brane” in the literat|i22,11].

RY™*=Gn’p*=(nd)° 3. (20)
SFor D=5, the sum of the image perturbations diverges at all
times, even long before the orbifold singularity. However, this is
just a gauge artifadt20]. “We thank H. Liu and N. Seiberg for a discussion on this point.

103512-4



INSTABILITY OF SPACELIKE AND NULL ORBIFOLD . .. PHYSICAL REVIEW D66, 103512 (2002

Solving for n yields in general relativity, the covariant scattering amplitude is of
order
Ry=(Gp"/d?)¥0C-9), (21)
) A~Gst (24)
One sees clearly that as the shdfgoes to zero, the size of
the black hole grows to infinity.
One can do the same thing for the orbifold with a space

with s the center-of-mass energy squared arlde momen-
tum transfer squared. Fourier transforming with respect to
like singularity(8). By adding a commuting shift to the stan- trlel D -2 transverse dimensions, and including a factor of
dard boost, one avoids the singulafig]. In this case, since S to convert from covariant to canonical normalization of
the center of mass energy grows exponentially and the sep&tates, yields a dimensionless amplitude

ration only grows linearly, a single particle will still produce

a big crunch for any finite shift. - Gs (25)
The orbifold (8) can be written in the form pP—4
ds?=—dt?+t?dp?+ dy? (220  whereb is the impact parameter. In string theory, this is

modified atb?=a’ Ins by the logarithmic spreading of the
where ¢ is periodic. If we identify¢ with — ¢, we obtain a  string [25], but this is much smaller than the Schwarzschild
model of two “end of the world” branes colliding. This is the radius. There is also an amplitude for the strings to become
geometry of the cyclic universe modd]. This clearly has excited, but this is again small at large radius. Thus the gen-
the same instability as we discussed above. However, in theral relativistic resul{25) extends to string theory.
cyclic universe, one might expect quantum fluctuations to The dimensionless amplitud@5) becomes of order 1 at
stop the branes from hitting at exactly the same time everybos(®~#) which at high energy is much larger than the
where[24]. Can this also regulate the singularity and avoidSchwarzschild radiubocst(?°~6) Thus perturbation theory
the instability? This is very unlikely for two reasons. First, breaks down long before black holes form. There is a simple
our argument is local. We considered just a neighborhood ofeason for this. At macroscopic distances and energies, a
a single particle and showed that its interaction with its im-classical description of the gravitational field is valid. One
ages produces black holes of unbounded size. We did naian think of this as the exchange of many gravitons, which is
have to assume that the circle was shrinking down to zera high order ladder graph, so indeed perturbation theory in
size everywhere at exactly the same time. Second, if théhis sense has broken down. Since there is a classical de-
guantum fluctuations lead to classical perturbations, thescription, there should be a way to sum the large terms in
they will classically grow and produce curvature singularitiesperturbation theory. This is the eikonal approximation
even without introducing extra particles. For example, ong26,27. Essentially, the large amplitude exponentiates to
can easily verify that any metric of the form give the Smatrix

ds?=—dt?+[t+f(y)]%d p2+ dy? (23 S=exp2id+---). (26)

The phase is large, but the nontrivial physical effect comes
only through the dependence of the phasé.oh measure of
the magnitude of this is the scattering angle

has a curvature singularity whdnr-f(y)=0, unlessf is a
linear function.

Ill. STRING THEORY ARGUMENT FOR THE ds Gsii2

BIG CRUNCH ~g TV o .
0~s b~ o3

(27)

So far, our analysis has been strictly in the context of
general relativity. One might hope that the situation would bewe see thatV~1 is the criterion for black hole formation.
better in string theory—that stringy physics in these Lorent-This agrees with the classical analysis of scattering of ul-
zian orbifolds would be nonsingular, just as it is in Euclideantrarelativistic particles: the energy at which a black hole
orbifolds. However, this is unlikely. The singularity involves forms is of the same order as that where the scattering angle
the formation of an arbitrarily large black hole, with becomes larg.
Schwarzschild radius much larger than the string scale. At Now let us look for this effect in the string amplitudes in
these distances string theory should go over to general relahe null orbifold geometry. To compare with the-2 tree
tivity. LMS [10] have calculated string scattering amplitudesamplitude in LMS, we consider a slightly different situation
in the null orbifold, and so we can look for the expectedfrom before—the interaction of one particle with the images
breakdown of perturbation theory in these. of another, rather than with its own imagge see the latter
Let us first ask how one would detect the onset of black
hole formation in the tree level-22 string amplitude. First
The reader might be concerned that the signature for black hole
formation is a scattering angle of order 1, which is highly sup-
SWe thank Liu and Seiberg, and Cornalba and Costa for pointingressed at high energy at string tree level, but what the d@@)e
out an incorrect statement in an earlier version of this paper. actually represents is the effect of many soft scatterings.
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effect, we would need to look at string loop amplitudds Our general relativistic analysis was in the spirit of the
general relativity the argument in the previous section stillinheritance principle: for untwisted states, tree level ampli-
goes through; for theth image, the center of mass energy tudes descend from amplitudes on the covering space. It is
grows asn, while the minimum separation does not, and so anot obvious that this is valid here. Multiple graviton ex-
black hole of arbitrarily large radius forms. change is a multiloop process, even though the eikonal ap-
For simplicity let us analyze the kinematics in the caseproximation allows it to be summed up in terms of classical
that P and P are purely in thet direction; one can check general relativity. What our analysis has ignored is the ex-
that the analysis extends directly to more generic momentahange of winding state@vhich also would not be seen in

and to massive external particles. Then

Po=(p*,0,00), P,=(p*,np".n*p*/20). (28
If these exchange a momentum
K:(k+101k71k)1 (29)

then the mass shell conditionB{+ K)?=(P,— K)?=0 im-
ply that for largen

S L2k
0 KT T (30

The key point is thak* is very small, of order h?. This is

just the region where LMS noted that their amplitude di-

the tree level string amplitude considered abovEhese
states become light neat =0 where the black hole is form-
ing, and so it is conceivable that they qualitatively change
the process. Note that their effect is limited by causality,
because they are heavy until just before the instdnt 0.

This is hardly the last word on this subject, but we can
summarize our conclusions as follows. The best reason for
believing that a bounce occurs in this context is the resem-
blance of these spacetimes to Euclidean orbifolds. However,
an application of orbifold technology shows that in fact these
singularities are unstable toward the formation of singulari-
ties of a more terminal sort. The orbifold singularities are no
better(or worse than the spacelike curvature singularities of
black holes, and so we must still understand the physics of
these in string theory.

verges. Thus we interpret this divergence as an indication of
the breakdown of perturbation theory due to the onset of
black hole formation. The kinematics above corresponds, in

the notation of LMS p,=p,p,=p) to Lc=n?p; ps
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