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Instability of spacelike and null orbifold singularities
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Time dependent orbifolds with spacelike or null singularities have recently been studied as simple models of
cosmological singularities. We show that their apparent simplicity is an illusion: the introduction of a single
particle causes the spacetime to collapse to a strong curvature singularity~a big crunch!, even in regions
arbitrarily far from the particle.
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I. INTRODUCTION

Understanding the physics at cosmological singulari
has long been a challenge for string theory. One of the m
open questions is whether time~as we know it! simply be-
gins and ends, or do quantum effects produce a kind
bounce, with a well defined semiclassical spacetime on
other side.~One of the earliest attempts to apply string theo
to cosmology, the pre-big bang scenario@1#, requires a
bounce.! In order to study this question, it is natural to sta
with the simplest examples of solutions with cosmologi
singularities: time dependent orbifolds. These are quotie
of flat spacetime by boosts~or combinations of boosts an
rotations!. Since the spacetimes are locally flat, they are
act classical solutions to string theory and string propaga
is relatively easy to study. Given that the singularities
ordinary orbifolds are harmless in string theory, one mig
expect the same would be true here. However, argum
were given many years ago that this would not be the c
@2#.

Recently, interest has been refocussed on this questio
the ekpyrotic cosmology@3#, which requires@4# that the uni-
verse contract to a singularity and then reexpand. The ek
rotic singularity is spacelike and corresponds to orbifold
by a simple boost. The cyclic universe model@5# has a simi-
lar orbifold singularity. It has been argued that from som
points of view this singularity is rather gentle@6,7#, while
from other points of view it is not@8#.1 One difficulty with
this orbifold is that the resulting spacetime has closed tim
like curves. As a warmup, Liu, Moore, and Seiberg~LMS!
@10# have studied the orbifold by a null boost@2,11#. This has
no closed timelike curves, though it does have a submani
with closed null curves, and a null singularity. It also has
advantage of being supersymmetric. LMS study four-str
amplitudes in this space, and finds that they are nonsing
except for exceptional momenta. They do not study the b
reaction and so are not able to conclude whether there
bounce or not.

In this paper we will reexamine this question, and w

1It was noted in@9# that metric perturbations become large ne
the orbifold singularity.
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argue that in fact these orbifold singularities are highly u
stable. Given their application to both M theory and stri
theory, we will consider generalD dimensional orbifolds.
For a simple boost, the identification acts on a two dime
sional subspace, so there areD22 flat transverse directions
For the null orbifold, the identification involves three dime
sions, so there areD23 transverse directions. We will show
that the addition of even asingle particle, localized in the
transverse directions, causes the entire universe to coll
into a spacelike singularity. The basic mechanism is the a
plification of the energy of particles in the collapsing un
verse, a point that has been emphasized by many others
ing back to Ref.@2#. We will analyze the effects of this firs
in the context of general relativity, finding evidence for th
collapse, and then argue that this effect can be seen in
string amplitudes of Ref.@10#. Unfortunately, this does no
resolve the question of what happens at cosmological sin
larities in string theory. It just shows that orbifolds are n
really any simpler than other cosmological models. One m
learn to deal with the strong curvature effects.

While this was being written, several related papers
peared. Reference@12# shows that ahomogeneousenergy
distribution in the transverse directions causes the null o
fold singularity to become spacelike. References@13,14# ex-
tend the analysis of LMS to the nonsingular orbifold
which the null boost is accompanied by a spacelike shift, a
include remarks about the back reaction that overlap w
ours. We should also note other discussions of Lorentz
orbifolds, of flat and curved spacetimes@15#.

II. GENERAL RELATIVITY ARGUMENT FOR THE
BIG CRUNCH

In this section we use general relativity to study the eff
of introducing a single particle into the orbifolds with time
like and null singularities. The basic idea is to go to t
covering space, and view the single particle on the orbif
as an infinite collection of particles in Minkowski spacetim
all related by the appropriate boost. If the gravitational int
action of these particles produces a singularity, the sa
must be true for a single particle on the orbifold. Because
the large boosts involved, the rest mass of the particle ca
neglected. We will therefore consider massless particles.

r
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GARY T. HOROWITZ AND JOSEPH POLCHINSKI PHYSICAL REVIEW D66, 103512 ~2002!
A. Preliminaries

We begin with the basic system of two massless partic
with momentaPm and P̃m in D spacetime dimensions. Letb
be the impact parameter in the center of mass frame. S
the center of mass energy squared iss522P• P̃, the condi-
tion that the particles approach within their Schwarzsch
radius and form a black hole is

GAs.bD23 ~1!

up to coefficients of order 1. This heuristic condition can
justified in general relativity as follows. The gravitation
field of a single massless particle is given by a shock w
called the Aichelberg-Sexl metric@16#. For D.4, the metric
is

ds2522dy1dy21dy21
m

~y•y!(D24)/2
d~y1!~dy1!2

~2!

wherem is proportional to the energy of the particle. InD
54, the metric is similar, with the power law dependence
the last term replaced by a log. The curvature is concentr
on a null plane, and falls off as one moves away from
particle. The high energy collision of two particles can
described in the center of mass frame by superposing
such shock waves in the past. This is possible, despite
nonlinearities of general relativity, because the spacetim
flat in front of each shock wave. After the particles collid
the exact solution is not known. But if the impact parame
is small enough, there are trapped surfaces in the space
when the particles collide@17#. It follows from the singular-
ity theorems that a singularity must form. Assuming cosm
censorship, the singularity must be inside a black hole
four spacetime dimensions, a trapped surface has been f
@18# provided the impact parameter satisfies the bound~1!. In
higher dimensions, a trapped surface has been found fb
50 @18#. The size of the trapped surface is of order t
Schwarzschild radius for the given energy, so one again
pects a black hole to form wheneverb satisfies Eq.~1!, but
this has not yet been rigorously shown.

It will be useful to have a general formula for the impa
parameterb in the center of mass frame, given two nu
geodesics

Xm~l!5Pml1am, X̃m~l̃ !5 P̃ml̃1ãm. ~3!

This is easily obtained as follows. Projecting each traject
into the subspace orthogonal toPm1 P̃m, which is at con-
stant time in the center of mass frame, we get

Xm~l!→ 1

2
~P2 P̃!ml1am

2~P1 P̃!m
a•~P1 P̃!

2P• P̃
, ~4!
10351
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X̃m~l̃ !→2
1

2
~P2 P̃!ml̃1ãm

2~P1 P̃!m
ã•~P1 P̃!

2P• P̃
. ~5!

Now take the difference between these two trajectories
compute the norm. The norm depends onl1l̃, and mini-
mizing with respect to this parameter yields

b25Y22
2~P•Y!~ P̃•Y!

P• P̃
~6!

where Ym5am2ãm. Since am and ãm are arbitrary points
along the geodesics, one can setYm equal to the difference
betweenany pair of points on the respective trajectorie
Ym5Xm(l)2X̃m(l̃). This does not change the impact p
rameter because Eq.~6! is invariant under shiftingYm by any
multiple of Pm or P̃m.

B. Two examples

We now consider our first example: two dimension
Minkowski spacetime quotiented by a boost, times a
transverse space. The spacetime is

ds2522dy1dy21dy2 ~7!

with the identification

~y1,y2,y![~enay1,e2nay2,y! ~8!

for all integersn and some constanta. This orbifold has
fixed points aty150, y250 which is a spacelike singular
ity. It consists of four regions, two with closed timelik
curves.2 As mentioned above, we will study the effect o
adding a single massless particle to this orbifold by going
the covering space where one has the original particle
gether with an infinite number of boosted images. The m
mentum of thenth image is related to the original momen
tum (p1,p2,p) by (enap1,e2nap2,p). On the covering
space, a sufficient condition for the formation of a bla
hole, and therefore a spacelike singularity, is that any pai
images satisfy the condition~1!. Consider say the origina
particle and itsnth image. Their center of mass energy grow
like s;coshna. To compute the impact parameter, we u
Eq. ~6!. It is convenient to choose the affine parameterl to
vanish atX150, soa150. ThenY2 only depends on the
transverse components ofa which are independent ofn. The
n dependent contribution toP•Y is 2P1a2(12e2na) for

2To avoid this, one might consider just the past and future wed
Since this is not a true orbifold~it is a quasiorbifold in the termi-
nology of Ref.@19#! there are no methods as yet for studying su
a space in string theory, or even for showing that it exists a
solution.
2-2



-

rg

a
cu
e
s
e
id

u

e

de
ng

r

-

it
th
ly
tse
in

r
or-

arger
of

ks
ass
s

ime
er
r-

e

ion
e

,

es
es
-
to

ong

an
, it
the
sent
For

we

ed

INSTABILITY OF SPACELIKE AND NULL ORBIFOLD . . . PHYSICAL REVIEW D66, 103512 ~2002!
the original particle and2P1a2(ena21) for thenth image.
This implies that for largeunu, the impact parameter is inde
pendent ofn.

It follows that for largen the condition~1! for formation
of a black hole is always satisfied. Moreover, by taking la
enoughn, the Schwarzschild radius

Rs
D23;G~p1p2!1/2ena/2 ~9!

becomes arbitrarily large, so that the black hole occupies
of space. In other words, the entire spacetime ends in a
vature singularity and one has a big crunch. It has often b
noted that the spacetime inside a black hole is analogou
an ~anisotropic! cosmology with a big crunch. When th
black hole is arbitrarily large so there is no spacetime outs
the horizon, this analogy becomes exact.

We now show that the same thing happens for the n
orbifold, which is described by

ds2522dx1dx21dx21dx2 ~10!

with the identification

X[~x1,x,x2,x!

>Xn

[~x1,x1nx1,x21nx1n2x1/2,x!. ~11!

Note that theD23 transverse coordinatesx are not affected
by the identification. The fixed points are atx150, x50 and
form a null singularity. There is a similar identification of th
momenta

P[~p1,p,p2,p!

>Pn

[~p1,p1np1,p21np1n2p1/2,p!. ~12!

~Note X0[X andP0[P by definition.!
As before, a massless particle in this orbifold can be

scribed by an infinite collection of particles on the coveri
space. If we focus on one particle withX(l)5Pl1a and its
nth image, the center of mass energy is

sn522P•Pn52p1pn
21O~n!5n2~p1!2, ~13!

and so the center of mass energy grows asn. To compute the
impact parameter, we again choose the affine paramete
vanish atX150, soa150. One quickly verifies thatY2 is
independent ofn, and that in the second term of Eq.~6! both
numerator and denominator are of ordern2, so that the im-
pact parameter does not grow withn. Once again, one pro
duces black holes with arbitrarily large size by takingn suf-
ficiently large.

Thus, in both cases, a single particle induces a grav
tional collapse everywhere in spacetime. Essentially,
gravitational shock wave of the particle wraps infinite
many times through the identified space and intersects i
infinitely many times, and successive intersections are
creasingly energetic.
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One might wonder whether the intersections at smallen
might introduce nonlinear effects that would prevent the f
mation of larger black holes at largern. This should not be
the case, because the trapped surface corresponding to l
n is at larger radius, spacelike separated from the region
nonlinearity. In fact, the combined effect of multiple shoc
goes the other way: if we consider the total center of m
energy of the firstn images of each particle, then one find
that ~in, e.g., the null orbifold!

stot}n4, b}n0, Rs
D23;Gn2p1 ~14!

so Rs grows even more quickly withn.
The collision of two shock waves changes the spacet

only to the future of their intersection. We now ask wheth
the orbifold singularity indeed lies to the future of the inte
section of two shocks. A null particlePml1am generates a
shock wave consisting of all pointsxm satisfyingP•(x2a)
50. The nth boosted image produces the shock wavePn
•(x2an)50. SinceP•a5Pn•an by Lorentz invariance, the
intersection of the two shocks must satisfy (Pn2P)•x50.
For the null orbifold, this implies

~np1n2p1/2!x15np1x. ~15!

Depending on the sign ofx, one can taken either positive or
negative to insure thatx1,0. Note that for largeunu, x1

5O(1/unu). Since every point withx1.0 lies to the future
of every point withx1,0 @10#, it is clear that the entire
region to the future of the orbifold singularity lies to th
future of the intersection of the shocks.

For the boost orbifold~8! the condition (Pn2P)•y50
yields

p1y25p2y1e2na. ~16!

Sincey1 andy2 always have the same sign, the intersect
never occurs in the region of closed timelike curves. If w
substitute Eq.~16! into the condition for a single shock
P•(y2a)50, we obtain

~e2na11!p2y15p•y2P•a. ~17!

If the right hand side is negative, the orbifold singularity li
to the future of the intersection of the shocks for all imag
n. If the right hand side is positive, it lies to the past. How
ever even in this case, it is not possible for a particle
propagate into the future cone before it encounters str
curvature. If we ask when the trajectoryPml1am collides
with the image shockPn•(y2an)50, a short calculation
shows that the affine parameterl is negative~for positiven)
and so the collision occurs in the past cone.

It is somewhat counterintuitive that a single particle c
change the geometry at arbitrary distance. In particular
might appear to violate causality. To see that this is not
case, and make the above result more plausible, we pre
another argument which leads to the same conclusion.
definiteness, we will consider the null orbifold. Suppose
start with a massive particle rather than a massless one~the
above argument still goes though essentially unchang!.
2-3
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GARY T. HOROWITZ AND JOSEPH POLCHINSKI PHYSICAL REVIEW D66, 103512 ~2002!
This particle produces a gravitational perturbation which
large distances is described by the linearized Schwarzsc
solution,

ds252dt21dr21r 2dVD22
2

1S r 0

r D D23Fdt21
1

D23
~dr21r 2dVD22

2 !G . ~18!

On the covering space, we have an infinite number of p
ticles which produce a field at large transverse dista
which is just the sum of the Schwarzschild perturbation
each one. In terms of the above null coordinates,t5(x1

1x2)/A2,r 25(x12x2)2/21x21x2. It is easy to show tha
this sum diverges forx15x50 and any transverse separ
tion x2. Since we start with a particle atr 50, it clearly
passes through the fixed point surfacex150,x50, so all of
its images agree at this point. Thus the radial distancer from
each is the same and one has an infinite number of copie
a perturbation of strength (r 0 /r )D23. Actually the diver-
gence is stronger than this, since the particles have a rela
boost. If one takes the perturbation~18! in the rest frame of
the nth image, and translates back into the original coor
nates, one finds e.g. (dx2)2→(dx21ndx1n2dx1/2)2 so
different components of the perturbation pick up extra po
ers ofn. Of course, once the perturbation becomes large,
can no longer trust the linearized approximation, but t
clearly shows why strong gravitational fields can arise from
single particle even at large transverse distance3.

One can also show that the perturbation becomes la
even when the initial particle hasxÞ0 at x150. From our
earlier argument we know that the minimum separation
tween the original particle and itsnth image is independen
of n. This minimum separation may be reached at differ
times for different images. Nevertheless, focusing on just
initial particle and one image, at the time of minimum sep
ration, the field at a large transverse distance will include
sum of two Schwarzschild perturbations with essentially
same r. Since certain components of the perturbation
multiplied by powers ofn, for any transverse distance, on
can choosen large enough so that the perturbation is larg
than 1.

In the above, we considered a generic particle withp1

Þ0. The situation is different if one introduces a partic
with p150, so the trajectory lies in a null surface of co
stantx1. Since the total momentum must be null, the on
nonzero component can bep2. In our first orbifold, obtained
by quotienting by a simple boost, the description of this p
ticle in the covering space is an infinite series of para
particles converging tox150 with increasing energy. The
gravitational shock waves of these particles do not inters
and the entire spacetime can be viewed as a time depen
pp wave. However, since the energy of the particles diver
asx1→0 thepp wave becomes singular there, much like t

3For D55, the sum of the image perturbations diverges at
times, even long before the orbifold singularity. However, this
just a gauge artifact@20#.
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singular plane waves studied in@21#. For the null orbifold
~11!, it is clear that the image trajectories in the coveri
space are simply translated inx direction and have exactly
the same momentum. Parallel null particles never form
black hole. The gravitational back reaction is described b
single shock wave at one value ofx1, with a profile that is a
linear superposition of the shock wave for each particle.
this one nongeneric case there is no singularity.

C. Generalizations

There is a generalization of the null orbifold which reg
lates the singularity. If one adds a commuting spacelike s
to the null boost, then there are no fixed points. The ide
fication is now

~x1,x,x2,x!>~x1,x1nx1,x21nx1n2x1/2,x1nd!.
~19!

This has been called a ‘‘null brane’’ in the literature@22,11#.
Geometrically, there is a compact direction which starts
infinite radius in the past, contracts down to a size given
d and then expands out to infinity. What happens if one a
a single massless particle to a null brane? The extra s
does not affect the center of mass energy of two image
ticles. However it has the important effect that the impa
parameter now grows linearly withn. The result depends4 on
the total dimensionD. Consider first a chain of identica
point masses, each with massM. If the separationudu is
smaller thanRs whereRs

D23;GM, there will be a cylindri-
cal event horizon surrounding the masses, i.e., a black str
The transverse size of the black string isRtr

D24;GM/udu.
This transverse size can also be obtained as follows.
total mass clearly grows linearly with distance along t
chain. But in D.4 dimensions, the Schwarzschild radiu
grows more slowly. So at most a finite number of mas
contribute to form a black hole. SettingRs

D235GMn equal
to (nd)D23, solving forn and substituting back in, one find
that Rs agrees with the transverse size of the black string

The only difference between this chain and the null bra
is that, in the center of mass frame, the energy of each
ticle in the chain grows linearly withn, so the total mass
grows liken2. It follows that forD55, no black hole forms
for large shift, and an infinite mass black hole forms f
small shift, as before. InD.5, the situation is different. A
large shift again produces no singularities, but even a sm
shift will produce only a finite size black hole. Outside th
black hole, there will not be a big crunch. The spacetime w
approach the null brane at large distances. The size of
black hole can be estimated as follows. A black hole of s
Rs will contain n images whereRs5nudu. Since the mass o
the n images is of ordern2p1, we have

Rs
D235Gn2p15~nd!D23. ~20!

ll

4We thank H. Liu and N. Seiberg for a discussion on this poin
2-4
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INSTABILITY OF SPACELIKE AND NULL ORBIFOLD . . . PHYSICAL REVIEW D66, 103512 ~2002!
Solving for n yields

Rs5~Gp1/d2!1/(D25). ~21!

One sees clearly that as the shiftd goes to zero, the size o
the black hole grows to infinity.

One can do the same thing for the orbifold with a spa
like singularity~8!. By adding a commuting shift to the stan
dard boost, one avoids the singularity@23#. In this case, since
the center of mass energy grows exponentially and the s
ration only grows linearly, a single particle will still produc
a big crunch for any finite shift.5

The orbifold ~8! can be written in the form

ds252dt21t2df21dy2 ~22!

wheref is periodic. If we identifyf with 2f, we obtain a
model of two ‘‘end of the world’’ branes colliding. This is th
geometry of the cyclic universe model@5#. This clearly has
the same instability as we discussed above. However, in
cyclic universe, one might expect quantum fluctuations
stop the branes from hitting at exactly the same time eve
where@24#. Can this also regulate the singularity and avo
the instability? This is very unlikely for two reasons. Firs
our argument is local. We considered just a neighborhoo
a single particle and showed that its interaction with its i
ages produces black holes of unbounded size. We did
have to assume that the circle was shrinking down to z
size everywhere at exactly the same time. Second, if
quantum fluctuations lead to classical perturbations, t
they will classically grow and produce curvature singularit
even without introducing extra particles. For example, o
can easily verify that any metric of the form

ds252dt21@ t1 f ~y!#2df21dy2 ~23!

has a curvature singularity whent1 f (y)50, unlessf is a
linear function.

III. STRING THEORY ARGUMENT FOR THE
BIG CRUNCH

So far, our analysis has been strictly in the context
general relativity. One might hope that the situation would
better in string theory—that stringy physics in these Lore
zian orbifolds would be nonsingular, just as it is in Euclide
orbifolds. However, this is unlikely. The singularity involve
the formation of an arbitrarily large black hole, wit
Schwarzschild radius much larger than the string scale
these distances string theory should go over to general
tivity. LMS @10# have calculated string scattering amplitud
in the null orbifold, and so we can look for the expect
breakdown of perturbation theory in these.

Let us first ask how one would detect the onset of bla
hole formation in the tree level 2→2 string amplitude. First

5We thank Liu and Seiberg, and Cornalba and Costa for poin
out an incorrect statement in an earlier version of this paper.
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in general relativity, the covariant scattering amplitude is
order

A;Gs2/t ~24!

with s the center-of-mass energy squared andt the momen-
tum transfer squared. Fourier transforming with respect
the D22 transverse dimensions, and including a factor
s21 to convert from covariant to canonical normalization
states, yields a dimensionless amplitude

d;
Gs

bD24
~25!

where b is the impact parameter. In string theory, this
modified atb2*a8 ln s by the logarithmic spreading of th
string @25#, but this is much smaller than the Schwarzsch
radius. There is also an amplitude for the strings to beco
excited, but this is again small at large radius. Thus the g
eral relativistic result~25! extends to string theory.

The dimensionless amplitude~25! becomes of order 1 a
b}s1/(D24), which at high energy is much larger than th
Schwarzschild radiusb}s1/(2D26). Thus perturbation theory
breaks down long before black holes form. There is a sim
reason for this. At macroscopic distances and energie
classical description of the gravitational field is valid. O
can think of this as the exchange of many gravitons, whic
a high order ladder graph, so indeed perturbation theory
this sense has broken down. Since there is a classical
scription, there should be a way to sum the large terms
perturbation theory. This is the eikonal approximati
@26,27#. Essentially, the large amplitude exponentiates
give theS-matrix

S5exp~2id1••• !. ~26!

The phase is large, but the nontrivial physical effect com
only through the dependence of the phase onb. A measure of
the magnitude of this is the scattering angle

u;s21/2
dd

db
;

Gs1/2

bD23
. ~27!

We see thatu;1 is the criterion for black hole formation
This agrees with the classical analysis of scattering of
trarelativistic particles: the energy at which a black ho
forms is of the same order as that where the scattering a
becomes large.6

Now let us look for this effect in the string amplitudes
the null orbifold geometry. To compare with the 2→2 tree
amplitude in LMS, we consider a slightly different situatio
from before—the interaction of one particle with the imag
of another, rather than with its own images~to see the latter

g

6The reader might be concerned that the signature for black
formation is a scattering angle of order 1, which is highly su
pressed at high energy at string tree level, but what the angle~27!
actually represents is the effect of many soft scatterings.
2-5
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GARY T. HOROWITZ AND JOSEPH POLCHINSKI PHYSICAL REVIEW D66, 103512 ~2002!
effect, we would need to look at string loop amplitudes!. In
general relativity the argument in the previous section s
goes through; for thenth image, the center of mass ener
grows asn, while the minimum separation does not, and s
black hole of arbitrarily large radius forms.

For simplicity let us analyze the kinematics in the ca
that P and P̃ are purely in the1 direction; one can check
that the analysis extends directly to more generic mome
and to massive external particles. Then

P05~p1,0,0,0!, P̃n5~ p̃1,np̃1,n2p̃1/2,0!. ~28!

If these exchange a momentum

K5~k1,0,k2,k!, ~29!

then the mass shell conditions (P01K)25( P̃n2K)250 im-
ply that for largen

k25
k2

2p1
, k152

2k2

n2p̃1
. ~30!

The key point is thatk1 is very small, of order 1/n2. This is
just the region where LMS noted that their amplitude
verges. Thus we interpret this divergence as an indicatio
the breakdown of perturbation theory due to the onset
black hole formation. The kinematics above corresponds
the notation of LMS (p1[p,p2[ p̃) to Ls5n2p1

1p2
1⇒q1

2

5n2p1
1p2

1/(p1
11p2

1); Lt24/a8;k2; p3
12p1

15k1. In this
regime the amplitudeA in LMS 6.16 reduces to the gener
relativistic form ~24!, and for DJ50 the phase factor in
LMS 6.16 is negligible. Thus the general relativistic analy
of this regime is not altered.
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Our general relativistic analysis was in the spirit of t
inheritance principle: for untwisted states, tree level amp
tudes descend from amplitudes on the covering space.
not obvious that this is valid here. Multiple graviton e
change is a multiloop process, even though the eikonal
proximation allows it to be summed up in terms of classi
general relativity. What our analysis has ignored is the
change of winding states~which also would not be seen i
the tree level string amplitude considered above!. These
states become light nearx150 where the black hole is form
ing, and so it is conceivable that they qualitatively chan
the process. Note that their effect is limited by causal
because they are heavy until just before the instantx150.

This is hardly the last word on this subject, but we c
summarize our conclusions as follows. The best reason
believing that a bounce occurs in this context is the rese
blance of these spacetimes to Euclidean orbifolds. Howe
an application of orbifold technology shows that in fact the
singularities are unstable toward the formation of singula
ties of a more terminal sort. The orbifold singularities are
better~or worse! than the spacelike curvature singularities
black holes, and so we must still understand the physic
these in string theory.
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