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Cosmological parameters from CMB and other data: A Monte Carlo approach
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We present a fast Markov chain Monte Carlo exploration of cosmological parameter space. We perform a
joint analysis of results from recent cosmic microwave backgra@MB) experiments and provide parameter
constraints, includingrg, from the CMB independent of other data. We next combine data from the CMB,
HST Key Project, 2dF galaxy redshift survey, supernovae type la and big-bang nucleosynthesis. The Monte
Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and
9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include
constraints on the neutrino mass(<0.3 eV), equation of state of the dark energy, and the tensor amplitude,
as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of
appendixes we describe the many uses of importance sampling, including computing results from new data and
accuracy correction of results generated from an approximate method. We also discuss the different ways of
converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and
consistency, and describe the use of analytic marginalization over normalization parameters.
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[. INTRODUCTION full posterior, giving far more information than just the mar-
ginalized distributions.
There is now a wealth of data from cosmic microwave Throughout we assume models with purely adiabatic
background(CMB) observations and a growing amount of Gaussian primordial perturbations in the growing mooler
information on large scale structure from a wide range ofaPproach could easily be generalized to include isocurvature

sources. We would like to extract the maximum amount o odes, three neutrino species, r_lo_n-interacting cold dark
information from this data, usually conveniently summarized™ater, and standard general relativity. We compute all theo-

by estimates of a set of cosmological parameter values. Witftical (CMB and matter power spectrynpredictions nu-

high quality data one can constrain a large number of paranfl'€rically using using the fast Boltzmann codems [16] (a

eters, which in principle allows us not only to put estimatespara”el'zed version oEMBFAST [17]). Our results are there-

and error bars on various quantitative parameters, but also lf re limited by the accuracy of the dan and could be gener-
address more fundamental qualitative questions: Do we otf2iZ€d Very easily to include any additional parameters that
serve primordial gravitational waves? Do the neutrinos havé:arl‘ bg acccl)lunted for by mod|f|ca_t|on ?f a B(r)lltzrlnann CC?I\C/jIeB-
a cosmologically significant mass? Is the universe flat? Are n _”ec. we r[])rel\sﬂ%n'\t/léonstrﬁlrétswrog ft N %tgsft.

the standard model parameters those that best account for t ata, | ustratk:ngl\t/l gM c Ln%t 0 d € de er a brie |fntro—

data? In addition we can also assess the consistency of th ction to t. € met od and a e_scrlptlon or our

different data sets with respect to a cosmological model. MPlementation and terminology to Appendix A. The method

Recent work involving parameter estimation from theOf importar_lce Sa'_“F’"”g is als_o lllustrated in Sec. .”’ and ?S
CMB includes Refs[1—10]. In this paper we employ Mar- described in detail in Appendix B, where we explain how it

kov chain Monte CarldMCMC) techniques11—13, as ad-  ¢a" be used to take into account different priors on the pa-
vocated for Bayesian CMB analysis in REf4] and ’demon- rameters, new data, and for accurate but fast estimation given

strated by Refg3,15]. By generating a set of MCMC chains a good approximation to the theoretical model predictions.

we can obtain a set of independent samples from the posté{ye add large scale structure, supernova and nucleosynthesis

rior distribution of the parameters given the data. From geonstraints in Sec. Il so that more parameters can be con-

relatively small number of these samples one can estimar?)ra'ned' We compare flat models with “inflationary” priors

the marginalized posterior distributions of the parameters, a llcosmololgpal lparamete)rangh'thgn :ngre general .models
well as various other statistical quantities. The great advan cosmological parametgrsThis includes constraints on

tage of the MCMC method is that it scales, at its best, apj[he neutrino mass, equation of state of the dark energy, and

proximately linearly with the number of parameters, aIIow—t_h‘_e ter:csor amp_lltude. Inhaddltlog O(;Jr results show the_se_-nsp
ing us to include many parameters for only small additionafV'ty Of constraints on the standard parameters to variations

computational cost. The samples also probe the shape of the the underlying model.
II. CMB CONSTRAINTS

*Electronic address: Antony@AntonyLewis.com We use the results of the Cosmic Background Explorer
TElectronic address: sarah@ast.cam.ac.uk (COBE) [18], BOOMERANG [5], MAXIMA [19], DASI
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[20], VSA[21] and CBI[22,23 observations in the form of 1000

band power estimates for the temperature CMB power spec  ggo} i Sg/lfzoo

trum. These data are plotted in Fig. 1. The very small angular - MAXIMA-1
scale results from CBI have been discussed extensively ir j gé%'MERANG
[22,24 and do not fit the linear predictions of standard & 700 —— COBE |

acoustic oscillation models. Therefore for the purposes of 2 ggo}
this paper we assume that the small scale power observed k
CBI has its origin in non-linear or non-standard small scale &
effects that we do not attempt to model, and so use only the = 400f
mosaic(rather than deep pointinglata points throughout. In = = 4,1
addition we use only the first 8 pointg £2000) from the ©
odd binning of the mosaic fields since above that the noise ir 200
the band powers becomes much larger than the prediction fo 100
the class of models we consider.

For COBE we use the offset-lognormal band powers and 1 1 1 . . . . .
covariance matrix fronRADPACK [25]. For DASI, VSA and RO S0 S, 1O Sl Jent 00
CBI we also use the offset-lognormal band powers and inte-
grate numerically over an assumed Gaussian calibration un- FIG. 1. The CMB temperature anisotropy band-power data used
certainty. For BOOMERANG and MAXIMA we assume top in this paper. The line shows the model with the parameters at their
hat window functions and uncorrelated Gaussian band-powehean values, given all data after marginalizing in 6 dimensions
likelihood distributions, and marginalize analytically over (i-€., the first column of Table )i
the calibration and beam uncertainties assuming they are also
Gaussian[26]. We assume a correlated calibration uncer-it is very convenient to be able to quickly reject models in
tainty of 10% on the CBI and VSA dattneglecting the the extreme tails without having to compute the theoretical
~3% uncorrelated difference in calibratiprbut otherwise  predictions.
assume all the observations are independent. Using the sets
of samples obtained it is a simple matter to account for small _ _
corrections when the required information is publicly avail- A. MCMC illustration
able (see Appendix B A MCMC sampler provides an efficient way to generate a

The base set of cosmological parameters we sample ovéist of samples from a probability distributioisee Appendix
are w,=Qph? and w,=Q:h?, the physical baryon and cold A for an explanation All that is required is a function for
dark matter(CDM) densities relative to the critical density, calculating the probability given a set of parameter values. A
h=H,/(100 kms *Mpc™1), the Hubble parametef)x=1  single sample is a coordinate in thedimensional parameter
-, Measuring the spatial curvature,, the redshift at space, and the sampling method ensures that the number
which the reionization fraction is a hdifA,, measuring the density of samples is asymptotically proportional to the
initial power spectrum amplitude and,, the spectral index probability density. As an illustration, in the left-hand panel
of the initial power spectrum. We derie, , the ratio of the  of Fig. 2 we show the values & ,,=Q,+ ., andQ, , for
critical density in the form of dark energy, from the con- samples collected from a MCMC run using the CMB data
straint Q+Q,+ Q=1 (WhereQ,,=Q.+Q, is the total and base parameters discussed in the previous paragraphs.
matter density in units of the critical densityrhroughout we Note that although,, is not one of our base set of pa-
use at least the priors that<4z,,<20, 0.4<h<1.0, —0.3  rameters, it is simple to find probabilities as a functiorf)of
<Qk<0.3, Q,>0, and that the age of the universg, is by taking the parameter values of each sample and deriving
10 Gyr<ty<20 Gyr. The significance of this base set is thatthe corresponding values ¢f,. Since the MCMC method
this defines the Bayesian priors: there is a flat prior on eachroduces samples from the full posterior, it follows that the
parameter of the base set. We discuss later how we assess thenber density of samples in this two-dimensional plane is
significance of these priors, and highlight our main resultsproportional to the probability density of the two parameters
which are largely independent of the priof#/e chooséh as  (marginalized over all the other parameters; note that this
a base parameter since the Hubble Space Telestt®®  refers to the fully marginalized probability density rather
Key Project provides a direct constraint on this quantity,than any conditional or projected probability denkityhe
whereas there are no direct constraints on, @.g; see Ap- familiar direction of CMB degeneracy along the flat universe
pendix C for discussiohThe above additional constraints on line is apparent. The darkness of the dots indicate the Hubble
h, Q,, Qk and the age have little effect on the joint resultsconstant value for each sample, as given in the gradient bar.
since the cutoff values are well into the tails of the distribu-This shows that the high, tail of samples are due entirely
tion. However, for the purpose of the Monte Carlo samplingto low h regions of parameter space, illustrating the point

made in e.g[15] that a Hubble constant prior alone com-
bined with the CMB can put useful limits of2,, and O,
The CMB temperature anisotropy is very insensitive to the durawithout the need for supernova constraints.
tion of reionization epoch, and we also neglect the small effect of The likelihood as a function of position in th@-Q ,
helium reionization and inhomogeneities. plane from CMB data alone is shown by the broad contours

500f
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FIG. 2. Left: 2000 samples from the posterior distribution of the parameters plotted by(xheand (), values. Points are shaded
according to the value df of each sample, and the solid line shows the flat universe parameters. We assume the base parameter set with
broad top-hat priors. Right: bottom layer, supernova constraints; next layer up, CMB data alone; next, CMB data plus HST Key Project prior;
top layer, all data combineee text. 68% and 95% confidence limits are shown.

in the right-hand panel of Fig. 2. Note that compared to some Using importance sampling we have checked that the

other CMB only plots the contours close slightly at high,, CMB datasets are consistent using the hyperparameter

which is due to our lower limit on the Hubble constant of method, as described in Appendix E.

h>0.4. The 2D likelihoods shown are calculated from the

samples by estimating the probability density at a grid of B. Quantitative constraints from CMB data alone

points using a Gaussian weighting kernel and then using in- ) )

terpolation to draw the contour lines. This produces a plot Above we illustrated the MCMC method in the -

very similar to that obtained using a grid integration calcu-Plane fa a 7 parameter cosmological model. Since there is

lation of the marginalized posterigassuming there are no good observational evidence and theoretical motivation for

small scale features in the postefior flat models, we now fiX2x =0 giving 6 base parameters.
Extra data can be taken into account quickly by re- The only parameters that can be reasonably disentangled

weighting the samples, a technique knowniagportance are w, and ng, from the heights of the second and third

sampling(described in detail in Appendix)BThe posterior acoustic peaks relative to the first. These constraints are

is simply re-calculated at each sample position, and a weighgiven in the first two rows of Table | and are in accordance

assigned to the sample according to the ratio of the newith previous similar analyses and nucleosynthesis con-

posterior to the old posterior. For example, using a Gaussiastraints[28]. However, note that these two parameters re-

HST Key Project[27] prior on the Hubble constanh main significantly correlated, so that more detailed informa-

=0.72+0.08 we obtain the second set of contours plotted oriion is contained in the result;— (w,—0.022)/0.043-0.98

the right hand panel of Fig. 2. By using the weighted number+ 0.04, ng+ (w,— 0.022)/0.043- 0.98+ 0.09.

of points as a function of) we find the marginalized result Qualitatively, having “used up” constraints from the sec-

0,=0.00£0.03, and therefore that the universe is close toond and third acoustic peak heights to fiigh? andng we

flat (given our assumptions might estimate that there remain three more pieces of infor-

TABLE I. Marginalized parameter constrain&8% confidenceon four well constrained parametésee text from two combinations of
CMB data assuming a flat universe and vanyjifigh?, Qh? h,ng,z,.,As]. Extra digits are inserted to help the comparison between pre- and
post- VSA and CBI. For comparison the last column gives the results including HST, 2dF, big-bang nucleosyBBi¢sisnd supernova
type IA (SNIA) data.

Parameter pre VSA/CBI +VSA+CBI All data
Qph? 0.0215+0.0022 0.0216:0.0022 0.02120.0014
ng 0.985+0.051 0.982-0.050 0.986-0.037
v1=Qh*¥oge 70.7)" 08 0.114+0.0052 0.1130.0048 0.11%0.0038
vo,=0ge "(h/0.7)°%Q,/0.3) 008 0.71+0.07 0.70-0.06 0.70-0.04
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mation in the CMB data, from the large scdleOBE) am-  made available constraints i1,-Q2, space, which could
plitude, the first peak height and the first peak position. Wepnly be used if the dark energy is a cosmological constant.
have four remaining parameters e.g. parametrizedrpy  Fortunately the full supernova data are available, which we
Q. handr (7 is the optical depth to reionizatiGrandog  use(described beloy However, it is not always practical to
is the root mean square mass perturbation ih"8Mpc  use the full observed data and it may be best to simply in-
spheres today assuming linear evolujiddinceQlph? andns  crease the error bars to encompass systematic effects due to
are not too correlated with these parameters, we marginalizether parameters. This ensures that the resulting MCMC
over them and explore the remaining four-dimensional pachains will cover all of the relevant parameter space, and can
rameter space. then be importance sampled later with a tighter constraint. If
From the set of samples it is straightforward to perform anthe chains are generated too tightly constrained one cannot
independent component analysis to identify the well deterrecover information about the excluded parameter space.
mined orthogonal parameter combinations. Calculating the Nucleosynthesis constraints suggesy~0.02 [28], and
eigenvectors of the correlation matrix in the logarithms ofwe assume the Gaussian prian,=0.020+0.002, (l)
agge” ", O, andh we find the two combinations given in the which is somewhat broader than the error quoted in 28,
bottom two rows of Table I. The errors are too large on anyo allow for differences with other estimations. We include
third constraint to be yvorth quoting. We expetj to be  type 1A supernovae data frof29], using the effective mag-
roughly degenerate witle " because the CMB power on pjtydes and errors from the 54 supernovae that they included
scales smaller than the2 horlzon23|ze at reionizatibr 20) i the primary fit(fit C). We marginalize analytically with a
is damped by a facta 7, andoyg scales with the power in - fiat prior on the intrinsic magnitudes, which is equivalent to
the primordial perturbation. We find that marginalized Valuesevaluating the likelihood at the best fit valtsee Appendix
of v, andv, are independent of to better th_an 2% for F). We neglect the small correlations but multiply the loga-
0.02<7<0.14 (4<2,<16). As demonstrated in Appendix s of the likelihood by 50/54 to account for the effective
C these constraints are a_lmost mdt_apendent of the choice o grees of freedom quoted in RE29]. We use the galaxy
base paramet_el(sx{hlch define the prior . o power spectrum from the first 147 000 redshifts of the 2dF
If we marglnggze overrg andz, we find the principle 5,5y redshift survey, using the scales 802(h Mpc2)
component{);h*°=0.096- 9%, consistent with the con- _q 15 \where non-linear effects were found to be negligible
straint found and discussed in R¢8]. However, since this g7 \we assume that this is directly proportional to the matter
quantity is significantly correlated with the amplitude we power spectrum at=0 as in other words, that the bias and
have quoted a tighter constrai#%) in Table I by including  g\6jution are scale independent and also that the redshift
the oge™ " dependence in our resufts. space distorted power spectrum is proportional to the real

While rt_astncted to.th|s relatlvgly small .parameter Spacespace power spectrufon the large scales usedVe assume
we take this opportunity to investigate the impact of the new,

A , a flat prior on the proportionality constant and marginalize
VSA and CBI results. Using importance sampling we com-apaically as described in Appendix F. We also use the HST

pare the results with and without the VSA/CBI data in Tabley o\ "project prior on the Hubble constant as discussed ear-
I. For simplicity we assume the same power law approximay;g,

tion for the combination ofrge 7, h and 1, as derived The top contours in the right-hand panel of Fig. 2 show
above. The peaks move by a fraction of the error, and thg,e effect of the full set of constraints on the basic 7 param-
error bars are fractionally smaller. eter model, with the combined constraint on the curvature
becoming()x=0.00+0.02. For the 6 parameter flat models
IIl. ADDITIONAL COSMOLOGICAL CONSTRAINTS the extra data constrains most of the parameters rather well.

The CMB data alone can only provide a limited numberT‘?ble | shows that the new constraints are very consistent
of constraints, so before extending the parameter space ¥t those from the CMB alone. The; constraint 0”’80%2
make full use of the Monte Carlo method it is useful to Iable I'is slightly changed and becomege "(h/0.67)"
include as much relatively reliable data as possible. Carg 0:72+0.05 almost independently d?,,. The marginal-
must be taken, since some published parameter constraif@ed results on all parameters are shown in Table Il. The
assume particular values for parameters that we wish to vai@mble parameter is shifted to slightly lower values relative
As a simple example, the Supernova Cosmology Project h the HST Key Rrpject constraint we used. The matter and

dark energy densities are spot on the popular 0.3,0.7 model,
although with error bars of 0.05 at 68% confidence. The

2Assuming rapid reionization the optical depth can be Calculatecf:ombinationﬂmh is slightly tighter but has the same central

from z, using 7= o¢f 2dzny(2)/[(1+2)?H(2)], wheren, is the value as quoted in Reff30] using 2dF data alone and assum-

number density of electrons ang; is the Thompson scattering ing ns=1. L
cross section. For flat models with cosmological constant The og result depends on the range used for the reioniza-

~0.0482,h0-%477242 (10 a few percent over the region of inter- 10N redshiftz, since the data used mostly constrains the
es, though we do not use this in our analysis. combinationoge™ " rather thanog on its own. Our prior of
3Note that the fractional errors depend on the choice of normal4<Z,<20 should be reasonably conservative; however, we
ization for the logarithmic eigenvectors; here we have chosen t@lso quote the result fosge™ ". Looking at the maximum
normalize so the exponent 6f, is unity. and minimum values contained in the 95% confidence region
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of the full n-dimensional spac¢see Appendix € we find k \ns—1 k |\ M

0.62< ogexp(0.04- 7)< 0.92. This may be compared to val- Px(k)=As(k—0) » Pr(k) =At(k—m) 1)
ues ofog found by other independent methods and could in s

pnPcuTled bethcomblned Vg;t? tgisge mﬁtho_dg 83 est:jrr;;ate thevherenS andn, are the conventional definitions of the spec-
gp ical depth(e.g. see ke sl31, ].)' 7=0.0% aNl&m g indices. At the lowest order approximation the slow-roll
=0.3 then our result is very consistent with the new lowefjnisia| power spectra are determined from the inflationary

cluster normalization found by Refg32-3 and just con-  otentialv by the slow-roll parameter parameters, €, by
sistent with the cosmic shear measurements of R&86- [43]

38,31. The high clustering amplitude required to fit the

small scale clustering observed by CBl®§~ 1 (Ref.[24]) A m2, (V' 2
is in the tail of the distribution and may require an optical €= L —P'(—> (2)
depth rather larger than expected in simple models. 16A; 167\ V
By using subsets of the chains we have checked that the
Monte Carlo sampling noise is negligible at the accuracy m3[ (V|2 Vv
quoted. The results are Monte Carlo marginalized over all of Ns=1-2e;—e;=1- ﬁ[ (V) - V} )
the other parameters and also analytically or numerically
marginalized over the calibration type uncertainties dis-
) H?2 A
cussed in Sec. Il. A= ne=—2e=— Tt (4)
We now demonstrate the power of the Monte Carlo *omem 8As

method by using the above data to constrain a larger number

of parameters, using the proposal density described in Apyhere guantities are evaluated whera=k, (we usek,
pendix A to exploit the differing computational costs of =k =k,,=0.01 Mpc'!). For our analysis we use the pa-
changing the various parameters. We consider separately thgmetrization of Eqs(1) and definee;=A/16A,. We also
case of inflationary models, which are flat, and more generampose the slow-roll constraint that the spectral index of the
models less constrained by theoretical prejudice. In bothensor modes is given by = — 2¢;. Our results will be con-
cases we includé,, the fraction of the dark matter that is in sistent with inflationary models in the region of parameter
the form of massive neutrindsand allow for an effective space in whiche;<1, ng~1, but elsewhere can be inter-
constant equation of state parameter=p/p for the dark preted more generalljthe results are not very sensitive to
energy, and assume thatl<=w<0. the tensor spectral indgxFrom the definition it is clear that
€,=0, and except in contrived models one also expeagts
=<1, though we do not enforce this. Simple ekpyrotic models
A. Inflationary models are consistent with this parametrization when there are no
tensor mode$44]. If there were evidence for tensor modes
The simplest single-field inflationary models predict a flat(e,>0) then this would be direct evidence against simple
universe and can be described quite accurately by the slovekpyrotic models.
roll approximation. The shape and amplitude of the initial Figure 3 shows the fully marginalized posterior con-
curvature perturbation depends on the shape of the inflatiorstraints on the various parameters using the CMB, superno-
ary potentiaL often encoded in “slow-roll parameters” which vae, HST, and nUCleosyntheSiS constraints, with and without
are assumed to be small, plus an overall normalization whici€ 2dF data, generated from 7700 weakly correlated
depends on the Hubble rate when the modes left the horizofAMPles. We generate samples without the 2dF or CBI data,

during inflation. The initial scalar and tensor power spectra®"d then importance sample including CBI to compute re-
are parametrized as usual®by sults with and without the 2dF data. The constraint<sh

and f, are sharpened significantly on adding in 2dF. The
large shift in theog distribution comes from the exclusion of
the highf, parameter space due to the new constraint on the

“We assume three neutrinos of degenerate mass, as indicated ggape of the matter power spectrusee discussion of de-

the atmospheric and solar neutrino oscillation observa{idagiQ, 9 ne_ra_cy below

and compute the evolution using the fast but accurate method de- Itis |mpqrtant Fo check that the parameters are rea”y,be'

scribed in Ref[41]. ing constrained, in the sense that the results are relatively
SMany quintessence models can be described accurately by a colfiS€nsitive to the priors, so in addition to the marginalized

stant effective equation of state parameié2]. We compute the Posterior we also plot the mean likelihood of the samples.

perturbations by using a quintessence potenfigp) with V ,= These will differ in general, particularly when the result is
—3(1-w)H¢ andV 4= — (1 —w)[H— $(1+w)H?] that gives sensitive to the parameter space volume available, which can
a constant equation of state. change as the result of choosing different priese Appen-

Here defined so (|x|2)=/dIn kP (k) and (hi,-h”> dix C). In most of the 1D plots the two methods are in good
= [dInk P,(K), wherey is the initial curvature perturbation a agreement indicating that the likelihood is well constrained
is the transverse traceless part of the metric tensor. These definitioii3 N-dimensional space and the priors are not biasing our
ensureP=const corresponds to scale invariant. results. However, the marginalized value ®f is brought
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. . . FIG. 4. All-data posterior constraints for flat inflationary models
FIG. 3. Posterior constraints for 9-parameter flat models usin sing. The contours show the 68% and 95% confidence limits from
all data. The top nine plots show the constraints on the base MCM%h 9. ’ 0

- L . . e marginalized distribution. The shading shows the mean likeli-
parameters; the remaining plots show various derived paramet(?_lrood of the samples, and helps to demonstrate where the marginal-
constraints. Thin lines include CMB, HST, SNIA and BBN con- pI€s, P 9

ized probability is enhanced by a larger parameter space rather than

straints, thick lines also include the 2dF data. The solid lines sho . -
the fully marginalized posterior; the dotted lines show the relativ:e%y a better fit to the dat¢e.g. lowns values fit the data better

mean likelihood of the samples. The curves are generated from the

MCMC samples using a Gaussian smoothing kernel 1/20th th&rY assumptions in Table {lAs expected, the-dimensional
width of each plot. limits are much wider than those from the marginalized dis-

tributions, most being more than twice as wide.
The combined datasets provide good constraints on the
neutrino mass, despite the large parameter space. The mas-

down by thef,>0 phase spacésince massive neutrinos e neytrino fractiorf, translates into the neutrino mass via

damp the small scale poweeven though the best fits to the
data occur where the neutrinos are very lighe correlation
is shown in the bottom right-hand panel of Fig) 8imilarly > m,
the marginalized value ofg is slightly increased by the Q,h?=f Qpyh?=
phase space witla;>0; this increases the CMB power on

large scales, and hence requires a higher spectral index for . .
the scalar modetbottom left panel of Fig. # where the last equality follows from our assumption that

We also show in Fig. 4 that a small degeneracy betweeﬁhe.re are three neutrinos of apprOX|mater_ degenerate mass,
) : as indicated by the small mass-squared differences detected
the Hubble constant and the matter density reméors left) . i .
: by the neutrino oscillation experimeri39,4Q. At 95% con-
after the~Q h constraint from the galaxy power spectrum

=
Shap s comine wihte 1,1 VB contantTale |2 [ 1 T ahlies oot 027 2 anc e
). Geometrical information from the CMB peak position andtightness of the constraint is predominantly due to the 2dF
the supernova type IASNIA) work together to constraiw,
but this remains slightly correlated wit,, (top righy.

The results from the 6 and 9 parameter analyses can be;
comp{;\red‘ using the 68% limits given in Table Il 'and theestimates of the parameter best-fit val@eshigh dimensions the
p|0t'S.In Fig. 5. Many of the results are quite robust tq thebest-fit region typically has a much higher likelihood than the mean,
addition of the extra three degrees of freedom. The bigges{; it occupies a minuscule fraction of parameter spalerefore
change is inoge™ " which is brought down by contributions e go not quote best fit points. The high-significance limits are also
from non-zerof ,. hard to calculate due to the scarcity of samples in these regions. To

As discussed in Appendix C, parameter confidence limitsompute accurate estimates in the tails of the distribution and to
from the full n-dimensional distribution can also easily be ensure the tails are well explored, we sample from a broader distri-

calculated from a list of samples. We show the marginalizedution and then importance sample to the correct distribution, by
and n-dimensional parameter constraints with the inflation-originally sampling fromPYT whereT>1 (we useT=1.3).

~ 2
538 oy = M~310,0% eV, (5)

Monte Carlo samples from the posterior do not provide accurate
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data, as shown in Fig. 3, via the damping effect of massive
neutrinos on the shape of the small scale matter powel
spectrunf The result is consistent with the weaker limits L N ; A\
found in Refs.[45,46 under more restricted assumptions, ®0* o€ 00% PO
The marginalized result is only slightly affected by the large
parameter space: computing chains witk —1 andA;=0

we obtain the marginalized 95% confidence resui}
=0.30 eV(the n-dimensional limit is much less sensitive to
the parameter space, and the result does not change signil
cantly). Thus the simplest model where all the neutrino
masses are very small is still a good bet.

The result for the quintessence parametds consistent
with w=—1, corresponding to a cosmological constant. The
marginalized limit isw<<—0.75 at 95% confidence, consis-
tent with Ref.[47]. If we neglect the quintessence perturba-
tions it is a simple matter to relax the assumption theat
—1; for flat models with no tensors or massive neutrinos we
find the marginalized result- 1.6<w<—0.73 at 95% con-
fidence, and theé-dimensional result-2.6<w< —0.6 with
the best fit close tav=—1, broadly consistent with Ref.
[48]. Note that including quintessence perturbations leads tc 1o 1z 1 16 02 03 04 05 08 04 08 D8 T
a tighter constraint ow due to the increased large scale Aae/0ye O *
power. Although perturbations are required for consistency g, 5. posterior constraints for 11-parameter non-flat models
with general relativity, it is possible that a quintessencegnick lineg using all data, compared with @hin, solid lines and
model may be approximated better by a constanhodel g (thin, dashed lingsparameter models. Dotted lines show the
neglecting perturbations than one including the perturbagean jikelihood of the samples for the 11-parameter model. Some

tions. , , sampling noise is apparent due to the relatively small number of
The constraint on the tensor mode amplitéecoded by  gamples used.

€,) is weak, as expected due to the large cosmic variance on
large scales. In Table Il we also show the result feg ) o
=C]/C3,, the ratio of the large scale CMB power in tensor t<0-1). We parametrize the power spectra of the initial
and scalar modes. For comparison, with perfect knowledgéurvature and tensor metric perturbations as in the inflation-
of all the other parameters and a noise-free sky map, thary cas€, except that we now report results f&f/A, rather
CMB temperature power spectrum cosmic variance detectiothan a slow-roll parameter, and choose the scalar and tensor
limit is r,=0.1. pivot scaleskgy=0.05 Mpc !, k,o=0.002 Mpc ? (the stan-
The method we have used could be generalized for a morgard CMBFAST parametrization
accurate parametrization of the initial power spectrum, for |n Figs. 5 and 6 we show the parameter constraints that
example going to second order in the slow-roll parametersve get using about 10000 weakly correlated samples impor-
[43], which in general introduces a running in the spectrakance sampled to include the 2dF data and CBI. For compari-
index. The current data is, however, clearly consistent withygp we plot the equivalent constraints with the 9 and 11

the simplest scale invariant power spectrum with no tens‘)&arameter models. The additional freedom in the curvature
modes. As a check we have generated chains for flat modesoadens some of the constraints significantly, though the

with a cosmological constant, no massive neutrinos or ten

sors, but allowing for a running spectral index, and found theQm and€h” constraints are quite robust.
’ . L ' The tensor spectral index is essentially unconstrained, the
68%-confidence marginalized resut0.06<n,,,<0.02 at P y

K=ko=0.05 MpcL where n.=d?(InP.)/d(Ink?2 This dlfferenc_e between the mean likelihood an_d marginalized 1D
. XN plots being due to the assumed flat prior on the tensor
corresponds to the running spectral indexg ¢«(K)

_ _ amplitude—at very small amplitudes could be anything
=dinP,/dink=ngko) + Mruln (ko). and still be undetectable. The 95% marginalized limit on the

B. Non-flat 11-parameter models curvature is—0.02< Q< 0.07. Slightly open models fit the

. data marginally better on average, though a flat universe is
We now relax the constraint on the curvature, and allow g y g 9

the tensor spectral index to be a free paraméter assume well within the 68% confidence contour. The limit on the
P P equation of state parameter is slightly weakenedwta

—0.69, and neutrino mass is naw,<0.4 eV at 95% con-

80ur strategy of generating chains without the 2dF data and theﬂdence.
importance sampling ensures that we have many samples in the tail
of the distribution, and hence that our upper limit is robissbce
we have have much lower Monte Carlo noise in the tails than if we °For non-flat models our definitions folloj¥9]. In open models
had generated chains including the 2dF daéamd also makes the we assume the tensor power spectrum has an additional factor of
effect of the 2dF data easy to assess. tanh@r/— k%K —3/2) on the right-hand side.
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TABLE Il. Parameter constraints for 6 and 9 parameter flat models with all data with or without 2dF. The top section shows the
constraints on the additional parameters that were fixed in the basic 6 parameter model, the bottom half shows the effect these additional
parameters have on the results for the basic parameters. 1D limits are from the confidence interval of the fully marginalized 1D distribution;
the full limits give the extremal values of the parameters in therfullmensional confidence regigaee Appendix C for discussiprBold
parameters are base Monte Carlo parameters, non-bold parameters are derived from the base parameters.

6 parameters

9 parameters

+2dF no 2dF +2dF +2dF +2dF
68% 1D 68% 1D 68% 1D 68% full 95% full
f, - <0.10 <0.04 <0.10 <0.13
w - <-0.87 <-0.88 <-0.68 <-0.58
€ - <0.032 <0.032 <0.069 <0.085
m,/eV - <0.29 <0.14 <0.36 <0.54
o - <0.30 <0.31 <0.92 <1.4
Qph? 0.021+0.001 0.022-0.001 0.022-0.001 0.018-0.025 0.0170.026
Qpyh? 0.113+0.008 0.099:0.014 0.106:0.010 0.082-0.130 0.072-0.142
h 0.67+0.03 0.67-0.05 0.66-0.03 0.59-0.75 0.55-0.78
Ng 0.98+0.04 1.02£0.05 1.03-0.05 0.9:1.13 0.871.19
0, 0.70+0.04 0.72:0.06 0.710.04 0.58-0.80 0.54-0.82
Qn 0.30+0.04 0.28-0.05 0.29-0.04 0.20-0.42 0.18-0.46
to/Gyr 14.1+0.4 14.3-0.4 14.1-0.4 13.3-15.0 13.0-15.2
Q.h 0.20+0.02 0.18-0.03 0.19-0.02 0.15-0.25 0.13-0.26
oy 0.79+0.06 0.54-0.13 0.67:0.08 0.49-0.93 0.45-0.95
g’ 0.72+0.04 0.50-0.12 0.61-0.07 0.47-0.81 0.410.84
7502 0.40+0.05 0.27-0.08 0.34-0.05 0.22-0.51 0.19-0.53

C. Which model fits best? nient interpretation in terms of goodness of fit.

We have explored the posterior distribution in various pa- Vhilst certainly not ruled out, at the moment there is no

rameter spaces, deriving parameter constraints in the differe-v'd‘":'rlce for observaple effects from the more compllpatgd
ent models. Since we obtain only upper limits B w and models we have considered. Nonetheless, when considering

A,/A, there is no evidence for massive neutrings: — 1 or parameter values, it is important to assess how dependent

tensor modes using current data. 100 05
One can make a more quantitative comparison of the dif-
ferent models by comparing how well each fits the data. As
discussed in AppenkliC a natural measure is the mean like- 8o
lihood of the data obtained for the different models. Equiva- B g
lently, if one chose a random sample from the possible pa-
rameter values, on average how well would it fit the data? 60
We find that the six, nine and eleven parameter models havt g, -09
mean likelihood ratios 1:0.4:0.3 using all the data. So by
moving away from the basic model we have not increased “° 505 0 o005 o4 005 0 005 0.1
the goodness of fit on averagether the revergewhich is QK QK
not surprising given how well the basic model fits the data.
Most of the distributions of the additional parameters peak at
their fixed values.

We also considered the probability of each model, found
from marginalizing outall parametergthe “Evidence” as e 12
e.g. explained in Ref[50]). Since the 9 and 11 parameter «%s Q14
models are totally consistent with the 6 parameter model <
then it is already clear that using this method will favor the 6 12
parameter model for any choice of prior. The numerical evi-
dence ratio depends very strongly on the prior, and without a 24
well motivated alternative to the null hypothesthat there 02 S 0% 9 ~Ges 0 085 Ol
are only 6 varying parametgrsts value is not useful. The " «
mean likelihood of the sampldabove uses the posterior as FIG. 6. Posterior constraints for 11-parameter non-flat models
the prior, which is at least not subjective, and has a conveusing all data.

90

08 17
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these are on the assumptions, and this can be seen by coother hand, the value for the matter power spectrum normal-
paring the results we have presented. We conclude that at tfigation on 8h~! Mpc scales is quite dependent on the neu-
moment simple inflationary models with small tilt and tensortrino mass, and allowing for a significant neutrino mass de-
amplitude(e.g. small field models with a nearly flat poten- creases the mean value®f (the constraint on the amplitude

tial; or observationally equivalently, ekpyrotic modelsc-  could be improved by better constraints on the small scale
count for the data well. On average the fit to the data is noEMB amplitude and the reionization redshifParameters

improved by adding a cosmologically interesting neutrino@ffecting or that are sensitive to the late time evolution tend

mass or by allowing the dark energy to be something othef© Pe rather degenerate, and constraints on these are consid-
than a cosmological constant. erably weakened on adding additional freedom in the model.

We find that the 9 parameter model is quite well con-
strained by the amount of data used and obtain upper limits
on a number of interesting cosmological parameters, given

In this paper we have demonstrated the following benefitur assumptions of a flat universe with slow-roll inflation
of Samp"ng methods for cosmological parameter estimationconstraints. In particular vye find the marginalized constraint

The practicality of exploring the full shape of high- M,=0.3 €V on the neutrino mass awd<—0.75 for the
dimensional posterior parameter distributions  usingeduation of state parametéd5% confidence There is no
MCMC.10 evidence for tensor modes, though the constraint is currently

The use of princip|e Component ana'ysis to |dent|fy well quite Wea.k, with the constraint on the ratio of the |arge scale
constrained non-linear combinations of parameters and idef=MB power beingr,0=0.7. This constraint could be sharp-
tify degeneracies. ened considerably by restricting the allowed range of scalar

Simple calculation of constraints on any parameters tha$Pectral indices and neutrino masses. _
can be derived from the base getg. age of the universe,  In the 11 parameter space the limits are weakened slightly
og, 10, tc). and the standard cosmology wf=—1 andQy=0 is near

Use of the mean likelihood of the samples as an alternathe peak of the posterior probability. The tensor spectral in-
tive to marginalization to check robustness of results andlex is essentially unconstrained as expected given that the
relative goodness of fit. only information comes from the large sc4leOBE) CMB

The calculation of extremal values within the data. _ o o '
n-dimensional hyper-surface to better represent the range of While a detailed investigation of the effect of using all the
the full probability distribution. different combinations of cosmological constraints is beyond

The use of importance sampling to quickly compare rethe scope of this paper we do show the effect of removing

sults with different subsets of the data, inclusion of new datathe second most powerful constraittie galaxy power spec-
and correction for small theoretical effects. trum) on the 9 parameter model in Fig. 3. The limits on most

With the current cosmological data we found that theOf the parameters are affected remarkably little. The neutrino
Monte Carlo approach works well, though S|mp|y p|Ck|ng mass is the most affected, with the upper limit dOUbling on
the best fit sample does not identify the best-fit model to higifemoving 2dF. The neutrino mass is correlated with the mat-
accuracy(and therefore we do not quote these numpensd  ter power spectrum shape paraméteughly (2 ,h) and am-
there are potential difficulties investigating posterior distri-plitude, and these constraints are correspondingly weakened
butions with multiple local minimaalthough this is not a ©n removing 2dF.
problem given the parameters and data used)here As new better data become available our general method

We investigated a 6D Cosmo]ogica| parameter space arﬂ‘lOUld also be applicable into the future. Due to the enor-
found, for the first time, a concise description of the CMB mously decreased number of likelihood evaluations in the
constraints on the matter power spectrum normalization, iMCMC method compared to other approaches, theoretical
addition to tight constraints o, andn, in agreement with ~ Predictions can be computed essentially exactly, and one can
previous analyses. The new information from the CBI andgccount for the available data in detail.

VSA interferometers is in good agreement with the older
data points and we find that our results are negligibly
changed on removing this information.

On adding in constraints from a wide range of cosmologi- We thank the members of the Leverhulme Collaboration
cal data we evaluated constraints on the above 6 parametr many useful discussions, in particular Ofer Lahav, Caro-
model as well as extending to more complicated 9 and 1lina Odman, Oystein Elgaroy, Jerry Ostriker and Jochen
parameter models. Many of the constraints on the base set Wfeller. We are grateful to David MacKay and Steve Gull for
parameters were fairly robust to the addition of this extraencouraging the use of MCMC. We thank Anze Slozar, Keith
freedom, for example the matter density changed ffg  Grainge, Alexandre Reegier and Kev Abazajian for helpful
=0.30=0.04 for the basic 6 parameter model(,=0.28  suggestions. We thank George Efstathiou for making his
+0.07 for the 11 parameter mod@8% confidence On the  cMmBFIT code available to us. A.L. thanks the Leverhulme

Trust for support. S.L.B. acknowledges support from Selwyn
College and PPARC and thanks the Aspen Center for Physics
1%0ur Monte Carlo code and chains are publicly available at uriwhere part of this work was done. We thank PPARC and
http://cosmologist.info/cosmomc HEFCE for support of the COSMOS facility.
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APPENDIX A: THE METROPOLIS-HASTINGS to parameters along the degeneracy directions. Fortunately
ALGORITHM with cosmological data we have a reasonable idea of what

The algorithm that we use for generating samples fromthe posterior might look like, and so choosing a sensible

the posterior distribution using a Markov chain is the ProPosal density is not difficult.

Metropolis-Hastings algorithm. For an introduction and !f POSteriors from models with common parameters are
overview of MCMC methods see Refd1-13. A Markov much easier to compute it can be beneficial to use a proposal
chain moves from a position in parameter spa#eto the Qens!ty that chapges only a subset' of the parameters on each
next positiond, with transition probabilityT(8é;,6,), where |terat|qn, ensuring that consecutive posterior . evaluations
0 labels a vector of parameter values. The MetropolisOnly differin a subset of the parameters. Proposing a change
Hastings transition kerneT(#;,6,) is chosen so that the t0 @ random subset of the parameters also increases the ac-
Markov chain has a stationary asymptotic distribution equafeéptance rate, especially in high dimensions, giving faster
to P(6), whereP(#) is the distribution we wish to sample Piecewise movement around parameter space. In the case of
from. This is done by using an arbitraproposal density CMB parameter estimation, models that differ only by a dif-
distributionq(@,, 6, 1) to propose a new poind, ., given  ferent normghzaﬂon of the theoretical CMB power spectrum
the chain is currently af,. The proposed new point is then @ré Very quick to compute once ti@ values for a single

accepted with probability model have been calculated. Similarly changing parameters
that govern calibration uncertainties in the data can also be
| P(6,:1)0(0,.1,60,) very quick. However, changing parameters that govern the
a(0,,6,.1)=min} 1, (Al)  perturbation evolution, for exampl®,, Q., etc., will be
P(6,)a(6h,0,.1)

much slower as in general it requires a detailed recalculation
_ ; _of the linear physics.
zgu(t::itn-ré:gl’]fe”; lt?wataé;rgilaena g;gznc’eonﬁo%'s This con If we are comparing CMB data with theoretical models,
’ the most general way to compute the theoretiCalpower
P(0,.1)T(6,.1,0,)=P(6,)T(6,,0,.1), (A2)  spectrum is using a fast Boltzmann code suclcags [16]

(a parallelized version ofMBFAST [17]; we discuss less ac-
and hence thaP(6) is the equilibrium distribution of the curate and general schemes belo®ince the perturbation
chain. evolution is assumed to be linear, any parameters governing

If the chain is started in a random position in parametetthe initial power spectra of the scalar and tensor perturba-
space it will take a little imeburn in, to equilibrate before it~ tions will be fast to compute once the transfer function for
starts sampling from the posterior distribution. After that€ach wave number has been computed. Parameters govern-
time each chain position is eorrelated sample from the ing the initial power spectrum are therefore “fast” param-
posterior. The correlation is particularly obvious if the pro- eters. .
posal is not accepted as then there are two or more samples We therefore use a proposal density that makes changes
at exactly the same point. However, by using only occasiona®nly within the subsets of the fast and slow parameters, at
chain positiongthinning the chaih one can give the chain l€ast when we do not have an approximate covariance matrix
time to move to an uncorrelated position in parameter spac@vailable for the posteridi. We made the fairly arbitrary
and independent samples are then obtained. Small residu@ioice to change a subset of one to three parameters at a
correlations between samples are unimportant for almost afime, cycling through the parameters to be changed in ran-
calculations, though they do make the Monte Carlo error oflom order, which gives a high acceptance rate&0%) for
the results harder to assess. the cases we considered. After one initial run one can trans-

For the cases we consider the chains equilibrate rapidly, 46rm to a set of parameters which diagonalize the covariance
worst after a thousand or so points. The results can bhatrix before doing subsequent runs, allowing efficient ex-
checked easily by using a longer burn in and Comparingalonatlon of degenergcy information as long as the posterior
results. We thin the chain positions by a factor of 25—50,s reasonably Gaussian.

depending on the number of parameters, leaving weakly cor- The above scheme is sufficient for parameter estimation
related samples that we use for importance samplgeg from current data; however, as more data become available

Appendix B. the posterior may become highly non-Gaussian or disjoint, in

If the proposal density is symmetrical it cancels out whenwhich case it may become necessary to use more sophisti-
working out the acceptance probability, which then become§ated schemes using simulated annealing, hybrid Monte
just the ratio of the posteriors. This is the case when thé&arlo algorithm, or schemes using cross-chain information

proposal density is independent of the current position of thé11—13. However, when the posterior is not disjoint one can
chain, which is the case we consider. often transform to a set of base parameters which are rela-

tively independent, in which case a simple Monte Carlo
1. The proposal density

The choice of proposal density can have a large effect onhen changing the slow parameters it is possible to also change
how the algorithm performs in practice. In general it is bestthe fast parameters at the same time. This can be a good idea when
to have a proposal density that is of similar shape to thehere are highly correlated slow and fast parameters, for example
posterior, since this ensures that large changes are proposte reionization redshift and the tensor amplitude.
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scheme should continue to work wé#iee Appendix C for underP’ is higher than undeP. In the case where the dis-

further discussion tributions are very different one may need to introduce a
series of intermediate distributions that are all not too dis-
APPENDIX B: IMPORTANCE SAMPLING similar to each other, and perform Monte Carlo sampling

from each. The evidence ratio one requires is then just the
product of that for all the intermediate distributions. Many
more general schemes are described1i8,51], though in

Given a set of samples from a distributiéh) one can
estimate quantities with respect to a different similar distri-

bution P’, by weighting the samples in proportion to the this paper we only consider importance sampling to similar
probability ratios. This effectively gives a collection of non- paper we only P piing
or subset distributions.

integer weighted samples for computing Monte Carlo esti- The simplest application of importance sampling is to ad-

mates. For example, the expected value of a functig#) . . . .
underP’ is given by just re_sult§ for d|ffe_rent priors. For example if one computes
a chain with flat priors on the parameters, one may wish to
P'(0) importance sample to several different distributions with dif-
<f(0)>p,=f d0P’(0)f(0)=f dw P(O)f(H) ferent priors on various parameters. This will work well as
long as the prior does not skew the distribution too much or

P'(0) give non-zero weight to only a very small fraction of the
=(—=——1(0)) . (B1) models.
P(6) .
Given a sef 6.} of N samples fronP a Monte Carlo esti- 1. Faster Monte Carlo Sampling

mate is therefore MCMC runs produce correlated samples from the prob-

1N P'(0) ability distribution. To obtain independent samples one thins

(F(O))pr~— > —=——1(8,). (B2)  outthe chain by a sufficiently large factor that the chain has

N =1 P(6h) had time to move to a randomly different point between the

. " ) L thinned samples. Depending on how one implements the

For this to work it is essential th&/P’ is never very small, \jcvc. the shape of the posterior and the number of dimen-

and for a good estimate without massively oversamplingsjqns the thinning factor can be quite large, typically of the
from P one need$’/P~const everywhere whet’ is sig-  ,rder ten to a thousand.

nificantly non-zero. IfP’ is non-zero over only a very small By performing Monte Carlo sampling with a good ap-
region compared @ it will be necessary to proportionately proximation to the true probability distribution one can use
oversample fronP. importance sampling to correct the results with an accurate

If the distributions are not normalized, so thed6P(6)  caiculation of the probabilities. This can be useful if comput-
=Z, the ratio of the normalizing constants can be estimateghq the probabilities accurately is much slower than comput-
using ing an approximation, since one only ever importance

, , , samplesndependensamples. The burn-in and random walk-
Z_ <P(0) > %i 2 P"(6h) (B3) ing stages of the Monte Carlo sampling involve a much
p Ni=1 P(6,) "’ larger number of probability evaluations, so using a fast ap-
proximation when generating the chain saves a lot of time.
and hence Calculating the posterior from CMB data requires a cal-
culation of the theoretical CMB power specti@,. Using

N
, accurate codes likeamB and CMBFAST is typically much
zl P*(6:)/P(6,)1(6h) slower than computing the likelihoods from the data once the
(f(0))p~ N . (B4)  C, are known(assuming one uses a radical data-compression
P'(0.)/P(6 scheme, e.g. see R¢R5]). In the not so distant future we
ngl (6n)IP(6,) will require to high accuracyC, up to |~2500, including

second order effects such as lensing, and also the matter
In Bayesian analysis it can be useful to compute the ratigower spectrum at various redshifts. Without access to a fast
of the evidence®(D)=[déP(D, 6), given as above by supercomputer this may be prohibitive.
N , With a small number of parameters it is possible to use a
1 > P'(D[6,)P'(6,) grid of models and interpolate to generate accur@e
P(6,D) P(MD)N N =1 P(D|6,)P(6,) ’ quickly; however, as the number of parameters grows the
(B5) computational cost of computing the grid grows exponen-
tially. Also, as second order effects such as gravitational
where the sample§f,} are drawn fromP(6|D). Assuming lensing become important, fast grid generation schemes such
the distributions are sufficiently similar, the evidence underas thek-splitting scheme of Refl52] become much more
P’ can therefore easily be computed from the probabilitydifficult to implement accurately. However, these may still
ratios at a sample of points undey and a known evidence be useful as a fast approximation, as long as the independent
underP. In many cases only the ratio is of interest—the ratiosamples are corrected with a more accurate calculation. Ref-
is larger than one if on average the probability of the samplegrence[53] describes a scheme for generatiGgs very

P'(D) [P'(6,D)
P(D)
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quickly from a small number of base models, a set of opti-for the nearly independent samples re-computed the power
mized parameters, and an accurate calculation of howCthe spectra up td,,,=2000 for importance sampling with the
vary with these parameters. This gives a very fast approxiCBI data.
mator over a restricted range of parameters that may prove Similar methods could be applied for the matter power
useful combined with the importance sampling correction. Spectrum using approximate fittings, see e.g. Rf§,52.

It is also possible to use fast semi-analytic schemes. Typitiowever, when a fast multi-processor machine is available,
cally these are based on a smallish grid of base models, frof"d one is interested in a very large number of parameters, it

which theC,s in general models are computed quickly on the!S much simpler to Monte Carlo simulation usiegms to
fly by accounting for changes in the angular diameter dis9enerate the CMB power spectra and matter power spectrum,

tance to last scattering, differing perturbation growth rateshich is what we did for the results we present. The great

etc. These approximate schemes can be made quite accur@@vantage of this approach is that it generalizes trivially if
at small scales, with significant errors mainly at lowpre- ~ ON€ Wishes to include changes in the physics, for example

cisely where the cosmic variance is large. So whilst an ap(_1|fferent quintessence models, or changes in the initial power

proximate scheme may produce small systematic errors ifPECtrUm.
the likelihood, if the error is of the same order as the cosmic _ )
variance or less, the probabilities given the data are bound to 2. Constraints with new data

be sufficiently similar for importance sampling to be valid. Assuming that one has some new data which is broadly
A particular approximateC, generator we have tried is consistent with the current data, in the sense that the poste-
CMBFIT [2], which uses a combination of ba€ grids and  rior only shrinks, one can use importance sampling to
analytic fits. This achieves a quite good few percent levebuickly compute a new posterior, including the new data. We
accuracy at high, though larger systematic errors at 16w  have made our MCMC chains publicly available, so these
However, the code is fast, and we found that importancgan be used to rapidly compute new posteriors from new
sampling the results with an exact calculation of @yegives  data without incurring any of the considerable computational
good results, and removes systematic biases introduced kst of generating the original chain. For example, if you
the low| approximations. Such an approach can be generahave a new constraint omg, you just need to loop over the
ized for more general late time evolution, for example mod-samples adjusting the weights of the samples proportional to
els with quintessence where the effect on small scales is dugie likelihood under the new constraint. Using importance
almost entirely to changes in the background equation o§ampling has the added benefit of making it very easy to

state. . _ assess how the new data is changing the posterior.
An alternative scheme based on grids of the transfer func-

tions for each wave number can produce more accurate re- APPENDIX C: PARAMETER CONSTRAINTS

sults, such as the recently releasedH [54]. However, this

is not much faster than generating tiigs exactly using The great advantage of the Monte Carlo approach is that
CAMB on a fast multi-processor machine, and relies on &ou have a set of samples from the full parameter space. To
large pre-computed gridwhich introduces its own limita- answer any particular question one can examine the points
tions). The only real advantage ovemBFIT is that more and compute results reliably, taking full account of the shape
general initial power spectrum parametrization could be acof the posterior inN dimensions. However, for human con-
counted for easily—something that is impossible withsumption it is usual to summarize the results as a set of
schemes based on grids Gfs. parameter values and error bars.

Even without a fast semi-analytic scheme, there are a va- One way to do this is to use the samples for a principle
riety of small corrections that can be applipdst hoc For ~ component analysis to identify the degeneracy directions, as
example, lensing affects the CMB, at the few percent Wwe demonstrated in Sec. Il. By quoting constraints on a set
level, so one may wish to compute chains without includingof orthogonalized parameters one retains most of the infor-
the lensing, then importance sample to correct the result@ation in the original distribution, as long as it is sufficiently
using an accurate calculation including the lensthgror ~ Gaussianor Gaussian in the logarithm or some other func-
small scales at high precision one may also wish toaams  tion). However, ultimately one is usually interested in the
at a high-accuracy setting to check that numerical errors ivalues of some fundamental parameters, and it is also useful
the default output are not affecting the results. Also chaingo find constraints on these alone.
could be generated to lowérand the effect of the high- The simplest approach is to compute the marginalized
constraints accounted for by importance sampling. For exone-dimensional distributions for each parameter, essentially
ample, we generated the chains usipg,=1300, and then counting the number of samples within binned ranges of pa-

rameter values. Note that this is extremely hard to do using a
brute-force numerical grid integration calculation as it scales
2However, if one is also computing the matter power spectrueXPonentially with the number of dimensions, but is quite
numerically the additional cost of including the lensing effect is trivial from a set of Monte Carlo samples. One can then
small. We have checked that the lensing correction to the results wduote the value at the maximum or mean of the 1D distribu-
present is much smaller than the erréiise lensed power spectra tion, along with extremal values of the parameter which con-
can be computed witktams using the harmonic approach of Ref. tain a fractionf of the samples, wheré defines the confi-
[55]). dence limit. The extremal values could be chosen so that
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there were the same number of outliers at both ends of theest fit model at each point, for example see R&f. How-

distribution, or such that the value of thearginalizedprob-  ever, it is not so easy to compute this using a small set of

ability is the same at each limit. This is a good way of sum-Monte Carlo samples—mean values within each bin can be

marizing the current state of knowledge as long as you havebtained quite accurately from a small number of samples,

included everything you know, including using a believablebut getting a good value for the maximum in each bin re-

prior over parameter space. quires a much larger number. Instead we plot the mean like-
However, frequently one wants to use the parameter estlihood of the samples at each value of the parameter, which

mates to assess consistency with new data or theories, aigleasy to compute from the samples. It shows how good a fit

the prior can be very hard to define. For example, on puttinggou could expect if you drew a random sample from the

in a top hat prior on the age ard the marginalizedprior ~ marginalized distribution at each point in the subspace.

probabilities arenotflat, even if all of the other priors are flat From a distributionP(6) one can derive thémarginal-

broad top hats. This is because the marginalized distributioized) distribution of a derived parameter vector of interest

includes the effect of the amount of parameter space avaik=h(#6) by

able at each point, which can depend quite strongly on the

value of the parameter. Likewise it is possible to have a

region in para?neter space which fits the Fc)JIata rather well, but Pv)= M(P’V)=f d6P(6) 5(h(6) —v). (€Y

because the region is small the marginalized probability of

those parameter values can be very low. Assuming flat priors ord the expected mean likelihood of
When assessing consistency with new datatheories,  samples witth(6)=v is

one really wants to know whether the posterior for the new

data intersects th&l-dimensional posterior for the current

data in a region where both are likely. For example, one fdgp(0)25(h(0)_v)

could define the region of parameter space enclosing a frac- (P(B:n(0)=V))= _ M(P?,v) '
tion f of the points with the highest likelihood as the M(P,v)
N-dimensional confidence region, and then see whether this f dopP(6) 5(h(6)=v)

region intersects with the corresponding region for the new (C2

data. It is clearly sub-optimal to try to perform this compari-

son using only 1D parameter values and limits; however, ifrequentlyh( @) is a projection operator into a subspacefof
one quotes the extremal values of each parameter contam%r exampleh(6) = 6, for marginalization down to the first
in the N-dimensional confidence region it is at least pOSSibleparamete}. If this is the case and®() is a multivariate
to assess whether tti¢-dimensional regionsnightoverlap.  Gayssian distribution, the marginalized distributidi{P,v)
At least if the new data is outside these limits it is a clearig 550 a Gaussiafreadily proved using Fourier transforms:
indication that there is an inconsistency, whereas using thge covariance is given by the projected covariance matrix
marginalized limits it shows no such thiriist that if there  gjnce the square of a Gaussian is a Gaussian it follows that
is a consistent region it makes up a small fraction of theM(Pz,V)OCM(P,V)z, and hence the mean likelihood is pro-
original parameter space—something one would hope for il gtional to the marginalized distributidvl (P,v). This also
the new data is informativeHowever, it is of course easily 5105 trivially if P is separable with respect to the sub-
possible for the 1D likelihood limits to be consistent but thegyace | the case of Gaussian or separable distributions the
full N-dimensional regions to be highly inconsistent. mean likelihood curve is therefore proportional to the mar-
In order to be as informative as possible it can be useful tyinajized distribution and the two curves look the same. Dif-
quote both the marginalized and likelihood limits, though Ofterences in the curves therefore indicate non-Gaussianity; for
course one should study the full set of samples to make usgample, when one of the marginalized parameters is skew-
of as much information as possible. When there are strong, the distribution in a particular directicifor example the
degene_raues one can guote the constraints on the Weléﬁect of massive neutrinos,>0 on theo curve in Fig. 3:
determined orthogonalized parameters. if f, was fixed at it's maximum likelihood value the margin-
alized result forog would change significantly in the direc-
tion of the mean likelihood curye The converse does not
hold of course; it is possible to have a non-Gaussian distri-
Often it is useful to show the projected shape of the disbution where both curves are the same. If the priors on the
tribution in one or two dimensions. The marginalized distri- parameters are not flat this will also show up as differences
bution, proportional to the number of samples at each poinin the curves even if the likelihood distribution is Gaussian.
in the projected space, gives the probability density in the
reduced dimensions, ignoring the values of the parameters in
the marginalized dimensions, and is therefore usually the
quantity of interest. However, this loses all the information In our analysis we chose a particular set of base param-
about the shape of the distribution in the marginalized direceters which were assigned flat priors. This choice was fairly
tions, in particular about the goodness of fit and skewnesarbitrary, and there are other possible choices. For example,
with respect to marginalized parameters. Useful complememsne might instead us@ , as a base parameter and derfive
tary information is given by plotting the likelihood of the from the constraint

1. Mean likelihoods

2. Effect of the prior
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FIG. 7. Parameter constrains from the CMB alone with flat priohdif) , derived, thick linesand flat prior onQ), (h derived, thin
lines). Dotted lines show the mean likelihood of the samples, solid lines the estimated marginalized distribution. In most cases both sets of
dotted lines are almost on top of one another.

QphZ+Qh? For well constrained parameters the prior effectively be-

h= 10 0. (C3)  comes flatter over the region of interest and the effect is

A K much less significant. As shown on the right of Fig. 7 the
In this case the prior oh is given by posteriors of four parameters that are well constrained by the

CMB are almost independent of the choice of prior.

As shown in Fig. 7 plotting the mean likelihood of the
samples gives a clear indication of the direction in which
results may be biased relative to a different choice of prior. It
is also clear that by choosingas a base parameter we are
getting more samples in the region of interest for comparison
with other data. In particular usin@ , as a base parameter

(C4 gives a sharp cut-off at the higher valuestpfwhich are
and so the prior o is proportional ta),./h if the prior on allowed by the .HST prior. One slight disad-vantage of uging
Q, is flat. Usingh as a derived parameter therefore tends torather thar), is that the. cor_relayon oh W'Fh some of the
give results which favor loweh values and highef) ,, val- other base paramgters IS S|gn|f|cant, which may make the
ues. Using importance sampling it is straightforward to ad_Monte Ca_rlo samplm_g less efficient. However, since we use
just results from one set of base parameters to another ?e covariance matrix to rotate to a set of orthogonalized

Q)
P(h,Qeh? Qch? Qi) = P(Qy Q2 Q2,040 —

Q
- sz P(Q,,Qph% 002 0,),

weighting the samples by the corresponding ratio of th earlrr]ameters after one short initial run this is not a major prob-

; 13
priors: - . . .

For the results of the parameter estimation to be meaning- The efﬁmency of the MCMC |mplement§1t|0n can be m-
ful it is essential that the priors on the base set are We?proved by using a set O.f parameters for which the posterior is
justified, or that the results are independent of the choice. I§S Symmetric as possib&3]. It may therefore be a good
Fig. 7 we show the effect on the posterior constraints frorﬂdea to transform (o a better set of base parameters, for ex-
the CMB data from the 6 parameter analysis using different"1mp|e one could transform to a set of orthogonahzeq param-
base sets. The distributions shift by a fraction of their Width,eterS derived from a principle component analysis using
though this can have quite a large effect on the high-som_e less constraining data. However_, yvhen performing a
significance limits of weakly constrained parametées ex- nonlinear transformation of parameters it is also necessary to
ample the 95% confidence limit i5<0.89 with h a base transform the flat priors on the parameters to obtain equiva-
parameterh<0.59 with ), a base paraimei)er lent results. If one assumes flat priors in the transformed

' A parameters it is wise to check that this does not induce a
strong prior bias on the cosmological parameters of interest.

BHowever, the tails of the distributions can change significantly,
so it may be necessary to generate the original chain at a higher APPENDIX D: GOODNESS OF EIT
temperature to importance sample accurately. In this example we
generated the chain at a temperature of 1.3, so the samples were TO consider whether an enlarged parameter space is justi-
drawn fromP%*¥ and then importance sampled. fied, one ideally wants to compare the evidene¢p) with
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the different parameter sets. In some cases, for exampleherek labels the datasets, each containmgpoints. Given
when using hyperparameter weights on experiments, it mag set of independent samples fréty it is straightforward to
be possible to define a prior on the extra parameters in whichompute an estimate of the evidence ratio using(B§). If
case one can compute the evidence ratio directly. The ratithe datasets are inconsistent the importance sampling esti-
does, however, depend quite strongly on the prior put on thenate would be very inaccurate as the probability distribu-
parameters, which in general it is not straightforward totions would be significantly different. However, this should
quantify. If one puts a broad prior on a parameter, but thée clear when one computes the estimate since the probabil-
likelihood is much narrower, the probability of the data isity ratios will vary wildly. If one suspects that one of the
down-weighted because the likelihood takes up a muchlatasets is inconsistent it would be better to start with sam-
smaller region of parameter space. One simple, but nompling from H;, and confirm that the evidence ratio supports
Bayesian, way to get round this is to set the prior equal to theising the hyperparameters.
normalized posterior for computing the evidence, in which An even simpler way of assessing consistency of the
case one compares the values of datasets might be to compare the mean likelihood of the
samples in the region of overlap of the posterior distributions
to the overall mean likelihood under the original posterior. If
f doP(D|O)P(GD) ;| N the mean likelihood of the samples in the region of overlap is
“P(D)" = N 2 P(D|6,). much less than the original mean, it is an indication than the
f doP(6|D) - regions of high likelihood under each dataset do not overlap
well in N dimensions, and hence there may be an inconsis-
(D1) tency. In practice the samples in the region of overlap can be
found by importance sampling additional datasets. The mean
This is just the expected probability of the data in the postetikelihoods should always be computed with respect to the
rior distribution, which can be estimated trivially from a set same, original, dataséor group of datasetsHowever, im-
of Monte Carlo samples as the mean likelihood of theportance sampling may fail to identify inconsistencies in par-

samples. For Gaussian distributions this is the exponentialcular cases when the distributions have multiple maxima.
mean of they?’s under the posterior distribution, and is thus

a smeared-out version of the common practice of quoting the
x? of the best fit. The smearing out helps to down-weight
extra parameters which have to be fine tuned to obtain better Frequently one has data in which there is an unknown
fits. If the mean likelihood is bigger with the extra param- calibration uncertainty, or an unknown normalization. These
eters it suggests they are improving the fit to the data omparameters can be marginalized over analytically following
average. Although we know no way to use the value rigor{26] as long as the likelihoods are Gaussian, and the prior on
ously for hypothesis testing, it seems nonetheless to be usthe amplitude parameter is Gaussian or flat. Typically one
ful as a rule of thumb measure of goodness of fit. has a marginalization of the form

APPENDIX F: ANALYTIC MARGINALIZATION

APPENDIX E: CONSISTENCY OF DATA SETS Locf daP(a)exd — (av—d)'N Y av—d)/2] (F1)

It is important to assess whether the datasets being used
are consistent, or whether one or more is likely to be erronewherev andd are vectorsN is the noise covariance matrix,
ous. This can be done by introducing hyperparameteandP(«) is the prior. For example for the supernovae data
weights on the different datasei§7,58 when performing is assumed to be a vector of equal constants giving the in-
the analysis. If a dataset is inconsistent, its posterior hypetrinsic magnitudes of the supernovae, ahid a vector of the
parameter will have a low value, and the dataset then onlyheoretical minus the observed effective magnitudes. If the
contributes weakly to the posterior probability of the param-prior P(«)=const it clearly cannot be normalized; however,
eters. In the case that the likelihoods are of Gaussian form the marginalization is trivial giving
is a simple matter to marginalize over the hyperparameters
analytically given a simple prior. To assess whether the in-
troduction of hyperparameters is justifiéde. whether the —2InL=d"| N
data are inconsistent with respect to the mpdehe can
compare the probability of obtaining the data in the two hy-
pothesesHo, no hyperparameters are needeld; hyperpa- |, e case that is a constantindependent of the data and
rameters are needed because one or more datasets are incon 212
sistent. Using a maximum entropy prior assuming that Orparametens one had «ce *ef where
average the hyperparameter weights are unity, R&S]
gives

N—l TN—l
d+In(vIN~1v)+const.

(F2)

vIN~ 1y

N N-lw'N~?t
vIN~1v

ngr: d’ :Xt2>est fit (F3)

P(D|O,Hy) 1 2" (n/2+1)
P(DIOHo) & (y2+2)e X2

, (ED))  This is exactly the same as the best fit one obtains by mini-
mizing the likelihood with respect te, and so in this case
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the maximization technique of Re#] is exactly equivalent with the 2dF datav would be the predicted matter power
to full marginalization. For example, in the case of the su-spectrum values, and would be the unknown amplitude
pernovae data, marginalization with a flat prior over the magrelative to the galaxy power spectrumzt0.17. The mar-
nitudes is equivalent to using the best fit magnitude. In genginalized result is only “correct” if the assumed flat prior is
eral this is not true as the logarithmic dependencecorrect;itis an advantage of the maximization technique that
In(vTN~v) can depend on the parameters. For examplethe result does not depend on the prior.
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