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Cosmological parameters from CMB and other data: A Monte Carlo approach
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We present a fast Markov chain Monte Carlo exploration of cosmological parameter space. We perform a
joint analysis of results from recent cosmic microwave background~CMB! experiments and provide parameter
constraints, includings8, from the CMB independent of other data. We next combine data from the CMB,
HST Key Project, 2dF galaxy redshift survey, supernovae type Ia and big-bang nucleosynthesis. The Monte
Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and
9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include
constraints on the neutrino mass (mn&0.3 eV), equation of state of the dark energy, and the tensor amplitude,
as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of
appendixes we describe the many uses of importance sampling, including computing results from new data and
accuracy correction of results generated from an approximate method. We also discuss the different ways of
converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and
consistency, and describe the use of analytic marginalization over normalization parameters.
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I. INTRODUCTION

There is now a wealth of data from cosmic microwa
background~CMB! observations and a growing amount
information on large scale structure from a wide range
sources. We would like to extract the maximum amount
information from this data, usually conveniently summariz
by estimates of a set of cosmological parameter values. W
high quality data one can constrain a large number of par
eters, which in principle allows us not only to put estima
and error bars on various quantitative parameters, but als
address more fundamental qualitative questions: Do we
serve primordial gravitational waves? Do the neutrinos h
a cosmologically significant mass? Is the universe flat?
the standard model parameters those that best account fo
data? In addition we can also assess the consistency o
different data sets with respect to a cosmological model.

Recent work involving parameter estimation from t
CMB includes Refs.@1–10#. In this paper we employ Mar
kov chain Monte Carlo~MCMC! techniques@11–13#, as ad-
vocated for Bayesian CMB analysis in Ref.@14# and demon-
strated by Refs.@3,15#. By generating a set of MCMC chain
we can obtain a set of independent samples from the po
rior distribution of the parameters given the data. From
relatively small number of these samples one can estim
the marginalized posterior distributions of the parameters
well as various other statistical quantities. The great adv
tage of the MCMC method is that it scales, at its best,
proximately linearly with the number of parameters, allo
ing us to include many parameters for only small additio
computational cost. The samples also probe the shape o
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full posterior, giving far more information than just the ma
ginalized distributions.

Throughout we assume models with purely adiaba
Gaussian primordial perturbations in the growing mode~our
approach could easily be generalized to include isocurva
modes!, three neutrino species, non-interacting cold da
matter, and standard general relativity. We compute all th
retical ~CMB and matter power spectrum! predictions nu-
merically using using the fast Boltzmann codeCAMB @16# ~a
parallelized version ofCMBFAST @17#!. Our results are there
fore limited by the accuracy of the data and could be gen
alized very easily to include any additional parameters t
can be accounted for by modification of a Boltzmann cod

In Sec. II we present constraints from the latest CM
data, illustrating the MCMC method. We defer a brief intr
duction to the MCMC method and a description of o
implementation and terminology to Appendix A. The meth
of importance sampling is also illustrated in Sec. II, and
described in detail in Appendix B, where we explain how
can be used to take into account different priors on the
rameters, new data, and for accurate but fast estimation g
a good approximation to the theoretical model predictio
We add large scale structure, supernova and nucleosynth
constraints in Sec. III so that more parameters can be c
strained. We compare flat models with ‘‘inflationary’’ prior
~9 cosmological parameters! and then more general mode
~11 cosmological parameters!. This includes constraints on
the neutrino mass, equation of state of the dark energy,
the tensor amplitude. In addition our results show the se
tivity of constraints on the standard parameters to variati
in the underlying model.

II. CMB CONSTRAINTS

We use the results of the Cosmic Background Explo
~COBE! @18#, BOOMERANG @5#, MAXIMA @19#, DASI
©2002 The American Physical Society11-1
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A. LEWIS AND S. BRIDLE PHYSICAL REVIEW D66, 103511 ~2002!
@20#, VSA @21# and CBI@22,23# observations in the form o
band power estimates for the temperature CMB power sp
trum. These data are plotted in Fig. 1. The very small ang
scale results from CBI have been discussed extensivel
@22,24# and do not fit the linear predictions of standa
acoustic oscillation models. Therefore for the purposes
this paper we assume that the small scale power observe
CBI has its origin in non-linear or non-standard small sc
effects that we do not attempt to model, and so use only
mosaic~rather than deep pointing! data points throughout. In
addition we use only the first 8 points (,&2000) from the
odd binning of the mosaic fields since above that the nois
the band powers becomes much larger than the prediction
the class of models we consider.

For COBE we use the offset-lognormal band powers a
covariance matrix fromRADPACK @25#. For DASI, VSA and
CBI we also use the offset-lognormal band powers and in
grate numerically over an assumed Gaussian calibration
certainty. For BOOMERANG and MAXIMA we assume to
hat window functions and uncorrelated Gaussian band-po
likelihood distributions, and marginalize analytically ov
the calibration and beam uncertainties assuming they are
Gaussian@26#. We assume a correlated calibration unc
tainty of 10% on the CBI and VSA data~neglecting the
;3% uncorrelated difference in calibration!, but otherwise
assume all the observations are independent. Using the
of samples obtained it is a simple matter to account for sm
corrections when the required information is publicly ava
able ~see Appendix B!.

The base set of cosmological parameters we sample
arevb5Vbh

2 andvc[Vch
2, the physical baryon and col

dark matter~CDM! densities relative to the critical densit
h5H0 /(100 km s21Mpc21), the Hubble parameter,VK[1
2V tot measuring the spatial curvature,zre, the redshift at
which the reionization fraction is a half,1 As , measuring the
initial power spectrum amplitude andns , the spectral index
of the initial power spectrum. We deriveVL , the ratio of the
critical density in the form of dark energy, from the co
straint VK1VL1Vm51 ~where Vm[Vc1Vb is the total
matter density in units of the critical density!. Throughout we
use at least the priors that 4,zre,20, 0.4,h,1.0, 20.3
,VK,0.3, VL.0, and that the age of the universe,t0, is
10 Gyr,t0,20 Gyr. The significance of this base set is th
this defines the Bayesian priors: there is a flat prior on e
parameter of the base set. We discuss later how we asse
significance of these priors, and highlight our main resu
which are largely independent of the priors.@We chooseh as
a base parameter since the Hubble Space Telescope~HST!
Key Project provides a direct constraint on this quant
whereas there are no direct constraints on, e.g.VL ; see Ap-
pendix C for discussion.# The above additional constraints o
h, VL , VK and the age have little effect on the joint resu
since the cutoff values are well into the tails of the distrib
tion. However, for the purpose of the Monte Carlo sampl

1The CMB temperature anisotropy is very insensitive to the du
tion of reionization epoch, and we also neglect the small effec
helium reionization and inhomogeneities.
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it is very convenient to be able to quickly reject models
the extreme tails without having to compute the theoreti
predictions.

A. MCMC illustration

A MCMC sampler provides an efficient way to generate
list of samples from a probability distribution~see Appendix
A for an explanation!. All that is required is a function for
calculating the probability given a set of parameter values
single sample is a coordinate in then-dimensional paramete
space, and the sampling method ensures that the num
density of samples is asymptotically proportional to t
probability density. As an illustration, in the left-hand pan
of Fig. 2 we show the values ofVm5Vb1Vc , andVL , for
samples collected from a MCMC run using the CMB da
and base parameters discussed in the previous paragrap

Note that althoughVm is not one of our base set of pa
rameters, it is simple to find probabilities as a function ofVm
by taking the parameter values of each sample and deri
the corresponding values ofVm. Since the MCMC method
produces samples from the full posterior, it follows that t
number density of samples in this two-dimensional plane
proportional to the probability density of the two paramete
~marginalized over all the other parameters; note that
refers to the fully marginalized probability density rath
than any conditional or projected probability density!. The
familiar direction of CMB degeneracy along the flat univer
line is apparent. The darkness of the dots indicate the Hub
constant value for each sample, as given in the gradient
This shows that the highVm tail of samples are due entirel
to low h regions of parameter space, illustrating the po
made in e.g.@15# that a Hubble constant prior alone com
bined with the CMB can put useful limits onVm and VL

without the need for supernova constraints.
The likelihood as a function of position in theVm-VL

plane from CMB data alone is shown by the broad conto

-
f

FIG. 1. The CMB temperature anisotropy band-power data u
in this paper. The line shows the model with the parameters at t
mean values, given all data after marginalizing in 6 dimensio
~i.e., the first column of Table II!.
1-2
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FIG. 2. Left: 2000 samples from the posterior distribution of the parameters plotted by theirVm and VL values. Points are shade
according to the value ofh of each sample, and the solid line shows the flat universe parameters. We assume the base paramete
broad top-hat priors. Right: bottom layer, supernova constraints; next layer up, CMB data alone; next, CMB data plus HST Key Proj
top layer, all data combined~see text!. 68% and 95% confidence limits are shown.
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in the right-hand panel of Fig. 2. Note that compared to so
other CMB only plots the contours close slightly at highVm,
which is due to our lower limit on the Hubble constant
h.0.4. The 2D likelihoods shown are calculated from t
samples by estimating the probability density at a grid
points using a Gaussian weighting kernel and then using
terpolation to draw the contour lines. This produces a p
very similar to that obtained using a grid integration calc
lation of the marginalized posterior~assuming there are n
small scale features in the posterior!.

Extra data can be taken into account quickly by
weighting the samples, a technique known asimportance
sampling~described in detail in Appendix B!. The posterior
is simply re-calculated at each sample position, and a we
assigned to the sample according to the ratio of the n
posterior to the old posterior. For example, using a Gaus
HST Key Project @27# prior on the Hubble constanth
50.7260.08 we obtain the second set of contours plotted
the right hand panel of Fig. 2. By using the weighted num
of points as a function ofVK we find the marginalized resu
VK50.0060.03, and therefore that the universe is close
flat ~given our assumptions!.
10351
e

f
n-
t
-

-

ht
w
n

n
r

o

Using importance sampling we have checked that
CMB datasets are consistent using the hyperparam
method, as described in Appendix E.

B. Quantitative constraints from CMB data alone

Above we illustrated the MCMC method in theVm-VL

plane for a 7 parameter cosmological model. Since there
good observational evidence and theoretical motivation
flat models, we now fixVK50 giving 6 base parameters.

The only parameters that can be reasonably disentan
are vb and ns , from the heights of the second and thi
acoustic peaks relative to the first. These constraints
given in the first two rows of Table I and are in accordan
with previous similar analyses and nucleosynthesis c
straints @28#. However, note that these two parameters
main significantly correlated, so that more detailed inform
tion is contained in the resultns2(vb20.022)/0.04350.98
60.04, ns1(vb20.022)/0.04350.9860.09.

Qualitatively, having ‘‘used up’’ constraints from the se
ond and third acoustic peak heights to findVbh

2 andns we
might estimate that there remain three more pieces of in
and

TABLE I. Marginalized parameter constraints~68% confidence! on four well constrained parameters~see text! from two combinations of

CMB data assuming a flat universe and varying@Vbh
2,Vch

2,h,ns ,zre ,As#. Extra digits are inserted to help the comparison between pre-
post- VSA and CBI. For comparison the last column gives the results including HST, 2dF, big-bang nucleosynthesis~BBN! and supernova
type IA ~SNIA! data.

Parameter pre VSA/CBI 1VSA1CBI All data

Vbh
2 0.021560.0022 0.021660.0022 0.021260.0014

ns 0.98560.051 0.98260.050 0.98060.037
v1[Vmh2.4(s8e2t/0.7)20.85 0.11460.0052 0.11360.0048 0.11160.0038
v2[s8e2t(h/0.7)0.5(Vm/0.3)20.08 0.7160.07 0.7060.06 0.7060.04
1-3
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A. LEWIS AND S. BRIDLE PHYSICAL REVIEW D66, 103511 ~2002!
mation in the CMB data, from the large scale~COBE! am-
plitude, the first peak height and the first peak position.
have four remaining parameters e.g. parametrized bys8 ,
Vm, h andt (t is the optical depth to reionization2, ands8

is the root mean square mass perturbation in 8h21Mpc
spheres today assuming linear evolution!. SinceVbh

2 andns

are not too correlated with these parameters, we margina
over them and explore the remaining four-dimensional
rameter space.

From the set of samples it is straightforward to perform
independent component analysis to identify the well de
mined orthogonal parameter combinations. Calculating
eigenvectors of the correlation matrix in the logarithms
s8e2t, Vm andh we find the two combinations given in th
bottom two rows of Table I. The errors are too large on a
third constraint to be worth quoting. We expects8 to be
roughly degenerate withe2t because the CMB power o
scales smaller than the horizon size at reionization (,*20)
is damped by a factore22t, ands8

2 scales with the power in
the primordial perturbation. We find that marginalized valu
of v1 and v2 are independent oft to better than 2% for
0.02,t,0.14 (4,zre,16). As demonstrated in Appendi
C these constraints are almost independent of the choic
base parameters~which define the prior!.

If we marginalize overs8 and zre we find the principle
componentVmh2.950.09669%, consistent with the con
straint found and discussed in Ref.@9#. However, since this
quantity is significantly correlated with the amplitude w
have quoted a tighter constraint(4%) in Table I by including
the s8e2t dependence in our results.3

While restricted to this relatively small parameter spa
we take this opportunity to investigate the impact of the n
VSA and CBI results. Using importance sampling we co
pare the results with and without the VSA/CBI data in Tab
I. For simplicity we assume the same power law approxim
tion for the combination ofs8e2t, h and Vm as derived
above. The peaks move by a fraction of the error, and
error bars are fractionally smaller.

III. ADDITIONAL COSMOLOGICAL CONSTRAINTS

The CMB data alone can only provide a limited numb
of constraints, so before extending the parameter spac
make full use of the Monte Carlo method it is useful
include as much relatively reliable data as possible. C
must be taken, since some published parameter constr
assume particular values for parameters that we wish to v
As a simple example, the Supernova Cosmology Project

2Assuming rapid reionization the optical depth can be calcula
from zre using t5sT*0

zredzne(z)/@(11z)2H(z)#, wherene is the
number density of electrons andsT is the Thompson scatterin
cross section. For flat models with cosmological constant
'0.048VbhVm

20.47zre
1.42 ~to a few percent over the region of inte

est!, though we do not use this in our analysis.
3Note that the fractional errors depend on the choice of norm

ization for the logarithmic eigenvectors; here we have chosen
normalize so the exponent ofVm is unity.
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made available constraints inVm-VL space, which could
only be used if the dark energy is a cosmological consta
Fortunately the full supernova data are available, which
use~described below!. However, it is not always practical to
use the full observed data and it may be best to simply
crease the error bars to encompass systematic effects d
other parameters. This ensures that the resulting MC
chains will cover all of the relevant parameter space, and
then be importance sampled later with a tighter constrain
the chains are generated too tightly constrained one ca
recover information about the excluded parameter space

Nucleosynthesis constraints suggestvb'0.02 @28#, and
we assume the Gaussian priorvb50.02060.002, (1s)
which is somewhat broader than the error quoted in Ref.@28#
to allow for differences with other estimations. We includ
type 1A supernovae data from@29#, using the effective mag-
nitudes and errors from the 54 supernovae that they inclu
in the primary fit~fit C!. We marginalize analytically with a
flat prior on the intrinsic magnitudes, which is equivalent
evaluating the likelihood at the best fit value~see Appendix
F!. We neglect the small correlations but multiply the log
rithm of the likelihood by 50/54 to account for the effectiv
degrees of freedom quoted in Ref.@29#. We use the galaxy
power spectrum from the first 147 000 redshifts of the 2
galaxy redshift survey, using the scales 0.02,k/(h Mpc21)
,0.15 where non-linear effects were found to be negligi
@9#. We assume that this is directly proportional to the mat
power spectrum atz50 as in other words, that the bias an
evolution are scale independent and also that the red
space distorted power spectrum is proportional to the
space power spectrum~on the large scales used!. We assume
a flat prior on the proportionality constant and marginal
analytically as described in Appendix F. We also use the H
Key Project prior on the Hubble constant as discussed
lier.

The top contours in the right-hand panel of Fig. 2 sho
the effect of the full set of constraints on the basic 7 para
eter model, with the combined constraint on the curvat
becomingVK50.0060.02. For the 6 parameter flat mode
the extra data constrains most of the parameters rather w
Table I shows that the new constraints are very consis
with those from the CMB alone. Thev2 constraint ons8 of
Table I is slightly changed and becomess8e2t(h/0.67)0.58

50.7260.05 almost independently ofVm. The marginal-
ized results on all parameters are shown in Table II. T
Hubble parameter is shifted to slightly lower values relat
to the HST Key Project constraint we used. The matter a
dark energy densities are spot on the popular 0.3,0.7 mo
although with error bars of 0.05 at 68% confidence. T
combinationVmh is slightly tighter but has the same centr
value as quoted in Ref.@30# using 2dF data alone and assum
ing ns51.

Thes8 result depends on the range used for the reion
tion redshift zre since the data used mostly constrains t
combinations8e2t rather thans8 on its own. Our prior of
4,zre,20 should be reasonably conservative; however,
also quote the result fors8e2t. Looking at the maximum
and minimum values contained in the 95% confidence reg

d

l-
to
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COSMOLOGICAL PARAMETERS FROM CMB AND OTHER . . . PHYSICAL REVIEW D 66, 103511 ~2002!
of the full n-dimensional space~see Appendix C! we find
0.62,s8exp(0.042t),0.92. This may be compared to va
ues ofs8 found by other independent methods and could
principle be combined with these methods to estimate
optical depth~e.g. see Refs.@31,9#!. If t50.04 andVm

50.3 then our result is very consistent with the new low
cluster normalization found by Refs.@32–35# and just con-
sistent with the cosmic shear measurements of Refs.@36–
38,31#. The high clustering amplitude required to fit th
small scale clustering observed by CBI ofs8;1 ~Ref. @24#!
is in the tail of the distribution and may require an optic
depth rather larger than expected in simple models.

By using subsets of the chains we have checked that
Monte Carlo sampling noise is negligible at the accura
quoted. The results are Monte Carlo marginalized over al
the other parameters and also analytically or numeric
marginalized over the calibration type uncertainties d
cussed in Sec. II.

We now demonstrate the power of the Monte Ca
method by using the above data to constrain a larger num
of parameters, using the proposal density described in
pendix A to exploit the differing computational costs
changing the various parameters. We consider separatel
case of inflationary models, which are flat, and more gen
models less constrained by theoretical prejudice. In b
cases we includef n , the fraction of the dark matter that is i
the form of massive neutrinos,4 and allow for an effective
constant equation of state parameter5 w[p/r for the dark
energy, and assume that21<w,0.

A. Inflationary models

The simplest single-field inflationary models predict a fl
universe and can be described quite accurately by the s
roll approximation. The shape and amplitude of the init
curvature perturbation depends on the shape of the inflat
ary potential, often encoded in ‘‘slow-roll parameters’’ whic
are assumed to be small, plus an overall normalization wh
depends on the Hubble rate when the modes left the hor
during inflation. The initial scalar and tensor power spec
are parametrized as usual by6

4We assume three neutrinos of degenerate mass, as indicat
the atmospheric and solar neutrino oscillation observations@39,40#,
and compute the evolution using the fast but accurate method
scribed in Ref.@41#.

5Many quintessence models can be described accurately by a
stant effective equation of state parameter@42#. We compute the
perturbations by using a quintessence potentialV(f) with V,f5

2
3
2 (12w)Hḟ andV,ff52

3
2 (12w)@Ḣ2

3
2 (11w)H2# that gives

a constant equation of state.
6Here defined so ^uxu2&5*d ln kPx(k) and ^hi j h

i j &
5*d ln k Ph(k), wherex is the initial curvature perturbation andhi j

is the transverse traceless part of the metric tensor. These defin
ensureP5const corresponds to scale invariant.
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Px~k!5AsS k

ks0
D ns21

, Ph~k!5AtS k

kt0
D nt

~1!

wherens andnt are the conventional definitions of the spe
tral indices. At the lowest order approximation the slow-r
initial power spectra are determined from the inflationa
potentialV by the slow-roll parameter parameterse1 , e2 by
@43#

e15
At

16As
5

mPl
2

16p S V8

V D 2

~2!

ns5122e12e2[12
mPl

2

8p F3S V8

V D 2

2
V9

V G ~3!

As5
H2

pe1mPl
2

, nt522e152
At

8As
~4!

where quantities are evaluated whenHa5k! ~we usek!

5ks05kt050.01 Mpc21). For our analysis we use the pa
rametrization of Eqs.~1! and definee1[At/16As . We also
impose the slow-roll constraint that the spectral index of
tensor modes is given bynt522e1. Our results will be con-
sistent with inflationary models in the region of parame
space in whiche1!1, ns'1, but elsewhere can be inte
preted more generally~the results are not very sensitive
the tensor spectral index!. From the definition it is clear tha
e1>0, and except in contrived models one also expectsns
<1, though we do not enforce this. Simple ekpyrotic mod
are consistent with this parametrization when there are
tensor modes@44#. If there were evidence for tensor mode
(e1.0) then this would be direct evidence against sim
ekpyrotic models.

Figure 3 shows the fully marginalized posterior co
straints on the various parameters using the CMB, supe
vae, HST, and nucleosynthesis constraints, with and with
the 2dF data, generated from 7700 weakly correla
samples. We generate samples without the 2dF or CBI d
and then importance sample including CBI to compute
sults with and without the 2dF data. The constraints onVmh
and f n are sharpened significantly on adding in 2dF. T
large shift in thes8 distribution comes from the exclusion o
the highf n parameter space due to the new constraint on
shape of the matter power spectrum~see discussion of de
generacy below!.

It is important to check that the parameters are really
ing constrained, in the sense that the results are relati
insensitive to the priors, so in addition to the marginaliz
posterior we also plot the mean likelihood of the sampl
These will differ in general, particularly when the result
sensitive to the parameter space volume available, which
change as the result of choosing different priors~see Appen-
dix C!. In most of the 1D plots the two methods are in go
agreement indicating that the likelihood is well constrain
in n-dimensional space and the priors are not biasing
results. However, the marginalized value ofs8 is brought

by
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A. LEWIS AND S. BRIDLE PHYSICAL REVIEW D66, 103511 ~2002!
down by the f n.0 phase space~since massive neutrino
damp the small scale power!, even though the best fits to th
data occur where the neutrinos are very light~the correlation
is shown in the bottom right-hand panel of Fig. 4.! Similarly
the marginalized value ofns is slightly increased by the
phase space withe1.0; this increases the CMB power o
large scales, and hence requires a higher spectral inde
the scalar modes~bottom left panel of Fig. 4!.

We also show in Fig. 4 that a small degeneracy betw
the Hubble constant and the matter density remains~top left!
after the;Vmh constraint from the galaxy power spectru
shape is combined with the;Vmh3 CMB constraint~Table
I!. Geometrical information from the CMB peak position a
the supernova type IA~SNIA! work together to constrainw,
but this remains slightly correlated withVm ~top right!.

The results from the 6 and 9 parameter analyses ca
compared using the 68% limits given in Table II and t
plots in Fig. 5. Many of the results are quite robust to t
addition of the extra three degrees of freedom. The bigg
change is ins8e2t which is brought down by contribution
from non-zerof n .

As discussed in Appendix C, parameter confidence lim
from the full n-dimensional distribution can also easily b
calculated from a list of samples. We show the marginaliz
and n-dimensional parameter constraints with the inflatio

FIG. 3. Posterior constraints for 9-parameter flat models us
all data. The top nine plots show the constraints on the base MC
parameters; the remaining plots show various derived param
constraints. Thin lines include CMB, HST, SNIA and BBN co
straints, thick lines also include the 2dF data. The solid lines sh
the fully marginalized posterior; the dotted lines show the relat
mean likelihood of the samples. The curves are generated from
MCMC samples using a Gaussian smoothing kernel 1/20th
width of each plot.
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ary assumptions in Table II.7 As expected, then-dimensional
limits are much wider than those from the marginalized d
tributions, most being more than twice as wide.

The combined datasets provide good constraints on
neutrino mass, despite the large parameter space. The
sive neutrino fractionf n translates into the neutrino mass v

Vnh25 f nVDMh25
( mn

93.8 eV
⇒ mn'31Vnh2 eV, ~5!

where the last equality follows from our assumption th
there are three neutrinos of approximately degenerate m
as indicated by the small mass-squared differences dete
by the neutrino oscillation experiments@39,40#. At 95% con-
fidence we find the marginalized resultmn&0.27 eV and the
more conservativen-dimensional resultmn&0.5 eV. The
tightness of the constraint is predominantly due to the 2

7Monte Carlo samples from the posterior do not provide accu
estimates of the parameter best-fit values~in high dimensions the
best-fit region typically has a much higher likelihood than the me
but it occupies a minuscule fraction of parameter space! therefore
we do not quote best fit points. The high-significance limits are a
hard to calculate due to the scarcity of samples in these regions
compute accurate estimates in the tails of the distribution and
ensure the tails are well explored, we sample from a broader di
bution and then importance sample to the correct distribution,
originally sampling fromP1/T whereT.1 ~we useT51.3).

g
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ter

w
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e

FIG. 4. All-data posterior constraints for flat inflationary mode
using. The contours show the 68% and 95% confidence limits fr
the marginalized distribution. The shading shows the mean lik
hood of the samples, and helps to demonstrate where the marg
ized probability is enhanced by a larger parameter space rather
by a better fit to the data~e.g. lowns values fit the data better!.
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COSMOLOGICAL PARAMETERS FROM CMB AND OTHER . . . PHYSICAL REVIEW D 66, 103511 ~2002!
data, as shown in Fig. 3, via the damping effect of mass
neutrinos on the shape of the small scale matter po
spectrum.8 The result is consistent with the weaker limi
found in Refs.@45,46# under more restricted assumption
The marginalized result is only slightly affected by the lar
parameter space: computing chains withw521 andAt50
we obtain the marginalized 95% confidence resultmn
&0.30 eV~the n-dimensional limit is much less sensitive
the parameter space, and the result does not change si
cantly!. Thus the simplest model where all the neutri
masses are very small is still a good bet.

The result for the quintessence parameterw is consistent
with w521, corresponding to a cosmological constant. T
marginalized limit isw,20.75 at 95% confidence, consi
tent with Ref.@47#. If we neglect the quintessence perturb
tions it is a simple matter to relax the assumption thatw>
21; for flat models with no tensors or massive neutrinos
find the marginalized result21.6,w,20.73 at 95% con-
fidence, and then-dimensional result22.6,w,20.6 with
the best fit close tow521, broadly consistent with Ref
@48#. Note that including quintessence perturbations lead
a tighter constraint onw due to the increased large sca
power. Although perturbations are required for consiste
with general relativity, it is possible that a quintessen
model may be approximated better by a constantw model
neglecting perturbations than one including the pertur
tions.

The constraint on the tensor mode amplitude~encoded by
e1) is weak, as expected due to the large cosmic varianc
large scales. In Table II we also show the result forr 10
[C10

T /C10
S , the ratio of the large scale CMB power in tens

and scalar modes. For comparison, with perfect knowle
of all the other parameters and a noise-free sky map,
CMB temperature power spectrum cosmic variance detec
limit is r 10*0.1.

The method we have used could be generalized for a m
accurate parametrization of the initial power spectrum,
example going to second order in the slow-roll parame
@43#, which in general introduces a running in the spect
index. The current data is, however, clearly consistent w
the simplest scale invariant power spectrum with no ten
modes. As a check we have generated chains for flat mo
with a cosmological constant, no massive neutrinos or t
sors, but allowing for a running spectral index, and found
68%-confidence marginalized result20.06,nrun,0.02 at
k5k050.05 Mpc21 where nrun[d2(ln Px)/d(ln k)2. This
corresponds to the running spectral indexns,eff(k)
[d ln Px /d ln k5ns(k0)1nrunln(k/k0).

B. Non-flat 11-parameter models

We now relax the constraint on the curvature, and all
the tensor spectral index to be a free parameter~we assume

8Our strategy of generating chains without the 2dF data and
importance sampling ensures that we have many samples in th
of the distribution, and hence that our upper limit is robust~since
we have have much lower Monte Carlo noise in the tails than if
had generated chains including the 2dF data!, and also makes the
effect of the 2dF data easy to assess.
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nt<0.1). We parametrize the power spectra of the init
curvature and tensor metric perturbations as in the inflati
ary case,9 except that we now report results forAt /As rather
than a slow-roll parameter, and choose the scalar and te
pivot scalesks050.05 Mpc21, kt050.002 Mpc21 ~the stan-
dardCMBFAST parametrization!.

In Figs. 5 and 6 we show the parameter constraints
we get using about 10000 weakly correlated samples imp
tance sampled to include the 2dF data and CBI. For comp
son we plot the equivalent constraints with the 9 and
parameter models. The additional freedom in the curvat
broadens some of the constraints significantly, though
Vm andVbh

2 constraints are quite robust.
The tensor spectral index is essentially unconstrained,

difference between the mean likelihood and marginalized
plots being due to the assumed flat prior on the ten
amplitude—at very small amplitudesnt could be anything
and still be undetectable. The 95% marginalized limit on
curvature is20.02,VK,0.07. Slightly open models fit the
data marginally better on average, though a flat univers
well within the 68% confidence contour. The limit on th
equation of state parameter is slightly weakened tow,
20.69, and neutrino mass is nowmn,0.4 eV at 95% con-
fidence.n

tail

e 9For non-flat models our definitions follow@49#. In open models
we assume the tensor power spectrum has an additional fact
tanh(pA2k2/K23/2) on the right-hand side.

FIG. 5. Posterior constraints for 11-parameter non-flat mod
~thick lines! using all data, compared with 6~thin, solid lines! and
9 ~thin, dashed lines! parameter models. Dotted lines show th
mean likelihood of the samples for the 11-parameter model. So
sampling noise is apparent due to the relatively small numbe
samples used.
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TABLE II. Parameter constraints for 6 and 9 parameter flat models with all data with or without 2dF. The top section sho
constraints on the additional parameters that were fixed in the basic 6 parameter model, the bottom half shows the effect these
parameters have on the results for the basic parameters. 1D limits are from the confidence interval of the fully marginalized 1D dis
the full limits give the extremal values of the parameters in the fulln-dimensional confidence region~see Appendix C for discussion!. Bold
parameters are base Monte Carlo parameters, non-bold parameters are derived from the base parameters.

6 parameters 9 parameters
12dF no 2dF 12dF 12dF 12dF

68% 1D 68% 1D 68% 1D 68% full 95% full

fv – ,0.10 ,0.04 ,0.10 ,0.13
w – ,20.87 ,20.88 ,20.68 ,20.58
e1 – ,0.032 ,0.032 ,0.069 ,0.085
mn /eV – ,0.29 ,0.14 ,0.36 ,0.54
r 10 – ,0.30 ,0.31 ,0.92 ,1.4

Vbh
2 0.02160.001 0.02260.001 0.02260.001 0.01820.025 0.01720.026

VDMh2 0.11360.008 0.09960.014 0.10660.010 0.08220.130 0.07220.142
h 0.6760.03 0.6760.05 0.6660.03 0.5920.75 0.5520.78
ns 0.9860.04 1.0260.05 1.0360.05 0.9121.13 0.8721.19
VL 0.7060.04 0.7260.06 0.7160.04 0.5820.80 0.5420.82
Vm 0.3060.04 0.2860.05 0.2960.04 0.2020.42 0.1820.46
t0 /Gyr 14.160.4 14.360.4 14.160.4 13.3215.0 13.0215.2
Vmh 0.2060.02 0.1860.03 0.1960.02 0.1520.25 0.1320.26
s8 0.7960.06 0.5460.13 0.6760.08 0.4920.93 0.4520.95
s8e2t 0.7260.04 0.5060.12 0.6160.07 0.4720.81 0.4120.84
s8Vm

0.55 0.4060.05 0.2760.08 0.3460.05 0.2220.51 0.1920.53
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C. Which model fits best?

We have explored the posterior distribution in various p
rameter spaces, deriving parameter constraints in the di
ent models. Since we obtain only upper limits onf n , w and
At /As there is no evidence for massive neutrinos,wÞ21 or
tensor modes using current data.

One can make a more quantitative comparison of the
ferent models by comparing how well each fits the data.
discussed in Appendix C a natural measure is the mean lik
lihood of the data obtained for the different models. Equiv
lently, if one chose a random sample from the possible
rameter values, on average how well would it fit the da
We find that the six, nine and eleven parameter models h
mean likelihood ratios 1:0.4:0.3 using all the data. So
moving away from the basic model we have not increa
the goodness of fit on average~rather the reverse!, which is
not surprising given how well the basic model fits the da
Most of the distributions of the additional parameters pea
their fixed values.

We also considered the probability of each model, fou
from marginalizing outall parameters~the ‘‘Evidence’’ as
e.g. explained in Ref.@50#!. Since the 9 and 11 paramet
models are totally consistent with the 6 parameter mo
then it is already clear that using this method will favor the
parameter model for any choice of prior. The numerical e
dence ratio depends very strongly on the prior, and witho
well motivated alternative to the null hypothesis~that there
are only 6 varying parameters!, its value is not useful. The
mean likelihood of the samples~above! uses the posterior a
the prior, which is at least not subjective, and has a con
10351
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nient interpretation in terms of goodness of fit.
Whilst certainly not ruled out, at the moment there is

evidence for observable effects from the more complica
models we have considered. Nonetheless, when conside
parameter values, it is important to assess how depen

FIG. 6. Posterior constraints for 11-parameter non-flat mod
using all data.
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COSMOLOGICAL PARAMETERS FROM CMB AND OTHER . . . PHYSICAL REVIEW D 66, 103511 ~2002!
these are on the assumptions, and this can be seen by
paring the results we have presented. We conclude that a
moment simple inflationary models with small tilt and tens
amplitude~e.g. small field models with a nearly flat pote
tial; or observationally equivalently, ekpyrotic models! ac-
count for the data well. On average the fit to the data is
improved by adding a cosmologically interesting neutri
mass or by allowing the dark energy to be something ot
than a cosmological constant.

IV. CONCLUSIONS

In this paper we have demonstrated the following bene
of sampling methods for cosmological parameter estimat

The practicality of exploring the full shape of high
dimensional posterior parameter distributions us
MCMC.10

The use of principle component analysis to identify w
constrained non-linear combinations of parameters and id
tify degeneracies.

Simple calculation of constraints on any parameters
can be derived from the base set~e.g. age of the universe
s8 , r 10, etc.!.

Use of the mean likelihood of the samples as an alter
tive to marginalization to check robustness of results a
relative goodness of fit.

The calculation of extremal values within th
n-dimensional hyper-surface to better represent the rang
the full probability distribution.

The use of importance sampling to quickly compare
sults with different subsets of the data, inclusion of new da
and correction for small theoretical effects.

With the current cosmological data we found that t
Monte Carlo approach works well, though simply pickin
the best fit sample does not identify the best-fit model to h
accuracy~and therefore we do not quote these numbers!, and
there are potential difficulties investigating posterior dis
butions with multiple local minima~although this is not a
problem given the parameters and data used here!.

We investigated a 6D cosmological parameter space
found, for the first time, a concise description of the CM
constraints on the matter power spectrum normalization
addition to tight constraints onVb andns in agreement with
previous analyses. The new information from the CBI a
VSA interferometers is in good agreement with the old
data points and we find that our results are negligi
changed on removing this information.

On adding in constraints from a wide range of cosmolo
cal data we evaluated constraints on the above 6 param
model as well as extending to more complicated 9 and
parameter models. Many of the constraints on the base s
parameters were fairly robust to the addition of this ex
freedom, for example the matter density changed fromVm
50.3060.04 for the basic 6 parameter model toVm50.28
60.07 for the 11 parameter model~68% confidence!. On the

10Our Monte Carlo code and chains are publicly available at
http://cosmologist.info/cosmomc
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other hand, the value for the matter power spectrum norm
ization on 8h21 Mpc scales is quite dependent on the ne
trino mass, and allowing for a significant neutrino mass
creases the mean value ofs8 ~the constraint on the amplitud
could be improved by better constraints on the small sc
CMB amplitude and the reionization redshift!. Parameters
affecting or that are sensitive to the late time evolution te
to be rather degenerate, and constraints on these are co
erably weakened on adding additional freedom in the mo

We find that the 9 parameter model is quite well co
strained by the amount of data used and obtain upper lim
on a number of interesting cosmological parameters, gi
our assumptions of a flat universe with slow-roll inflatio
constraints. In particular we find the marginalized constra
mn&0.3 eV on the neutrino mass andw&20.75 for the
equation of state parameter~95% confidence!. There is no
evidence for tensor modes, though the constraint is curre
quite weak, with the constraint on the ratio of the large sc
CMB power beingr 10&0.7. This constraint could be sharp
ened considerably by restricting the allowed range of sc
spectral indices and neutrino masses.

In the 11 parameter space the limits are weakened slig
and the standard cosmology ofw521 andVK50 is near
the peak of the posterior probability. The tensor spectral
dex is essentially unconstrained as expected given that
only information comes from the large scale~COBE! CMB
data.

While a detailed investigation of the effect of using all th
different combinations of cosmological constraints is beyo
the scope of this paper we do show the effect of remov
the second most powerful constraint~the galaxy power spec
trum! on the 9 parameter model in Fig. 3. The limits on mo
of the parameters are affected remarkably little. The neutr
mass is the most affected, with the upper limit doubling
removing 2dF. The neutrino mass is correlated with the m
ter power spectrum shape parameter~roughlyVmh) and am-
plitude, and these constraints are correspondingly weake
on removing 2dF.

As new better data become available our general met
should also be applicable into the future. Due to the en
mously decreased number of likelihood evaluations in
MCMC method compared to other approaches, theoret
predictions can be computed essentially exactly, and one
account for the available data in detail.
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A. LEWIS AND S. BRIDLE PHYSICAL REVIEW D66, 103511 ~2002!
APPENDIX A: THE METROPOLIS-HASTINGS
ALGORITHM

The algorithm that we use for generating samples fr
the posterior distribution using a Markov chain is t
Metropolis-Hastings algorithm. For an introduction a
overview of MCMC methods see Refs.@11–13#. A Markov
chain moves from a position in parameter spaceu1 to the
next positionu2 with transition probabilityT(u1 ,u2), where
u labels a vector of parameter values. The Metropo
Hastings transition kernelT(u1 ,u2) is chosen so that the
Markov chain has a stationary asymptotic distribution eq
to P(u), whereP(u) is the distribution we wish to sampl
from. This is done by using an arbitraryproposal density
distributionq(un ,un11) to propose a new pointun11 given
the chain is currently atun . The proposed new point is the
accepted with probability

a~un ,un11!5minH 1,
P~un11!q~un11 ,un!

P~un!q~un ,un11! J ~A1!

so that T(un ,un11)5a(un ,un11)q(un ,un11). This con-
struction ensures that detailed balance holds,

P~un11!T~un11 ,un!5P~un!T~un ,un11!, ~A2!

and hence thatP(u) is the equilibrium distribution of the
chain.

If the chain is started in a random position in parame
space it will take a little time,burn in, to equilibrate before it
starts sampling from the posterior distribution. After th
time each chain position is acorrelated sample from the
posterior. The correlation is particularly obvious if the pr
posal is not accepted as then there are two or more sam
at exactly the same point. However, by using only occasio
chain positions~thinning the chain! one can give the chain
time to move to an uncorrelated position in parameter sp
and independent samples are then obtained. Small res
correlations between samples are unimportant for almos
calculations, though they do make the Monte Carlo error
the results harder to assess.

For the cases we consider the chains equilibrate rapidl
worst after a thousand or so points. The results can
checked easily by using a longer burn in and compar
results. We thin the chain positions by a factor of 25–
depending on the number of parameters, leaving weakly
related samples that we use for importance sampling~see
Appendix B!.

If the proposal density is symmetrical it cancels out wh
working out the acceptance probability, which then becom
just the ratio of the posteriors. This is the case when
proposal density is independent of the current position of
chain, which is the case we consider.

1. The proposal density

The choice of proposal density can have a large effec
how the algorithm performs in practice. In general it is b
to have a proposal density that is of similar shape to
posterior, since this ensures that large changes are prop
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to parameters along the degeneracy directions. Fortuna
with cosmological data we have a reasonable idea of w
the posterior might look like, and so choosing a sensi
proposal density is not difficult.

If posteriors from models with common parameters a
much easier to compute it can be beneficial to use a prop
density that changes only a subset of the parameters on
iteration, ensuring that consecutive posterior evaluati
only differ in a subset of the parameters. Proposing a cha
to a random subset of the parameters also increases th
ceptance rate, especially in high dimensions, giving fas
piecewise movement around parameter space. In the ca
CMB parameter estimation, models that differ only by a d
ferent normalization of the theoretical CMB power spectru
are very quick to compute once theCl values for a single
model have been calculated. Similarly changing parame
that govern calibration uncertainties in the data can also
very quick. However, changing parameters that govern
perturbation evolution, for exampleVb , Vc , etc., will be
much slower as in general it requires a detailed recalcula
of the linear physics.

If we are comparing CMB data with theoretical mode
the most general way to compute the theoreticalCl power
spectrum is using a fast Boltzmann code such asCAMB @16#
~a parallelized version ofCMBFAST @17#; we discuss less ac
curate and general schemes below!. Since the perturbation
evolution is assumed to be linear, any parameters gover
the initial power spectra of the scalar and tensor pertur
tions will be fast to compute once the transfer function
each wave number has been computed. Parameters go
ing the initial power spectrum are therefore ‘‘fast’’ param
eters.

We therefore use a proposal density that makes chan
only within the subsets of the fast and slow parameters
least when we do not have an approximate covariance ma
available for the posterior.11 We made the fairly arbitrary
choice to change a subset of one to three parameters
time, cycling through the parameters to be changed in r
dom order, which gives a high acceptance rate (;50%) for
the cases we considered. After one initial run one can tra
form to a set of parameters which diagonalize the covaria
matrix before doing subsequent runs, allowing efficient e
ploitation of degeneracy information as long as the poste
is reasonably Gaussian.

The above scheme is sufficient for parameter estima
from current data; however, as more data become avail
the posterior may become highly non-Gaussian or disjoint
which case it may become necessary to use more soph
cated schemes using simulated annealing, hybrid Mo
Carlo algorithm, or schemes using cross-chain informat
@11–13#. However, when the posterior is not disjoint one c
often transform to a set of base parameters which are r
tively independent, in which case a simple Monte Ca

11When changing the slow parameters it is possible to also cha
the fast parameters at the same time. This can be a good idea
there are highly correlated slow and fast parameters, for exam
the reionization redshift and the tensor amplitude.
1-10
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COSMOLOGICAL PARAMETERS FROM CMB AND OTHER . . . PHYSICAL REVIEW D 66, 103511 ~2002!
scheme should continue to work well~see Appendix C for
further discussion!.

APPENDIX B: IMPORTANCE SAMPLING

Given a set of samples from a distributionP, one can
estimate quantities with respect to a different similar dis
bution P8, by weighting the samples in proportion to th
probability ratios. This effectively gives a collection of no
integer weighted samples for computing Monte Carlo e
mates. For example, the expected value of a functionf (u)
underP8 is given by

^ f ~u!&P85E duP8~u! f ~u!5E du
P8~u!

P~u!
P~u! f ~u!

5 K P8~u!

P~u!
f ~u!L

P

. ~B1!

Given a set$un% of N samples fromP a Monte Carlo esti-
mate is therefore

^ f ~u!&P8'
1

N (
n51

N
P8~un!

P~un!
f ~un!. ~B2!

For this to work it is essential thatP/P8 is never very small,
and for a good estimate without massively oversampl
from P one needsP8/P;const everywhere whereP8 is sig-
nificantly non-zero. IfP8 is non-zero over only a very sma
region compared toP it will be necessary to proportionatel
oversample fromP.

If the distributions are not normalized, so that*duP(u)
5Z, the ratio of the normalizing constants can be estima
using

Z8

Z
5 K P~u!8

P~u! L
P

'
1

N (
n51

N
P8~un!

P~un!
, ~B3!

and hence

^ f ~u!&P8'

(
n51

N

P8~un!/P~un! f ~un!

(
n51

N

P8~un!/P~un!

. ~B4!

In Bayesian analysis it can be useful to compute the r
of the evidencesP(D)5*duP(D,u), given as above by

P8~D !

P~D !
5 K P8~u,D !

P~u,D ! L
P(uuD)

'
1

N (
n51

N
P8~Duun!P8~un!

P~Duun!P~un!
,

~B5!

where the samples$un% are drawn fromP(uuD). Assuming
the distributions are sufficiently similar, the evidence und
P8 can therefore easily be computed from the probabi
ratios at a sample of points underP, and a known evidence
underP. In many cases only the ratio is of interest—the ra
is larger than one if on average the probability of the samp
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underP8 is higher than underP. In the case where the dis
tributions are very different one may need to introduce
series of intermediate distributions that are all not too d
similar to each other, and perform Monte Carlo sampli
from each. The evidence ratio one requires is then just
product of that for all the intermediate distributions. Man
more general schemes are described in@13,51#, though in
this paper we only consider importance sampling to sim
or subset distributions.

The simplest application of importance sampling is to a
just results for different priors. For example if one compu
a chain with flat priors on the parameters, one may wish
importance sample to several different distributions with d
ferent priors on various parameters. This will work well
long as the prior does not skew the distribution too much
give non-zero weight to only a very small fraction of th
models.

1. Faster Monte Carlo Sampling

MCMC runs produce correlated samples from the pro
ability distribution. To obtain independent samples one th
out the chain by a sufficiently large factor that the chain h
had time to move to a randomly different point between
thinned samples. Depending on how one implements
MCMC, the shape of the posterior and the number of dim
sions the thinning factor can be quite large, typically of t
order ten to a thousand.

By performing Monte Carlo sampling with a good a
proximation to the true probability distribution one can u
importance sampling to correct the results with an accu
calculation of the probabilities. This can be useful if comp
ing the probabilities accurately is much slower than comp
ing an approximation, since one only ever importan
samplesindependentsamples. The burn-in and random wal
ing stages of the Monte Carlo sampling involve a mu
larger number of probability evaluations, so using a fast
proximation when generating the chain saves a lot of tim

Calculating the posterior from CMB data requires a c
culation of the theoretical CMB power spectra,Cl . Using
accurate codes likeCAMB and CMBFAST is typically much
slower than computing the likelihoods from the data once
Cl are known~assuming one uses a radical data-compress
scheme, e.g. see Ref.@25#!. In the not so distant future we
will require to high accuracyCl up to l;2500, including
second order effects such as lensing, and also the m
power spectrum at various redshifts. Without access to a
supercomputer this may be prohibitive.

With a small number of parameters it is possible to us
grid of models and interpolate to generate accurateCl
quickly; however, as the number of parameters grows
computational cost of computing the grid grows expone
tially. Also, as second order effects such as gravitatio
lensing become important, fast grid generation schemes s
as thek-splitting scheme of Ref.@52# become much more
difficult to implement accurately. However, these may s
be useful as a fast approximation, as long as the indepen
samples are corrected with a more accurate calculation.
erence @53# describes a scheme for generatingCls very
1-11
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A. LEWIS AND S. BRIDLE PHYSICAL REVIEW D66, 103511 ~2002!
quickly from a small number of base models, a set of op
mized parameters, and an accurate calculation of how thCl

vary with these parameters. This gives a very fast appr
mator over a restricted range of parameters that may p
useful combined with the importance sampling correction

It is also possible to use fast semi-analytic schemes. T
cally these are based on a smallish grid of base models, f
which theCls in general models are computed quickly on t
fly by accounting for changes in the angular diameter d
tance to last scattering, differing perturbation growth rat
etc. These approximate schemes can be made quite acc
at small scales, with significant errors mainly at lowl, pre-
cisely where the cosmic variance is large. So whilst an
proximate scheme may produce small systematic error
the likelihood, if the error is of the same order as the cosm
variance or less, the probabilities given the data are boun
be sufficiently similar for importance sampling to be valid

A particular approximateCl generator we have tried i
CMBFIT @2#, which uses a combination of baseCl grids and
analytic fits. This achieves a quite good few percent le
accuracy at highl, though larger systematic errors at lowl.
However, the code is fast, and we found that importa
sampling the results with an exact calculation of theCl gives
good results, and removes systematic biases introduce
the low l approximations. Such an approach can be gene
ized for more general late time evolution, for example mo
els with quintessence where the effect on small scales is
almost entirely to changes in the background equation
state.

An alternative scheme based on grids of the transfer fu
tions for each wave number can produce more accurate
sults, such as the recently releasedDASH @54#. However, this
is not much faster than generating theCls exactly using
CAMB on a fast multi-processor machine, and relies on
large pre-computed grid~which introduces its own limita-
tions!. The only real advantage overCMBFIT is that more
general initial power spectrum parametrization could be
counted for easily—something that is impossible w
schemes based on grids ofCls.

Even without a fast semi-analytic scheme, there are a
riety of small corrections that can be appliedpost hoc. For
example, lensing affects the CMBCl at the few percent
level, so one may wish to compute chains without includ
the lensing, then importance sample to correct the res
using an accurate calculation including the lensing.12 For
small scales at high precision one may also wish to runCAMB

at a high-accuracy setting to check that numerical error
the default output are not affecting the results. Also cha
could be generated to lowerl and the effect of the high-l
constraints accounted for by importance sampling. For
ample, we generated the chains usingl max51300, and then

12However, if one is also computing the matter power spectr
numerically the additional cost of including the lensing effect
small. We have checked that the lensing correction to the result
present is much smaller than the errors~the lensed power spectr
can be computed withCAMB using the harmonic approach of Re
@55#!.
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for the nearly independent samples re-computed the po
spectra up tol max52000 for importance sampling with th
CBI data.

Similar methods could be applied for the matter pow
spectrum using approximate fittings, see e.g. Refs.@56,52#.
However, when a fast multi-processor machine is availa
and one is interested in a very large number of parameter
is much simpler to Monte Carlo simulation usingCAMB to
generate the CMB power spectra and matter power spect
which is what we did for the results we present. The gr
advantage of this approach is that it generalizes trivially
one wishes to include changes in the physics, for exam
different quintessence models, or changes in the initial po
spectrum.

2. Constraints with new data

Assuming that one has some new data which is broa
consistent with the current data, in the sense that the po
rior only shrinks, one can use importance sampling
quickly compute a new posterior, including the new data.
have made our MCMC chains publicly available, so the
can be used to rapidly compute new posteriors from n
data without incurring any of the considerable computatio
cost of generating the original chain. For example, if y
have a new constraint ons8, you just need to loop over the
samples adjusting the weights of the samples proportiona
the likelihood under the new constraint. Using importan
sampling has the added benefit of making it very easy
assess how the new data is changing the posterior.

APPENDIX C: PARAMETER CONSTRAINTS

The great advantage of the Monte Carlo approach is
you have a set of samples from the full parameter space
answer any particular question one can examine the po
and compute results reliably, taking full account of the sha
of the posterior inN dimensions. However, for human con
sumption it is usual to summarize the results as a se
parameter values and error bars.

One way to do this is to use the samples for a princi
component analysis to identify the degeneracy directions
we demonstrated in Sec. II. By quoting constraints on a
of orthogonalized parameters one retains most of the in
mation in the original distribution, as long as it is sufficient
Gaussian~or Gaussian in the logarithm or some other fun
tion!. However, ultimately one is usually interested in t
values of some fundamental parameters, and it is also us
to find constraints on these alone.

The simplest approach is to compute the marginaliz
one-dimensional distributions for each parameter, essent
counting the number of samples within binned ranges of
rameter values. Note that this is extremely hard to do usin
brute-force numerical grid integration calculation as it sca
exponentially with the number of dimensions, but is qu
trivial from a set of Monte Carlo samples. One can th
quote the value at the maximum or mean of the 1D distri
tion, along with extremal values of the parameter which co
tain a fractionf of the samples, wheref defines the confi-
dence limit. The extremal values could be chosen so

e

1-12
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COSMOLOGICAL PARAMETERS FROM CMB AND OTHER . . . PHYSICAL REVIEW D 66, 103511 ~2002!
there were the same number of outliers at both ends of
distribution, or such that the value of themarginalizedprob-
ability is the same at each limit. This is a good way of su
marizing the current state of knowledge as long as you h
included everything you know, including using a believab
prior over parameter space.

However, frequently one wants to use the parameter e
mates to assess consistency with new data or theories,
the prior can be very hard to define. For example, on put
in a top hat prior on the age andh, the marginalizedprior
probabilities arenot flat, even if all of the other priors are fla
broad top hats. This is because the marginalized distribu
includes the effect of the amount of parameter space av
able at each point, which can depend quite strongly on
value of the parameter. Likewise it is possible to have
region in parameter space which fits the data rather well,
because the region is small the marginalized probability
those parameter values can be very low.

When assessing consistency with new data~or theories!,
one really wants to know whether the posterior for the n
data intersects theN-dimensional posterior for the curren
data in a region where both are likely. For example, o
could define the region of parameter space enclosing a f
tion f of the points with the highest likelihood as th
N-dimensional confidence region, and then see whether
region intersects with the corresponding region for the n
data. It is clearly sub-optimal to try to perform this compa
son using only 1D parameter values and limits; howeve
one quotes the extremal values of each parameter conta
in the N-dimensional confidence region it is at least possi
to assess whether theN-dimensional regionsmight overlap.
At least if the new data is outside these limits it is a cle
indication that there is an inconsistency, whereas using
marginalized limits it shows no such thing~just that if there
is a consistent region it makes up a small fraction of
original parameter space—something one would hope fo
the new data is informative!. However, it is of course easily
possible for the 1D likelihood limits to be consistent but t
full N-dimensional regions to be highly inconsistent.

In order to be as informative as possible it can be usefu
quote both the marginalized and likelihood limits, though
course one should study the full set of samples to make
of as much information as possible. When there are str
degeneracies one can quote the constraints on the w
determined orthogonalized parameters.

1. Mean likelihoods

Often it is useful to show the projected shape of the d
tribution in one or two dimensions. The marginalized dist
bution, proportional to the number of samples at each p
in the projected space, gives the probability density in
reduced dimensions, ignoring the values of the paramete
the marginalized dimensions, and is therefore usually
quantity of interest. However, this loses all the informati
about the shape of the distribution in the marginalized dir
tions, in particular about the goodness of fit and skewn
with respect to marginalized parameters. Useful complem
tary information is given by plotting the likelihood of th
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best fit model at each point, for example see Ref.@4#. How-
ever, it is not so easy to compute this using a small se
Monte Carlo samples—mean values within each bin can
obtained quite accurately from a small number of samp
but getting a good value for the maximum in each bin
quires a much larger number. Instead we plot the mean l
lihood of the samples at each value of the parameter, wh
is easy to compute from the samples. It shows how good
you could expect if you drew a random sample from t
marginalized distribution at each point in the subspace.

From a distributionP(u) one can derive the~marginal-
ized! distribution of a derived parameter vector of intere
v5h(u) by

P~v!5M ~P,v![E duP~u!d„h~u!2v…. ~C1!

Assuming flat priors onu the expected mean likelihood o
samples withh(u)5v is

^P„u:h~u!5v…&[
E duP~u!2d„h~u!2v…

E duP~u!d„h~u!2v…
5

M ~P2,v!

M ~P,v!
.

~C2!

Frequentlyh(u) is a projection operator into a subspace ou
@for example,h(u)5u1 for marginalization down to the firs
parameter#. If this is the case andP(u) is a multivariate
Gaussian distribution, the marginalized distributionM (P,v)
is also a Gaussian~readily proved using Fourier transform
the covariance is given by the projected covariance matr!.
Since the square of a Gaussian is a Gaussian it follows
M (P2,v)}M (P,v)2, and hence the mean likelihood is pro
portional to the marginalized distributionM (P,v). This also
follows trivially if P is separable with respect to the su
space. In the case of Gaussian or separable distributions
mean likelihood curve is therefore proportional to the m
ginalized distribution and the two curves look the same. D
ferences in the curves therefore indicate non-Gaussianity
example, when one of the marginalized parameters is sk
ing the distribution in a particular direction~for example the
effect of massive neutrinosf n.0 on thes8 curve in Fig. 3;
if f n was fixed at it’s maximum likelihood value the margin
alized result fors8 would change significantly in the direc
tion of the mean likelihood curve!. The converse does no
hold of course; it is possible to have a non-Gaussian dis
bution where both curves are the same. If the priors on
parameters are not flat this will also show up as differen
in the curves even if the likelihood distribution is Gaussia

2. Effect of the prior

In our analysis we chose a particular set of base par
eters which were assigned flat priors. This choice was fa
arbitrary, and there are other possible choices. For exam
one might instead useVL as a base parameter and deriveh
from the constraint
1-13
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FIG. 7. Parameter constrains from the CMB alone with flat prior onh (VL derived, thick lines! and flat prior onVL (h derived, thin
lines!. Dotted lines show the mean likelihood of the samples, solid lines the estimated marginalized distribution. In most cases bo
dotted lines are almost on top of one another.
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In this case the prior onh is given by

P~h,Vbh
2,Vch

2,VK!5P~VL ,Vbh
2,Vch

2,VK!
]VL

]h

52
Vm

h
P~VL ,Vbh

2,Vch
2,VK!,

~C4!

and so the prior onh is proportional toVm/h if the prior on
VL is flat. Usingh as a derived parameter therefore tends
give results which favor lowerh values and higherVm val-
ues. Using importance sampling it is straightforward to a
just results from one set of base parameters to anothe
weighting the samples by the corresponding ratio of
priors.13

For the results of the parameter estimation to be mean
ful it is essential that the priors on the base set are w
justified, or that the results are independent of the choice
Fig. 7 we show the effect on the posterior constraints fr
the CMB data from the 6 parameter analysis using differ
base sets. The distributions shift by a fraction of their wid
though this can have quite a large effect on the hi
significance limits of weakly constrained parameters~for ex-
ample the 95% confidence limit ish,0.89 with h a base
parameter,h,0.59 withVL a base parameter!.

13However, the tails of the distributions can change significan
so it may be necessary to generate the original chain at a hi
temperature to importance sample accurately. In this example
generated the chain at a temperature of 1.3, so the samples
drawn fromP10/13 and then importance sampled.
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For well constrained parameters the prior effectively b
comes flatter over the region of interest and the effec
much less significant. As shown on the right of Fig. 7 t
posteriors of four parameters that are well constrained by
CMB are almost independent of the choice of prior.

As shown in Fig. 7 plotting the mean likelihood of th
samples gives a clear indication of the direction in whi
results may be biased relative to a different choice of prio
is also clear that by choosingh as a base parameter we a
getting more samples in the region of interest for compari
with other data. In particular usingVL as a base paramete
gives a sharp cut-off at the higher values ofh, which are
allowed by the HST prior. One slight disadvantage of usinh
rather thanVL is that the correlation ofh with some of the
other base parameters is significant, which may make
Monte Carlo sampling less efficient. However, since we u
the covariance matrix to rotate to a set of orthogonaliz
parameters after one short initial run this is not a major pr
lem.

The efficiency of the MCMC implementation can be im
proved by using a set of parameters for which the posterio
as symmetric as possible@53#. It may therefore be a good
idea to transform to a better set of base parameters, for
ample one could transform to a set of orthogonalized par
eters derived from a principle component analysis us
some less constraining data. However, when performin
nonlinear transformation of parameters it is also necessar
transform the flat priors on the parameters to obtain equ
lent results. If one assumes flat priors in the transform
parameters it is wise to check that this does not induc
strong prior bias on the cosmological parameters of inter

APPENDIX D: GOODNESS OF FIT

To consider whether an enlarged parameter space is j
fied, one ideally wants to compare the evidencesP(D) with
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COSMOLOGICAL PARAMETERS FROM CMB AND OTHER . . . PHYSICAL REVIEW D 66, 103511 ~2002!
the different parameter sets. In some cases, for exam
when using hyperparameter weights on experiments, it m
be possible to define a prior on the extra parameters in w
case one can compute the evidence ratio directly. The r
does, however, depend quite strongly on the prior put on
parameters, which in general it is not straightforward
quantify. If one puts a broad prior on a parameter, but
likelihood is much narrower, the probability of the data
down-weighted because the likelihood takes up a m
smaller region of parameter space. One simple, but n
Bayesian, way to get round this is to set the prior equal to
normalized posterior for computing the evidence, in wh
case one compares the values of

‘‘P ~D !’ ’ 5

E duP~Duu!P~uuD !

E duP~uuD !

'
1

N (
n51

N

P~Duun!.

~D1!

This is just the expected probability of the data in the pos
rior distribution, which can be estimated trivially from a s
of Monte Carlo samples as the mean likelihood of t
samples. For Gaussian distributions this is the exponen
mean of thex2’s under the posterior distribution, and is thu
a smeared-out version of the common practice of quoting
x2 of the best fit. The smearing out helps to down-weig
extra parameters which have to be fine tuned to obtain be
fits. If the mean likelihood is bigger with the extra param
eters it suggests they are improving the fit to the data
average. Although we know no way to use the value rig
ously for hypothesis testing, it seems nonetheless to be
ful as a rule of thumb measure of goodness of fit.

APPENDIX E: CONSISTENCY OF DATA SETS

It is important to assess whether the datasets being
are consistent, or whether one or more is likely to be erro
ous. This can be done by introducing hyperparame
weights on the different datasets@57,58# when performing
the analysis. If a dataset is inconsistent, its posterior hy
parameter will have a low value, and the dataset then o
contributes weakly to the posterior probability of the para
eters. In the case that the likelihoods are of Gaussian for
is a simple matter to marginalize over the hyperparame
analytically given a simple prior. To assess whether the
troduction of hyperparameters is justified~i.e. whether the
data are inconsistent with respect to the model!, one can
compare the probability of obtaining the data in the two h
potheses:H0, no hyperparameters are needed;H1, hyperpa-
rameters are needed because one or more datasets are
sistent. Using a maximum entropy prior assuming that
average the hyperparameter weights are unity, Ref.@58#
gives

P~Duu,H1!

P~Duu,H0!
5)

k

2nk/211G~nk/211!

~xk
212!e2xk

2/2
, ~E1!
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wherek labels the datasets, each containingnk points. Given
a set of independent samples fromH0 it is straightforward to
compute an estimate of the evidence ratio using Eq.~B5!. If
the datasets are inconsistent the importance sampling
mate would be very inaccurate as the probability distrib
tions would be significantly different. However, this shou
be clear when one computes the estimate since the prob
ity ratios will vary wildly. If one suspects that one of th
datasets is inconsistent it would be better to start with sa
pling from H1, and confirm that the evidence ratio suppo
using the hyperparameters.

An even simpler way of assessing consistency of
datasets might be to compare the mean likelihood of
samples in the region of overlap of the posterior distributio
to the overall mean likelihood under the original posterior.
the mean likelihood of the samples in the region of overlap
much less than the original mean, it is an indication than
regions of high likelihood under each dataset do not over
well in N dimensions, and hence there may be an incon
tency. In practice the samples in the region of overlap can
found by importance sampling additional datasets. The m
likelihoods should always be computed with respect to
same, original, dataset~or group of datasets!. However, im-
portance sampling may fail to identify inconsistencies in p
ticular cases when the distributions have multiple maxim

APPENDIX F: ANALYTIC MARGINALIZATION

Frequently one has data in which there is an unkno
calibration uncertainty, or an unknown normalization. The
parameters can be marginalized over analytically follow
@26# as long as the likelihoods are Gaussian, and the prio
the amplitude parameter is Gaussian or flat. Typically o
has a marginalization of the form

L}E daP~a!exp@2~av2d!TN21~av2d!/2# ~F1!

wherev andd are vectors,N is the noise covariance matrix
andP(a) is the prior. For example for the supernovae datv
is assumed to be a vector of equal constants giving the
trinsic magnitudes of the supernovae, andd is a vector of the
theoretical minus the observed effective magnitudes. If
prior P(a)5const it clearly cannot be normalized; howeve
the marginalization is trivial giving

22 lnL5dTS N212
N21vvTN21

vTN21v
D d1 ln~vTN21v!1const.

~F2!

In the case thatv is a constant~independent of the data an

parameters!, one hasL}e2xeff
2 /2 where

xeff
2 5dTS N212

N21vvTN21

vTN21v
D d5xbest fit

2 . ~F3!

This is exactly the same as the best fit one obtains by m
mizing the likelihood with respect toa, and so in this case
1-15
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the maximization technique of Ref.@4# is exactly equivalent
to full marginalization. For example, in the case of the s
pernovae data, marginalization with a flat prior over the m
nitudes is equivalent to using the best fit magnitude. In g
eral this is not true as the logarithmic dependen
ln(vTN21v) can depend on the parameters. For exam
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with the 2dF datav would be the predicted matter powe
spectrum values, anda would be the unknown amplitude
relative to the galaxy power spectrum atz50.17. The mar-
ginalized result is only ‘‘correct’’ if the assumed flat prior
correct; it is an advantage of the maximization technique t
the result does not depend on the prior.
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