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Gravitational lensing in the strong field limit
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We provide an analytic method to discriminate among different types of black holes on the grounds of their
strong field gravitational lensing properties. We expand the deflection angle of the photon in the neighborhood
of complete capture, defining a strong field limit, in opposition to the standard weak field limit. This expansion
is worked out for a completely generic spherically symmetric spacetime, without any reference to the field
equations and just assuming that the light ray follows the geodesics equation. We prove that the deflection
angle always diverges logarithmically when the minimum impact parameter is reached. We apply this general
formalism to Schwarzschild, Reissner-Nordstrand Janis-Newman-Winicour black holes. We then compare
the coefficients characterizing these metrics and find that different collapsed objects are characterized by
different strong field limits. The strong field limit coefficients are directly connected to the observables, such as
the position and the magpnification of the relativistic images. As a concrete example, we consider the black hole
at the center of our galaxy and estimate the optical resolution needed to investigate its strong field behavior
through its relativistic images.
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[. INTRODUCTION analytically. Eiroa, Romero, and TorrEs] applied the same

technique to a Reissner-Nordstrdblack hole. Recently, in

Gravitational lensing is one of the first applications of another work[10], Virbhadra and Ellis distinguished the
general relativity(GR) ever studied1]. It was recognized ™Main features of gravitational lensing by normal black holes

first in light deflection by the Sun, secondly in lensing of @nd Dby naked sinr?ularities,kagalyzi?]g the Janis-NefwrrPan-
quasars by foreground galaxies, then in the formation of giy\tllrgpour metnc_:d.T eytrertn?r teh on the |mportancr:]§ Oht efhe
ant arcs in galaxy clusters, and finally in galactic microlens-> ul I€S In providing a test for the cosmic censorship hypoth-

ing. Now it is an ordinary phenomenon in the panorama o
astronomical observatior{see[2] for a complete treatment,

The reason for such an interest in gravitational lensing in
. strong fields is that using the properties of the relativistic
and references thergin o . images it may be possible to investigate the regions imme-

The full theory of gravitational lensing has been devel-giate|y outside of the event horizon. High resolution imaging
oped_follqwmg the §che_me of the weak field approximationy piack holes by very long baseline interferometwLBI)
and, in this formulation, it has been successfully employed t911] might be able to detect relativistic images and retrieve
explain all the physical observations. information about strong fields stored within these new ob-

In recent years, however, the scientific community hasservables. Moreover, since alternative theories of gravitation
started to look at this phenomenon from the opposite point ofnust agree with GR in the weak field limit, in order to show
view, opening a strong field perspective. Viergi8kmade a  deviations from GR it is necessary to probe strong fields in
semianalytical investigation of the geodesics in Kerr geomsome way. Indeed, deviation of light rays in strong fields is
etry; in Ref.[4] the appearance of a black hole in front of aone of the most promising grounds where the theory of
uniform background was studied; Falcke, Melia, and Agolgravitation can be tested in its full form.
[5] considered the emission of the accretion flow as a source. Of course, the study of null geodesics in strong fields is
Virbhadra and Ellis[6] showed that a source behind a not easy and up to now it has always been carried out using
Schwarzschild black hole would produce one set of infinitenumerical techniques. An analytical treatment would cast
relativistic images on each side of the black hole. These imlight on the dependence of the observables on the parameters
ages are produced when a light ray with a small impact paef the system, allow easy checks on the detectability of the
rameter winds one or several times around the black holemages, and open the way to comparisons between the re-
before emerging. Later on, by an alternative formulation ofsults in different metrics. In Ref8], a new way to expand
the problem, Frittelli, Kling, and Newmafi7] attained an the deflection angle in the Schwarzschild metric was sug-
exact lens equation, giving integral expressions for its solugested. The deflection angle near its divergence was approxi-
tions, and compared their results with those by Virbhadra ane¢hated by its leading order and its first regular term and then
Ellis. The same problem has been investigated by Bozzplugged into the lens equation. In this way, very simple and
et al.in Ref.[8], where a strong field limit was first defined reliable analytical formulas were derived for the relativistic
in Schwarzschild black hole lensing and used to find thémages and their main features.
position and the characteristics of all the relativistic images So, as the weak field limit takes the first order deviation

from Minkowski spacetime, the strong field limit starts from
complete capture of the photon and takes the leading order in
*Electronic address: valboz@sa.infn.it the divergence of the deflection angle.
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The strong field limit of Ref[8] was developed only in  will reach a minimum distance, and then emerge in an-
Schwarzschild spacetime. In this paper, we provide a generalher direction. Of course, the approach phase is identical to
method to extend the strong field limit to a generic staticthe departure phase, with the time reversed.
spherically symmetric spacetime. Our method is universal By conservation of the angular momentum, the closest
and can be applied to any spacetime in any theory of graviapproach distance is related to the impact parametsr
tation, provided that the photons satisfy the standard geode-
sics equation. The parameters of the strong field limit expan- G
sion are directly connected with the observables, providing u= A_o’
an effective tool to discriminate among different metrics. In
Sec. Il, we state the problem and carry out the strong fieldvhere the subscript O indicates that the function is evaluated
limit of the deflection angle. In Sec. lll, we apply the method at Xg.
to some simple metrics: Schwarzschild, Reissner-Norastro From the geodesics equation it is easy to extract the quan-
and Janis-Newman-Winicour black holes, discussing theitity
differences with reference to the gravitational lensing phe-

4

nomenology. In Sec. IV, we establish a connection between d_¢_ VB 5
the strong field limit coefficients and the relativistic images, dx JC /—(C/CO)AO/A—l )

analyzing the case of the black hole at the center of our
galaxy as a concrete example where our results can be testeghich gives the angular shift of the photon as a function of

Finally, Sec. V contains the summary. the distance from the centésee[13] for the complete deri-
vation).
Il. STRONG FIELD EXPANSION OF THE DEFLECTION The deflection angle can then be calculated as a function
ANGLE of the closest approach:
A generic spherically symmetric spacetime has the line a(Xg)=1(xo) — 7, (6)
element 13]
d?=A(x)d2— B(x)dx2— C(x)(d6%+sirt64?), (1) l(xo)= | 2\/Bdx _
xo JCV(CICo)AgIA—1
where (7)
x—=% M It is easy to check that for a vanishing gravitational field
A(X) — 1—7, (A=B=1, C=x%) a(x,) identically vanishes. In the weak

field limit, the integrand is expanded to the first order in the
gravitational potential. This limit is no longer valid when the

== 2M closest approach distance significantly differs from the im-
B(x) — 1+T’ 2) pact parametewhich, by Eq.(4), means thaf\(xg) signifi-
cantly differs from 1 and/oC(xg) from XS, i.e., the photon
X0 passes in a strong gravitational figld
C(x) — X2, When we decrease the impact paramei@nd conse-

quently xo), the deflection angle increases. At some point,
in order to correctly match the weak gravitational field farthe deflection angle will exceed, resulting in a complete
from the lensing object. loop around the black hole. Decreasimdurther, the photon
We require that the equation will wind several times before emerging. Finally, fog,
, , =X, (see Sec. Il A corresponding to an impact parameter
C'(x) _ A'(X) 3 u=up, the deflection angle diverges and the photon is cap
C(x) A((x) tured(see Fig. L
In this section, we will show that this divergence is loga-
admits at least one positive solution. We shall call the largesfithmic for all spherically symmetric metrics. Our purpose is

root of Eq. (3) the radius of the photon sphexg, (for an  to get an analytical expansion of the deflection angle close to
alternative definition of the photon sphere, §&2]). A, B, C, the divergence in the form

A’, andC’ must be positive fox>x,

For metrics expressed in standard coordindt€gx)
=x?] a sufficient condition for the existence &f, is the
presence of a static lim[ta radiusxg such thatA(xg)=0].
Our strong field expansion takes the photon sphere as thehere all the coefficients depend on the metric functions
starting point. In our study, therefore, we shall not consideevaluated ak,.
naked singularities without a photon sphere. For a numerical As the angular separation of the image from the lens is
study of this situation, see R4fL0]. 6=u/Dg_, whereDg, is the distance between the lens and

A photon incoming from infinity with some impact pa- the observer, we need to express the deflection angle in terms
rameteru will deviate while approaching the black hole. It of this variable. So we shall finally transform E®) to

a(Xg)=—alog +b+O(Xg—Xm), (8)

Xo
=-1
Xm
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azl_y%cw-—CAw (16)
COA(,) 0Y0 00/
(1-yp)?
= ————[2C,CHAL%+ (CoCh—2C{2)YoA}
B ZCSA(’J?’[ 0CoAo"+(CoCo 0°)YoAo
—CoCoYoAol. (17

Whena is nonzero, the leading order of the divergence in
fo is z~ 2, which can be integrated to give a finite result.
When « vanishes, the divergence s, which makes the
integral diverge. Examining the form af, we see that it
vanishes ak,= x,,, with x,, defined by Eq(3). Each photon
having xo<X, is captured by the central object and cannot

FIG. 1. General behavior of the deflection angle as a function Ofemerge again

the closest approack,. The deflection angle increases »xsde-
creases and divergesxt=X,, . Each timea(X,) reaches a multiple

of 24, the photon completes a loop before emerging.

0DoL

a(6)=—alog -1

m

which we define as thstrong field limitof the deflection

+b+0O(u—uy) 9

To solve the integra{12), we split it into two pieces
1(X0) = I p(Xo) + r(X0), (18

where

1
Ip(Xo) = fo R(0xm) fo(2X0)d2 (19

angle. The rest of this section is devoted to the calculation of

the two coefficients andb in the first step and then @fand

b.

A. Divergent term of the deflection angle

We define two new variables

y=A(x), (10)
Y~ Yo
z= 11
1=y, (11)
whereyy,=Ay. The integral(7) in the deflection angle be-
comes
1
I(x0)=J R(z,x0)f(z,%p)dz, (12
0
2\By
R(z,X0)= ——(1-Y0)\/Co, (13)
CA
1
f(z,%9) = (14

Wo—[(1=y0)z+Y,]Co/C’

contains the divergence and
1
IR(Xo)=fog(z,xo)dz, (20)

9(z,X0) =R(z,X0) f(Z,X0) = R(0X1) fo(Z,X0) (21)

is the original integral with the divergence subtracted. We
shall solve both integrals separately and then sum up their
results to rebuild the deflection angle. Here we deal With
and its divergence, while in the next subsection we shall
verify thatl is indeed regular.

The integrall 5(Xp) can be solved exactly, giving

I5(Xg)=R(0x )—Iog—a
D{A0 \m .
B \a

Since we are interested in the terms ugt<,— X,,,), we
expanda as

2BmAn
a=
1- Ym

(22

(XO_Xm)+O(XO_Xm)2: (23)

where

where all functions without the subscript O are evaluated at ﬁm:ﬁ|xo=xm

x=A"(1-yp)z+Yol.

The functionR(z,x,) is regular for all values of andxg,
while f(z,xo) diverges forz—0. To find the order of diver-

_ Con(1=Ym)?[Crym— CrA” (X ]
2y5Cro?

(24)

gence of the integrand, we expand the argument of the

square root inf(z,Xg) to the second order im

f(21X0)~f0(21X0)=

1
Vaz+ Bz '

(19

and substitute inp(X,). Rearranging all terms, we find

Ip(Xg)=—alog +bp+O0(Xg—Xm), (25

Xo
—-1
Xm
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= , 26 Up=\/— (32
B, (26)

R(OXm)  2(1-Yyy)
= lo . 2
° VBm ? ArXm 20 U—Up=C(Xo—Xm)?,

Expanding Eq(4), we find

33
Equation(25) yields the leading order in the divergence of 33
the deflection angle, which is logarithmic, as anticipated be- C'y,—C A cr2
fore. The coefficient of Eq. (8) is then given by Eq(26). c= M T M_ 5 /y_m—m (34)
4lWiCm TV Ch2(1-yn)?
B. Regular term of the deflection angle
Using this relation, we can write the deflection angle as a

In order to find the correct coefficiettit in Eq. (8), we function of -

have to add to the terop coming from Eq.(27) an analo-
gous term coming from the regular part of the original inte-

. — 6D —
gral, defined by Eq(20). a(0)=—alogl —=—-1]+Db, (35)
We can expandg(Xg) in powers of &g—Xm): m
1 1 é”g o R
0= 3, 00k [ 22z @9 az 2o ROXw), 36
- P 2 2B
and evaluate the single coefficients. _ a Cxﬁl — 2B
If we had not subtracted the singular part from b=b+ Elogu—: -7+ bR+alogy—. (37
m m

R(z,%p)f(z,%p), we would have an infinite coefficient for
=0, while all other coefficients would be finite. However,
the functiong(z,xg) is regular inz=0Xy=X,, as can be
easily checked by a power expansion, recalling that=0.

Since we are interested to terms up(x,— X,,), we will
just retain then=0 term

This concludes our general discussion of the form of the
deflection angle in the strong field limit. Even if the proof is
somewhat tricky, the application to concrete cases is very
straightforward, as we shall see in Sec. lll. In fact, once we
write a metric, it is sufficient to solve Eq3) to find X,

1 write B,, from Eq.(24) andR(0x,,) from Eq.(13), compute
Ir(Xg)= j 9(2,Xy)dz+ O(Xg— Xm), (290  bgfrom Eg.(30) numerically or by a proper expansion in the

0 parameters of the metric, and compute the coefficiepts
a, andb from Egs.(32), (36), and(37), respectively.

and then The crucial step is the calculation bf, since it is the
br=1 r(Xm) (30)  only integral involved in the whole procedure.
is the term we need to add tm, in order to get the regular . APPLICATIONS
coefficient. Recalling also the term 7r in the deflection ] ) .
angle, we have In this section, we apply the general formulation of the
strong field limit to three simple examples. First, we shall
b=—7+bp+bg. (31) revisit Schwarzschild spacetime, whose strong field limit

gravitational lensing has already been studied in R&F.
The coefficienbg can be easily evaluated numerically for Then we will apply our method to Reissner-Nordstro

all metrics, since the integrand has no divergence. Howevespacetime, which was explored numerically in Ré&f. Fi-
in many cases it is also possible to build a completely ananally, as an example of the extended theory of gravitation,
lytical formula for bg as well. In fact, in the Schwarzschild we shall consider a Janis-Newman-Winicour black hole
metric, the integral29) is solved exactly(see Sec. lllA.  whose strong field limit expansion has not been investigated
Then, in most metrics, we can expand E2p) in powers of  so far. In all three cases, we shall derive analytical formulas
their parameters, starting from the Schwarzschild limit, andor the strong field limit coefficients, in order to analyze the
evaluate each coefficient separately. This is what we shall déunctional dependences of the deflection angle on the param-
for Reissner-Nordstrom and Janis-Newman-Winicour blacketers of the metrics.
holes(see Sec. Il

A. Schwarzschild lensing

C. From a(xo) to a(6) This is the simplest spherically symmetric metric describ-

From Eqg.(4), we see that the minimum impact parametering the outer solution for a black hole. It only depends on the
is mass of the central obje@by Birkhoff’s theoren. It is con-
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venient to define the Schwarzschild radixis=2M as the as obtained in Ref8].
measure of distances; then, in standard coordinates, the func- In this simple case, we can compare the exact deflection

tions in the metric become angle a,(#) calculated numerically and the strong field
limit a,p,(6). The most external image appears whe(®)
A(X)=1— } (39) falls below 2. This happens ai—u,,=0.003264. Here the
x’ discrepancy between, and a,, is about 0.06%, which

corresponds to an error in the position of the outer image of

1\t the order of 0.4%. With such a high accuracy, we are en-
B(x)= ( 1- ;) ' (39) couraged to take the Schwarzschild strong field limit as the
starting point for successive series expansions to evalyate
C(x)=x2, (40)  in more advanced metrics.

which obviously satisfy all hypotheses required in Sec. Il,

: S B. Reissner-Nordstran lensing
with static limit x;=1.

The two functionsR(z,x,) andf(z,x,) read The Reissner-Nordstne metric describes the gravita-
tional field of a spherically symmetric massive object en-
R(z,xq) =2, (41)  dowed with an electric chargg. The metric functions in
standard coordinates are
1
f(z,%0) = : (42) 1 g
O (2= 3Ixg)z+ (Blxo— 1) 22— Zl%g A(x)=1—;+q—2, (52)
X

From Eqs.(16),(17), or directly from the expansion of the

denominator of, we read off the coefficienta and g: 92 -1
Bx)={1--+—| , (52)
3 X
a=2——, (43
Xo 5
C(x)=x". (53
3
B=—-1. (44)  They satisfy the hypotheses required in Sec. Il, only when

Xo q=3/4\2. However, beyond the critical valug=0.5, there
The equationy=0 defines the radius of the photon sphereiS N0 event horizon and causality violations appia, 15,
We shall restrict our attention p<<0.5.

3 The coefficientse and 8 are
Xm=75 . (45
2 2 2
oo 3 2] %07 a (54)
o= - - |5,
ConsequentlyB,,=1. Xo Xc2> Xo— 202

In this simple case, it is possible to solve the integral in

Erc]]él(so) exactly and write the regular term in the deflection 5 i_ B g_qz+ 8_q4 Xo(Xo— )2
Xo X2 xS (x3-297)°"
br=2 log 6(2— y/3)]=0.9496. (46) (55)
From Eqgs.(36) and(37), we derive the coefficients, b, which reduce to the Schwarzschild coefficients whgn
andu,, of the deflection angle —0. From the equatiom=0, we derive the radius of the
. photon sphere
a=1, (47)
—3 1+14/1 —32q2) 56
b= —m+bg+log 6=—0.4002, (48) Xm=2 V 9 | (56)
33 which yields
umz%—. (49
Bm=[—9+329?— 1449*+5124°+ /9—329°- (3+ 16q?
Then the Schwarzschild deflection angle, in the strong _am? — 40312
field limit, is 809)][8(q—49”)] *. (57)
The regular ternbg cannot be calculated analytically, but
a(6)=—log 20DoL _ we can expand the integrand in E9) in powers ofq and
343 evaluate the single coefficients. We get
+log[ 21607~ 41/3)] -, (50 br=br o+ br 20’ +0(q"), (58)
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FIG. 3. Coefficients of the strong field limit in Reissner-

FIG. 2. Deflection angles in Reissner-Nordstranetric evalu- ~ NOrdstran metric as functions of.

ated atu=u,,+0.003 as functions ofl. The solid line is the exact

deflection angle; the dasht_ed line is the strong field limit vith 5 003 as a function af. The plot shows that, just by using
truncated to second order @ the first correction tdg, we get an excellent approximation
to the deflection angle. In fact, we see that ugte0.3, the
grror in the position of the outer image, calculated using the
strong field limit, stays below 49%.

Finally, in Fig. 3, we plot the coefficients of the strong

field limit as functions ofqg, calculating the fullb numeri-

cally. We see that and b deviate from the corresponding
Schwarzschild values as the charge increases. As we shall

see in Sec. |V, the strong field limit coefficients are directly
=—1.5939. (59 connected to the observables. It is then possible, in principle,
to distinguish a Reissner-Nordsino black hole from a
"Schwarzschild black hole, using strong field gravitational
lensing.

wherebg, is the value of the coefficient for an uncharged
black hole, calculated in the previous subsection and give
by Eq.(46); the correction is quadratic in the chamgef the
black hole. Its coefficient is

8
bra=g{V3—4+log6(2—3)]}

It is very easy to calculate further terms in the expansio
of bg, deriving analytical formulas which prove to be very
accurate even for large values af

Following Sec. I, we calculate the coefficients for the

formula of the deflection angle: C. Janis-Newman-Winicour lensing
_ X\ Xm— 207 The spherically symmetric solution to the Einstein mass-

(60) less scalar equations

V(3= Xm) X3 — 90X+ 80

_ _ (Ru,=® ,@ ,, o) (63)
b=—-m+bgtalog?2

2y [(B=Xm)X5— 90Xy +80"] ;) can be written in Janis-Newman-Winico@NW) coordi-

X (Xm=0)* 23 e2 5 6D hated16]
(Xm=29%) (X~ Xm+0°)
(3+9-329%)2 ©2 1\7

Un= : —[1-2
" 42\3-8¢%+ Jo— 327 AGI={ L X) ’ (69

In [9], the coefficientsa and b were calculated numeri-

cally. Here, by our general method, we have been able to 1\77
derive the coefficient for the logarithmic divergence ex- B(X):(l_ ;) ' (65
actly and find a formula fob which is valid up to second
order in g, indicating the way to extend it to an arbitrary
order. 1\177
We notice that the radius of the photon sphere de- C(X)Z(l—;) X2, (66)
creases as the charge increases, but becomes imaginary only
for q=3/4/2>1/2; i.e., even when there is no horizon, a
photon can be captured by the gravitational field of a hypo- q
thetical object with a charge greater than the critical value. U ( _ _)
In Fig. 2, we evaluate the deflection angle wtup, ®) 2\/M2+q2|og =x) (67

103001-6



GRAVITATIONAL LENSING IN THE STRONG FIELD LIMIT PHYSICAL REVIEW D 66, 103001 (2002

M a®)
VE s (68)
VM?#+g? 7.25}
where all distances are measured in terms xf 7}

=2,M?+¢? andq is the scalar charge of the central object.

This metric admits a photon sphere external to the static limit 6.73
when y>3, i.e., wheng<M. We shall thus restrict our in- ¢ st
vestigations to objects with scalar charge lower than their

mass. In Ref[10], the gravitational lensing of this object 6.25}
was investigated numerically even wher M. In this situ- =

ation, it was shown that a drastically different and interestingg ™5 R 0.8 ) Y
phenomenology shows up. -7 5 75

As in the previous cases, we compute all the coefficients, * -~
taking into account that our metric is not written in standard

coordinates. The coefficients and 8 are FIG. 4. Deflection angles in a JNW black hole evaluated at

=up,+0.003 as functions of. The solid line is the exact deflection
angle; the dashed line is the strong field limit with truncated to

2y+1 . :
a:(2_ Y _1[Xg—(X0_1)y], (69) first order invy.
oI +1/2
(2y+1)7
m= y—1/2" (76)
(2y+1)(y+1)—2xo(3y+1)+2x3 2(2y—1)
(%—1)7 Surprisingly, the leading order coefficiemis the same as

[X— (xo—1)"]2 in the Schwarzschild case, in spite of the fact that the radius
XL, (70) of the photon sphere has changed.
29°x Once we fixu—u,=0.003, we see in Fig. 4 that the
deflection angle decreases as we increase the clidege
which easily reduce to Eq$43) and(44) wheny=1. From  creasey) until v reaches the value 0.6; then the deflection
the equationv=0, we derive the radius of the photon sphereangle increases again. The strong field limit, with trun-
cated to first order iny, at y=0.7 is precise up to 4% in the
2y+1 determination of the outer image.
Xm="% (71) In Fig. 5, we plot the coefficients of the strong field limit.

a is constantp increases ay decreases, but,, decreases
and then enough to make the deflection angle decrease at constant
— U, until v reaches the value 0.6. Comparing with Fig. 3,
[(2y+1)"—(2y—1)"]? we can observe that a JNW charge has completely different
m= Ay2(4y2—1)271 : (72) effects on the strong field limit coefficients than an electric
charge and can be identified without confusion.

In the same way as in the Reissner-Nordstimetric, by
increasing the charge of the central object, the photons are |, oRERVABLES IN THE STRONG FIELD LIMIT
allowed to get closer to the center. Wher= 0.5, X,,=Xg
and we should change our coordinates frame to perform any In Sec. Il we proved that the strong field limit approxima-
significant study. tion can be used to obtain a simple and reliable formula for
Here as well we cannot solve the integf@b) exactly.
However, we can expand the integrand in powers ®f (
—1) to get

br=b%—0.1199y—1)+O(y—1)? (73
with b given by Eq.(46).

Finally, we compute the coefficients of the strong field
limit:

a=1, (74)

_ 2 —(2y—1)"%(2
b=—ﬂ-+bR+2|og[( y+1)7-(2y-1)’1"(2y+1)

2y%(2y—1)%r1 ' FIG. 5. Coefficients of the strong field limit in a JNW black hole
(75) as functions ofy.
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the deflection angle, which contains a logarithmic and a con- Another important source of information is the magnifi-

stant term. Now we plug the formul@) into the lens equa-

cation of the images which is the inverse of the Jacobian

tion and establish direct relations between the position andvaluated at the position of the image. For simplicity, we
the magnification of the relativistic images and the deflectiorapproximate the position of the images 8, recalling that

angle, calculated according to the strong field limit.

The lens equation in the strong field limit was derived in

Ref.[8]. It reads

LS
B=6~— D_osAan’ (77)

whereD | s is the distance between the lens and the source,
Dos=Dgo tD.s, B is the angular separation between the
source and the leng, is the angular separation between the

lens and the image, anla,= a(0) — 2n7 is the offset of

the correction provided by E¢82) is negligible:

1
K= (Bl0)aplag| o (83
We have
9B| _,, aDoLDis 4
00 P Ume, DOS

the deflection angle, once we subtract all the loops done bwyhere the first term is small compared to the second and can

the photon.

To pass from the deflection angi€ 6) to the offsetA «,,
we need to find the value&® such thata(6°) =2nm. Solv-
ing Eq. (35 with «(0)=2nw, we find

u
02=D—:L(l+en), (79)
e,= e(b-2nm)/a, (79

The offsetA «,, is then found by expanding(6) around
6=6°. Letting Ad,=6—6°, we find

aDo,
Aa,=— e A6,. (80
The lens equation becomes
aDg, D
0 oL YLs
=(6,+ + — )
B=(0,+A06,) U6, Dos A6, (81)

Now we derive the position of all relativistic images, their
magnification, and the critical curves of the lens.

The second term in the right-hand side of Ef1) is
negligible when compared to the last ofnceu,,<Dg,).
Immediately, we find

Umen(B— 09)Dos

O+ ——
aD sDor

n

0,= , (82

where the correction t@? is much smaller tham? .

This formula is valid for both the images on the same side
of the source and the images on the opposite side. In fact, to

find the latter, it is sufficient to take a negatigein Eq. (82).

images in terms of the coefficients b, and u,,. If we

be neglected.
Finally, the magnification is

1 6°
|detd| ol BaBII6] 40

uz(1+e,)Dos
aIBDg)LDLS

/'Ln ’ (85)

n

which decreases very quickly im

The formulas(78) and (85) relate the position and the
magnification to the strong field limit coefficients. The suc-
cessive step is to solve the inversion problem, i.e., we have
to find the most effective way to go back from measured
positions and fluxes to the strong field limit coefficients,
which carry the information about the nature of the black
hole.

The minimum impact parameter can be simply obtained
as

Un=Do_ 6. (86)
whered,, represents the asymptotic position approached by a
set of images, obtained by E8) in the limit n— o,

To obtain the coefficienta andb, we need to separate at
least the outermost image from all the others. We shall thus
consider the simplest situation where only the outermost im-
age#, is resolved as a single image, while all the remaining
ones are packed together@t.

Our observables will thus be

s=60,—6,, 87
S (89)
z Mn
n=2

Finally, we have expressed the position of the relativisticwh'Ch respectively represent the separation between the first

image and the others, and the ratio between the flux of the

first image and the flux coming from all the other images.

manage to determine these coefficients from the observation The sum of the fluxes of all the set of relativistic images
of the relativistic images, we are rewarded with informationexcept the first is

about the parameters of the black hole stored in them.

The critical curves are just Einstein rings corresponding to
a source perfectly aligned with the lens. Their radius is ob-

tained by puttings=0 in Eq. (82).

uranOSeb/a e47-r/a+e27-r/a+eb/a
T o an2
apDo Dis

Zﬂn

n=2

e47T/a_ 1 (89)
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TABLE I. Estimates for the main observables and the strong field limit coefficients for the black hole at the center of our galaxy in
different hypotheses for the spacetime geomeiryands are defined in the text;, is r converted to magnitudes;,=2.5logr; u,,, a, and
b are the strong field limit coefficient®s=2G M/c? is the Schwarzschild radius.

Reissner-Nordstra Janis-Newman-Winicour
Schwarzschild g=0.1 g=0.2 q=0.3 g=0.4 vy=0.9 vy=0.8 vy=0.7 v=0.6

0., (n arc sec) 16.87 16.76 16.41 15.78 14.76 16.67 16.38 15.93 15.13
S (u arc sec) 0.0211 0.0216 0.0234 0.0275 0.038 0.0213 0.0216 0.0222 0.0239
r,» (magnitudes 6.82 6.79 6.69 6.49 6.07 6.82 6.82 6.82 6.82
Un/Rs 2.6 2.58 2.53 2.43 2.27 2.57 2.52 2.45 2.33

a 1 1.005 1.02 1.052 1.123 1 1 1 1

b —0.4002 —0.3993 -0.3972 -0.3965 —-0.4136 —0.3808 —-0.35 —0.2945 —0.1659

We notice that?™3>1 ande®? is of order 1, sinca and  actual VLBI projects, but we must be aware that the distur-

b are of order 1 too. Using these simple observations, we cafi2nces intrinsic in such observatiofisainly due to extinc-

simplify our formulas to have t?qn apd emission b){ e_lcc;re.ting mabtwould_ make the iden-
tification of the relativistic images very difficult, as already

s= g, eba-27la (90)  Pointed out in Ref[6].
In Table I, following this line, we estimate the quantities
r=e2mla (91 We need for a complete strong field limit reconstruction in
different situations, starting from a simple Schwarzschild
These two formulas can be easily inverted to give black hole and then going to black holes with different val-
ues of the electric charge and JNW charge.
— 27 Looking at Table I, we can make some considerations of
a= @v (92) different order. Indeed, the easiest parameter to evaluate is
the minimum impact parameter,,, since a microarcsecond
— _ rs resolution is reachable in the next years. This information
b=alog 9—) (93 alone can already distinguish between a Schwarzschild or

other types of geometry. In fact, since the total mass and the
distance of the black hole are known to a reasonable accu-

ratio, we are able to reconstruct the full strong field limit racy (and possibly will be even better fixed in the next

expansion of the deflection angle for the observed gravitaf®ars: @ U smaller than predicted would signal that the
tional lens. structure of spacetime close to the central black hole is not

The coefficients of the strong field limit are constraineddescribed by the Schwarzschild solution. On the other hand,

by the characteristics of the metric to be well precise reall Um iS compatible within experimental uncertainties with
numbers. Thus, if strong field gravitational lensing is de-th€ Schwarzschild case, we would set an upper limit for the

tected, by comparing the experimental coefficients with thdParameters describing other black holes, such as an electric

theoretical expectations, calculated according to differen’ @ Scalar charge.

models, we are able to identify the nature of the lensing In a second extent, to fit all the strong field limit coeffi-
black hble unambiguously. cients into any black hole model, we need to separate at least

the outermost relativistic image from the others. We see that
this can be done only by increasing optical resolution by at
least two orders of magnitude with respect to actual obser-
vational projects. Therefore, with these numbers, it seems

It is significant to consider a realistic case where we carthat we are forced to wait for further technological develop-
discuss the instrumental sensitivity required to detect relativments. However, given the evolution rate of astronomical
istic images and possibly distinguish between different blacKacilities in the last 20 years, it is not unthinkable that these
holes through the reconstruction of the strong field limit co-two orders of magnitude will be reached within the not so far
efficients. future.

The center of our galaxy is believed to host a black hole Black holes are also present in the bulge of other galaxies.
with massM=2.8x10°M, [17]. The lensing of a back- As far as we have investigated, in the best cases, the instru-
ground source by this supermassive black hole was discuss@tental resolution needed for strong field gravitational lens-
in detail by Virbhadra and Elli§6]. TakingD, =8.5 kpc as  ing is about the same as for the Milky Way black hole. So the
the distance between the sun and the center of the galaxgetermination ofu,, by future observations would possibly
they found that the separation between each set of relativisticonfirm or disprove Schwarzschild geometry for several ex-
images with respect to the central lens would Be  tra galactic black holes too. The complete determination of
~17 parc sec. In principle, such a resolution is reachable bythe strong field limit coefficients instead remains a long term

Finally, just by measuring an angular separation and a flu

A numerical example: Lensing by the galactic supermassive
black hole
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project, unless more favorable astrophysical situationglected on the relativistic images. If the mass and the distance
emerge. of the lens is known, then the detection of any set of relativ-
istic images would immediately check the Schwarzschild ge-
V. SUMMARY ometry. VLBI should be able to provide an observational
o o ] answer, if the relativistic images are not hidden behind envi-

Gravitational lensing is undoubtedly a potentially power- gnmental noise.
ful tool for the investigation of strong fields. By general ar-  pyrthermore, if the outermost image is resolved from the
guments we have shown that the deflection angle divergesihers, it is then possible to fully reconstruct the strong field
logarithmically as we approach the photon sphere. We havgmit coefficients and select a precise black hole model. Our
outlined a general method to compute the coefficient of thgyresent observational facilities are not so far from the re-
leading order divergent term and the first regular term. Wheryyired resolutions, which, for the galactic black hole, are of
the latter cannot be calculated analytically, we have seen thghe order of 0.0luarc sec. As a long term project the detec-
it can be well approximated by a simple series expansiofion of the outermost image stands as a very interesting, non-
starting from Schwarzschild spacetime. _ _ trivial challenge for future technology.

We have applied our method to Schwarzschild, Reissner-  girong field limit represents an important step in the con-
Nordstran, and Janis-Newman-Winicour black hole, explic- stryction of a robust theoretical scheme connecting the gravi-
itly calculating and plotting the strong field limit coefficients. tatjonal lensing with the strong field properties. By a simple

Of course, it is possible to apply the strong field limit, in anq reliable expansion, it clarifies the whole phenomenology
the form given in this paper, to any spherically symmetricang the differences between various models that should be
metric representing a black hole. In this way, it is possible toaxpected in the appearance of relativistic images. If these
compare the gravitational lensing behavior of these objectgery elusive features are detected, we will finally have a way
in different theories of gravitation. In principle, the extension g effectively discriminate between alternative theories of

to nonspherically symmetric and rotating black holes is POSyravitation and increase our knowledge of spacetime.
sible. However, the dependence of the deflection angle on

more than one variable can put severe obstacles in the way of

analytic soluti(_)ns of the p.roblem. Nevertheless,l this i_s in- ACKNOWLEDGMENTS
deed another important point which needs to be investigated
to complete the picture of black hole lensing. | would like to thank Gaetano Lambiase and Salvatore

Differences in the deflection angle are immediately re-Capozziello for helpful comments and discussions.
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