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Gravitational lensing in the strong field limit

V. Bozza*
Dipartimento di Fisica ‘‘E. R. Caianiello,’’ Universita` di Salerno, Salerno, Italy

and Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Napoli, Italy
~Received 27 May 2002; published 22 November 2002!

We provide an analytic method to discriminate among different types of black holes on the grounds of their
strong field gravitational lensing properties. We expand the deflection angle of the photon in the neighborhood
of complete capture, defining a strong field limit, in opposition to the standard weak field limit. This expansion
is worked out for a completely generic spherically symmetric spacetime, without any reference to the field
equations and just assuming that the light ray follows the geodesics equation. We prove that the deflection
angle always diverges logarithmically when the minimum impact parameter is reached. We apply this general
formalism to Schwarzschild, Reissner-Nordstro¨m, and Janis-Newman-Winicour black holes. We then compare
the coefficients characterizing these metrics and find that different collapsed objects are characterized by
different strong field limits. The strong field limit coefficients are directly connected to the observables, such as
the position and the magnification of the relativistic images. As a concrete example, we consider the black hole
at the center of our galaxy and estimate the optical resolution needed to investigate its strong field behavior
through its relativistic images.

DOI: 10.1103/PhysRevD.66.103001 PACS number~s!: 95.30.Sf, 04.70.Bw, 98.62.Sb
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I. INTRODUCTION

Gravitational lensing is one of the first applications
general relativity~GR! ever studied@1#. It was recognized
first in light deflection by the Sun, secondly in lensing
quasars by foreground galaxies, then in the formation of
ant arcs in galaxy clusters, and finally in galactic microle
ing. Now it is an ordinary phenomenon in the panorama
astronomical observations~see@2# for a complete treatment
and references therein!.

The full theory of gravitational lensing has been dev
oped following the scheme of the weak field approximat
and, in this formulation, it has been successfully employed
explain all the physical observations.

In recent years, however, the scientific community h
started to look at this phenomenon from the opposite poin
view, opening a strong field perspective. Viergutz@3# made a
semianalytical investigation of the geodesics in Kerr geo
etry; in Ref.@4# the appearance of a black hole in front of
uniform background was studied; Falcke, Melia, and Ag
@5# considered the emission of the accretion flow as a sou
Virbhadra and Ellis@6# showed that a source behind
Schwarzschild black hole would produce one set of infin
relativistic images on each side of the black hole. These
ages are produced when a light ray with a small impact
rameter winds one or several times around the black h
before emerging. Later on, by an alternative formulation
the problem, Frittelli, Kling, and Newman@7# attained an
exact lens equation, giving integral expressions for its so
tions, and compared their results with those by Virbhadra
Ellis. The same problem has been investigated by Bo
et al. in Ref. @8#, where a strong field limit was first define
in Schwarzschild black hole lensing and used to find
position and the characteristics of all the relativistic imag
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analytically. Eiroa, Romero, and Torres@9# applied the same
technique to a Reissner-Nordstro¨m black hole. Recently, in
another work@10#, Virbhadra and Ellis distinguished th
main features of gravitational lensing by normal black ho
and by naked singularities, analyzing the Janis-Newm
Winicour metric. They remarked on the importance of the
studies in providing a test for the cosmic censorship hypo
esis.

The reason for such an interest in gravitational lensing
strong fields is that using the properties of the relativis
images it may be possible to investigate the regions imm
diately outside of the event horizon. High resolution imagi
of black holes by very long baseline interferometry~VLBI !
@11# might be able to detect relativistic images and retrie
information about strong fields stored within these new o
servables. Moreover, since alternative theories of gravita
must agree with GR in the weak field limit, in order to sho
deviations from GR it is necessary to probe strong fields
some way. Indeed, deviation of light rays in strong fields
one of the most promising grounds where the theory
gravitation can be tested in its full form.

Of course, the study of null geodesics in strong fields
not easy and up to now it has always been carried out u
numerical techniques. An analytical treatment would c
light on the dependence of the observables on the param
of the system, allow easy checks on the detectability of
images, and open the way to comparisons between the
sults in different metrics. In Ref.@8#, a new way to expand
the deflection angle in the Schwarzschild metric was s
gested. The deflection angle near its divergence was app
mated by its leading order and its first regular term and th
plugged into the lens equation. In this way, very simple a
reliable analytical formulas were derived for the relativis
images and their main features.

So, as the weak field limit takes the first order deviati
from Minkowski spacetime, the strong field limit starts fro
complete capture of the photon and takes the leading orde
the divergence of the deflection angle.
©2002 The American Physical Society01-1
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V. BOZZA PHYSICAL REVIEW D 66, 103001 ~2002!
The strong field limit of Ref.@8# was developed only in
Schwarzschild spacetime. In this paper, we provide a gen
method to extend the strong field limit to a generic sta
spherically symmetric spacetime. Our method is univer
and can be applied to any spacetime in any theory of gr
tation, provided that the photons satisfy the standard geo
sics equation. The parameters of the strong field limit exp
sion are directly connected with the observables, provid
an effective tool to discriminate among different metrics.
Sec. II, we state the problem and carry out the strong fi
limit of the deflection angle. In Sec. III, we apply the meth
to some simple metrics: Schwarzschild, Reissner-Nordstr¨m,
and Janis-Newman-Winicour black holes, discussing th
differences with reference to the gravitational lensing p
nomenology. In Sec. IV, we establish a connection betw
the strong field limit coefficients and the relativistic image
analyzing the case of the black hole at the center of
galaxy as a concrete example where our results can be te
Finally, Sec. V contains the summary.

II. STRONG FIELD EXPANSION OF THE DEFLECTION
ANGLE

A generic spherically symmetric spacetime has the l
element@13#

ds25A~x!dt22B~x!dx22C~x!~du21sin2uf2!, ~1!

where

A~x! →
x→`

12
2M

x
,

B~x! →
x→`

11
2M

x
, ~2!

C~x! →
x→`

x2,

in order to correctly match the weak gravitational field f
from the lensing object.

We require that the equation

C8~x!

C~x!
5

A8~x!

A~x!
~3!

admits at least one positive solution. We shall call the larg
root of Eq. ~3! the radius of the photon spherexm ~for an
alternative definition of the photon sphere, see@12#!. A, B, C,
A8, andC8 must be positive forx.xm

For metrics expressed in standard coordinates@C(x)
5x2# a sufficient condition for the existence ofxm is the
presence of a static limit@a radiusxs such thatA(xs)50].
Our strong field expansion takes the photon sphere as
starting point. In our study, therefore, we shall not consi
naked singularities without a photon sphere. For a numer
study of this situation, see Ref.@10#.

A photon incoming from infinity with some impact pa
rameteru will deviate while approaching the black hole.
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will reach a minimum distancex0 and then emerge in an
other direction. Of course, the approach phase is identica
the departure phase, with the time reversed.

By conservation of the angular momentum, the clos
approach distance is related to the impact parameteru by

u5AC0

A0
, ~4!

where the subscript 0 indicates that the function is evalua
at x0.

From the geodesics equation it is easy to extract the qu
tity

df

dx
5

AB

ACA~C/C0!A0 /A21
~5!

which gives the angular shift of the photon as a function
the distance from the center~see@13# for the complete deri-
vation!.

The deflection angle can then be calculated as a func
of the closest approach:

a~x0!5I ~x0!2p, ~6!

I ~x0!5E
x0

` 2ABdx

ACA~C/C0!A0 /A21
.

~7!

It is easy to check that for a vanishing gravitational fie
(A5B51, C5x2) a(x0) identically vanishes. In the wea
field limit, the integrand is expanded to the first order in t
gravitational potential. This limit is no longer valid when th
closest approach distance significantly differs from the i
pact parameter@which, by Eq.~4!, means thatA(x0) signifi-
cantly differs from 1 and/orC(x0) from x0

2, i.e., the photon
passes in a strong gravitational field#.

When we decrease the impact parameter~and conse-
quently x0), the deflection angle increases. At some poi
the deflection angle will exceed 2p, resulting in a complete
loop around the black hole. Decreasingu further, the photon
will wind several times before emerging. Finally, forx0
5xm ~see Sec. II A!, corresponding to an impact paramet
u5um , the deflection angle diverges and the photon is c
tured ~see Fig. 1!.

In this section, we will show that this divergence is log
rithmic for all spherically symmetric metrics. Our purpose
to get an analytical expansion of the deflection angle clos
the divergence in the form

a~x0!52a logS x0

xm
21D1b1O~x02xm!, ~8!

where all the coefficients depend on the metric functio
evaluated atxm .

As the angular separation of the image from the lens
u5u/DOL , whereDOL is the distance between the lens a
the observer, we need to express the deflection angle in te
of this variable. So we shall finally transform Eq.~8! to
1-2
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GRAVITATIONAL LENSING IN THE STRONG FIELD LIMIT PHYSICAL REVIEW D 66, 103001 ~2002!
a~u!52ā logS uDOL

um
21D1b̄1O~u2um! ~9!

which we define as thestrong field limit of the deflection
angle. The rest of this section is devoted to the calculation
the two coefficientsa andb in the first step and then ofā and
b̄.

A. Divergent term of the deflection angle

We define two new variables

y5A~x!, ~10!

z5
y2y0

12y0
~11!

where y05A0. The integral~7! in the deflection angle be
comes

I ~x0!5E
0

1

R~z,x0! f ~z,x0!dz, ~12!

R~z,x0!5
2ABy

CA8
~12y0!AC0, ~13!

f ~z,x0!5
1

Ay02@~12y0!z1y0#C0 /C
, ~14!

where all functions without the subscript 0 are evaluated
x5A21@(12y0)z1y0#.

The functionR(z,x0) is regular for all values ofz andx0,
while f (z,x0) diverges forz→0. To find the order of diver-
gence of the integrand, we expand the argument of
square root inf (z,x0) to the second order inz:

f ~z,x0!; f 0~z,x0!5
1

Aaz1bz2
, ~15!

FIG. 1. General behavior of the deflection angle as a function
the closest approachx0. The deflection angle increases asx0 de-
creases and diverges atx05xm . Each timea(x0) reaches a multiple
of 2p, the photon completes a loop before emerging.
10300
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12y0

C0A08
~C08y02C0A08!, ~16!

b5
~12y0!2

2C0
2A08

3
@2C0C08A08

21~C0C0922C08
2!y0A08

2C0C08y0A09#. ~17!

Whena is nonzero, the leading order of the divergence
f 0 is z21/2, which can be integrated to give a finite resu
When a vanishes, the divergence isz21, which makes the
integral diverge. Examining the form ofa, we see that it
vanishes atx05xm , with xm defined by Eq.~3!. Each photon
having x0,xm is captured by the central object and cann
emerge again.

To solve the integral~12!, we split it into two pieces

I ~x0!5I D~x0!1I R~x0!, ~18!

where

I D~x0!5E
0

1

R~0,xm! f 0~z,x0!dz ~19!

contains the divergence and

I R~x0!5E
0

1

g~z,x0!dz, ~20!

g~z,x0!5R~z,x0! f ~z,x0!2R~0,xm! f 0~z,x0! ~21!

is the original integral with the divergence subtracted. W
shall solve both integrals separately and then sum up t
results to rebuild the deflection angle. Here we deal withI D
and its divergence, while in the next subsection we sh
verify that I R is indeed regular.

The integralI D(x0) can be solved exactly, giving

I D~x0!5R~0,xm!
2

Ab
log

Ab1Aa1b

Aa
. ~22!

Since we are interested in the terms up toO(x02xm), we
expanda as

a5
2bmAm8

12ym
~x02xm!1O~x02xm!2, ~23!

where

bm5bux05xm

5
Cm~12ym!2@Cm9 ym2CmA9~xm!#

2ym
2 Cm8

2
~24!

and substitute inI D(x0). Rearranging all terms, we find

I D~x0!52a logS x0

xm
21D1bD1O~x02xm!, ~25!

f

1-3
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V. BOZZA PHYSICAL REVIEW D 66, 103001 ~2002!
a5
R~0,xm!

Abm

, ~26!

bD5
R~0,xm!

Abm

log
2~12ym!

Am8 xm

. ~27!

Equation~25! yields the leading order in the divergence
the deflection angle, which is logarithmic, as anticipated
fore. The coefficienta of Eq. ~8! is then given by Eq.~26!.

B. Regular term of the deflection angle

In order to find the correct coefficientb in Eq. ~8!, we
have to add to the termbD coming from Eq.~27! an analo-
gous term coming from the regular part of the original in
gral, defined by Eq.~20!.

We can expandI R(x0) in powers of (x02xm):

I R~x0!5 (
n50

`
1

n!
~x02xm!nE

0

1 ]ng

]x0
n U

x05xm

dz ~28!

and evaluate the single coefficients.
If we had not subtracted the singular part fro

R(z,x0) f (z,x0), we would have an infinite coefficient forn
50, while all other coefficients would be finite. Howeve
the function g(z,x0) is regular in z50,x05xm as can be
easily checked by a power expansion, recalling thatam50.

Since we are interested to terms up toO(x02xm), we will
just retain then50 term

I R~x0!5E
0

1

g~z,xm!dz1O~x02xm!, ~29!

and then

bR5I R~xm! ~30!

is the term we need to add tobD in order to get the regula
coefficient. Recalling also the term2p in the deflection
angle, we have

b52p1bD1bR . ~31!

The coefficientbR can be easily evaluated numerically f
all metrics, since the integrand has no divergence. Howe
in many cases it is also possible to build a completely a
lytical formula for bR as well. In fact, in the Schwarzschil
metric, the integral~29! is solved exactly~see Sec. III A!.
Then, in most metrics, we can expand Eq.~29! in powers of
their parameters, starting from the Schwarzschild limit, a
evaluate each coefficient separately. This is what we sha
for Reissner-Nordstrom and Janis-Newman-Winicour bla
holes~see Sec. III!.

C. From a„x0… to a„u…

From Eq.~4!, we see that the minimum impact parame
is
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-

-

r,
-

d
o

k

r

um5ACm

ym
. ~32!

Expanding Eq.~4!, we find

u2um5c~x02xm!2,
~33!

c5
Cm9 ym2CmAm9

4Aym
3 Cm

5bmAym

Cm
3

Cm8
2

2~12ym!2
. ~34!

Using this relation, we can write the deflection angle a
function of u:

a~u!52ā logS uDOL

um
21D1b̄, ~35!

ā5
a

2
5

R~0,xm!

2Abm

, ~36!

b̄5b1
a

2
log

cxm
2

um
52p1bR1ā log

2bm

ym
. ~37!

This concludes our general discussion of the form of
deflection angle in the strong field limit. Even if the proof
somewhat tricky, the application to concrete cases is v
straightforward, as we shall see in Sec. III. In fact, once
write a metric, it is sufficient to solve Eq.~3! to find xm ,
write bm from Eq.~24! andR(0,xm) from Eq.~13!, compute
bR from Eq.~30! numerically or by a proper expansion in th
parameters of the metric, and compute the coefficientsum ,
ā, andb̄ from Eqs.~32!, ~36!, and~37!, respectively.

The crucial step is the calculation ofbR , since it is the
only integral involved in the whole procedure.

III. APPLICATIONS

In this section, we apply the general formulation of t
strong field limit to three simple examples. First, we sh
revisit Schwarzschild spacetime, whose strong field lim
gravitational lensing has already been studied in Ref.@8#.
Then we will apply our method to Reissner-Nordstro¨m
spacetime, which was explored numerically in Ref.@9#. Fi-
nally, as an example of the extended theory of gravitati
we shall consider a Janis-Newman-Winicour black h
whose strong field limit expansion has not been investiga
so far. In all three cases, we shall derive analytical formu
for the strong field limit coefficients, in order to analyze th
functional dependences of the deflection angle on the par
eters of the metrics.

A. Schwarzschild lensing

This is the simplest spherically symmetric metric descr
ing the outer solution for a black hole. It only depends on
mass of the central object~by Birkhoff’s theorem!. It is con-
1-4
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GRAVITATIONAL LENSING IN THE STRONG FIELD LIMIT PHYSICAL REVIEW D 66, 103001 ~2002!
venient to define the Schwarzschild radiusxs52M as the
measure of distances; then, in standard coordinates, the
tions in the metric become

A~x!512
1

x
, ~38!

B~x!5S 12
1

xD 21

, ~39!

C~x!5x2, ~40!

which obviously satisfy all hypotheses required in Sec.
with static limit xs51.

The two functionsR(z,x0) and f (z,x0) read

R~z,x0!52, ~41!

f ~z,x0!5
1

A~223/x0!z1~3/x021!z22z3/x0

. ~42!

From Eqs.~16!,~17!, or directly from the expansion of th
denominator off, we read off the coefficientsa andb:

a522
3

x0
, ~43!

b5
3

x0
21. ~44!

The equationa50 defines the radius of the photon sphe

xm5
3

2
. ~45!

Consequently,bm51.
In this simple case, it is possible to solve the integral

Eq. ~30! exactly and write the regular term in the deflecti
angle

bR52 log@6~22A3!#50.9496. ~46!

From Eqs.~36! and~37!, we derive the coefficientsā, b̄,
andum of the deflection angle

ā51, ~47!

b̄52p1bR1 log 6520.4002, ~48!

um5
3A3

2
. ~49!

Then the Schwarzschild deflection angle, in the stro
field limit, is

a~u!52 logS 2uDOL

3A3
21D

1 log@216~724A3!#2p, ~50!
10300
nc-

,

g

as obtained in Ref.@8#.
In this simple case, we can compare the exact deflec

angle aex(u) calculated numerically and the strong fie
limit aapp(u). The most external image appears wherea(u)
falls below 2p. This happens atu2um50.003264. Here the
discrepancy betweenaex and aapp is about 0.06%, which
corresponds to an error in the position of the outer image
the order of 0.4%. With such a high accuracy, we are
couraged to take the Schwarzschild strong field limit as
starting point for successive series expansions to evaluatbR
in more advanced metrics.

B. Reissner-Nordström lensing

The Reissner-Nordstro¨m metric describes the gravita
tional field of a spherically symmetric massive object e
dowed with an electric chargeq. The metric functions in
standard coordinates are

A~x!512
1

x
1

q2

x2
, ~51!

B~x!5S 12
1

x
1

q2

x2D 21

, ~52!

C~x!5x2. ~53!

They satisfy the hypotheses required in Sec. II, only wh
q<3/4A2. However, beyond the critical valueq50.5, there
is no event horizon and causality violations appear@14,15#.
We shall restrict our attention toq,0.5.

The coefficientsa andb are

a5S 22
3

x0
1

4q2

x0
2 D x02q2

x022q2
, ~54!

b5S 3

x0
212

9q2

x0
2

1
8q4

x0
3 D x0~x02q2!2

~x0
322q2!3

,

~55!

which reduce to the Schwarzschild coefficients whenq
→0. From the equationa50, we derive the radius of the
photon sphere

xm5
3

4 S 11A12
32q2

9 D , ~56!

which yields

bm5@29132q22144q41512q61A9232q2
•~3116q2

280q4!#@8~q24q3!#22. ~57!

The regular termbR cannot be calculated analytically, bu
we can expand the integrand in Eq.~29! in powers ofq and
evaluate the single coefficients. We get

bR5bR,01bR,2q
21O~q4!, ~58!
1-5
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wherebR,0 is the value of the coefficient for an uncharg
black hole, calculated in the previous subsection and gi
by Eq.~46!; the correction is quadratic in the chargeq of the
black hole. Its coefficient is

bR,25
8

9
$A3241 log@6~22A3!#%

521.5939. ~59!

It is very easy to calculate further terms in the expans
of bR , deriving analytical formulas which prove to be ve
accurate even for large values ofq.

Following Sec. II, we calculate the coefficients for th
formula of the deflection angle:

ā5
xmAxm22q2

A~32xm!xm
2 29q2xm18q4

, ~60!

b̄52p1bR1ā log 2

3~xm2q2!2
•

@~32xm!xm
2 29q2xm18q4#

~xm22q2!3~xm
2 2xm1q2!

, ~61!

um5
~31A9232q2!2

4A2A328q21A9232q2
. ~62!

In @9#, the coefficientsa and b were calculated numeri
cally. Here, by our general method, we have been able
derive the coefficientā for the logarithmic divergence ex
actly and find a formula forb̄ which is valid up to second
order in q, indicating the way to extend it to an arbitrar
order.

We notice that the radius of the photon spherexm de-
creases as the charge increases, but becomes imaginary
for q53/4A2.1/2; i.e., even when there is no horizon,
photon can be captured by the gravitational field of a hy
thetical object with a charge greater than the critical valu

In Fig. 2, we evaluate the deflection angle atu5um

FIG. 2. Deflection angles in Reissner-Nordstro¨m metric evalu-
ated atu5um10.003 as functions ofq. The solid line is the exac
deflection angle; the dashed line is the strong field limit withbR

truncated to second order inq.
10300
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10.003 as a function ofq. The plot shows that, just by usin
the first correction tobR , we get an excellent approximatio
to the deflection angle. In fact, we see that up toq50.3, the
error in the position of the outer image, calculated using
strong field limit, stays below 4%.

Finally, in Fig. 3, we plot the coefficients of the stron
field limit as functions ofq, calculating the fullb̄ numeri-
cally. We see thatā and b̄ deviate from the correspondin
Schwarzschild values as the charge increases. As we
see in Sec. IV, the strong field limit coefficients are direc
connected to the observables. It is then possible, in princi
to distinguish a Reissner-Nordstro¨m black hole from a
Schwarzschild black hole, using strong field gravitation
lensing.

C. Janis-Newman-Winicour lensing

The spherically symmetric solution to the Einstein ma
less scalar equations

~Rmn5F ,mF ,n, F ;m
;m! ~63!

can be written in Janis-Newman-Winicour~JNW! coordi-
nates@16#

A~x!5S 12
1

xD g

, ~64!

B~x!5S 12
1

xD 2g

, ~65!

C~x!5S 12
1

xD 12g

x2, ~66!

F~x!5
q

2AM21q2
logS 12

1

xD , ~67!

FIG. 3. Coefficients of the strong field limit in Reissne
Nordström metric as functions ofq.
1-6
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GRAVITATIONAL LENSING IN THE STRONG FIELD LIMIT PHYSICAL REVIEW D 66, 103001 ~2002!
g5
M

AM21q2
. ~68!

where all distances are measured in terms ofxs

52AM21q2 andq is the scalar charge of the central obje
This metric admits a photon sphere external to the static l
wheng. 1

2 , i.e., whenq,M . We shall thus restrict our in
vestigations to objects with scalar charge lower than th
mass. In Ref.@10#, the gravitational lensing of this objec
was investigated numerically even whenq.M . In this situ-
ation, it was shown that a drastically different and interest
phenomenology shows up.

As in the previous cases, we compute all the coefficie
taking into account that our metric is not written in standa
coordinates. The coefficientsa andb are

a5S 22
2g11

x0
D 1

gx0
g21 @x0

g2~x021!g#, ~69!

b52
~2g11!~g11!22x0~3g11!12x0

2

~x021!g

3
@x0

g2~x021!g#2

2g2x0
g

, ~70!

which easily reduce to Eqs.~43! and~44! wheng51. From
the equationa50, we derive the radius of the photon sphe

xm5
2g11

2
~71!

and then

bm5
@~2g11!g2~2g21!g#2

4g2~4g221!2g21
. ~72!

In the same way as in the Reissner-Nordstro¨m metric, by
increasing the charge of the central object, the photons
allowed to get closer to the center. Wheng50.5, xm5xs
and we should change our coordinates frame to perform
significant study.

Here as well we cannot solve the integral~29! exactly.
However, we can expand the integrand in powers ofg
21) to get

bR5bR
020.1199~g21!1O~g21!2 ~73!

with bR
0 given by Eq.~46!.

Finally, we compute the coefficients of the strong fie
limit:

ā51, ~74!

b̄52p1bR12 log
@~2g11!g2~2g21!g#2~2g11!

2g2~2g21!2g21
,

~75!
10300
.
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um5
~2g11!g11/2

2~2g21!g21/2
. ~76!

Surprisingly, the leading order coefficientā is the same as
in the Schwarzschild case, in spite of the fact that the rad
of the photon sphere has changed.

Once we fix u2um50.003, we see in Fig. 4 that th
deflection angle decreases as we increase the charge~de-
creaseg) until g reaches the value 0.6; then the deflecti
angle increases again. The strong field limit, withbR trun-
cated to first order ing, at g50.7 is precise up to 4% in the
determination of the outer image.

In Fig. 5, we plot the coefficients of the strong field limi
ā is constant,b̄ increases asg decreases, butum decreases
enough to make the deflection angle decrease at constau
2um until g reaches the value 0.6. Comparing with Fig.
we can observe that a JNW charge has completely diffe
effects on the strong field limit coefficients than an elect
charge and can be identified without confusion.

IV. OBERVABLES IN THE STRONG FIELD LIMIT

In Sec. II we proved that the strong field limit approxim
tion can be used to obtain a simple and reliable formula

FIG. 4. Deflection angles in a JNW black hole evaluated au
5um10.003 as functions ofg. The solid line is the exact deflectio
angle; the dashed line is the strong field limit withbR truncated to
first order ing.

FIG. 5. Coefficients of the strong field limit in a JNW black ho
as functions ofg.
1-7
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the deflection angle, which contains a logarithmic and a c
stant term. Now we plug the formula~9! into the lens equa-
tion and establish direct relations between the position
the magnification of the relativistic images and the deflect
angle, calculated according to the strong field limit.

The lens equation in the strong field limit was derived
Ref. @8#. It reads

b5u2
DLS

DOS
Dan , ~77!

whereDLS is the distance between the lens and the sou
DOS5DOL1DLS , b is the angular separation between t
source and the lens,u is the angular separation between t
lens and the image, andDan5a(u)22np is the offset of
the deflection angle, once we subtract all the loops done
the photon.

To pass from the deflection anglea(u) to the offsetDan ,
we need to find the valuesun

0 such thata(un
0)52np. Solv-

ing Eq. ~35! with a(u)52np, we find

un
05

um

DOL
~11en!, ~78!

en5e(b̄22np)/ā. ~79!

The offsetDan is then found by expandinga(u) around
u5un

0 . Letting Dun5u2un
0 , we find

Dan52
āDOL

umen
Dun . ~80!

The lens equation becomes

b5~un
01Dun!1S āDOL

umen

DLS

DOS
DDun . ~81!

Now we derive the position of all relativistic images, the
magnification, and the critical curves of the lens.

The second term in the right-hand side of Eq.~81! is
negligible when compared to the last one~sinceum!DOL).
Immediately, we find

un5un
01

umen~b2un
0!DOS

āDLSDOL

, ~82!

where the correction toun
0 is much smaller thanun

0 .
This formula is valid for both the images on the same s

of the source and the images on the opposite side. In fac
find the latter, it is sufficient to take a negativeb in Eq. ~82!.

Finally, we have expressed the position of the relativis
images in terms of the coefficientsā, b̄, and um . If we
manage to determine these coefficients from the observa
of the relativistic images, we are rewarded with informati
about the parameters of the black hole stored in them.

The critical curves are just Einstein rings corresponding
a source perfectly aligned with the lens. Their radius is
tained by puttingb50 in Eq. ~82!.
10300
-
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e,
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o
-

Another important source of information is the magni
cation of the images which is the inverse of the Jacob
evaluated at the position of the image. For simplicity, w
approximate the position of the images byun

0 , recalling that
the correction provided by Eq.~82! is negligible:

mn5
1

~b/u!]b/]u U
u

n
0
. ~83!

We have

]b

]u U
u

n
0
511

āDOL

umen

DLS

DOS
~84!

where the first term is small compared to the second and
be neglected.

Finally, the magnification is

mn5
1

udetJuu
n
0u

5
un

0

b]b/]uuu
n
0
5en

um
2 ~11en!DOS

ābDOL
2 DLS

, ~85!

which decreases very quickly inn.
The formulas~78! and ~85! relate the position and the

magnification to the strong field limit coefficients. The su
cessive step is to solve the inversion problem, i.e., we h
to find the most effective way to go back from measur
positions and fluxes to the strong field limit coefficien
which carry the information about the nature of the bla
hole.

The minimum impact parameter can be simply obtain
as

um5DOLu` ~86!

whereu` represents the asymptotic position approached b
set of images, obtained by Eq.~78! in the limit n→`.

To obtain the coefficientsā andb̄, we need to separate a
least the outermost image from all the others. We shall t
consider the simplest situation where only the outermost
ageu1 is resolved as a single image, while all the remaini
ones are packed together atu` .

Our observables will thus be

s5u12u` , ~87!

r 5
m1

(
n52

`

mn

, ~88!

which respectively represent the separation between the
image and the others, and the ratio between the flux of
first image and the flux coming from all the other images

The sum of the fluxes of all the set of relativistic imag
except the first is

(
n52

`

mn5
um

2 DOSe
b̄/ā

ābDOL
2 DLS

e4p/ā1e2p/ā1eb̄/ā

e4p/ā21
. ~89!
1-8
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TABLE I. Estimates for the main observables and the strong field limit coefficients for the black hole at the center of our ga

different hypotheses for the spacetime geometry.u` ands are defined in the text;r m is r converted to magnitudes:r m52.5 logr ; um , ā, and

b̄ are the strong field limit coefficients;RS52GM/c2 is the Schwarzschild radius.

Reissner-Nordstro¨m Janis-Newman-Winicour
Schwarzschild q50.1 q50.2 q50.3 q50.4 g50.9 g50.8 g50.7 g50.6

u` (m arc sec) 16.87 16.76 16.41 15.78 14.76 16.67 16.38 15.93 15.1
s (m arc sec) 0.0211 0.0216 0.0234 0.0275 0.038 0.0213 0.0216 0.0222 0.02
r m ~magnitudes! 6.82 6.79 6.69 6.49 6.07 6.82 6.82 6.82 6.82
um /RS 2.6 2.58 2.53 2.43 2.27 2.57 2.52 2.45 2.33

ā 1 1.005 1.02 1.052 1.123 1 1 1 1

b̄ 20.4002 20.3993 20.3972 20.3965 20.4136 20.3808 20.35 20.2945 20.1659
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We notice thate2p/ā@1 andeb̄/ā is of order 1, sinceā and
b̄ are of order 1 too. Using these simple observations, we
simplify our formulas to have

s5u`eb̄/ā22p/ā, ~90!

r 5e2p/ā. ~91!

These two formulas can be easily inverted to give

ā5
2p

log r
, ~92!

b̄5ā logS rs

u`
D . ~93!

Finally, just by measuring an angular separation and a
ratio, we are able to reconstruct the full strong field lim
expansion of the deflection angle for the observed grav
tional lens.

The coefficients of the strong field limit are constrain
by the characteristics of the metric to be well precise r
numbers. Thus, if strong field gravitational lensing is d
tected, by comparing the experimental coefficients with
theoretical expectations, calculated according to differ
models, we are able to identify the nature of the lens
black hole unambiguously.

A numerical example: Lensing by the galactic supermassive
black hole

It is significant to consider a realistic case where we c
discuss the instrumental sensitivity required to detect rela
istic images and possibly distinguish between different bl
holes through the reconstruction of the strong field limit c
efficients.

The center of our galaxy is believed to host a black h
with massM52.83106M ( @17#. The lensing of a back-
ground source by this supermassive black hole was discu
in detail by Virbhadra and Ellis@6#. TakingDOL58.5 kpc as
the distance between the sun and the center of the ga
they found that the separation between each set of relativ
images with respect to the central lens would beu`

;17 marc sec. In principle, such a resolution is reachable
10300
n

x

-

l
-
e
t

g

n
-
k
-

e

ed

xy,
tic

y

actual VLBI projects, but we must be aware that the dist
bances intrinsic in such observations~mainly due to extinc-
tion and emission by accreting matter! would make the iden-
tification of the relativistic images very difficult, as alread
pointed out in Ref.@6#.

In Table I, following this line, we estimate the quantitie
we need for a complete strong field limit reconstruction
different situations, starting from a simple Schwarzsch
black hole and then going to black holes with different v
ues of the electric charge and JNW charge.

Looking at Table I, we can make some considerations
different order. Indeed, the easiest parameter to evalua
the minimum impact parameterum , since a microarcsecon
resolution is reachable in the next years. This informat
alone can already distinguish between a Schwarzschild
other types of geometry. In fact, since the total mass and
distance of the black hole are known to a reasonable a
racy ~and possibly will be even better fixed in the ne
years!, a um smaller than predicted would signal that th
structure of spacetime close to the central black hole is
described by the Schwarzschild solution. On the other ha
if um is compatible within experimental uncertainties wi
the Schwarzschild case, we would set an upper limit for
parameters describing other black holes, such as an ele
or a scalar charge.

In a second extent, to fit all the strong field limit coeffi
cients into any black hole model, we need to separate at l
the outermost relativistic image from the others. We see
this can be done only by increasing optical resolution by
least two orders of magnitude with respect to actual obs
vational projects. Therefore, with these numbers, it see
that we are forced to wait for further technological develo
ments. However, given the evolution rate of astronomi
facilities in the last 20 years, it is not unthinkable that the
two orders of magnitude will be reached within the not so
future.

Black holes are also present in the bulge of other galax
As far as we have investigated, in the best cases, the in
mental resolution needed for strong field gravitational le
ing is about the same as for the Milky Way black hole. So
determination ofum by future observations would possibl
confirm or disprove Schwarzschild geometry for several
tra galactic black holes too. The complete determination
the strong field limit coefficients instead remains a long te
1-9
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project, unless more favorable astrophysical situati
emerge.

V. SUMMARY

Gravitational lensing is undoubtedly a potentially powe
ful tool for the investigation of strong fields. By general a
guments we have shown that the deflection angle dive
logarithmically as we approach the photon sphere. We h
outlined a general method to compute the coefficient of
leading order divergent term and the first regular term. Wh
the latter cannot be calculated analytically, we have seen
it can be well approximated by a simple series expans
starting from Schwarzschild spacetime.

We have applied our method to Schwarzschild, Reiss
Nordström, and Janis-Newman-Winicour black hole, expl
itly calculating and plotting the strong field limit coefficient

Of course, it is possible to apply the strong field limit,
the form given in this paper, to any spherically symmet
metric representing a black hole. In this way, it is possible
compare the gravitational lensing behavior of these obje
in different theories of gravitation. In principle, the extensi
to nonspherically symmetric and rotating black holes is p
sible. However, the dependence of the deflection angle
more than one variable can put severe obstacles in the wa
analytic solutions of the problem. Nevertheless, this is
deed another important point which needs to be investiga
to complete the picture of black hole lensing.

Differences in the deflection angle are immediately
.

e
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flected on the relativistic images. If the mass and the dista
of the lens is known, then the detection of any set of rela
istic images would immediately check the Schwarzschild
ometry. VLBI should be able to provide an observation
answer, if the relativistic images are not hidden behind en
ronmental noise.

Furthermore, if the outermost image is resolved from
others, it is then possible to fully reconstruct the strong fi
limit coefficients and select a precise black hole model. O
present observational facilities are not so far from the
quired resolutions, which, for the galactic black hole, are
the order of 0.01marc sec. As a long term project the dete
tion of the outermost image stands as a very interesting, n
trivial challenge for future technology.

Strong field limit represents an important step in the co
struction of a robust theoretical scheme connecting the gr
tational lensing with the strong field properties. By a simp
and reliable expansion, it clarifies the whole phenomenolo
and the differences between various models that should
expected in the appearance of relativistic images. If th
very elusive features are detected, we will finally have a w
to effectively discriminate between alternative theories
gravitation and increase our knowledge of spacetime.
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