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Deformed defects

D. Bazeia and L. Losano
Departamento de Bica, Universidade Federal da Patsa, 58051-970, JomPessoa, PB, Brazil

J. M. C. Malbouisson
Instituto de Fsica, Universidade Federal da Bahia, 40210-340 Salvador, BA, Brazil
(Received 6 September 2002; published 26 November)2002

We introduce a method to obtain deformed defects starting from a given scalar field theory which possesses
defect solutions. The procedure allows the construction of infinitely many new theories that support defect
solutions, analytically expressed in terms of the defects of the original theory. The method is general, valid for
both topological and nontopological defects, and we show how it extends to quantum mechanics and how it
works when the scalar field couples to fermions. We illustrate the general procedure with several examples,
which support kinklike or lumplike defects.
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Defects play an important role in modern developments othat symmetry breaking induces an effective mass term for
several branches of physics. They may have a topological dermions. In the background of the kinklike structure the
nontopological profile, and in field theory the topological fermionic mass varies from negative to positive values, and
defects usually appear in models that support spontaneoiRis fractionalizes the fermion numbgg]. The topological
symmetry breaking, with the best known examples beind?ehavior of the kinklike defect is central to fermion number
kinks and domain walls, vortices and strings, and monopole§actionalization[6,7]. In the language of condensed matter,
[1]. Domain walls, for example, are used to describe pheSPontaneous symmetry breaking may be interpreted as the
nomena having rather distinct energy scales, as in high efPening of a gap, and may be of good use in several
ergy phys|ci1,2] and in condensed matt&] situations—see, for inStanC{e—lO], and references therein

The defects that we investigate in this Rapid Communi-for applications. Another possibility concerns the role of
cation are topological or kinklike defects, and nontopologicalkinklike ~defects as seeds for the formation of non-
or lumplike defects. They appear in models involving atopological structure$l1,12. This line of investigation has
single real scalar field, and are characterized by their amplipe€en implemented in case the discrete symmetry is changed
tude and width, the width being related to the region in spacé0 an approximate symmetf¢3,14, and also when the sym-
where the defect solution appreciably deviates from theénetry is biased to make domains of distinct but degenerate
vacuum states of the system. Interesting models that suppof@icua spring unequallyl5].
kinklike defects involve polynomial potentials such as #fe In our procedure to create deformed defects, we deform
model, periodic potentials such as the sine-Gordon modefhe system in a way such that one increases or decreases the
and even the vacuumless potential recently considered i@mplitude and width of the defect, without changing the cor-
[4,5]. We shall investigate defects by examining their solu-"ésponding topological behavior. Within the condensed mat-
tions and the corresponding energy densities, to provide Er context, one provides a way to increase or decrease the
quantitative profile for both topological and nontopological Mass gap for fermions, introducing an important mechanism
defects. to tune the gap for practical purpose.

We introduce a general procedure to create deformed de- The interest in lumplike defects renews with the expres-
fects, starting from a known solvable model in one spatiaSivé number of recent investigations on issues related to ta-
dimension. We start with topological defects, and we showghyons in string theory, since there are scenarios where
below that the proposed scheme generates, for each givd#anes may be seen as lumplike defects which engender ta-
model having topological solutions, infinitely many new chyonic excitationg16—25. _ _
solvable models possessing deformed topological defects. e consider a single real scalar field. The equation of
We examine the stability of kinklike defects to extend motion for static solutiongb= ¢(x) is given by
the procedure to quantum mechanics. We also investigate ) ) ,
lumplike defects to generalize the procedure to both topo- d“¢/dx"=V'(¢). @
logical and nontopological defects. Finally, we couple the : . .
scalar field to fermions to show how the procedure works forHer.e V.= V(q_&) is the potential, and the prime stands for a
the Yukawa coupling. derivative with respect to the argument. We search_for field

The interest in kinklike defects is directly related to the configurations which “start” in a given minimumyp of
role of symmetry restoration in cosmolof,2] and in con-  V(¢), with zero “velocity,” that is, which obey the bound-
densed mattef3]. Also, they are particularly important in ary conditions: lim_, _..¢(x)— ¢ and lim_, _.d¢/dx—0.
other scenarios, where they may induce interesting effects. &hus, we use the equation of motion to get
significant example concerns the behavior of fermions in the
background of kinklike structurg$]. The main point here is dpl/dx=+2V(e). 2
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The energy associated with these solutions is equally sharethys, the solutions satisfif[ ¢. (x)]=¢.(X), or better

between gradient and potential portions . (0=f"b.(x)], as written in Eq(10).
o de)\2? We notice that the deformed defects. (x) connect
E=2Eg=f dx &) (3 minima corresponding to those interpolated by the solutions

¢+ (x) of the original potential. The energy of the deformed
. defects depends on the deformation one introduces. It can be
:2Ep:2f dXV(¢) (4) written as

~\2 -1\2 2
- = [dP = (df 12 de
We now deal with topological or kinklike defects. In this Esps= J'xdx( ﬁ) = J'mdx<ﬁ) (ﬁ) - (12
case we consider
We see that for the class of deforming functidrig) satis-
V=3[W ()% (5 fying |f'(¢$)|=1 (<1), the energy is decreaséidcreasejl
relative to the undeformed defect. In particular, the deforma-
whereW(¢) is a smooth function of the fielgp. We assume  tion f(4)=r ¢ leads to trivial modifications of parameters of
that there exisb;, i=1,.. ., n such thatW’(v;)=0. These the potential, decreasingr(>1) or increasing |f|<1) the
singular points oW(¢) are absolute minima of the poten- energy of the defect.
tial. In such a large class of models the equation of motion At this point, two important remarks are in order: firstly,
becomesd?¢/dx?=W’($)W'(¢). The energy associated by taking f~* instead off one defines the inverse deforma-

with ¢(x) can be minimized to tion, that is thef ~* deformation ofV( ) recovers the poten-
tial V(¢). Secondly, the (or the f 1) deformation can be
Egps=* foo dx W(¢)d_¢ (6) applied repeatedly leading to an infinitely countable number
— dx of solvable problems for each known potential bearing topo-
logical solutions. In fact, each paiv(f) defines a class of
if the field configuration obeys solvable problems related to each other through repeated ap-
plications of thef (or f 1) deformation prescription.
dé./dx==W'(¢.). (7 We concentrate on investigating stability of defects. This

] _ ) ~ leads us to quantum mechanics, where the Stihger-like
Their solutions are named Bogomol'nyi-Prasad-Sommerfielgygmiltonian has the form

(BPS states[26,27. As we know, for kinklike defects the

equation of motion exactly factoriz¢28] into the two first- H=— d?/dx?® +U(x). (13
order equationg7). Thus, we can introduce the topological
current Here the quantum mechanical potentifx) is given by
Je=ePapW(¢), ®) d?V(¢)
g V== 3 (14)
which makes the topological charge equal to the energy of ¢ b=¢(x)

the topological solution.

Let us now consider a well-defined bijective functibn
=f(¢) with a nonvanishing derivative. This function allows
introducing a new theory, defined by thdeformed potential

where ¢(x) is the defect solution under investigation. In the
case of kinklike defects the potential is written "§d¢)
=(1/2)[W'(¢$)]? and the Hamiltonian can be factorized
[29,30 asH=S'S, where the first-order operat&has the

v(¢)ZV[f<¢>]ZE(W'U(@])Z o
[(f'($)]* 2\ () S= d/dx +u(x) (15)
In this cases;=f1(u;), i=1,2, . .. p are minima, and the 2"d u(x)=d*W/d¢?, to be calculated at the kinklike solu-

new theory possesses topological defects which are obtaindl®" ¢= #(X). We use this to obtain théosonig zero mode

from the solutions . (x) of the previous theory through the M the form

relation
7o(x)~ eI U, (16)

b.(X)=Ff . (x)]. 10 - _
=) [$-(0] (10 We now usé (¢) to deform the model. The modified Hamil-
To prove this statement we notice that the first-order equatonian can be written all =S'S, whereS is now given by

tions of the new theory are S=d/dx+u(x), with
do W' (f()) ~ W' (f(#)) ()
Lot W ()= 11 “W(f(h))— ———= 1
ax (¢) () (12) u(x) (f(#)) b 1d) (17)
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to be calculated at the kinklike solutiaf(x). Thus, the de- st

formed bosonic zero mode is givenby e
";IO(X)~e—fXdy~u(y). (18) PO

Let us now consider some examples. Firstly, we consider
f(#)=sinh¢, in which case thé deformation is referred to
as the sinh deformation. For this choice, E, (10), and
(12) are easily rewritten and one sees that the Bogomol'nyi
bound is lowered by the deformation. On the other hand, if
one considers the inverse deformation, takirf§¢) LA
=arcsinhg, the energy of the deformed defects is greater — = ="="="='Z 2
than that of the original potential. Specifically, let us discuss —«....ooievaerest®’
the ¢* theory, for which the potential is given by(¢)
=(1/2)(1- ¢?)? (we take the rescaled theory with dimen-
sionless field and coordinaje§he kinklike topological de- FIG. 1. Plot of the deformed defects. The thick line shows the
fects for this model are well knownp®)(x) = = tanhx (us-  kink of the theg* model. The other lines show deformed kinks, the
ing the translation invariance, we fix,=0). They have dashed-dotted line represents the sinh deformation, and the dotted
energyE(B0)=4/3, distributed around the origin with density line represents the arcsinh deformation.
go(x)=secl(x). In quantum mechanics, the related prob-
lem is described by the modified &mh-Teller potential ' V(x) = sin tank(x)]. (24
U(x)=4—6 sech(x), which supports the normalized zero -
mode 7,(x) = 3/4 secA(x) (at zero energyand another These are deformed defects; see Fig. 1.
bound state, with higher energy. The correspondingV function is given by

The sinh-deformed)* model has potential given by

A 4

_ . o W(Dg)=— tarcsinip+ (3 + 3 ¢?)arcsinhp
V(g)=1 1-si 19
(#)= zsechig(1-shniré) (9 + 1 ¢ J1+ ¢%(1—2arcsinRe). (25)

for which the deformed defects connecting the minima at

+arcsinh(1) are The energy of the deformed defects in E@4) is Eg
=1.641, which is greater than that for t@é model and has
B (x) =+ arcsinkitani(x)]. (200  a broader distribution
See Fig. 1 for a plot of the topological defects. £_1(x) = cosH(tanhx)sect(x), (26)

The W function for this example is given by which is depicted in Fig. 2

We see that the sinh deformation diminishes the energy of
the BPS solutions narrowing its distribution, and the arcsinh
o . deformation operates in the opposite direction, increasing the
izhslidﬁf[?rrgriil?;f?rﬁﬁoihza\éieerner%}Et%; (dwefeizs, \gP;{g energy and spreading its distribution. These deformations are

gntly 9y . smooth deformations, which lead to potentials similar to the

potential. The energy density of the deformed defects 'soriginal potential. They map the intervat-ge,0) into itself,

W( ) =4 arctarie?) — sinh . (21

given by and their derivative$’ (¢) have no divergence at any finite
" ¢. They teach us how to deform a given defect, changing its
% = ﬂ parameters in the two possible directions, decreasing or in-
£1(X) (22
1+ tantf(x)

A S(x)
which is more concentrated around the origin than the relatec

quantity, in the¢? case, as expected. See Fig. 2 for a plot of
the energy density of the topological defects.

Consider now the¢* potential deformed withf(¢)
=arcsinhg, that is, take the potential

V(¢)= 1 (1+ ¢?)(1—arcsinf¢)?. (23

This is the potential which, by performing the deformation *
with sinh as discussed above, leads to the undeforgfed FIG. 2. Plot of the energy density of the deformed defects. The
model. The BPS solutions, in this case connecting minima ahick line refers to thep* model. The other lines refer to the other
+sinh(1), are given by cases, as explained in the previous figure.
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creasing the amplitude and width of the original defect. We can make the model supersymmetric introducing ap-
Since the amplitude and width of the defect are important tgoropriate Majorana spinors. In this case, in general the
characterize the defect, the proposed deformations are of dvukawa coupling is controlled by (¢), which has the form
rect interest to applications involving kinks and walls in high
ener hysics and in condensed matter.

Tr?g rpec)ént interest in tachyofs8—25 has inspired us to Y(¢)= @VZV(@- (34)
extend the above procedure to nontopological or lumplike
defects. \iVe see that ip(x) solves the equation of motion This leads to the usual coupling(¢) =W’(¢) when the
(1), then ¢(x)=f"1(¢) solves the equation of motion for potential is given by (¢)=(1/2)[W’($)]? which is the
the deformed model with potential V((ﬁ) form one uses to investigate kinklike structures. If one uses
—V[f(¢))/[F' ()] This is always true, for solutions that f(#) to change the model fronv(¢)=(1/2)W’'(4$)]* to
obey the first-order Eqs(2), with energy density equally V(¢)=(1/2)[W' (f(¢$))/f'(#)]% the Yukawa coupling

shared between the gradient and potential portions. should also change fromi(¢) =W"(¢) to
A model which supports nontopological or lumplike solu-
tions is < W' (f(#)) ()
Y(¢)=W"(f(¢))—W m (35
Vi(¢)= 3 $*(1— $?). (27)

The importance of the deformation procedure that we
have introduced enlarges if one recognizes that it admits de-
formations which lead to very different potentials, bearing no
similarity to the original potential. Such deformations are
different, and may lead to further interesting situations. For

stance, we consider the functid(ip) =tanhg. It maps the
interval (—o0,) into the limited interval 1,1), and this
allows the introduction of new effects, as we illustrate below.

We consider the potential

It has the solutions
@' (x)= +sechix). (28

In quantum mechanics, the related problem has the potenti
U(x)=1—6 secB(x). This potential has the same form as
the modified Psch-Teller potentia[see the comments just
above Eq.(19)]. However, it plots differently, shifting the
values ofU(x) in such a way that the zero mode is now
identified with the upper bound state, making the lower

— 1 _ 42\3
bound state negative, signaling for tachyonic excitation. V(¢)=z2(1=¢)" (36)
We now consider deforming the lumplike solutions with __ . I _ -
sinhg. We get This potential is new. It is unbounded below, containing a

maximum at¢=0 and two inflection points at 1. In this
case the modified potential becomes

V(¢)= ttantfp(1—sintPe). (29
V()= 1L
The equation of motion foth= ¢(x) is V(¢)= zsechi¢, (37)
42 which is the vacuumless potential consideref#ifs]. In Ref.
—¢=tanh¢(1—sinI"F¢>—2tanr?¢). (30)  [5] the vacuumless model was shown to support kinklike
dx? solutions of the BPS type. This result indicates that the

model (36) may also support this kind of solution. Indeed,
It supports the deformed lump solutions it is astonishing to see that the potenti{@b) supports the
kinklike defects

@', = +arcsintisectix)] (31)

X
as we can verify straightforwardly. The deformation process P(x)== J1x2 (38)
may continue, and may also be done in the reverse direction,

using arcsinkp.

Similar investigations apply to other potentials. For in-
stance,V(¢)=2¢%(1— ¢) supports the lumplike solution
¢'(x) =secl(x)—see Ref[17] for further details on the®
model. We deform the lumplike solution with arcsigh We #(x) =+ arcsinlix), (39)
get

which connect the two inflection points of the potential.
These defects are stable, and they can be seen as deforma-
tions of the defects

- 5 _ ) which appear in the model defined by the potential of Eq.
Vi(¢)=2(1+¢?)arcsinfp(1—arcsinhg). (32 (37). As far as we know, this is the first example where
kinklike defects connect two inflection points. In the recent

The deformed lumplike defect is Ref.[31] one has found another model, somehow similar to
B the above one, but there the solution connects a local mini-
& (x)=sinH secR(x)]. (33 mum to an inflection point.
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The solutions(38) are stable, and the Scliiager-like considered, for instance, in Ref82,33. Also, it may be of
equation that appears in the investigation of stability is desome use in more complex situations, involving three or

fined by the Hamiltonian more scalar fields, in scenarios such as the one where we
deal with the entrapment of planar network of defd&4,
d? x2—1/4 or with the presence of nontrivial solutions representing or-
H= +12——— (400 Dits that connect vacuum states in the three-dimensional con-

-— -
dx (X2+1) figuration spac¢35].

The potential is a volcanolike potential, which supports the The deformation scheme that we have presented may also

zero mode and no other bound state. Thermalized wave work in other contexts, in particular in the case where one
function of the zero mode iS17.(X)—2(2/37T)1/2(X2 couples the scalar field to gravity in higher dimensions. We
o(X) =

+1)%2 This should be contrasted with the zero mode ofave found interesting investigations in Ref86-3d, and
i A ~ we are now considering the possibility of extending the de-
the vacuumless potential, which is given B§]: 7y(x)

2r 2 L X formation procedure to brane-world scenarios.
=(1/m)"4(x“+ 1)~ We notice that the two zero modes
localize very differently in space. We would like to thank C.G. Almeida, F.A. Brito, and R.

The present work is of direct interest to investigationsMenezes for discussions, and CAPES, CNPqg, PROCAD and
concerning systems described by two real scalar fields, @RONEX for partial support.
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