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Spontaneous chiral symmetry breaking in the linked cluster expansion
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Physics Department and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405-4202
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We investigate dynamical chiral symmetry breaking in Coulomb gauge Hamiltonian QCD. Within the
framework of the linked cluster expansion we extend the BCS ansatz for the vacuum and include a correlation
beyond the quark-antiquark pairing. In particular we study the effects of the three-body correlations involving
quark-antiquark and transverse gluons. The high momentum behavior of the resulting gap equation is discussed
and a numerical computation of the chiral symmetry breaking is presented.
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I. INTRODUCTION

Chiral symmetry plays a major role in constraining t
spectrum of low energy QCD. At zero density it is spontan
ously broken and the associated Goldstone bosons dom
the low energy, soft hadronic interactions. The quark-glu
interactions which in vacuum break chiral symmetry may,
dense matter, e.g., in the interior of neutron stars, lead
other, novel phases of the quark gluon plasma@1#. The chiral
properties of the QCD vacuum at zero temperature and d
sity have been extensively studied in various approache
soft QCD @2–6#. In principle one could investigate it usin
lattice gauge methods. However, extrapolations of lat
simulations to small quark massesmu,d!50–100 MeV~chi-
ral extrapolation! still present a major challenge. In ap
proaches based on a Dyson-Schwinger formulation of QC
dynamical chiral symmetry breaking can be studied by a
lyzing the behavior of the quark propagator. Recen
progress has been made in understanding the infrared s
ture of various contributions to the Dyson-Schwinger eq
tions in the Landau gauge@7#. This may help identifying a
truncation scheme of the Dyson-Schwinger set of equat
relevant for phenomenological studies. Even though in a
jority of studies model interactions have been used so far,
approach gives a good description of the low energy p
nomenology. In particular it enables us to correctly pred
many of the static properties of the low lying mesons a
baryons, i.e., masses and charge moments, and sim
neously account for the dynamical chiral symmetry break
as measured by the vacuum expectation value of the sc
quark density,̂ c̄c&;2(250 MeV)3 @8#. This value follows
from PCAC ~partial conservation of axial vector current!,
Goldstone’s theorem and current algebra which results in
Gell-Mann–Oakes–Renner~or Thouless theorem! relation,
22mq^c̄c&5 f p

2 mp
2 . Here, mq;5 –10 MeV is the current

light quark mass, renormalized at the hadronic scale,f p

593 MeV is the pion decay constant andmp is the pion
mass. Without explicit chiral symmetry breakingmq50, the
above relation cannot be used to determine^c̄c&. However,
asmq→0 no phase transition to a chirally symmetric state
expected, and therefore,̂c̄c&2(200–250 MeV)3 should
still be a good estimate for the condensate in the chiral lim

Spontaneous chiral symmetry breaking enables us to
the constituent quark representation of hadrons on a
theoretical ground. The bare quark states defined with
0556-2821/2002/66~9!/096006~13!/$20.00 66 0960
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spect to the perturbative vacuum are replaced by quasip
cle excitations of the chirally noninvariant ground state. R
sidual interactions correlate the quasiparticles to fo
composite hadrons in which each valence quasiparticle c
tributes kinetic energy of the order of a few hundred Me
This is analogous to the constituent quark model represe
tion of hadrons and therefore it might be possible to furth
constrain quark model phenomenology from a first princip
QCD based analysis of dynamical chiral symmetry breaki

Since the quark model picture calls for a Fock space r
resentation it is most natural to consider a canonical, tim
independent formulation of QCD. Coulomb gauge QCD
fers such a framework@9–11#. In the Coulomb gauge the
single particle spectrum contains only physical degrees
freedom, i.e., two transverse gluon polarizations. As long
the gauge fields are restricted to the fundamental mod
region, with no Gribov copies, the Hamiltonian is positiv
definite, leads to a continuous time evolution, and is am
nable to a variational treatment. Finally the Coulomb gau
formulation leads to a natural realization of confineme
@12,13,11#. This arises because elimination of the no
physical degrees of freedom through the gauge cho
¹•A50 results in an effective, long ranged instantaneo
interaction between color charges. This interaction is the a
log of the Coulomb potential in QED. In QCD however, th
colored Coulomb gluons can couple to transverse glu
leading to a Coulomb kernel which also depends on the
namical gluon degrees of freedom. As shown in Ref.@14#
summation of the dominant IR contributions to the vacuu
expectation value of the Coulomb operator results in a
tential between color charges which grows linearly at la
distances in agreement with lattice calculations@15#.

In a self-consistent treatment the same potential modi
the single gluon spectral properties and leads to an effec
mass for quasigluon excitationsO(500–800 GeV), which
is also in agreement with recent lattice calculations. The
pearance of the gluon mass gap can be used to justify
implicit assumption of the quark model that mixing betwe
valence quarks and Fock space sectors with explicit gluo
excitations is small. We will return to this point in Sec. III

The Coulomb gauge formulation provides a very natu
starting point for building the constituent representation
accord with confinement and dynamical chiral symme
breaking. However, as it was noticed some time ago in
Coulomb gauge the simple BCS treatment of the vacuum
not sufficient to generate the right amount of chiral symm
©2002 The American Physical Society06-1
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try breaking. In particular if a pure linear potential is use
V(r )5br with b;0.2–0.25 GeV2 as determined by lattice
calculations one typically obtainsu^c̄c&u1/3;100 MeV, i.e.,
too small by a factor of two@6,3,5#. The short range part o
the Coulomb potential requires proper handling of UV div
gences and renormalization and in most recent studies
been ignored. As will be shown later, it does significan
enhance the condensate and we will argue that the mis
contribution can be accounted for by three-particle corre
tions on top of the BCS-like, particle-hole vacuum. Fina
we should mention that while in the Coulomb gauge con
ing gluon configurations have direct implications for chir
symmetry breaking the role of topological effects is not y
well established. In the Coulomb gauge these arise from n
trivial restrictions on the vacuum wave functional at t
boundary of the fundamental modular region@18#.

The paper is organized as follows. In Sec. II we brie
discuss the canonical Coulomb gauge formalism and
linked cluster expansion which enables us to include mu
particle correlations into the many-body ground state.
will derive the resulting contributions to the mass gap inclu
ing up to three-body correlations. The formalism is suita
for handling both zero and finite density system and in t
paper we will focus on the former. In Sec. III we discuss t
approximations and possible sources of UV divergences
their renormalization. The main numerical results are p
sented in Sec. IV and our conclusions and outlook are gi
in Sec. V.

II. COULOMB GAUGE HAMILTONIAN AND THE
LINKED CLUSTER EXPANSION

The full, unrenormalized Coulomb gauge Hamiltoni
has the following structure@11,14,16,17#:

H5H01HC1Vqg1V3g1V4g1Hcorr . ~1!

HereH0 is the quark and gluon kinetic term:

H05H~g50!5E dxc†~x!@2 i •¹1bm#c~x!

1E dx@Tr P~x!21Tr ~¹3A~x!!2#.

~2!

In the following we will restrict our discussion to the chiral
symmetric case, i.e., we will setm50. The term denoted by
HC represents the interaction between color charges via
non-abelian Coulomb potential,

HC5
g2

2 E dxdyra~x!Kab~x,y,A!rb~y!, ~3!

wherera(x)5c†(x)Tac(x)1 f abcPb(x)•Ac(x) is the color
charge density and the kernelK is given by

Kab~x,y,A!5 K x,aU 1
~2“

2!
1 Uy,bL , ~4!
¹•D ¹•D
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whereD is the covariant derivative in the adjoint represe
tation, and thê x,au•••uy,b& matrix element is given by
^x,auDuy,b&5@dab¹x1g facbAc(x)#d3(x2y), and ^x,au1/
¹2uy,b&521/4pux2yu. The Vqg is the quark-transverse
gluon interaction,

Vqg52gE dxc†~x!a•Ac~x!, ~5!

and V3g and V4g represent 3- and 4-transverse gluon co
plings arising from the non-abelian part of the magne
field, Ba5¹3Aa1g fabcAb(x)3Ac(x). Finally Hcorr con-
tains terms which come from a commutator of the deter
nant of the Faddeev-Popov operator,J5Det(¹•D) and the
gluon canonical momentumP. The detailed analysis of this
Hamiltonian, emergence of confinement and issues relate
renormalization in the gluon sector were discussed in R
@14#.

QCD canonically quantized in a physical gauge, e
Coulomb gauge, results in a Hamiltonian that can be rep
sented in a Fock space defined by a set of single par
orbitals. Denoting creation and annihilation operators
these single particle orbitals for quark, antiquark and gluo
collectively byai

† ,ai the general form of the Hamiltonian i
given by

H5H01V5(
i

e iai
†ai1V~ai

† ,ai !, ~6!

with H0 being the diagonal part ofH. In principle, since the
Fock space is complete, one can use Eq.~6! to obtain the
matrix representation ofH which could yield the exact en
ergy eigenvalues. In practice, however, sinceV mixes states
with different particle occupations an eigenstate ofH will
include states with an arbitrary number of particles and o
approximate solutions are possible. One needs guida
from physics to efficiently choose the single particle rep
sentation and truncation of the Fock space which make c
tributions to physical observables from omitted states sm

One possibility is to choose the single particle basis
eigenstates of the kinetic~noninteracting! part of the full
Hamiltonian. The vacuum,u0&, of H0 is shown schemati-
cally in left panel in Fig. 1. Single-particle excitations at ze
density correspond to adding gluons to the positive ene
parton like levels and quark-antiquark pairs by creating
particle-hole excitation around the zero-energy Fermi s
face. These excitations have energies given byeq

0(k)
5e q̄

0(k)5Am21k2, eg
0(k)5uku for quarks, antiquarks and

gluons, respectively. The quark fields in Eq.~2! satisfy the
canonical anticommutation relations and the gluons fields
given by P[PaTa and A[AaTa and satisfy the canonica
commutation relations for transverse fields, i.e.,

@Pa~x!,Ab~y!#52 idabdT~¹!d3~x2y!, ~7!

wheredT(¹)5I 2¹ ^ ¹/¹2. In terms of the single particle
creation and annihilation operators, the color triplet of qua
fields (i 51,2,3) is given by
6-2
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SPONTANEOUS CHIRAL SYMMETRY BREAKING IN THE . . . PHYSICAL REVIEW D 66, 096006 ~2002!
c i~x!5 (
l561/2

E dk

~2p!3 @u~k,l!b~k,l,i !

1v~2k,l!d†~2k,l,i !#eik•x, ~8!

whereu andv are the solution of the free Dirac equation f
a fermion with massm. The gluon field is given by

Aa~x!5 (
l561

E dk

~2p!3

1

A2v0~k!
@a~k,l,a!e~k,l!

1a†~2k,l,a!e* ~2k,l!#eik•x, ~9!

with v0(k)5eg
0(uku).

It is not expected, however, that the partonic basis
scribed above is a good starting point to address the phy
of long range correlation in hadrons. Phenomenology in
cates that it would be desirable to expand hadronic w
functions in terms of quasiparticles Fock space represen
constituents whose kinetic energies are, on average, of
order of the hadronic scale. WhenHC is normal ordered with
respect to the perturbative vacuum,u0& one might expect tha
the mean field, Hartree-Fock corrections to the single part
energies could already generate an effective, constitu
mass. This is not the case. The vacuum is a color singlet
thus the direct contribution fromHC to a single fermion en-
ergy vanishes. Furthermore, the chiral symmetry of
Hamiltonian and of the perturbative,u0& vacuum protects the
exchange term from mass generation.

The effective mass can only be obtained if qua
antiquark correlations are introduced into the ground stat
shown schematically in the right panel in Fig. 1.

A simple realization of a quasiparticle representation
given by the Bogolubov-Valatin transformation of the pa
tonic basis. This generates a different, complete Fock sp
basis in which the single particle excitation spectrum (e i),
includes contributions from self-consistent interaction w
the vacuum condensate.

FIG. 1. Schematic representation of the particlen1[^b†b&
~solid! and holen2[12^d†d& ~dashed! occupation numbers as
function of the single particle energy. Left~right! panel corresponds
to the free~BCS! ground state, respectively.
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An equivalent description is to consider a variational a
proach in the harmonic basis in the functional representat
The Bogolubov-Valatin, quasiparticle representation is o
tained by using a Gaussian functional as the variatio
ansatz—the BCS ground state. The variational approxim
tion with the single wave functional can then be system
cally improved by including the complete set of wave fun
tionals obtained by successive action of quasipart
creation operators on the Gaussian ground state.

The variational~BCS! approach is certainly a reasonab
starting point, as guided for example, by the quark mod
Furthermore with the full quasiparticle Fock space at hand
can be systematically improved. However, the ultimate s
cesses~or failure! of the approach can only be tested b
comparing its predictions with known hadronic observabl

In the following we will discuss in more detail the con
nection between the partonic and the BCS Fock space
the inclusion of multiparticle correlations, i.e., extension b
yond BCS. We will use the formalism of second quantizati
and the linked cluster expansion which for technical reas
is superior over the functional approach.

A. Linked cluster expansion

Since the Fock space basis generated by the set of s
particle creation operators,b†, d†, a† is complete, the true
ground state,uV& of H can be written as

uV&5F11(
12

F12
(qq̄)b1

†d2
†1(

12
F12

(gg)a1
†a2

†1(
123

F123
(qq̄g)b1

†d2
†a3

†

1 (
1234

F1234
(qq̄qq̄)b1

†d2
†b3

†d4
†1•••G u0&. ~10!

HereF12•••n
(n) represent wave functions ofn-body clusters in

the vacuum, and 1,2 . . . collectively denote quantum num
bers of single particle orbitals. This expansion is howe
impractical since it does not differentiate between connec
~linked! and disconnected contributions. For example, at
2-quark–2-antiquark level there are disconnected contr

tions of the type,F1234
(qq̄qq̄)5F12

(qq̄)F34
(qq̄) , i.e., part of the

n-particle cluster contribution originates from products
smaller,m,n, m-particle clusters.

The essence of the linked cluster expansion is based
the observation that all multiparticle correlation in th
ground state, including the disconnected ones can be
counted for by proper resummation of the linked clust
only. This is achieved by writing the full ground state as@19#

uV&5e2Su0&, ~11!

with S having the expansion

S5(
n

S(n)5(
12

S12
(qq̄)b1

†d2
†1(

12
S12

(gg)a1
†a2

†

1(
123

S123
(qq̄g)b1

†d2
†a3

†1 (
1234

S1234
(qq̄qq̄)b1

†d2
†b3

†d4
†1•••,

~12!
6-3
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with the operatorsS including connected pieces only. Com
paring Eq.~10! and Eq.~12! we find for example that

F12
(qq̄)5S12

(qq̄) , F123
(qq̄g)5S123

(qq̄g) ,

F1234
(qq̄qq̄)5S1234

(qq̄qq̄)1
1

2
S12

(qq̄)S34
(qq̄) , . . . , ~13!

i.e. the general expansion of Eq.~10! is obtained with all
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disconnected contributions constrained by the connec
ones. The expansion coefficients,S12•••n

(n) , can be determined
from the eigenvalue equation foruV&,

eSHe2Su0&5EVu0&. ~14!

This equation projected onto the partonic Fock space b
leads to a set of equations for the amplitudesS12•••n

(n) and the
ground state energy,EV ,
^0ueSHe2Su0&5EV ,

^q1 ,q2 , . . .qnq
;q̄18 ,q̄28 , . . . q̄nq̄

;g19 ,g29 , . . .gng
ueSHe2Su0&50,nq ,nq̄ ,ng51,2, . . . . ~15!
-
e

o

ar-
-

ndi-
In a nonrelativistic many-body system the Hamiltonian
typically a polynomial in the field operators. Since eachS(n)

contains only particle creation operators, the matrix eleme
of eSHe2S between ann-particle state and the free vacuu
will involve only a finite number of terms arising from th
expansion of the exponentials. For example in a typical c
when H5H01V with H0 being a one body~e.g., kinetic!
operator andV a two-body potential one has

eSHe2S5H1@S,H#1•••1
1

4!
@S,@S,@S,@S,H####.

~16!

In this case an approximation to Eq.~15! is fully specified by
the number of clusters retained inS. This is, however, not the
case for the relativistic system discussed here. The expan
of the Coulomb kernel leads to an infinite series of opera
to all orders in the transverse gluon field. Thus an appro
mation to Eq.~15! consists of specifying which clusters a
kept in the definition ofS and of a truncation scheme fo
evaluating matrix elements ofeSHe2S.

The truncation ofS limits the number of quark-antiquark
gluon correlations built into the ansatz for the ground sta
At first one might think that such a truncation would be ha
to justify since any hadronic state, including the vacuu
should have a large~infinite! number of partons. However
the first two terms inS, S(qq̄) and S(gg) change the single
particle excitation spectrum and effectively replace the p
tonic basis with that of massive quasiparticles. This is kno
as the Thouless reparametrization@20# and is equivalent to
the BCS ansatz for the vacuum which contains two-bo
quark-antiquark and gluon-gluon correlations. The BCS
satz leads to the chiral gap, constituent mass for the quark
well as effective mass for the transverse gluons. Itera
contributions of multiparticle states which determine t
wave functions of larger clusters,S(n), n.2 are therefore
suppressed by the quasiparticle energy gap. This ga
O(400–600 MeV) for quark-antiquark excitations an
O(500 MeV–800 GeV) for a gluonic excitation. The form
follows from the typical constituent quark mass and the la
from the gluon spectrum in a presence of static color sou
ts
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as calculated on the lattice@15# and are consistent with ex
plicit calculation using the BCS gluonic ansatz for th
Hamiltonian @14#. The transformation from the partonic t
the quasiparticle basis, generated byS(2), proceeds as fol-
lows. The ~unnormalized! quasiparticle, BCS vacuum
uVBCS& is defined as

uVBCS&[e2S(2)
u0&, ~17!

with

S(2)5S(qq̄)1S(gg)5(
12

S12
(qq̄)b1

†d2
†1(

12
S12

(gg)a1
†a2

† ,

~18!

so that

uV&5e2(
n.2

S(n)
uVBCS&. ~19!

A canonical transformation which maps the set of free p
ticle operatorsb,b†,d,d†,a,a† onto a set of quasiparticle op
eratorsB,B†,D,D†,a,a† is defined by

B15
1

A11uS(qq̄)u2
b11(

2

S12
(qq̄)

A11uS(qq̄)u2
d2

† ,

D15
1

A11uS(qq̄)u2
d12(

2
b2

†
S21

(qq̄)

A11uS(qq̄)u2
,

a15
1

A12uS(gg)u2
a11(

2

S12
(gg)

A12uS(gg)u2
a2

† , ~20!

where uS(qq̄)u2d12[@S(qq̄)S(qq̄)†#12 and similarly for uS(gg)u.
These quasiparticle operators satisfy the canonical~anti!com-
mutation relations, they annihilate the BCS ground state,

B1uVBCS&5D1uVBCS&5a1uVBCS&50, ~21!

and generate a complete Fock space. The eigenvalue co
tions for the vacuum, Eq.~15! can therefore be rewritten in
the quasiparticle basis,
6-4
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^VBCSueSHe2SuVBCS&

^VBCSuVBCS&
5EV ,

^Q1 ,Q2 , . . .QnQ
;Q̄18 ,Q̄28 , . . . Q̄nQ̄

;G19 ,G29 , . . .GnG
ueSHe2SuVBCS&50, nQ ,nQ̄ ,nG51,2, . . . . ~22!
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Here the operator S contains contributions from
3-quasiparticle cluster and higher,

S5(
123

S̃123
(QQ̄G)B1

†D2
†a3

†1•••. ~23!

The matrix elementsS̃12•••n
(n) can be related toS12•••n

(n) by re-
placing the free particle operators by the quasiparticle op
tors. From the structure of Eq.~20! it follows that for given
n the operatorsS̃(n) are a linear combination ofS( i ) including
i<n. Since Eq.~20! defines a canonical transformation th
two sets of equations, Eq.~15! and Eq.~22! are equivalent
and one can simply use the latter, i.e., work directly in
quasiparticle basis without referring to the partonic basis.
suggested by the quark model it is preferred to represent
energy QCD eigenstates in terms of quasiparticle, quark
gluon excitations. From now on we will consider the mat
elements ofS̃ in the quasiparticle basis and for simplici
rename them asS̃(n)→S(n).

We emphasize that Thouless reparametrization is simp
change of basis and Eq.~19! is exact. The quasiparticle rep
resentation is however expected to be more efficient for
pressing a hadronic state and one of the goals of this p
will be to test this assumption by studying effects of qua
particle correlations in the vacuum.

As mentioned earlier, in QCD, withS5(nS(n) truncated
at some maximaln, Eq. ~22! still contains an infinite numbe
of terms arising from the expansion ofeSHe2S. Since this
~infinite! series is related to the multigluon structure of t
Coulomb operator,K(x,y,A), it can be organized accordin
to how each of the terms renormalizes the 0th order C
lomb potential,Kab(x,y,0)5dab/4pux2yu. To illustrate this
consider truncatingS at n52. The left-hand side~LHS! of
the first equation in Eq.~22! reduces to the expectation valu
of H in the BCS vacuum,

^VBCSueSHe2SuVBCS&5^VBCSuHuVBCS&. ~24!

FIG. 2. A few lowest order contributions toVe f f . The two right-
most diagrams represent diagrams in the ring and rainbow se
The dashed line stands for the 0th order Coulomb potentialg2K0

5g2/4pux2yu.
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The lowest order~in the loop expansion! diagrams are shown
on the left side of Fig. 2. The matrix elemen
^VBCSuHuVBCS& defines an effective potentialVe f f(x2y),
by

Ve f f~x2y![g2
dab

Nc
221

^VBCSuKab~x,y,A!uVBCS&.

~25!

It is straightforward to identify diagrams which give th
dominant contribution to Ve f f in both the IR
(ux2yu@1/LQCD) and the UV (ux2yu!1/LQCD). In the IR
region these are given by diagrams which, at a given lo
order, contain the maximum number of soft potenti
K(x,y,0) lines; the UV region is dominated by loops with th
smallest number of vertices. The series of ring and rainb
diagrams, shown in Fig. 2, accounts for the leading IR a
UV contributions toVe f f , respectively. The approximatio
can be systematically improved by taking into account
subleading contributions, e.g., vertex renormalizat
@14,17#.

If larger clusters inS are retained, the expansion o
eSHe2S generates operators that have nonvanishing ma
elements between the vacuum and states with an arbit
large number of particles. This occurs because as long asS(n)

contains a gluon operator an infinite number of commutato
@S(n),@S(n),@•••@S(n),H#•••### are nonvanishing. Their con
tributions arise from contracting gluons from eachS(n) with
gluons from the Coulomb operator. For example a term iS
which contains pure glue operators~no quark or antiquark!
will contribute to any matrix element in Eq.~22! with any
number of particles~gluons!. This is illustrated in Fig. 3 for
S(3g). It is clear, however, that this type of correction has t

s.

FIG. 3. Example of contributions to@S(n),@S(n),@•••@S(n),H#
•••]]], for S5Sggg andH5HC . The two diagrams contribute to
matrix element withnG52 and nG54, respectively. Here the
dashed line represents the Coulomb potential dressed by the
corrections, Eq.~25!, e.g., through resummation of the ring-rainbo
series shown in Fig. 2.
6-5
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FIG. 4. Operators from Eq.~28! which contribute to matrix elements^nQ ,nQ̄ ,nGu•••uVBCS& for nQ<1, nQ̄<1 andnG<2. As in Fig.

3, the potential~dashed! line is theVe f f of Eq. ~25!. The matrix elementS(QQ̄G) corresponds to the rightmost vertices.
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effect of simply renormalizingVe f f , beyond the BCS-like
contributions shown in Fig. 2. Since the operatorsS(n) com-
mute with each other one possibility is to consider the effe
of the pure gluon operators first, generate the new effec
interaction and then introduce clusters which contain qu
and antiquark operators. SinceH is a finite order polynomial
in the quark operators, each term inS containing only quark
and antiquark operators will lead to a finite number of ter
in a matrix element between the BCS vacuum and a mu
particle state with a fixedn5nQ1nQ̄1nG .

To summarize, the linked cluster expansion of the QC
ground state is much more complicated than in a typ
nonrelativistic many-body problem. Nevertheless it can
used to systematically improve the BCS approximation. I
important to notice, however, that the BCS ground state
ready probes the non-Abelian multigluon dynamics
^VBCSuK(x,y,A)uVBCS&. In BCS this leads to an effectiv
interaction which is very close to the potential between co
sources and when treated self-consistently leads to a q
particle ~constituent! representation.

B. QQ̄G contribution to the quark mass gap

In the following we will concentrate on dynamical chir
symmetry breaking and therefore consider vacuum pro
ties in the quark sector.

As mentioned earlier the BCS mechanism of qua
antiquark pairing seems to be insufficient to account for
full dynamical symmetry breaking. We will discuss this poi
quantitatively in the following section. Our interest here is
extending the BCS approximation by including the effects
the next to leading~beyond BCS! order in the cluster expan
sion, i.e., the 3-particle cluster contribution to the vacuu
We will therefore study

S→S(QQ̄G)5(
123

S123
(QQ̄G)B1

†D2
†a3

† . ~26!

The quark gap equation follows from
09600
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^Q1Q̄2ueS(QQ̄G)
He2S(QQ̄G)

uVBCS&50. ~27!

This equation determines single particle orbitals and the
fore it also gives the quasiparticle spectrum viae1d12
5^Q1uHuQ2&. There are a finite number of terms contribu
ing to Eq.~27!:

05^Q1Q̄2uH1@S(QQ̄G),H#1
1

2!
@S(QQ̄G),@S(QQ̄G),H##

1
1

3!
@S(QQ̄G),@S(QQ̄G),@S(QQ̄G),H###uVBCS&. ~28!

The series is finite because starting atO(@S(QQ̄G)#4

;@B†D†#4) commutators will produce operators which ha
at least 2-quark and 2-antiquark creation operators and t
vanish between̂QQ̄u and uVBCS&. Some of the contribu-
tions to Eqs.~28! and ~29! are shown in Fig. 4. In order to
solve Eq.~28! and determine the single particle basis, it
necessary to first solve for the amplitudeS(QQ̄G). This am-

plitude can be obtained by projectingeS(QQ̄G)
He2S(QQ̄G)

onto
the three particle cluster,

^Q1Q̄2G3uH1@S(QQ̄G),H#1
1

2!
@S(QQ̄G),@S(QQ̄G),H##

1
1

3!
@S(QQ̄G),@S(QQ̄G),@S(QQ̄G),H###uVBCS&50,

~29!

which also contains a finite number of terms. The two eq
tions Eq.~28! and Eq.~29! form a set of coupled nonlinear
integral equations for the amplitudeS(QQ̄G) and the single
particle orbitals@or the BCS angle, Eq.~20!#. In this paper
we will simplify these equations by linearizing them wit
respect toS(QQ̄G). Equation~29! then yields
6-6
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FIG. 5. The three contributions
to Eq. ~33!. dm0 is determined by
the kinetic term,dmC by Ve f f ,
anddmg is the contribution of the

QQ̄G cluster.
f
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d
d in

S
by
S(QQ̄G)uVBCS&5(
n

un&
1

En2EVBCS

^nuHuVBCS&. ~30!

Here un& is the set of eigenstates ofH in the three particle
QQ̄G subspace,

Hun&5~En2EVBCS
!un&. ~31!

The contribution fromS(QQ̄G) to the quark gap in Eq.~28! is
then given by

d12,Vdmg[^Q1Q̄2u@S(QQ̄G),H#uVBCS&

52(
n

^Q1Q̄2uHun&
1

En2EVBCS

^nuHuVBCS&.

~32!

Here,d12,V symbolizes the product of alld functions which
restrict the quantum numbers ofuQ1Q̄2& to be the same as o
the vacuum. With inclusion ofdmg the gap equation can b
written as

05dm01dmC1dmg , ~33!

where the BCS part is given by

d12,V@dm01dmC#5^Q1Q̄2uHuVBCS&

5^Q1Q̄2uH01HCuVBCS&. ~34!

The three contributions to the gap equation are illustrate
Fig. 5.

In the next section we will write down the explicit form o
the gap equation and discuss the numerical solution.

III. QUARK MASS GAP

From translational, rotational and global color invarian
of the vacuum it follows that for each quark flavor,

(
12

S12
(qq̄)b1

†d2
†5 (

lql q̄ ,i qi q̄
E dk

~2p!3 S(qq̄)~ uku!b†~k,lq ,i q!

3@s• k̂#lq ,l q̄
d i q ,i q̄

d†~2k,l q̄ ,i q̄!. ~35!

The chiral angle is given by@cf. Eqs.~20!#,

tank[tanfq~ uku!5
2S(qq̄)

12uSqq̄u2
5

2Sqq~ uku!
12~Sqq~ uku!!2 . ~36!

To evaluate the matrix elements in Eq.~22! the Hamiltonian
needs to be expressed in terms of the quasiparticle opera
09600
in

rs.

This can simply be done by noticing that in the quasiparti
basis the field operators become

c i~x!5 (
l561/2

E dk

~2p!3 @U~k,l!B~k,l,i !

1V~2k,l!D†~2k,l,i !#eik•x, ~37!

where the quasiparticle spinorsU andV are given by

U~k,l!5
1

A2E~E1M !
S ~E1M !x~l!

As• k̂x~l!
D ,

V~2k,l!5
1

A2E~E1M !
S 2As• k̂x~l!

~E1M !x~l!
D , ~38!

with E5E(uku), M5M (uku)5E sink , and A5A(uku)
5E cosk . Here we have introduced an arbitrary functio
E(k) to make the expression for the single quasiparti
wave functions analogous to those of free particles, but i
clear thatU andV do not depend onE but only on the chiral
angle.

Similarly for the gluon fields we have

(
12

S12
(gg)a1

†a2
†5(

l,a
E dk

~2p!3 S(gg)~ uku!a†~k,l,a!

3a†~2k,l,a! ~39!

and in terms of the quasigluon operators the fields are gi
by

Aa~x!5 (
l561

E dk

~2p!3

1

A2v~ uku!
@a~k,l,a!e~k,l!

1a†~2k,l,a!e* ~2k,l!#eik•x, ~40!

with

v~ uku!5uku~coshk1sinhk!, ~41!

and

tanhk5tanhfg~ uku!5
2S(gg)

11uSggu2 5
2Sgg~ uku!

11~Sgg~ uku!2 . ~42!

TruncatingSat theQ̄QG level leads to uncoupled gluon an
quark gap equations. The gluon gap equation was studie
Ref. @14#. The gluon gap functionv(uku) was determined by
the matrix element of the Coulomb operator in the BC
vacuum, which in turn was self-consistently determined
6-7
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the gluon mass gap. It was found that a good analytical
proximation toVe f f(x2y) @cf. Eq. ~25!# is, in momentum
space, given by

Ve f f~k!5
f ~k!d2~k!

k2
, ~43!

whered(k) is the expectation value of the Faddeev-Pop
operator and is approximately given by

d~k!5H 3.5S mg

uku D
0.48

for uku,mg ,

3.5S log~2.41!

log~1.411uku2/mg
2! D

0.4

for uku.mg ,

~44!

and

f ~ uku!5H S mg

uku D
0.97

for uku,mg ,

S log~1.82!

log~0.821uku2/mg
2! D

0.62

for uku.mg

~45!

originates from renormalizing the composite Coulomb k
nel. The gluon mass,mg , arises from dimensional transmu
tation and can be fixed by the string tension. The result of
fit to lattice data yieldsmg;1.6/r 0;600 MeV and is shown
in Fig. 6. The gluon gap functionv(uku) is well approxi-
mated by

v~ uku!5H mg for uku,mg ,

uku for uku.mg .
~46!

The first two terms in Eq.~33! are then given by

FIG. 6. Comparison of the lattice results for the ground st

potential between two static3 and 3̄ sources and the fit toVe f f

given by Eq.~43! ~solid line!, and to the test potentialVe f f
test of Eq.

~69! ~dashed line!. Lattice data~boxes! come from Ref.@15#.
09600
p-

v
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e

dm05dm0~ uqu!5uqusinq , ~47!

and

dmC5dmC~ uqu!

52
CF

2 E dk

~2p!3 Ve f f~ uk2qu!@sinkcosq2 k̂•q̂sinqcosk#.

~48!

The new contribution to the gap arising from theQQ̄G
cluster contains matrix elements ofH evaluated between th
BCS vacuum and a three particleQQ̄G state or between
QQ̄G andQQ̄ states. OnlyVqg andHC contribute to those
and they are of order O(g;^d(uku)&) and O(g3

;^d3(uku)&), respectively. As discussed in Ref.@14# the lat-
ter is a type of vertex correction and is expected to be a sm
O(10–20 %) correction to anO(g) contribution fromVqg .
Therefore we will not further include it here~this is also
consistent with the ring-rainbow approximation toVe f f). The
final expression fordmg also requiresQQ̄G wave functions,
i.e., the eigenstates ofH01HC projected onto theQQ̄G
states. In this work we do not attempt to solve this eige
value problem; instead we will approximate the sum ov
3-particle intermediate states by

(
n

un&
1

En2EVBCS

^nu→uC&
1

EC2EVBCS

^Cu

1 (
QQ̄G,(EQQ̄G2EVBCS

).LF

uQQ̄G&

3
1

EQQ̄G2EVBCS

^QQ̄Gu, ~49!

i.e., we approximate the sum over the complete set of eig
states by a single state with energy smaller than some fac
ization scale,LF , EC2EVBCS

,LF , and a perturbative con

tinuum of states with energy greater thanLF . The scaleLF
should roughly equal the energy where, due to string bre
ing, the linear confining potential saturates. For the first
cited hybrid potentialLF*1.5 GeV which corresponds to
the distance between color sources,r 51.15 fm @21#. Thus
we expect that the size of the momentum space wave fu
tion, ^QQ̄GuC&, should be of the orderb;1/r 50.2 GeV.
As for the spin-orbital momentum dependence of theQQ̄G
wave function we shall assume that it corresponds to
values of the orbital angular momenta which are consis
with those of the low lying gluonic excitations in the pre
ence ofQQ̄ sources. Lattice computation of theQQ̄ adia-
batic potentials arising from excited gluon configurations
dicate that the so calledPu potential has lower energy the
the Pg potential @15#. These two correspond to gluon con
figuration with JPC5112 and 122 respectively which is
also consistent with the bag model representation of gluo
excitations@22#. The QQ̄G wave function coupled with the
JPC5112 gluon quantum numbers would also have theQQ̄

e
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pair with the sameJPC5112 quantum numbers~to give the
overall JPC5011 of the vacuum! and would be given by

@QQ̄G#05†@~LQQ̄51!3~SQQ̄50!#1

3@~LG51!3~SG51!#1
‡

0. ~50!

It is easy to check, however, that sinceVqg is spin dependen
this wave function has vanishing overlap with theVqguV&
state. The other possibility is to takeJPC5122 configura-
tions for both the glue and the quark-antiquark which giv

@QQ̄G#05†@~LQQ̄50!3~SQQ̄51!#1

3@~LG50!3~SG51!#1
‡

0, ~51!

and take the spin-orbit wave function in the form of

^Q~kQ ,lQ ,i Q!,Q̄~kQ̄ ,lQ̄ ,i Q̄!,G~kG ,lG ,a!uC&

5~2p!3d~kQ1kQ̄1kG!U†~kQ ,lQ!a•e~kG ,lG!

3V~kQ̄ ,lQ̄!C~kQ ,kQ̄ ,kG!. ~52!

The color part of the wave function is given byTi Q ,i Q̄
a , and

for the orbital wave function we will take a Gaussian ans

C~kQ ,kQ̄ ,kG!5exp„2~kQ
2 1kQ̄

2
1kG

2 !/b2
…. ~53!

The expression fordmg is then given by

dmg5dmg~ uqu!5dmg,so f t1dmg,hard , ~54!

with

dmg,so f t52
CF

EC2EV
E dk

~2p!3

3
d~ uk2qu!C~k,q,k2q!/uCu

Av~ uq2ku!

3@skcq2I ~k,q!cksq#E dp

~2p!3

dl

~2p!3

3
d~ u l2pu!C* ~p,l,l2p!/uCu

Av~ u l2pu!

3@11spsl1I ~p,l!cpcl#, ~55!

dmg,hard52CFE dk

~2p!3

d2~ uk2qu!
uq2ku

3
@12CLF

~k,q,k2q!#

uku1uqu1uk2qu

3@skcq2I ~k,q!cksq#. ~56!

Here
09600
z

I ~k,q![
~ uku21uqu2!k̂•q̂2ukuuqu@11~ k̂•q̂!2#

~k2q!2 , ~57!

uCu25E dp

~2p!3

dl

~2p!3uC~p,l,l2p!u2@11spsl1I ~p,l!cpcl#,

~58!

andCLF
given by Eq.~53! with b→LF so that 12CLF

cuts

off hard QQ̄G contribution for energies belowLF .

UV behavior and renormalization

Before analyzing the full gap equation and in particu
the effects ofdmg , we shall first discuss the IR and UV
behavior in the BCS approximations. The BCS approxim
tion to the chiral gap has been studied earlier for vario
model approximations toVe f f . Most of them use an effective
potential which is regular at the origin, e.g., a pure line
potentialVe f f(r )5br @3,5# or a harmonic oscillatorVe f f(r )
5kr2 @4#. For such potentials the gap equation is finite in t
high momentum limit and no renormalization is require
This is not the case if the potential has a Coulomb com
nent withVe f f(r→0);a/r anda being either a constant o
a running couplinga→a(r );1/ln(1/r ). The BCS quark gap
for potentials with the Coulomb tail was studied in Re
@6,17# and Ref. @10#. The gap equation used in Ref.@6#
would be identical to one used here ifdmg were set to zero
~e.g., the BCS approximation!. Instead, in Ref.@6# an energy-
independent interaction motivated by a transverse gluon
change was added. In Ref.@6# it was argued that, in the chira
limit, the resulting gap equation, could be renormalized
introducing a single counterterm representing the wave fu
tion renormalization. Starting from the Coulomb gau
Hamiltonian this would arise if the free quark kinetic ener
term was replaced by a renormalized one:

E dxc̄~x!@2 ia•¹c~x!#

→Z~L!E dxc̄~x!@2 ia•¹c~x!#L . ~59!

The explicit, UV cutoff-L dependence regularizing the k
netic operator can be introduced, for example by field sme
ing, however, the regularization procedure becomes ir
evant once the resulting gap equation is renormalized.
unrenormalized BCS, gap equation~without effects from
transverse gluons! is then given by

Z~L!m~ uqu!5
CF

2
EL dk

~2p!3 Ve f f~k2q!
m~k!

Ak21m2~k!

2
CF

2
EL dk

~2p!3 Ve f f~k2q!k̂•q̂

3
uku

uqu

m~q!

Ak21m2~k!
, ~60!
6-9
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where we have defined theconstituentmass, m(uku) by
m(uku)[ukutank . The renormalized equation is obtained by
single subtraction, i.e., by fixing theL-independent solution
m(uku), at a specific value ofuqu5uq0u. This leads to a (L
andq0-independent! renormalized gap equation:

m~ uqu! lim
L→`

@ I m~ uq0u,L!2I Z~ uq0u,L!#

5m~q0! lim
L→`

@ I m~ uqu,L!2I Z~ uqu,L!#, ~61!

I m~ uqu,L![
CF

2
EL dk

~2p!3 Ve f f~k2q!
m~k!

Ak21m2~k!
,

I Z~ uqu,L![
CF

2
EL dk

~2p!3 Ve f f~k2q!k̂•q̂
uku

uqu

m~ uqu!

Ak21m2~k!
.

~62!

Whenever possible we will also use the notationI (uqu)
[I (uqu,`). We will now show that this equation does n
have a well behaved, nontrivial solution vanishing asym
totically in the large momentum limit, as it was assumed,
example in Ref.@6#. Before we do that first we need to tak
care of the possible IR divergences which appear in the
tegrals whenk→q. In this limit Ve f f(k2q) is highly diver-
gent, reflecting the long range nature of the confining in
action, e.g.,Ve f f(k2q)}1/(k2q)4 for the linear potential.
The gap equation, however, is finite due to cancellation
the numerators betweenI m andI Z . To make individual inte-
grals well behaved we can split the IR and UV parts ofVe f f
defining

VIR~k,M ![u~M2uku!Ve f f~ uku!,

VUV~k,M ![u~ uku2M !Ve f f~ uku!, ~63!

sinceVIR(k,M )1VUV(k,M )5Ve f f(k) and the gap equation
is independent of the parameterM and we will not write it
explicitly. The gap equation becomes

m~ uqu!5
1

A1B~ uqu! @ I m
IR~ uqu!2I Z

IR~ uqu!1I m
UV~ uqu!#,

~64!

where

A5A~ uq0u!5
@ I m

IR~ uq0u!2I Z
IR~ uq0u!1I m

UV~ uq0u!#
m~ uq0u!

~65!

and

B~ uqu!5B~ uqu,uq0u!5
I Z

UV~ uqu!
m~ uqu!

2
I Z

UV~ uq0u!
m~ uq0u!

. ~66!

For givenq0 , A is a constant andB is a function ofq, and
bothA andB are well defined. InA the IR divergences cance
betweenI m

IR(uq0u) and I Z
IR(uq0u), and I m

UV is finite if m(uqu)
→0 asq→`. In B each term is IR finite and the UV diver
09600
-
r

-

r-

f

gences cancel between the two terms in Eq.~66!. It is easy to
show that foruqu@M ,uq0u the functionB(uqu) behaves as

B~ uqu!→2CF

a

3p
logq2 ~67!

for Ve f f(uku)→4pa/uku2 as uku→`. If a is replaced by a
running coupling then uB(uqu)u grows with uqu like
log logq2. From Eq. ~64! it thus follows that for some
uqu/uq0u@1, A1B(uqu) changes sign and therefore the equ
tion is undefined. This also remains true if an addition
transverse potential is added as done in@6#. In this case the
argument of integrals defining functionB(uqu) becomes

k̂•q̂
uku
uqu

VUV~k2q!→ uku
uqu @VUV~k2q!k̂•q̂

12I ~k,q!VT
UV~k2q!#. ~68!

For VT(k)54pa/(k21const)~as used in Ref.@6#! the addi-
tional transverse potential does not contribute to the logq2

~or log logq2) behavior ofB(uqu). In our case there would
be a similar contribution arising from the hard part of t
gluon exchange given bydmg,hard . At large uqu it adds a
positive 1CF(a/12p)logq2 contribution to B(uqu) and
therefore does not cause problems on its own but at the s
time does not eliminate the singularity from the Coulom
potential since the net effect is such thatB(uqu)→2` as
uqu→`.

The problems with the renormalized gap equation for
Coulomb potential are illustrated in Figs. 7 and 8. In this t
case we simply take

Ve f f
test~k!5VIR~k!1VUV~k!

5
1

CF

8pb

k4 1
4pa

k2 log~k2/mg
212!n . ~69!

FIG. 7. Solution of the gap equation for the test potentialVe f f
test

given by Eq.~69!, with a51, andn50,1,1/2,3/2. The three uppe
lines correspond ton50, and the next three ton51, n51/2, and
n53/2, respectively.
6-10
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For the string tension,b50.24 GeV2, a50.1, andn50 this
gives a good fit to the lattice data as shown in Fig. 6.

In Fig. 8 we show the functionB(q) calculated from a
numerical solution to the gap equation, Eq.~64!. SinceVe f f

test

is already given by a sum of two terms, one dominating
the IR and the other in the UV the componentsVIR andVUV

can be defined as the linear and the Coulomb piece res
tively. If n.1 there is no renormalization required and t
gap equation is given by Eq.~60! with Z51. The n53/2
case corresponds to an approximate analytical solution
Ve f f discussed in@14# and is also close to the exact, nume
cal solution given by Eqs.~43!. The solution of the gap equa
tion, m(q) for n53/2, is shown in Fig. 7 by the lowest lin
~boxes!. The functionB(uqu) corresponding to this case
shown in Fig. 8 by the upper solid line~at largeuqu), which
asymptotically approaches B(uqu)→const
22CFa/„3p log(q2)… as uqu→`. We then take this solution
to set the value ofm(uq0u5mg5600 MeV) and solve the
renormalized gap equation, Eq.~64!, for n51, n51/2 and
n50. The asymptotic behavior at largeuqu of B(uqu) for
these three cases is given by

B~ uqu!→5
2CF

a

3p
log log~ uqu2!, n51,

22CF

a

3p
log1/2~ uqu!, n51/2,

2CF

a

3p
log~ uqu!, n50.

~70!

The corresponding solutions to the gap equation are sh
by the five upper lines in Fig. 7. The highest three cor
spond ton50 case and their splitting indicates that the n
merical procedure has not converged into a unique solut
These three solutions correspond to three different cutoffs
the maximum momentum, uqumax510mg ,100mg and

FIG. 8. FunctionB(uqu) calculated for the test potential,Ve f f
test.

The lines~from top to bottom at highuqu) correspond ton53/2,
n51/2, n51, andn50, respectively.
09600
n

ec-

or

n
-
-
n.
n

1000mg . The other two lines correspond to solutions forn
51/2 andn51, respectively. In these two cases the sa
three values for the momentum cutoffs were used and ap
ently in both cases a cutoff independent solution h
emerged. This occurs because, forn51/2 andn51, uB(q)u
grows very slowly and in practice the zero of the denomin
tor in Eq. ~64! is not crossed. This test calculation was p
formed with unphysically largea51. For a&0.5 numeral
computations, which always have a built-in finite upper m
mentum cutoff, converge foruqumax as large as 106mg .

It is clear that the problematic UV contributions origina
from the need for wave function renormalization. This pro
lem has been resolved in Ref.@10# using an effective Hamil-
tonian with perturbativeO(g2) contributions calculated via a
similarity transformation@23#. In that approach, in addition
to the Coulomb and transverse gluon contributions to the
equation,dmC anddmg,hard , there was also a modificatio
of the single particle kinetic energy. The additional contrib
tion to the gap equation viadm0 cancels the loguqu term from
B(uqu) and results in a well defined equation. The disadv
tage of that approach however, is that it is restricted to
free rather than BCS basis and so far it has not been ge
alized beyond perturbation theory.

The resummation of the leading UV contribution to th
Faddeev-Popov operator and the Coulomb kernel has the
fect of softening the UV behavior@cf. Eqs.~44!, ~45!# and at
the potential BCS level,Ve f f , given in Eq.~43! leads to a
finite gap equation without need for any additional, e.
wave function renormalization counterterms. Furtherm
the e2S method enables us to include effects of transve
gluons with a well defined energy dependence. The la
momentum contribution from theQQ̄G cluster,dmg,hard ,
still requires renormalization through the wave functi
counterterm. However, as discussed above since it lead
B(uqu) which is positive at largeuqu the renormalized gap
equation is well behaved.

Below we summarize the numerical results for dynami
chiral symmetry breaking obtained with the potentialVe f f

given in Eq.~43! including the effects of theQQ̄G clusters.

IV. NUMERICAL RESULTS

We will now discuss the numerical results obtained us
the potential in Eq.~43!. As described in Sec. III, this poten
tial arises in the Coulomb gauge at the orderS(2) and is not
modified by theQQ̄G contribution to the ground state
Therefore to then53 order of truncation of the cluster ex
pansion, considered here, we have a self-consistent t
ment.

The results for the quark mass gap function are sum
rized in Fig. 9, and for the condensate in the text below.

The BCS potential contribution to the gap equation,dmC ,
is split into IR and UV parts by settingf (k)505d(k)50
for uku.mg anduku,mg respectively. For the pure IR poten
tial ~dashed line in Fig. 9! the gap function,m(q), is below
100 MeV for low uqu,mg and it vanishes rapidly~as 1/uqu4)
at highq. The addition of the UV component of the potentia
i.e., the Coulomb tail with the 1/log(q)n,n.1 UV suppres-
6-11
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sion, does not change much the low momentum behavio
m(uqu). It actually decreasesm(0) to about 75 MeV, but it
increases the high momentum tail, overall leading to
change in the^Q̄Q& condensate which stays at abo
2(111 MeV)3.

Thedmg contribution depends onb which sets the size o
the soft wave function,LF , which divides between the so
and hard one-gluon intermediate states, andEC2EV which
determines the energy of the low gluonic excitations. As d
cussed earlier it is reasonable to setb;0.2 GeV andLF

;1.5 GeV. As for the energy of the softQQ̄G state we take
EC2EV5mg , which we expect to be close to the low
bound and would therefore give the upper limit on theQQ̄G
contribution. The effect of the hard one-gluon-exchange c
tribution, defined bydmg,hard , is to increasem(q) yielding
m(0);80 MeV and enhancing the condensate,^Q̄Q&5
2(150 MeV)3. The solution to the gap equation includin
dmC and dmg,hard is shown by the second to lowest sol
line in Fig. 9.

As mentioned above, the gap equation withdmg,hard re-
quires renormalization and we have simply setZ51 at L
5uqmaxu. No effect on the solution could be observed usi
any of the three values ofuqmaxu given previously. This is
analogous to the test case discussed earlier.

The full effect of theQQ̄G sector, including the soft con
tribution, parametrized bydmg,so f t with the factorization
scale b in the range between 0.1 GeV and 0.4 GeV a
LF5122 GeV is shown by the shaded region. The low
limit corresponds tob50.1 GeV andLF52 GeV and yields

^Q̄Q&52(140 MeV)3; for the upper limit b50.4 GeV,
LF51 GeV and̂ Q̄Q&52(190 MeV)3. The addition of the

FIG. 9. Solution to gap equation. The dashed line is a solu
with the IR part of the potential~linear potential! only. The lowest
solid line comes from a solution using the full static potentialdmC .
The next higher solid line includes the static potential and the h

gluon dmg,hard contribution from theQQ̄G sector calculated for
LF51.5 GeV. The shaded region corresponds to the full solu
with 0.1 GeV<b<0.4 GeV, and 1 GeV<LF<2 GeV.
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soft gluon intermediate state brings both theconstituent
quark mass and the condensate significantly closer to p
nomenologically acceptable values.

An alternative simple parametrization of the soft glu
contribution would be to replace it by an effective local o
erator, by expandingdmg,so f t in powers ofuku/mg . The low-
est dimension operator has the structure

dV52
C

mg
2E dx@c†~x!a ic~x!dT,i j ~“x!c

†~x!a jc~x!#b ,

~71!

with C being a dimensionless constant, the 1/mg
2 scale arising

from the product ofEC2EVBCS
, v(0)5mg and the operator

being related by the factorization scaleLF . The appearance
of these two scales is quite natural. Since the operator ar
through elimination of part of the Fock space the over
scale is given by the excitation energy of the eliminated s
tors and the momentum cutoff comes from the spatial ex
of the excited state wave function. Such a simple, local
proximation of the softQQ̄G exchange was considered pr
viously in Ref.@24# where it was shown that such an oper
tor was indeed relevant to chiral symmetry breaking effec
e.g., the condensate and thep2r mass splitting.

V. SUMMARY

In the canonical approach to QCD based on the Coulo
gauge the confining interaction between color char
emerges regardless of their type, i.e., light or heavy qua
This particular manifestation of confinement, as origina
suggested by Gribov, is a consequence of the gauge fi
and it can be obtained in a variational~mean-field! approach.
The gauge fixing makes the wave functional vanish outsid
bounded region in the transverse gauge field space—the
damental modular region and the mean-field enables u
derive a self-consistent 0th order estimate of the propertie
the ground state. One important feature of the QCD vacu
is that it breaks chiral symmetry and leads to the constitu
representation. The gluonic mean field enhances the qu
antiquark attraction at large distances. It thus becomes e
getically favorable to promote quarks above the Dirac-Fe
sea and thereby create a condensate. However, the exte
chiral symmetry breaking generated in the mean-field
proach, as measured by the scalar quark density or as c
pared to the phenomenological constituent quark mode
too small. In this paper we have addressed the role of
namical ~beyond mean-field! transverse gluons in this pro
cess. We have shown that the naive inclusion of the sh
range part of theQQ̄ potential leads to instabilities in th
quark gap equations which cannot be renormalized away
contrast a systematic resummation of the leading IR and
corrections to the bare Coulomb kernel leads to an effec
interaction@Eq. ~43!# which is consistent with the variationa
treatment and the gap equation. Using the linked cluster

n

rd

n
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pansion we have estimated the role of three-particle,QQ̄G
correlations in the vacuum, and shown that they are ind
important, in particular their low momentum componen
Even though we have not used the exact solution descri
the softQQ̄G state our results are expected to be close to
upper bound for the non-BCS contribution to the chiral co
densate and are consistent with previous studies.
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