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Spontaneous chiral symmetry breaking in the linked cluster expansion
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We investigate dynamical chiral symmetry breaking in Coulomb gauge Hamiltonian QCD. Within the
framework of the linked cluster expansion we extend the BCS ansatz for the vacuum and include a correlation
beyond the quark-antiquark pairing. In particular we study the effects of the three-body correlations involving
quark-antiquark and transverse gluons. The high momentum behavior of the resulting gap equation is discussed
and a numerical computation of the chiral symmetry breaking is presented.
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I. INTRODUCTION spect to the perturbative vacuum are replaced by quasiparti-
cle excitations of the chirally noninvariant ground state. Re-
Chiral symmetry plays a major role in constraining thesidual interactions correlate the quasiparticles to form
spectrum of low energy QCD. At zero density it is spontane-composite hadrons in which each valence quasiparticle con-
ously broken and the associated Goldstone bosons dominaigbutes kinetic energy of the order of a few hundred MeV.
the low energy, soft hadronic interactions. The quark-gluorThis is analogous to the constituent quark model representa-
interactions which in vacuum break chiral symmetry may, intion of hadrons and therefore it might be possible to further
dense matter, e.g., in the interior of neutron stars, lead teonstrain quark model phenomenology from a first principles
other, novel phases of the quark gluon plagfdaThe chiral QCD based analysis of dynamical chiral symmetry breaking.
properties of the QCD vacuum at zero temperature and den- Since the quark model picture calls for a Fock space rep-
sity have been extensively studied in various approaches tgsentation it is most natural to consider a canonical, time-
soft QCD[2-6]. In principle one could investigate it using independent formulation of QCD. Coulomb gauge QCD of-
lattice gauge methods. However, extrapolations of latticders such a framework9—11]. In the Coulomb gauge the
simulations to small quark masses 4<50-100 MeV(chi-  single particle spectrum contains only physical degrees of
ral extrapolation still present a major challenge. In ap- freedom, i.e., two transverse gluon polarizations. As long as
proaches based on a Dyson-Schwinger formulation of QCDthe gauge fields are restricted to the fundamental modular
dynamical chiral symmetry breaking can be studied by anaregion, with no Gribov copies, the Hamiltonian is positive
lyzing the behavior of the quark propagator. Recentlydefinite, leads to a continuous time evolution, and is ame-
progress has been made in understanding the infrared strugable to a variational treatment. Finally the Coulomb gauge
ture of various contributions to the Dyson-Schwinger equaformulation leads to a natural realization of confinement
tions in the Landau gaudé&]. This may help identifying a [12,13,11. This arises because elimination of the non-
truncation scheme of the Dyson-Schwinger set of equationghysical degrees of freedom through the gauge choice,
relevant for phenomenological studies. Even though in a maV-A=0 results in an effective, long ranged instantaneous
jority of studies model interactions have been used so far, th#teraction between color charges. This interaction is the ana-
approach gives a good description of the low energy phelog of the Coulomb potential in QED. In QCD however, the
nomenology. In particular it enables us to correctly predictcolored Coulomb gluons can couple to transverse gluons
many of the static properties of the low lying mesons andeading to a Coulomb kernel which also depends on the dy-
baryons, i.e., masses and charge moments, and simultaamical gluon degrees of freedom. As shown in Ré&#]
neously account for the dynamical chiral symmetry breakingsummation of the dominant IR contributions to the vacuum
as measured by the vacuum expectation value of the scal@xpectation value of the Coulomb operator results in a po-
quark density{ )~ — (250 MeV)? [8]. This value follows tential between color charges which grows linearly at large
from PCAC (partial conservation of axial vector currgnt distances in agreement with lattice calculatigh§]. g
Goldstone’s theorem and current algebra which results in the [N @ Self-consistent treatment the same potential modifies
Gell-Mann—Oakes—Renndor Thouless theorejmrelation,  the single gluon spectral properties and leads to an effective
—2my(¢y)=12m? . Here,m;~5-10 MeV is the current _masls for quasigluon e_xgltat|0n@|(5(_30—80|0 (lse\_/), W_?L]Ch
light quark mass, renormalized at the hadronic scale, is also in agreement with recent lattice calculations. The ap-
—93 MeV is the pion decay constant and. is the pion pearance of the_ gluon mass gap can be usgd_ to justify the
mass. Without explicit chiral symmetry breaking,=0, the implicit assumption of the quark model tha’F mixing betweeq
' ) it ng,=", valence quarks and Fock space sectors with explicit gluonic
above relation cannot be used to deterriihg/). However,  excitations is small. We will return to this point in Sec. III.
asmy— 0 no phase transition to a chirally symmetric state is  The Coulomb gauge formulation provides a very natural
expected, and thereford ) —(200-250 MeV§ should  starting point for building the constituent representation in
still be a good estimate for the condensate in the chiral limitaccord with confinement and dynamical chiral symmetry
Spontaneous chiral symmetry breaking enables us to pudreaking. However, as it was noticed some time ago in the
the constituent quark representation of hadrons on a firnCoulomb gauge the simple BCS treatment of the vacuum is
theoretical ground. The bare quark states defined with renot sufficient to generate the right amount of chiral symme-
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try breaking. In particular if a pure linear potential is used,whereD is the covariant derivative in the adjoint represen-

V(r)=br with b~0.2-0.25 Ge¥ as determined by lattice tation, and the(x,al- - -|y,b) matrix element is given by

calculations one typically obtaif€gy)|Y3~100 MeV, i.e., (X,alDly,b)=[ 5"V, +gf *®PA%(x)]6%(x~y), and (x,a|1/

too small by a factor of tw@6,3,5. The short range part of V?|y,b)=—1/4m|x—y|. The V,q is the quark-transverse

the Coulomb potential requires proper handling of UV diver-gluon interaction,

gences and renormalization and in most recent studies has

been ignored. As will be shown later, it does significantly _

enhance the condensate and we will argue that the missing Vog= —gf dxy () - A(x), ®)

contribution can be accounted for by three-particle correla-

tions on top of the BCS-like, particle-hole vacuum. Finally and V34 and V,4 represent 3- and 4-transverse gluon cou-

we should mention that while in the Coulomb gauge confinplings arising from the non-abelian part of the magnetic

ing gluon configurations have direct implications for chiral field, B®=V x A%+ g faP°AP(x) X AS(x). Finally H,, con-

symmetry breaking the role of topological effects is not yettains terms which come from a commutator of the determi-

well established. In the Coulomb gauge these arise from nomant of the Faddeev-Popov operatgiDet(V - D) and the

trivial restrictions on the vacuum wave functional at thegluon canonical momentudi. The detailed analysis of this

boundary of the fundamental modular regidr8]. Hamiltonian, emergence of confinement and issues related to
The paper is organized as follows. In Sec. Il we brieflyrenormalization in the gluon sector were discussed in Ref.

discuss the canonical Coulomb gauge formalism and thg14].

linked cluster expansion which enables us to include multi- QCD canonically quantized in a physical gauge, e.g.,

particle correlations into the many-body ground state. WeCoulomb gauge, results in a Hamiltonian that can be repre-

will derive the resulting contributions to the mass gap includ-sented in a Fock space defined by a set of single particle

ing up to three-body correlations. The formalism is suitableorbitals. Denoting creation and annihilation operators for

for handling both zero and finite density system and in thishese single particle orbitals for quark, antiquark and gluons

paper we will focus on the former. In Sec. Ill we discuss thecollectively bya ,a; the general form of the Hamiltonian is

approximations and possible sources of UV divergences angiven by

their renormalization. The main numerical results are pre-

sented in Sec. IV and our conclusions and outlook are given

in Sec. V. H=HotV=2 eala+V(al.a), (6)
Il. COULOMB GAUGE HAMILTONIAN AND THE with Hg being the diagonal part df. In principle, since the
LINKED CLUSTER EXPANSION Fock space is complete, one can use E).to obtain the
The full, unrenormalized Coulomb gauge HamiltonianMatrix representation aff which could yield the exact en-
has the following structurfl1,14,16,17F ergy ellgenvalues..ln practice, 'however, sihcenixes states
with different particle occupations an eigenstatetHbfwill
H=Ho+Hc+ Vgt VagtVag+Heorr - (1)  include states with an arbitrary number of particles and only
approximate solutions are possible. One needs guidance
HereH, is the quark and gluon kinetic term: from physics to efficiently choose the single particle repre-

sentation and truncation of the Fock space which make con-
tributions to physical observables from omitted states small.
H0=H(g=0):f dxdzT(x)[—i -V + Bm]i(x) One possibility is to choose the single particle basis as
eigenstates of the kinetihoninteracting part of the full
) ) Hamiltonian. The vacuum|0), of Hy is shown schemati-
+J' dx[Tr IL(x)=+Tr (VX A(X))“]. cally in left panel in Fig. 1. Single-particle excitations at zero
density correspond to adding gluons to the positive energy,
2 parton like levels and quark-antiquark pairs by creating a

. . . . . . particle-hole excitation around the zero-energy Fermi sur-
In the following we will restrict our discussion to the chirally face. These excitations have energies given skglk)

symmetric case, i.e., we will set=0. The term denoted by o =~ O .

He represents the interaction between color charges via the €q(K) = VM= +k*, eg(K) =1K| for quarks, antiquarks and

non-abelian Coulomb potential, gluons, respectively. The quark fields in E§) satisfy the
canonical anticommutation relations and the gluons fields are

g2 given by II=I12T? and A=A?T? and satisfy the canonical
chff dxdyp?(x)Kap(X,Y,A)p°(y), (3)  commutation relations for transverse fields, i.e.,
b\ T— _ i sab 3y
where p3(x) = ¢ (x) T2y(x) + F2PTIP(x) - AS(x) is the color [I3(x), A%(y) ] = =1 681(V) 8°(x—y), @

charge density and the kerni€lis given b
g y 9 y where 6t(V)=1-V&V/V2. In terms of the single particle

creation and annihilation operators, the color triplet of quark
y,b>, (4) fields (1=1,2,3) is given by

K A)= ! V2 !
ab(X,Y,A)={ x,a V~_D(_ )V-_D
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______ . 17

~-—— An equivalent description is to consider a variational ap-
N proach in the harmonic basis in the functional representation.
\ The Bogolubov-Valatin, quasiparticle representation is ob-

\

tained by using a Gaussian functional as the variational
ansatz—the BCS ground state. The variational approxima-
tion with the single wave functional can then be systemati-
\ cally improved by including the complete set of wave func-
‘| tionals obtained by successive action of quasiparticle
|‘ creation operators on the Gaussian ground state.

\ The variational(BCS) approach is certainly a reasonable

“ starting point, as guided for example, by the quark model.
\ Furthermore with the full quasiparticle Fock space at hand, it
! can be systematically improved. However, the ultimate suc-

0 oy s & cesses(or failure) of the approach can only be tested by
comparing its predictions with known hadronic observables.
FIG. 1. Schematic representation of the partioé=(b'b) In the following we will discuss in more detail the con-
(solid) and holen"=1—(d"d) (dashedl occupation numbers as a

nection between the partonic and the BCS Fock space and
the inclusion of multiparticle correlations, i.e., extension be-
yond BCS. We will use the formalism of second quantization
and the linked cluster expansion which for technical reasons

dk ) is superior over the functional approach.
vi0= 2 f—s [u(k,\)b(k,\,i)
r==12 ) (2)

function of the single particle energy. Léfight) panel corresponds
to the free(BCS) ground state, respectively.

' A. Linked cluster expansion
+o(=kN)d (=K, i)]e, ®)

Since the Fock space basis generated by the set of single

_ _ _ particle creation operators,, d', a' is complete, the true
whereu andv are the solution of the free Dirac equation for ground state|Q)) of H can be written as

a fermion with massn. The gluon field is given by

. 0)=|1+ 3 Figbldi+ 3 FPalal+ S FgPbldlal
12 12 123
A¥(X)= f—g—ak,)\,aek,)\
0=2, | Zop g lakr@elkd) -
, + > F%OpldIbldi+- - - ||0). (10
+al(—k,n,a)e* (—k,\) e X, (9) 1234
with 0(k) = €2([k]) HereF{) . represent wave functions atbody clusters in
w = g .

) . : the vacuum, and 2,. .. collectively denote quantum num-

l.t IS not exp_ected, howevgr, thqt the partonic basis d(.ebers of single particle orbitals. This expansion is however
scribed above is a goqd starting point to address the phys'.(f%practical since it does not differentiate between connected
of long range correlation in hadrons. Phenomenology InOII'Iinked) and disconnected contributions. For example, at the
cates that it would be desirable to expand hadronic wav -quark—2-antiquark level there are disconnected contribu-
functions in terms of quasiparticles Fock space representin (9999 — (@D (ad
constituents whose kinetic energies are, on average, of tHPns Of the type,Fizz " =F3"F3,", i.e., part of the
order of the hadronic scale. Whéfy. is normal ordered with n-particle cluster contrlbutlon originates from products of
respect to the perturbative vacuul®) one might expect that Smaller,m<n, m-particle clusters. o
the mean field, Hartree-Fock corrections to the single particle "€ essence of the linked cluster expansion is based on
energies could already generate an effective, constitueff® observation that all multiparticle correlation in the
mass. This is not the case. The vacuum is a color singlet ar@found state, including the disconnected ones can be ac-
thus the direct contribution fror . to a single fermion en- counted for by proper resummation of the linked clusters
ergy vanishes. Furthermore, the chiral symmetry of thePnly. This is achieved by writing the full ground state[a9]
Hamiltonian and of the perturbativi) vacuum protects the 10)=e"S0) (11)
exchange term from mass generation. '

The effective mass can only be obtained if quark- .. Shaving the expansion
antiquark correlations are introduced into the ground state as
shown schematically in the right panel in Fig. 1.

A simple realization of a quasiparticle representation is S=E S(n)ZE S(sz)bId;JF% S&%g)aiaﬁ
n

given by the Bogolubov-Valatin transformation of the par- 12

tonic basis. This generates a different, complete Fock space — ——

basis in which the single particle excitation spectruey) ( +2 Si4¥bldlal+ >, Si9%PbldIbld]+ - -,
includes contributions from self-consistent interaction with 123 1234

the vacuum condensate. (12
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with the operatorsS including connected pieces only. Com- disconnected contributions constrained by the connected
paring Eq.(10) and Eq.(12) we find for example that ones. The expansion coefficien&r,‘z),_,n, can be determined
— — from the eigenvalue equation (),

PSP, Fig=sp) o
eHe >|0)=E|0). (14
— — l — —
F39=s{9%17+ 55(1%Q)S(31q), - (13 This equation projected onto the partonic Fock space basis

leads to a set of equations for the amplitué§® , and the
i.e. the general expansion of E(LO) is obtained with all ground state energ¥,, ,

(0]eSHe S|0)=E,,

(41,02, - . .qnq;al, o s .. .E]E;gl,, Oy .. .gng|eSHe*S|O)=O,nq,ng,ng=1,2, e (15)

In a nonrelativistic many-body system the Hamiltonian isas calculated on the lattidd5] and are consistent with ex-
typically a polynomial in the field operators. Since e&h plicit calculation using the BCS gluonic ansatz for the
contains only particle creation operators, the matrix elementslamiltonian[14]. The transformation from the partonic to
of eSHe S between am-particle state and the free vacuum the quasiparticle basis, generated #§, proceeds as fol-
will involve only a finite number of terms arising from the lows. The (unnormalizedl quasiparticle, BCS vacuum
expansion of the exponentials. For example in a typical caséecg is defined as
whenH=H,+V with Hy being a one bodye.g., kineti¢ Q —e 5?9 1
operator and/ a two-body potential one has |Qscg=e 10). 17

1 with

e®He S=H+[SH]+ - + S[S[S[S[SHIII].
(16)

In this case an approximation to E45) is fully specified by

the number of clusters retained$This is, however, not the so that
case for the relativistic system discussed here. The expansion

of the Coulomb kernel leads to an infinite series of operators |Q>:e‘n22 S(”)|QBCS). (19

to all orders in the transverse gluon field. Thus an approxi-

mation to Eq.(15) consists of specifying which clusters are A canonical transformation which maps the set of free par-
kept in the definition ofS and of a truncation scheme for ticle operatord,b,d,d’,a,a’ onto a set of quasiparticle op-

S2)=g(a9) 4 5(99) = % S99p!dl+ % si99alal,
(18)

evaluating matrix elements @°HeS. eratorsB,B',D,DT,«,a" is defined by

The truncation ofSlimits the number of quark-antiquark- —
gluon correlations built into the ansatz for the ground state. B 1 b +E S(l(iq) dt
At first one might think that such a truncation would be hard 1= =" T =2
to justify since any hadronic state, including the vacuum V1+|S49)? 2 N1+[sl9)?
should have a largénfinite) number of partons. However, (4
the first two terms inS, S99 and S99 change the single D,— ! 4> b} S21

particle excitation spectrum and effectively replace the par-
tonic basis with that of massive quasiparticles. This is known

= 2T
\/1+|S(QGI)|2 2 \/1+|S(QQ)|2

as the Thouless reparametrizati@0] and is equivalent to 1 S(gzg)
the BCS ansatz for the vacuum which contains two-body, al:—a1+2 l—a;, (20)
quark-antiquark and gluon-gluon correlations. The BCS an- V1—|S99)2 2 \/1—|SW9)2

satz leads to the chiral gap, constituent mass for the quarks as — R

well as effective mass for the transverse gluons. Iterativavhere|S\A9|25,,=[SADSEDT],, and similarly for|S©9)].
contributions of multiparticle states which determine theThese quasiparticle operators satisfy the canoiélcom-
wave functions of |arger C|uster§(n), n>2 are therefore mutation relatiOﬂS, they annihilate the BCS ground State,
suppressed by the quasiparticle energy gap. This gap is _ _ _

0(400-600 MeV) for quark-antiquark excitations and B1Qscg=D1lsce = a1l Qecs =0, 1)
0O(500 MeV-800 GeV) for a gluonic excitation. The former and generate a complete Fock space. The eigenvalue condi-
follows from the typical constituent quark mass and the latetions for the vacuum, Eq15) can therefore be rewritten in
from the gluon spectrum in a presence of static color sourcethe quasiparticle basis,
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(Qpcde’He ¥ Qpcy
(QgcdQpee

<Q11Q21 L -QnQ;al’ 162/ ’ e '6na;Gl”1G2”1 L 'GnG|eSHe7S|QBCS>=O! nQ1n67nG=lazy teen (22)

:EQ'

Here the operator S contains contributions from The lowest ordefin the loop expansiondiagrams are shown

3-quasiparticle cluster and higher, on the left side of Fig. 2. The matrix element
(QgcdH|Qgco defines an effective potentidlgs(x—Y),
ey by
S=> S9°BIDIal+---. (23
23 Sab
Veff(X_y)EgzNza_1<QBcs]Kab(X,y,A)|QBcs>-
C

The matrix element§{? . can be related t&7Y by re- (25)
placing the free particle operators by the quasiparticle opera- ) . . ] ] ]
tors. From the structure of ER0) it follows that for given It is straightforward to identify diagrams which give the

n the operator&™ are a linear combination & including ~ dominant /Acontribugo?‘ 0 Verr in /AbOth theh IR
i=<n. Since Eq.(20) defines a canonical transformation the (|x_—y|>1 qco) and the UV (x—y|<1 \oco)- In the IR
two sets of equations, Eq15) and Eq.(22) are equivalent region these are given by diagrams which, at a given loop

and one can simply use the latter, i.e., work directly in theorder, contain the maximum number of soft potential,

quasiparticle basis without referring to the partonic basis. Aé(x’ﬁ/'o) Iinesl;)the ?V region i_ls:hdomin'atedfby IOOdeWith tge
suggested by the quark model it is preferred to represent lowy"a//€St number of vertices. The series of ring and rainbow

energy QCD eigenstates in terms of quasiparticle, quark ani29rams, shown in Fig. 2, accounts for the leading IR and
gluon excitations. From now on we will consider the matrix UV contributions 10Veyy, respectively. The approximation

~ . N . ... can be systematically improved by taking into account the
elements ofS |n~the quasiparticle basis and for simplicity subleading contributions, e.g., vertex renormalization
rename them aS(™— S, [14,17.

We emphasize that Thouless reparametrization is simply a | |arger clusters inS are retained, the expansion of
change of basis and E€L9) is exact. The quasiparticle rep- ¢SHe~S generates operators that have nonvanishing matrix
resentation is however expected to be more efficient for exglements between the vacuum and states with an arbitrary
pressing a hadronic state and one of the goals of this pap@irge number of particles. This occurs because as loig§as
will be to test this assumption by studying effects of quasi-contains a gluon operator an infinite number of commutators,
particle correlations in the vacuum. [SM [SM[---[SM H]---]]] are nonvanishing. Their con-

As mentioned earlier, in QCD, witB=X,S" truncated  tributions arise from contracting gluons from ea@# with
at some maximah, Eg. (22) still contains an infinite number - glyons from the Coulomb operator. For example a terrs in
of terms arising from the expansion efHe . Since this  \hich contains pure glue operatdiso quark or antiquak
(infinite) series is related to the multigluon structure of theyjj| contribute to any matrix element in Eq22) with any

Coulomb operatorK(x,y,A), it can be organized according nymber of particlesgluong. This is illustrated in Fig. 3 for
to how each of the terms renormalizes the Oth order Cous(39) |t is clear, however, that this type of correction has the

lomb potential K ,,(X,y,0)= 8,,/47|x—y|. To illustrate this
consider truncating at n=2. The left-hand sidéLHS) of
the first equation in Eq22) reduces to the expectation value
of H in the BCS vacuum,

(Qpcde®He N Qpcd=(QpcdH|Qpey). (24)

:} | FIG. 3. Example of contributions tpS™,[SM[-.-[S™ H]
111, for S=S%99andH=H. The two diagrams contribute to a
FIG. 2. Afew lowest order contributions ¥,¢;. The two right-  matrix element withng=2 and ng=4, respectively. Here the
most diagrams represent diagrams in the ring and rainbow seriedashed line represents the Coulomb potential dressed by the BCS
The dashed line stands for the Oth order Coulomb potegfiki, corrections, Eq(25), e.g., through resummation of the ring-rainbow
=g?lAm|x—y|. series shown in Fig. 2.

T
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|

FIG. 4. Operators from Eq28) which contribute to matrix elemen{sig,ng,Ng|- - - [Qgcs for ng<1, ng<1 andng=<2. As in Fig.
3, the potentialdashedl line is theV,; of Eq. (25). The matrix elemens(??® corresponds to the rightmost vertices.

effect of simply renormalizingV/q¢;, beyond the BCS-like (Q Q
contributions shown in Fig. 2. Since the operatsf¥d com- 12
mute with each other one possibility is to consider the effectE,

Qo) - 5100)
|e® Qe =0. (27)

his equation determines single particle orbitals and there-
ore it also gives the quasiparticle spectrum \éad;,
=(Q1|H|Q,). There are a finite number of terms contribut-

of the pure gluon operators first, generate the new effectiv

interaction and then introduce clusters which contain quar

and antiquark operators. Sinkkis a finite order polynomial ]

in the quark operators, each termSrcontaining only quark ing to Eq.(27):

and antiquark operators will lead to a finite number of terms 1

in a matrix element between the BCS vacuum and a multi- _ ~ (QQG) 1 a(QQG) 1 o(QQG)

particle state with a fixed=ng+ng+ng. 0=(QuQe|H+[S™EHHI+ 5718 [SR99.H]]
To summarize, the linked cluster expansion of the QCD

ground state is much more complicated than in a typical + i[5<oae> [S(QGG) [5@6@) H111|Qgco. (29

nonrelativistic many-body problem. Nevertheless it can be 3! ' ' ’

used to systematically improve the BCS approximation. It is

important to notice, however, that the BCS ground state alThe series is finite because starting a([S(QQG)]Al

ready probes the non-Abelian multigluon dynamics via~[B'D']*) commutators will produce operators which have
(QgcdK(x,y,A)|Qgcg). In BCS this leads to an effective at least 2-quark and 2-antiquark creation operators and these
interaction which is very close to the potential between colok anish betweeqQQ| and |Qsced). Some of the contribu-
sources and when treated self-consistently leads to a quasjgns to Eqs.(28) and (29) are shown in Fig. 4. In order to

particle (constituenk representation. solve Eq.(28) and determine the single particle basis, it is

necessary to first solve for the amplitug&2?®). This am-

B. QQG contribution to the quark mass gap plitude can be obtained by projectiﬂé(QQG)He_S(QQG) onto

In the following we will concentrate on dynamical chiral the three particle cluster,
symmetry breaking and therefore consider vacuum proper-
ties in the quark sector. _ _ 1 _ _
As mentioned earlier the BCS mechanism of quark- (Q1Q2G3|H+[SQ%®) H]+ E[S(QQG),[S(QQG),H]]
antiquark pairing seems to be insufficient to account for the '
full dynamical symmetry breaking. We will discuss this point 1 — — —
quantitatively in the following section. Our interest here is in + g[S(QQG)ﬁ[S(QQG),[S(QQG),H]]]|Qscs>=0,
extending the BCS approximation by including the effects of '
the next to leadingbeyond BC$ order in the cluster expan- (29)

sion, i.e., the 3-particle cluster contribution to the vacuum.
We will therefore study which also contains a finite number of terms. The two equa-

tions Eq.(28) and Eq.(29) form a set of coupled nonlinear,

S-SQW= 36 )BID}al. (26)  integral equations for the amplitud&?9® and the single
123 particle orbitalslor the BCS angle, Eq20)]. In this paper
we will simplify these equations by linearizing them with

The quark gap equation follows from respect toS(Q9®). Equation(29) then yields
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]
|
|
8m0 om

— 1
SQ®)|Qgcd=2 |n) E_E
n n Q

BCS

(30

(nH|Qpcy-

ng|n> is the set of eigenstates éf in the three particle
QQG subspace,

HIn) = (Eq—Ea, JIn). @Y

The contribution from&(Q2%) to the quark gap in Eq28) is
then given by

512Q§ng<Q162|[S(QQG)aH]|QBCS>

_ 1
= _; <Q1Q2|H|n>ﬁ<an|QBCS>-

BCS

(32

Here, 61, symbolizes the product of alf functions which

restrict the quantum numbers |@162> to be the same as of
the vacuum. With inclusion odmy the gap equation can be
written as

0= dmy+ dmc+ émy, (33
where the BCS part is given by
8120l dMo+ 8Mc]=(Q1Q,H|Qgce)
=(Q1Qa/Ho+Hc[Qpcy.  (39)

PHBICAL REVIEW D 66, 096006 (2002

FIG. 5. The three contributions
to EqQ.(33). dmy is determined by
the kinetic term,dmc by Vs,
and émy is the contribution of the

QQG cluster.

This can simply be done by noticing that in the quasiparticle
basis the field operators become

()= E f

[U(K,\)B(K,\,i)

V(—k,)\)DT(—k,)\,i)]eik'X, (37)
where the quasiparticle spinotsandV are given by
1 (E+M)x(>\))
UKk\)= —— R
V2E(E+M)\ Ac-Kx(\)
V(=k\)= ——= AT , (39
2E(E+M) | (E+M)x(N)
with E=E(|k|]), M=M(k|)=Esin, and A=A(|k|)

=E cog. Here we have introduced an arbitrary function
E(k) to make the expression for the single quasiparticle
wave functions analogous to those of free particles, but it is
clear thatU andV do not depend ok but only on the chiral
angle.

Similarly for the gluon fields we have

2 S(gg)alaz_z f 35(99)(|k| aT(k \,a)

xa'(—k,\,a) (39

The three contributions to the gap equation are illustrated n"?‘”d in terms of the quasigluon operators the fields are given

Fig. 5.
In the next section we will write down the explicit form of
the gap equation and discuss the numerical solution.

IIl. QUARK MASS GAP

From translational, rotational and global color invariance

of the vacuum it follows that for each quark flavor,

2

2, si§¥bid;= SA9(|k)b' (kg i)

q q qq (2 3
[0kl az6i, -0 (—kAqiig).  (35)
The chiral angle is given bjcf. Egs.(20)],
tan=tangq(|k|) = 25t _ 25D 2. (36)
1—|sw2  1—(S9(k]))

To evaluate the matrix elements in Eg2) the Hamiltonian

by
A= 3 [ o= akn etk
21 ) (2m)° 2ok
+al(—k,\,a)e* (—k,\)]e (40)
with
o([k|)=|Kk|(cosh+sinhy), (41)
and
tanh= tanhyp(|k|) = 1iT§99;|2: 1f(SQSZ(Q|(I|<l|<)|)2 (42

TruncatingS at theQQG level leads to uncoupled gluon and
quark gap equations. The gluon gap equation was studied in
Ref.[14]. The gluon gap functiom(|k|) was determined by
the matrix element of the Coulomb operator in the BCS

needs to be expressed in terms of the quasiparticle operatoksacuum, which in turn was self-consistently determined by

096006-7
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20 T T T T

smo= dmo(|al) =|asiny, (47)

15 | ] and

ome=émc(|ql)

Ce( dk . .
=- TJ‘ erffdk_Q|)[S'WC°§1_k‘q5chos<]'

(48)

The new contribution to the gap arising from tREG
cluster contains matrix elements ldfevaluated between the
BCS vacuum and a three particl@QG state or between
QQG andQQ states. Only,, andH¢ contribute to those
and they are of orderO(g~(d(|k|))) and O(g®
~(d3(|k|))), respectively. As discussed in R¢L4] the lat-
ter is a type of vertex correction and is expected to be a small
0O(10-20%) correction to a@(g) contribution fromVg.

FIG. 6. Comparison of the lattice results for the ground stateTherefore we will not further include it her&his is also
potential between two stati8 and 3 sources and the fit v, ~ Consistent with the ring-rainbow approximationMgyy). The
given by Eq.(43) (solid line), and to the test potentialy; of Eq.  final expression fopm, also require®Q QG wave functions,
(69) (dashed ling Lattice data(boxes come from Ref[15]. i.e., the eigenstates dfi,+Hc projected onto theQaG

states. In this work we do not attempt to solve this eigen-
Rialue problem; instead we will approximate the sum over
3-particle intermediate states by

fy (CeVonlr) — CrV. (2}

L
o

0 2 4 6 8 10
r/ry

the gluon mass gap. It was found that a good analytical a
proximation toVq¢i(x—y) [cf. Eq. (25] is, in momentum
space, given by

1
f(k)d?(k) 2 n) (| = V) = (V|
Ver(k)= k2 (43 n En=Eoges Ev—Eages
whered(k) is the expectation value of the Faddeev-Popov + 72 |QQG)
operator and is approximately given by QQG.(Eqae~Eaped=AF
mg | > X ———(QQQ| (49)
SS(M) for |k|<myg, Eoge— Eny.. ,
0g(2.41) for |k|>m i.e., we approximate the sum over the complete set of eigen-
“\log(1.41+| k|2/m§) 9 states by a single state with energy smaller than some factor-
(44) ization scaleAg, Ey— EQBCS<AF , and a perturbative con-
and tinuum of states with energy greater thAp . The scaleA ¢
should roughly equal the energy where, due to string break-
m.\ 0-97 ing, the linear confining potential saturates. For the first ex-
(ﬁ for [k|<myg, cited hybrid potentialAr=1.5 GeV which corresponds to
f(|K]) = the distance between color sources;1.15 fm[21]. Thus
log(1.82) 0.62 we expect that the size of the momentum space wave func-
for |k|>m
log(0.82+ [k|%/mj) 9 tion, (QQG|W¥), should be of the orde~1/r=0.2 GeV.

(45 As for the spin-orbital momentum dependence of @G

originates from renormalizing the composite Coulomb ker wave function we shall assume that it corresponds to low
9 9 P values of the orbital angular momenta which are consistent

nel. The gluon massyy, arises from dimensional transmu- . ; . o .
. ) ' . : with those of the low lying gluonic excitations in the pres-
tation and can be fixed by the string tension. The result of the — ying 9 1hep

fit to lattice data yieldsng~ 1.6 ,~600 MeV and is shown ence onQ.sourc_eg. Lattice computation of t@Q agia— .
in Fig. 6. The gluon gap functiom(|k|) is well approxi- batic potentials arising from excited gluon configurations in-
mated b)} dicate that the so called,, potential has lower energy then

the I1, potential[15]. These two correspond to gluon con-
mg for |k|<mg, figuration with JPC=1""and 1~ respectively which is
k| for [k|>m (46) also consistent with the bag model representation of gluonic
9 excitations[22]. The QQG wave function coupled with the

The first two terms in Eq(33) are then given by JP€=1"" gluon quantum numbers would also have §@

o([k))=

096006-8



SPONTANEOUS CHIRAL SYMMETRY BREAKING IN THE . ..

pair with the sam@®“=1"" quantum numberg&o give the
overall JP°=0"" of the vacuum and would be given by

[QQGI°=[[(Log=1)X(Sgg=0)]*

X[(Le=1)X(Se=DT'T". (50

It is easy to check, however, that singg, is spin dependent

this wave function has vanishing overlap with tbrggm)
state. The other possibility is to takE“=1"" configura-

tions for both the glue and the quark-antiquark which give

[QQGI°=[[(Log=0)X(Sgg=1)1*
X[(Le=0)X(Se=1)1'T, (51)

and take the spin-orbit wave function in the form of
(Q(kg N g.i0).Q(kg Ag.ig).G(Ke Ag,a)| V)

=(2m)38(kq+kg+ke)U (kg M) - e(kg ,Ag)

XV(kg,A\g) ¥ (Kq.Kg,Kg). (52

The color part of the wave function is given W‘Q*‘E’ and

PHBICAL REVIEW D 66, 096006 (2002

(Ik|>+]g/®k-q—|k/|ql[1+ (k-)?]

I(qu)E (k_q)Z ’

(57)

\IfZ—J dp _d Y(p,LI=p)|[1+s,5+!(p,l
|W|*= WW' (p.LI=p)[[1+sps+1(p,Heye],
(58

and‘lfAF given by Eq.(53) with 8— A so that 1—\IfAF cuts
off hard QQG contribution for energies below .

UV behavior and renormalization

Before analyzing the full gap equation and in particular
the effects ofém,, we shall first discuss the IR and UV
behavior in the BCS approximations. The BCS approxima-
tion to the chiral gap has been studied earlier for various
model approximations t¥.s. Most of them use an effective
potential which is regular at the origin, e.g., a pure linear
potential Vq¢¢(r) =br [3,5] or a harmonic oscillato¥4¢+(r)
=kr? [4]. For such potentials the gap equation is finite in the
high momentum limit and no renormalization is required.
This is not the case if the potential has a Coulomb compo-
nent withV¢¢(r—0)~al/r anda being either a constant or

for the orbital wave function we will take a Gaussian ansatZ2 funning couplingr— a(r)~1/In(1f). The BCS quark gap

\If(kQ,ka,kG):exp(—(szJrk%+ké)/32). (53)
The expression fobm, is then given by
5mg= 5mg(|q|)= 5mg,soft+ 5mg,harda (54
with
Ce dk
om =— J'
9o Ey—Eqo) (2m)°
><d(lk—ql)‘I’(k,q,k—q)/l‘I’I
Vo(lg—k|)
dp dl
X[scq—1(K,q)cys f——
[ k%q ( q) k q] (271_)3 (271_)3
><d(ll—IOI)‘I’*(IOJJ—|0)/|‘I’|
Vo(|l=p)
X[1+s,s+1(p,h)cyei], (59
dk d*(|k—q])
5mg,hard:_ F (277)3 |q_k|
[1-W¥, (kg.k=0a)]
K[ +al+[k—aq
X[skCq—1(K,q)CySq]- (56)
Here

for potentials with the Coulomb tail was studied in Refs.
[6,17] and Ref.[10]. The gap equation used in Rg6]
would be identical to one used heredifng were set to zero
(e.g., the BCS approximatigninstead, in Refl6] an energy-
independent interaction motivated by a transverse gluon ex-
change was added. In R@g] it was argued that, in the chiral
limit, the resulting gap equation, could be renormalized by
introducing a single counterterm representing the wave func-
tion renormalization. Starting from the Coulomb gauge
Hamiltonian this would arise if the free quark kinetic energy
term was replaced by a renormalized one:

f dxg(X)[ —ia-V(x)]

—>Z(A)f dxy()[—ia-V(x)],. (59

The explicit, UV cutoffA dependence regularizing the ki-
netic operator can be introduced, for example by field smear-
ing, however, the regularization procedure becomes irrel-
evant once the resulting gap equation is renormalized. The
unrenormalized BCS, gap equatigwithout effects from
transverse gluonss then given by

_ ||_C,:J‘A de e m(k)
( )m(CI)— 2 (271_)3 eff( q \/m
Cr ra dk .
ey (ZT)gveff(k_q)k'q
k| m(a)

(60)

X
ol k2+m?(k)
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where we have defined theonstituentmass, m(|k|) by 10° : .
m(|k|)=|k|tan.. The renormalized equation is obtained by a
single subtraction, i.e., by fixing th&-independent solution,
m(|k|), at a specific value ofg|=|qo|. This leads to a4
and gq-independentrenormalized gap equation: R T TP T
m(|ql) lim [1(|gol,A) =1 2(|gol A)] = T,
[
A—ow o, 10° | 1 B
=m(do) lim [1n(lal,A)=1z(al. M) 6D -2_3“*
A= '::“. “
LY “
chA dk m(k) Wt '\‘
Il A)=— | ——Verf(k—Q) ———, LI
m(|q| ) 2 (271_)3 eff( q) k2+m2(k) ‘_.:A&“‘
—10 " 1 ",
al.A)= Cr JA dk k- )k k[ m([a)) 107407 10° 10°
1z(lq K= QK- G —F——. G
2m? e lal VkZ+m?(k) afeel]
(62 FIG. 7. Solution of the gap equation for the test potertigf'
) ) ] given by Eq.(69), with =1, andn=0,1,1/2,3/2. The three upper
Whenever possible we will also use the notatibfiq|) lines correspond tm=0, and the next three to=1, n=1/2, and

=I(|g|,°). We will now show that this equation does not n=3/2, respectively.

have a well behaved, nontrivial solution vanishing asymp-

totically in the large momentum limit, as it was assumed, forgences cancel between the two terms in B6). It is easy to
example in Ref[6]. Before we do that first we need to take show that for|g|>M,|q,| the functionB(|q|) behaves as
care of the possible IR divergences which appear in the in-

tegrals wherk—q. In this limit V¢s:(k—q) is highly diver- 2

gent, reflecting the long range nature of the confining inter- B(|Q|)_)_CF§IOQQ (67)
action, e.g.Ves(k—q)oc1/(k—q)* for the linear potential.

The gap equation, however, is finite due to cancellation ofor Vet(|k|)—4mal|k|? as|k|—c. If @ is replaced by a
the numerators betwedp, andl,. To make individual inte- running coupling then|B(|q|)| grows with |q| like
grals well behaved we can split the IR and UV parts/ef;  loglogg?®. From Eg. (64) it thus follows that for some

defining lal/|go|>1, A+B(|qg|) changes sign and therefore the equa-
tion is undefined. This also remains true if an additional
VIR(k,M)=6(M —[K|)Vesi(|K]), transverse potential is added as dong6h In this case the
argument of integrals defining functid®(|qg|) becomes
VEUY(k,M)=6(|k| = M)Ves(|K]), (63 K K
sinceV'R(k,M)+VYV(k,M)=V, (k) and the gap equation k- q|q|VUV(k_Q) Ial | [V?V(k—a)k-q
is independent of the parametlér and we will not write it
explicitly. The gap equation becomes +21(k,q)VY¥V(k—q)]. (68

IR IR UV For V(k) =4mal(k?+ const) (as used in Ref6]) the addi-
m(|q[)= m[lmqu_lz (lah+ 1w (ah], tional transverse potential does not contribute to thegfog
(64)  (or loglogg®) behavior ofB(|q|). In our case there would
be a similar contribution arising from the hard part of the

where gluon exchange given byﬁmg hard- At large|q| it adds a
positive + Cg(a/12m)logqg? contribution to B(|g|) and
A= Ao = m(ldoh) =17 (g0l + 11 (|00l 65 therefore does not cause problems on its own but at the same
0 m(|do|) time does not eliminate the singularity from the Coulomb
potential since the net effect is such thit|q|)— —= as
and g —oe.
UV UV The problems with the renormalizgd gap equation fpr the
B(|q))=B(|ql. o) = 1z (|CI|) 17" (Ig0l) 66) Coulomb potential are illustrated in Figs. 7 and 8. In this test
OV mdfal) o m(|ao)) case we simply take
For givenq,, A is a constant an@ is a function ofg, and Vi) =VR(k) +VUV(k)

both A andB are well defined IrA the IR divergences cancel 1 8ub 4
betweenl IX(|qo|) and1(|qol), andly is finite if m(|q|) _ T 72 - ;T“Z _
—0 asg—. InB each term is IR finite and the UV diver- Ce k% k"log(k/mg+2)

(69
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2 . . , 1000mg. The other two lines correspond to solutions for
=1/2 andn=1, respectively. In these two cases the same
three values for the momentum cutoffs were used and appar-
ently in both cases a cutoff independent solution has
emerged. This occurs because, fior 1/2 andn=1, |B(q)|

0Fr 1 grows very slowly and in practice the zero of the denomina-
tor in Eq. (64) is not crossed. This test calculation was per-
formed with unphysically largex=1. For «<0.5 numeral

o
@ [ 1 computations, which always have a built-in finite upper mo-
mentum cutoff, converge fdg| .y as large as 1n, .
2t g It is clear that the problematic UV contributions originate
from the need for wave function renormalization. This prob-
lem has been resolved in R¢LO] using an effective Hamil-
adi i tonian with perturbativé(g?) contributions calculated via a
similarity transformatior{23]. In that approach, in addition
45 L5 L ~ . to the Coulomb and transverse gluon contributions to the gap
10 0 10 10 L i dém there was also a modification
GeV] equatlon,émc an g.hard: a :
al of the single particle kinetic energy. The additional contribu-
FIG. 8. FunctionB(|q|) calculated for the test potentiatest.  tion to the gap equation viém, cancels the lojg| term from
The lines(from top to bottom at highq|) correspond ta=3/2, B(|al) and results in a well defined equation. The disadvan-
n=1/2,n=1, andn=0, respectively. tage of that approach however, is that it is restricted to the

free rather than BCS basis and so far it has not been gener-
For the string tensiorh=0.24 Ge\?, a=0.1, andn=0 this  alized beyond perturbation theory.
gives a good fit to the lattice data as shown in Fig. 6. The resummation of the leading UV contribution to the
In Fig. 8 we show the functioi8(q) calculated from a Faddeev-Popov operator and the Coulomb kernel has the ef-
numerical solution to the gap equation, Eéd). SinceVisst  fect of softening the UV behavidcf. Egs.(44), (45)] and at
is already given by a sum of two terms, one dominating inthe potential BCS leveN¢, given in Eq.(43) leads to a
the IR and the other in the UV the componewt& andVYV finite gap equation without need for any additional, e.g.,

can be defined as the linear and the Coulomb piece respe@@ve function renormalization counterterms. Furthermore
. . g : -s :
tively. If n>1 there is no renormalization required and theth® € > method enables us to include effects of transverse

gap equation is given by Eq60) with Z=1. Then=23/2 gluons with a well defined energy_dependence. The large
case corresponds to an approximate analytical solution fomomentum contribution from th@QG cluster, 6mg parq,

Vs discussed if14] and is also close to the exact, numeri- still requires renormalization through the wave function
cal solution given by Eqg43). The solution of the gap equa- counterterm. However, as discussed above since it leads to
tion, m(q) for n=3/2, is shown in Fig. 7 by the lowest line B(|q|) which is positive at largéq| the renormalized gap
(boxes. The functionB(|q|) corresponding to this case is equation is well behaved.

shown in Fig. 8 by the upper solid lin@t large|q|), which Below we summarize the numerical results for dynamical
asymptotically approaches B(|g])—const  chiral symmetry breaking obtained with the_ potenti&ls
—2Cral(37log(g?)) as|q|—o. We then take this solution given in EQq.(43) including the effects of th@ QG clusters.

to set the value ofn(|go|=my=600 MeV) and solve the

renormalized gap equation, E@4), for n=1, n=1/2 and

n=0. The asymptotic behavior at lardg| of B(|q|) for IV. NUMERICAL RESULTS

these three cases is given by We will now discuss the numerical results obtained using

. the potential in Eq(43). As described in Sec. ll, this poten-
-C ilog log(|q[2), n=1 tial arises in the Coulomb gauge at the or8& and is not
F3n ’ '

modified by the QQG contribution to the ground state.

a Therefore to then=3 order of truncation of the cluster ex-

B(lg))—{ —2CF£|091/2(|Q|), n=1/2, (700  pansion, considered here, we have a self-consistent treat-
ment.

n=0. The results for the quark mass gap function are summa-
rized in Fig. 9, and for the condensate in the text below.

The BCS potential contribution to the gap equatiém,. ,

The corresponding solutions to the gap equation are showis split into IR and UV parts by settinf(k)=0=d(k)=0

by the five upper lines in Fig. 7. The highest three corre-for [k|>m, and|k|<mj, respectively. For the pure IR poten-

spond ton=0 case and their splitting indicates that the nu-tial (dashed line in Fig. Bthe gap functionm(q), is below

merical procedure has not converged into a unigue solutiorL00 MeV for low|q| <mg and it vanishes rapidiyas 1/q|*)

These three solutions correspond to three different cutoffs oat highg. The addition of the UV component of the potential,

the maximum momentum, |g|ymax=10my,100n; and i.e., the Coulomb tail with the 1/logf",n>1 UV suppres-

Cer )
L FE Og(|CI|),
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0.15

soft gluon intermediate state brings both thenstituent
quark mass and the condensate significantly closer to phe-
nomenologically acceptable values.

An alternative simple parametrization of the soft gluon
contribution would be to replace it by an effective local op-

Ll erator, by expandingm, s, in powers oflk|/mg. The low-
§ est dimension operator has the structure
s
E
0.05 c t [ + j
V=== [ XY (X' d(X) o7, (V) (X) & (X) ],
g
(71
904 10‘_2 10'.1 100 0 102 10° with C being a dimensionless constant, thmé.scale arising
q[GeV] from the product oEy —Eq__, @(0)=my and the operator

, , o . being related by the factorization scale . The appearance
_FIG. 9. Solution to gap equation. The dashed line is a solutioryf ihese two scales is quite natural. Since the operator arises
with the IR part of the potentiglinear potentigl only. The lowest 5,01 elimination of part of the Fock space the overall
solid line comes from a solution using the full static potendia. . cale is given by the excitation energy of the eliminated sec-
The next higher solid line includes the static potential and the har ors and the momentum cutoff comes from the spatial extent

gluon amg s, Contribution from theQQG sector calculated for ¢ yho excited state wave function. Such a simple, local ap-
Ag=1.5 GeV. The shaded region corresponds to the full solution

with 0.1 Ge\i= 8<0.4 GeV, and 1 Ge¥: A <2 GeV. proximation of the so0fRQG exchange was considered pre-
’ viously in Ref.[24] where it was shown that such an opera-

tor was indeed relevant to chiral symmetry breaking effects,

sion, does not change much the low momentum behavior d-9-» the condensate and tihe-p mass splitting.
m(|q|). It actually decreases(0) to about 75 MeV, but it
increases the high momentum tail, overall leading to no

change in the(QQ) condensate which stays at about V. SUMMARY

3 .

B (%rllé %e\iz)o.ntribution depends o@ which sets the size of In the canonlcgl_appr_oach © QCD based on the Coulomb

9 _ ! A gauge the confining interaction between color charges
the soft wave function\ g, which divides between the soft emerges regardless of their type, i.e., light or heavy quarks.
and hard one-gluon intermediate states, Byd-Eq which  This particular manifestation of confinement, as originally
determines 'ghe energy of the low gluonic excitations. As d'Ssuggested by Gribov, is a consequence of the gauge fixing
cussed earlier it is reasonable to @t 0.2 GeV andAr  and it can be obtained in a variatioraiean-field approach.
~1.5 GeV. As for the energy of the sdftQG state we take The gauge fixing makes the wave functional vanish outside a
Ey—Eq=my, which we expect to be close to the lower bounded region in the transverse gauge field space—the fun-
bound and would therefore give the upper limit on POG damental modulay region and the mean—field enables us to
contribution. The effect of the hard one-gluon-exchange conderive a self—con5|stent_ Oth order estimate of the properties of
tribution, defined bydmg .4, is to increasen(q) yielding the ground state. One important feature of the QCD vacuum
m(0)~80 MeV and enhancing the condensa(6Q>= is that it bre_aks chiral symmetry anq leads to the constituent
— (150 MeVYy. The solution to the gap equation including representation. The gluonic mean field enhances the quark-

Sm- and Sm is shown by the second to lowest solid antiquark attraction at large distances. It thus becomes ener-
Iinecin Fig gg'ha“’ getically favorable to promote quarks above the Dirac-Fermi

As mentioned above, the gap equation Wi, , .4 re- sea and thereby create a condensate.' However, the. extent of
quires renormalization émd we have simply Ze%laratA chiral symmetry breaking generated in the mean-field ap-
=|gmay- No effect on the solution could be observed usingproaCh’ as measured by the scalar quark density or as com-
any of the three values dfj., given previously. This is pared to the phenomenologmal constituent quark model is
analogous to the test case discussed earlier. too small. In this paper we have addressed the role of dy-

= _ ) namical (beyond mean-fieldtransverse gluons in this pro-
_The full effect of theQQG sector, including the soft con- cess. We have shown that the naive inclusion of the short
tsrél;lljé'%n’inp?r::n:::]rg:dbetiﬁghs%‘1W§2\}haen;agt3”éit\'? nan drange part of theQQ potential leads to instabilities in the
A-=1-2 GeV is shown by the shaded region. The IOWerquark gap equations which cannot be renormalized away. In

R = a ) contrast a systematic resummation of the leading IR and UV
limit corresponds tg=0.1 GeV and\¢=2 GeV and yields corrections to the bare Coulomb kernel leads to an effective

(QQ)=—(140 MeV)*; for the upper limit 3=0.4 GeV, interaction[Eq. (43)] which is consistent with the variational
Ar=1 GeV and(QQ)=— (190 MeV)?. The addition of the treatment and the gap equation. Using the linked cluster ex-

096006-12



SPONTANEOUS CHIRAL SYMMETRY BREAKING IN THE . .. PH®BICAL REVIEW D 66, 096006 (2002
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