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Ubiquitous CP violation in a top-inspired left-right model
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We exploreCP violation in a left-right-model that reproduces the quark mass and CKM rotation angle
hierarchies in a relatively natural way by fixing the bidoublet Higgs VEVs to be in the ratiomb :mt . Our model
is quite general and allows forCP to be broken by both the Higgs VEVs and the Yukawa couplings. Despite
this generality,CP violation may be parametrized in terms of two basic phases. A very interesting feature of the
model is that the mixing angles in the right-handed sector are found to be equal to their left-handed counter-
parts to a very good approximation. Furthermore, the right-handed analogue of the usual CKM phasedL is
found to satisfy the relationdR'dL . The parameter space of the model is explored by using an adaptive Monte
Carlo algorithm and the allowed regions in parameter space are determined by enforcing experimental con-
straints from theK and B systems. This method of solution allows us to evaluate the left-and right-handed
CKM matrices numerically for various combinations of the two fundamentalCP-odd phases in the model. We
find that all experimental constraints may be satisfied with right-handedW and flavor changing neutral Higgs
boson masses as low as about 2 TeV and 7 TeV, respectively.
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I. INTRODUCTION

The left-handedness of the observed weak interactions
long been a source of curiosity in particle physics. Left-rig
symmetry may be restored to the weak interactions at
Lagrangian level by introducing a new right-handed gau
boson. The aesthetic appeal of the so-called left-right mo
has led many to study it over the past few decades and
formal properties of the model are well known@1–11#. One
feature that has emerged is that the new right-handed g
boson must have a mass in the TeV range in order to ev
the stringent bounds imposed byDmK @12#. This mass scale
was unattainable two decades ago, but is now within rea
especially at upcoming colliders and perhaps also thro
precision studies of low-energy observables in theB system.
Another factor that motivates a reexamination of the le
right model is that the model naturally accommodates n
vanishing neutrino masses as well as the enormous disp
in masses observed among the quarks and leptons. Ind
very light neutrinos may be obtained through the sees
mechanism, while the heaviness of the top quark may
reproduced through a judicious choice of vacuum expe
tion values ~VEVs! in the extended Higgs sector of th
model. The model is also able to account for the obser
CP violation in the kaon andB systems and has addition
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possibilities for nonstandardCP violation through the pres-
ence of extraCP-odd phases. These phases appear, for
ample, in the right-handed analogue of the usual Cabib
Kobayashi-Maskawa~CKM! matrix @13,14# and are in
addition to the single phase that appears in the usual C
matrix.

While the formal properties of the left-right model a
well known, its parameter space has not been studied
haustively except in certain limiting cases. Two such ca
are represented by the quasimanifest and pseudoman
versions of the model. In the former,CP violation is present
explicitly in the Yukawa couplings; in the latter, it arise
spontaneously in the Higgs VEVs. In both of these cases
right-handed analogue of the usual CKM matrix is simplifi
in that the three right-handed rotation angles are identica
their left-handed counterparts. In the nonmanifest version
the model~considered in the present work!, CP violation
occurs in both the Higgs VEVs and the Yukawa coupling
and the right-handed CKM matrix can in principle be qu
different from the left-handed one. In this case a full nume
cal solution needs to be undertaken in order to obtain
tailed information regarding the right-handed sector of
model.

Detailed numerical results were first obtained for the le
right model in the early 1980s, mostly within the context
the pseudomanifest version of the model@15–18#. The au-
thors of Ref.@19# improved upon earlier approximate met
ods of solution, while those of Refs.@20# and @21# imposed
combined constraints coming from the neutralK andB sys-
tems. These latter works were all performed within the co
text of the pseudomanifest version of the model. To o
knowledge, a detailed numerical solution of the nonmanif
case~CP violation in the Higgs VEVs and in the Yukaw
©2002 The American Physical Society02-1
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KIERS, KOLB, LEE, SONI, AND WU PHYSICAL REVIEW D66, 095002 ~2002!
couplings!, such as we present here, has not been perform
One important consideration in any numerical treatmen
the left-right model concerns the flavor changing neu
Higgs ~FCNH! boson that is generically present. The FCN
contribution toeK occurs at the tree level, leading in prin
ciple to a prohibitively large~of order 50 TeV@22#! lower
bound on the Higgs boson mass scale. Our numerical s
indicates that significantly lower values for the Higgs bos
mass—on the order of 7 TeV—are actually tolerable.

In this paper we undertake a relatively exhaustive sea
of the parameter space of the left-right model, while mak
few assumptions regarding the structure of the model. T
main features distinguish the present work from that of p
vious authors. In the first place, we allow forCP violation
both in the Yukawa couplings and in the Higgs VEVs~hence
the ‘‘ubiquitous’’ in the title of this paper!.1 In the second, we
employ a novel approach to the numerical solution of
problem, using a Monte Carlo algorithm to search the para
eter space of the model. Our main assumption concerns
extended Higgs sector, where we take the bidoublet Hi
VEVs to be in the ratiomb :mt . This assumption is quite
appropriate in the left-right model and leads very naturally
the observed hierarchy in the left-handed CKM matrix@15–
17,19#. We also show that this assumption leads naturally
other attractive features of this model, namely that the ro
tion angles in the right-handed CKM matrix equal their le
handed counterparts to a good approximation and that
CKM phasesdR anddL are approximately equal~see Appen-
dix B!. Note that while we shall always fix the ratio of th
bidoublet Higgs VEVs, our method of solution is quite pow
erful and could easily be generalized to the case where
ratio is notmb :mt .

Throughout the present work we stress an important
general result that may not be widely known: assumin
minimal Higgs sector and three generations of quarks,
quark mass matrices in the left-right model depend on
most two nonremovable phases. This insight allows for
numerical solution of what might otherwise be a very co
plicated problem. Perhaps more importantly, the model c
tains only one newCP-odd degree of freedom beyond th
one in the standard model~SM!, a very desirable feature
when comparing the model to forthcoming precision expe
mental results~particularly those coming from theB facto-
ries!. In our notation, one of theCP-odd phases comes from
one of the Higgs VEVs and the other is present in
Yukawa coupling matrices. The quasimanifest a
pseudomanifest models may be recovered as limits of
model by setting one or the other of these two fundame
phases to zero orp.

The remainder of the paper is structured as follows.
Secs. II and III we outline our model and method of solutio
Sections IV, V and VI discuss the various experimental c
straints and show how these limit the parameter space o

1When consideringCP violation in the Higgs VEVs, we focus on
the Higgs bidoublet and ignore the right-handed triplet, since
latter does not affect the quark mass matrices. See, for exam
Ref. @11#.
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model. Section VII contains some concluding remarks.
Appendix A we describe some details of our Monte Ca
algorithm. Appendix B contains a discussion of the relat
sizes of the left-and right-handed CKM rotation angles
well as approximate expressions for the CKM phasesdL and
dR in terms of the fundamental parameters in the model.

II. THE MODEL

In this section we explain our notation and summar
some of the important formal aspects of our model. In p
ticular, Sec. II B contains one of the central results of t
paper, namely that many of the apparent degrees of free
in the nonmanifest model may be eliminated by a suita
chosen unitary rotation. This insight leads to a considera
simplification of our task and allows us to proceed with o
numerical work. For the purpose of the work to follow, w
are mainly concerned with the Yukawa couplings betwe
the quark and Higgs fields. The Higgs sector contains m
intriguing features, including a flavor changing neutral Hig
boson and a doubly charged Higgs boson. Minimal versi
of the model include a bidoublet Higgs field and a pair
either doublet or triplet Higgs fields. The triplet fields tend
be favored in the literature, since they can lead quite na
rally to very light neutrino masses through the sees
mechanism.

A. Quark mass matrices in the left-right symmetric model

Let us begin by deriving the relationship between t
quark mass matrices and the left- and right-handed C
matrices. In order to do so, we must first consider the Hig
fields. The left-right model is based on the gauge gro
SU(2)L3SU(2)R3U(1), with the symmetry being sponta
neously broken down toU(1)em through the Higgs mecha
nism. The left- and right-handed quark fields transform
doublets under the unbroken gauge groupsSU(2)L and
SU(2)R , respectively. The particular left-right model th
we consider contains a bidoublet Higgs fieldF;(2,2̄,0) as
well as two triplet Higgs fieldsDL;(3,1,2) and DR
;(1,3,2),

F5S f1
0 f2

1

f1
2 f2

0 D ,

DL,R5S DL,R
1 /& DL,R

11

DL,R
0 2DL,R

1 /&
D . ~1!

The bidoublet field couples to the quarks and leptons an
responsible for giving them masses, while the right-hand
triplet field is used to break the left-right symmetry at som
high energy scale. The VEVs for these fields may be para
etrized as follows:2

e
le,

2Some authors use ‘‘dL,R’’ for the VEVs of DL,R but we prefer to
reserve the symbolsdL,R for phases appearing in the left- and righ
handed CKM matrices.
2-2
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UBIQUITOUS CP VIOLATION IN A TOP-INSPIRED . . . PHYSICAL REVIEW D66, 095002 ~2002!
^F&5S k 0

0 k8
D , ^DL,R&5S 0 0

vL,R 0D . ~2!

In order to reproduce observed electroweak phenomenol
one typically assumes thatuvRu@uku, uk8u@uvLu, in which
casek andk8 satisfy the constraint@23#

uku21uk8u2'
2mW

2

g2 '~174.1 GeV!2. ~3!

Although k and k8 are both in principle complex, the onl
physically observable phase comes from their product,kk8.
~One can always use a gauge rotation to eliminate the se
phase.! We shall, for simplicity, takek to be real and posi-
tive, so that the observable phase is carried byk8; i.e.,

ak85arg~k8!. ~4!

The Yukawa couplings of the quarks to the bidoub
Higgs fields may be written in terms of two 333 Hermitian
matricesF andG as follows:

2LYukawa5c̄ iL8 ~Fi j F1Gi j F̃!c jR8 1H.c., ~5!

where F̃5t2F* t2 and where the gauge eigenstatesc iL ,R8
are given by

c iL ,R8 5S uiL ,R8

diL ,R8 D . ~6!

The Hermiticity ofF andG helps ensure the left-right sym
metry of the Lagrangian.3 Insertion of the bidoublet Higgs
VEVs into Eq.~5! yields the up- and down-type quark ma
matrices

Mu5kF1k8* G ~7!
-
e

a

09500
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Md5k8F1k* G. ~8!

Mu andMd are, in principle, complex matrices, and may
diagonalized by biunitary transformations, yielding

Mu
diag5VL

U†MuVR
U ~9!

Md
diag5VL

D†MdVR
D , ~10!

where Mu
diag[diag(mu ,mc ,mt) and Md

diag[diag(md ,ms,mb).
One can always choose the unitary rotation matricesVL,R

U,D in
such a way that the elements of the diagonalized mass
trices are real and positive.

With the diagonalization matrices in hand, the charge
current Lagrangian may be written in terms of th
~unprimed! quark mass eigenstates,

LCC52
g

&
ūLVL

CKMgmdLWL
m12

g

&
ūRVR

CKMgmdRWR
m1

1H.c., ~11!

where the generation indices have been suppressed
where we have taken the left- and right-handed weak c
pling constants to be equal,gL5gR[g. The left- and right-
handed CKM matrices in the above expression are given

VL
CKM5B†VL

U†VL
DB̃ ~12!

VR
CKM5B†VR

U†VR
DB̃. ~13!

The matricesB and B̃ are diagonal phase matrices that a
used to rotate as many phases as possible out of the
handed CKM matrix~and hence into the right-handed CKM
matrix!, leavingVL

CKM in its ‘‘standard’’ form with only one
CP-violating phasedL @24#,
VL
CKM~u12,u23,u13,dL!5S c12c13 s12c13 s13e

2 idL

2s12c232c12s23s13e
idL c12c232s12s23s13e

idL s23c13

s12s232c12c23s13e
idL 2c12s232s12c23s13e

idL c23c13

D . ~14!
for

are
In the above expression,si j [sinuij , and all sines and co
sines are taken to be non-negative. The left-handed phasdL
is the usual CKM phase and is the sole source ofCP viola-
tion within the context of the SM. It is also very nearly equ
to the ~perhaps more familiar! angleg,

dL'g5argS 2
VLud

CKMVLub

CKM*

VLcd

CKMVLcb

CKM* D . ~15!

With the above parametrization forVL
CKM , VR

CKM has six

3See, for example, the discussion in Ref.@23#.
l

nonremovable phases. A convenient parametrization
VR

CKM is as follows:

VR
CKM5KVL

CKM~u12
R ,u23

R ,u13
R ,dR!K̃†, ~16!

where the right-handed rotation anglesu i j
R are again taken to

be in the first quadrant, so that all sines and cosines
non-negative. The diagonal matricesK andK̃ contain five of
the six nonremovable phases inVR

CKM ,

K5diag~eir1,eir2,eir3! ~17!

K̃5diag~1,eih2,eih3!, ~18!
2-3
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KIERS, KOLB, LEE, SONI, AND WU PHYSICAL REVIEW D66, 095002 ~2002!
with the sixth phase beingdR , the right-handed analogue o
dL . It is important to note that the seven nonremova
phases distributed amongVL

CKM and VR
CKM are not, in gen-

eral, all independent. In our model, for example, the se
phases are functions of only two ‘‘basic’’ phases@ak8 and
b23; see Eqs.~4! and ~21!#.

There are several ways to achieveCP violation within the
left-right model, and it is useful to enumerate these.

~1! (Quasi)manifest left-right symmetry. The simplest case
occurs whenCP is broken explicitly by the Yukawa cou
plings of the quarks to the Higgs fields. The productkk8 is
real ~so thatak850 or p!, but F andG ~and hence the mas
matrices themselves! are complex and Hermitian. In this cas
one hasVRi j

CKM56VLi j
CKM , a situation referred to as ‘‘quas

manifest left-right symmetry’’ in Ref.@7#. ‘‘Manifest left-
right symmetry’’ refers to the special case in which the ‘‘1’’
sign occurs for each of the nine elements of the matrice

~2!. Pseudomanifest left-right symmetry. One can also al-
low the productkk8 to carry theCP-violating phase and
requireF andG to remain real~and symmetric!. In this case
CP is broken spontaneously and the resulting mass matr
are complex symmetric. The left- and right-handed CK
matrices in this case satisfy the relationVR

CKM

5AVL
CKM* Ã†, whereA and Ã are diagonal phase matrice

i.e., elements of the two matrices are equal in magnitude,
could have different phases. This case is often referred t
‘‘pseudomanifest left-right symmetry.’’

~3!. Nonmanifest left-right symmetry. In the most genera
case~considered in the present work!, one allows both the
productkk8 and the matricesF andG to be complex, while
maintaining the Hermiticity ofF and G. In this case, the
mass matrices are in principle arbitrary complex matri
and the left- and right-handed CKM matrices have no spe
relations to each other. In particular, unlike in the previo
cases, the rotation angles inVL

CKM and VR
CKM need not be

equal. Many authors have considered the general case
have made variousansätzefor the form ofVR

CKM . Langacker
and Sankar, for example, argued that a relatively light rig
handedW could be accommodated ifVR

CKM took on one of
the forms@23#

VR~A!
CKM5S 1 0 0

0 c 6s

0 s 7c
D , VR~B!

CKM5S 0 1 0

c 0 6s

s 0 7c
D .

~19!

The mixing angles in these expressions are clearly quite
ferent from those of the left-handed CKM matrix.

In the present work we use the experimentally determi
quark masses and left-handed rotation angles to delineat
various possibilities for the right-handed CKM matrix. W
find that the right-handed rotation angles are very simila
magnitude to their left-handed counterparts~see Fig. 4 and
Appendix B!, ruling out the forms given in Eqs.~19!, at least
within the context of the class of models considered in t
paper.
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B. A top-inspired left-right model

In the present work we consider a particular version of
left-right model that is inspired by the relatively large mass
of the third generation quarks as well as by the small mix
that exists between the third generation and the first two
VL

CKM . It was pointed out many years ago that small 1–3 a
2–3 mixings follow naturally if one takes the ratiok8/k to
be of ordermb /mt @15–17,19#. This scenario was considere
recently in the ‘‘spontaneously broken left-right model’’~SB-
LR!, where the authors chose to fix the ratio atmb /mt
@20,21#,

Uk8

k U5 mb

mt
. ~20!

The SB-LR is an example of a pseudomanifest left-rig
symmetric model. It contains many attractive features, s
as spontaneousCP violation ~arising from a singleCP-odd
phase! and upper limits on the Higgs and right-handedW
masses. However, according to Ref.@20#, the SB-LR predicts
sin 2bCKM

eff &0.1. This value is difficult to reconcile with re
cent precision measurements, which give sin 2bCKM

eff 50.79
60.11 @25–27#.4 The SB-LR, although quite attractive, i
somewhat tightly constrained because it does not allow
explicit CP violation in the Yukawa couplings. In the prese
work we retain the constraint given in Eq.~20!, but general-
ize the mode ofCP violation by allowing the Yukawa cou-
pling matricesF and G to be ~in principle! arbitrary 333
Hermitian matrices. At first glance it might appear that o
generalization would hopelessly complicate matters by a
ing many newCP-odd phases. As we demonstrate belo
however, it is possible to simplify the forms ofF and G
~without any loss of generality! in such a way that our mode
contains only one new phase compared to either the SB
or the SM@see Eq.~21! below#.

It is useful to consider the number of degrees of freed
contained within the quark mass matrices, as well as
experimental constraints that may be placed on these.
most general expressions for the mass matrices in the
right model are given in Eqs.~7! and~8!, wherek is real,k8
is complex andF andG are Hermitian. The magnitudes ofk
andk8 are fixed within our model@see Eqs.~3! and~20!# and
the phase ofk has been gauged away. This leaves just o
degree of freedom amongk andk8, namely the phase ofk8.
SinceF and G are both Hermitian 333 matrices, it would
appear at first glance that there are a total of 18 degree
freedom contained inF and G, for a total of 19 degrees o
freedom within the quark mass matrices. It should be no
that six of these degrees of freedom would be new pha
when compared to the SB-LR. On the experimental si

4In determining the weighted average and its uncertainty, we
only the BABAR and BELLE results. The earlier Collider Detect
at Fermilab~CDF! and CERNe1e2 Collider LEP results are in
agreement with the value we use. Inclusion of the CDF and L
results would have only a very slight effect on the weighted aver
and its uncertainty.
2-4
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UBIQUITOUS CP VIOLATION IN A TOP-INSPIRED . . . PHYSICAL REVIEW D66, 095002 ~2002!
there are nine direct constraints on the quark mass mat
~the so-called ‘‘level I’’ constraints below!. These come from
the six quark masses and the three left-handed rota
angles. The mass matrices would thus appear to be sev
underconstrained, a situation that would not be ideal fo
numerical study of the model. Fortunately, however, eigh
the apparent degrees of freedom withinF andG—including
five of the six phases—may be rotated away by performin
unitary rotation in flavor space. This leaves 11 degrees
freedom with nine direct constraints placed upon them
much more agreeable situation from the standpoint of s
ing the model numerically.

A rotation of all up, down, left and right quark fields b
the same unitary matrix is unobservable, so one may perf
the rotationsUFU† and UGU† with no observable conse
quences. In particular, we can useU to diagonalizeF, which
yields all real eigenvalues~sinceF is Hermitian!. It is also
possible to change the overall signs of bothF andG ~simul-
taneously! with no observable consequences, so that a gi
element of the diagonalized version ofF may always be
taken to be positive. Having diagonalizedF, we may perform
a diagonal phase rotation~which does not affectF! in order
to eliminate two phases inG. As a result, we may quite
generally takeF andG to be of the form

F5S f 11 0 0

0 f 22 0

0 0 f 33

D ,

G5S g11 g12 g13

g12 g22 g23e
ib23

g13 g23e
2 ib23 g33

D , ~21!

where allf i i andgi j are real,f 33>0 andgi j >0 for iÞ j , and
where the sole nontrivial phase,b23, has~arbitrarily! been
placed in the 2–3 element ofG.5 One may also assume with
out loss of generality thatf 33>u f 22u>u f 11u. It should be em-
phasized that the forms given forF and G in Eq. ~21! are
completely general: the mass matrices of any left-ri
model ~containing only a single bidoublet Higgs field! may
be written in terms of only twoCP-odd phases, which ma
be parametrized asak85arg(k8) andb235arg(G23).

6

5Note that if any of the off-diagonal elements ofG are zero then
the phaseb23 may also be rotated away, yielding once again
pseudomanifest case.

6The results of the preceding few paragraphs are easily gen
ized to the case ofN quark generations. In that case, if one wish
to put as few phases as possible in the left-handed CKM ma
that number would be (N21)(N22)/2, leavingN(N11)/2 nonre-
movable phases for the right-handed CKM matrix. Regarding ‘‘fu
damental’’ or ‘‘basic’’ phases in the model, there would be 1 no
removable phase among the bidoublet Higgs VEVs a
(N21)(N22)/2 nonremovable phases in the Yukawa matric
These latter phases could all be placed in ‘‘G,’’ as has been done in
the present work.
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Before proceeding to the numerical solution of our mod
let us first obtain order-of-magnitude estimates for the e
ments of the Yukawa coupling matricesF andG. Our task is
greatly simplified by the constraints in Eqs.~3! and ~20!.
These imply, in an interesting coincidence, that

k;A2mW
2

g2 '174.1 GeV;mt , ~22!

uk8u;
mb

mt
A2mW

2

g2 ;mb . ~23!

Consider first the expression given forMu in Eq. ~7!. Since
k@uk8u, we have, to a first approximation, thatMu;kF.
~The elements ofG do contribute somewhat toMu , but such
contributions are suppressed by the small size ofk8.) Thus,
to a first approximation one might expect

F;S OS mu

mt
D 0 0

0 OS mc

mt
D 0

0 0 O~1!

D . ~24!

We will see below that the above hierarchy is indeed o
served by the numerical solutions. The down quark m
matrix, Md5k8F1k* G, yields insight both into the ele
ments ofG and into the sizes of the left- and right-hand
rotation angles. Consider first the 3-3 element ofMd . From
Eqs. ~23! and ~24!, we see thatk8F33 is naturally of order
mb . If k* G33 is also to be of ordermb , thenG33 must be of
order mb /mt . The other two elements ofF give relatively
small contributions to their respective down-type qua
masses~sincek8Fii is ‘‘too small’’ in those two cases!, so
k* G has primary responsibility for the masses of the fi
and second generation down-type quarks. This confirms
initial assertion thatk8* G would give a relatively small con-
tribution to Mu . To the extent thatMu;kF is a good ap-
proximation, we have thatVL

U and VR
U are approximately

diagonal matrices. ThusVL
CKM andVR

CKM are essentially de-
termined byVL

D andVR
D @see Eqs.~12! and~13!#. In a some-

what poorer approximation, we could also almost takeMd
;k* G, except for the 3-3 element. Noting that in our not
tion k is real, we then have thatMd is ‘‘almost’’ Hermitian,
except for its 3-3 element. IfMu and Md were exactly
Hermitian, then the left- and right-handed CKM matric
would have obeyed the ‘‘quasimanifest’’ condition note
above,VRi j

CKM56VLi j
CKM . In practice, we find that the left

and right-handed rotation angles do agree reasonably
~see Fig. 4, below!, that dR'dL and that the right-handed
phases corresponding to the first and second generationsr1 ,
r2 , and h2) are all close to zero orp. The right-handed
phases corresponding to the third generation (r3 andh3), by
way of contrast, can take on any values.~See Fig. 3 below.!
Appendix B contains some further discussion along th
lines, along with approximate analytical relations for vario
CKM mixing angles and phases.
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TABLE I. Values used in the determination of level I and II constraints. The first twelve rows corres
to the level I constraints, while the addition of the last five rows yields the level II constraints. The las
constraints are not included in the calculation ofx (II )

2 , but are imposed as ‘‘cuts’’ afterx (II )
2 has satisfied the

required tolerance. Quark masses are in GeV and are evaluated at the energy scalemZ @28#; DmBd
is in ps21.

Constraints 7–9 are taken from Ref.@20#. The central values, uncertainties and limits listed in this table
discussed in detail in Secs. IV and V.

i y i Central value (yi
expt) Uncertainty (s i) or limits

1 mu 2.3331023 0.4531023

2 md 4.6931023 0.6631023

3 mc 0.685 0.061
4 ms 0.0934 0.0130
5 mt 181 13
6 mb 3.00 0.11
7 sinu12 0.2200 0.0030
8 sinu23 0.0395 0.0017
9 sinu13 0.0032 0.0008
10 mu /md 0.497 0.119
11 ms /md 19.9 3.9
12 „ms2(mu1md)/2…(md2mu) 38.1 14.1
13 eK 2.2831023 @0.4613.53(1.0 TeV/M2)2#31023

14 sin 2bCKM
eff 0.79 0.11

15 DmBd
0.472 0.190

– DmBs
/DmBd

– DmBs
/DmBd

>27.2
– DmK – 21<2 Re(M12

LR)/DmK
expt<1

and Re(M12).0
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III. NUMERICAL SOLUTION
OF THE MODEL—AN OVERVIEW

We turn now to a brief explanation of the numerical s
lution of our model. As noted above, the quark mass matr
in our model are described by eleven real ‘‘input’’ param
eters: namely,

f i i ,gi j ak8 , and b23 ~11 input parameters!. ~25!

The model as a whole contains two more parameters—M2
~the mass of the mostly right-handed heavyW! andMH ~the
Higgs boson mass scale7!—bringing the total number of ‘‘in-
put’’ parameters in the model to thirteen. The goal of t
numerical work is to find combinations of the various inp
parameters that yield acceptable values for quantities tha
known experimentally, such as the quark masses, left-han
rotation angles andeK .

Each possible set of input parameters may be used to f
trial mass matrices, which may then be diagonalized to y
the physical quark masses and the left- and right-han
CKM matrices, as described above in Sec. II A. The res
ing quark masses and left-handed rotation angles~and possi-
bly other quantities, such aseK , etc.! may then be compare
to their known experimental values. A ‘‘solution’’ refers to
set of input parameters that satisfies all relevant experime

7We adopt the convention of several previous authors and ass
that the various nonstandard physical Higgs bosons all have
same masses.
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constraints to within some prescribed tolerance. In princi
one could search the entire input parameter space for s
solutions, but this is not possible in practice since the para
eter space contains many dimensions, each of which cont
a continuum of values. Fortunately, we can narrow down
parameter space to several promising regions by using
reasoning outlined in Sec. II B. But even with the parame
space pared down in this manner, it would still be very d
ficult ~and inefficient! to find solutions by simply slicing up
the multidimensional space into many small hypercubes.
overcome this problem we have devised an adaptive Mo
Carlo routine~described in detail in Appendix A! that is able
to zoom in on solutions with relatively high efficiency.

When discussing constraints satisfied by ‘‘solutions’’
our model, it is useful to distinguish between minimal a
higher-level constraints. Table I lists the various constrai
employed. The twelve ‘‘level I’’ constraints take into accou
the quark masses and left-handed rotation angles, while
‘‘level II’’ constraints include additional experimental input
from the neutral kaon andB systems. Sections IV and V
discuss these experimental constraints in detail. When
level I ~or II! constraints have been satisfied to within t
required tolerance, we call the set of input parameters a le
I ~or II! solution. In order to judge how close a given set
input parameters is to being a solution, we define ax2 for
each of the constraints, and then sum these up to obtainx2

for the appropriate constraint level; i.e.,

x i
25

~yi2yi
expt!2

s i
2 ~26!
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x~ I !
2 5(

i 51

12

x i
2 ~27!

x~ II !
2 5x~ I !

2 1 (
i 513

15

x i
2. ~28!

In these expressionsyi
expt represents the known ‘‘experimen

tal’’ value for the i th constraint,yi represents the value pro
duced theoretically using the given set of input parame
ands i represents the uncertainty~experimental and/or theo
retical! for the constraint. A set of input parameters is term
a solution if each of the relevantx i

2 is less than or equal to
one. In the case of a level II solution, a few additional ‘‘cut
must also be passed, as will be described below. Append
details the method by which our adaptive Monte Carlo ro
tine attempts to minimizex (I )

2 or x (II )
2 as it searches the inpu

parameter space for solutions.
Table II summarizes the ranges of the input parame

that yield viable values for the quark masses and left-han
CKM rotation angles. Denoting the various input paramet
by xi ( i 51,2,...,11), we have found that solutions for each
the xi lie within the range

xi ,0
cent6D i , ~29!

wherexi ,0
centandD i are given in the table. The ranges listed

the table correspond to the initial regions that the adap
Monte Carlo algorithm uses as it searches for solutio
These ranges are consistent with the arguments made a
in Sec. II B.~Note that the level I or II solutions themselve
form a subspace of the regions indicated in the table.!

In the following three sections we discuss the two lev
of constraint in detail and show the numerical results in e
case. We also provide comparisons, where appropriate,
work performed by previous authors.

TABLE II. Ranges used for the input parameters. The vario
parameters are defined in Eqs.~4! and ~21!. The Monte Carlo pro-
cedure that searches for solutions takes the initial range for thei th
parameter to bexi ,0

cent6D i . The reader is referred to Appendix A fo
more details on the adaptive Monte Carlo algorithm.

i x i

Initial central
value (xi ,0

cent) Initial range (D i)

1 f 11 0 1024

2 f 22 0 0.03
3 f 33 1.04 0.25
4 g11 0 331024

5 g22 0 331023

6 g33 0 0.06
7 g12 1023 1023

8 g13 1023 1023

9 g23 0.01 0.01
10 ak8 p p
11 b23 p p
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IV. LEVEL I CONSTRAINTS: QUARK MASSES
AND ROTATION ANGLES

It is useful to begin by applying only the level I con
straints, that is, only those constraints that involve the qu
masses and left-handed CKM rotation angles in Table I. T
analysis will help in the comparison to work performed
previous authors and will help clarify the mathematic
structure of the model. Note that any level I solution may
principle be combined with values forM2 and MH ~the
masses of the predominantly right-handed gauge boson
the Higgs boson, respectively! and checked to see if the com
bination satisfies the level II constraints. This is not a p
ticularly efficient method of finding level II solutions ifM2
andMH are fixed at certain values, but does work reasona
well if many different pairs of masses are used.

Let us first discuss the level I constraints themselves. T
quark masses and uncertainties listed in the table are ev
ated at the scalemZ @28#. These values were also used
determine the quark mass ratios and their uncertainties.
resulting ranges for the mass ratios are reasonably consi
with those quoted in Ref.@24#, except that our range for th
third ratio is somewhat larger than that quoted in Ref.@24#.
The central values and uncertainties of the sines of the th
rotation angles are taken from Ref.@20#.

Since the input parameter space is multi-dimensional,
have found it convenient to display the regions of interes
a series of two- and three-dimensional projections. Figur
shows several such plots for level I solutions. It is clear fro
the plots that solutions exist for all values ofak8 and b23.
This observation is consistent with our earlier discussion
garding the number of input parameters and constrai
Since we have 11 degrees of freedom and nine esse
constraints,8 we expect to have two unconstrained degrees
freedom. The remainder of the input parameter space is
ken up into several disjoint regions. These regions actu
shrink to a series of points asx (I )

2 is reduced to zero.
Our numerical solutions provide an interesting point

contact with earlier work performed on the SB-LR@19,20#,
where it was pointed out that for each value ofak8 there are
64 physically distinct solutions. In the SB-LR one can as
ciate relative signs with the quarks masses, giving 32 dif
ent combinations. Another factor of ‘‘2’’ in that contex
comes from two possibilities fordL ~close to zero or close to
p!. If our approach is correct and exhaustive, it should
able to find all 64 of these solutions. A good discriminator
the 64 solutions is the physically observable phasesd @de-
fined in Ref.@20# and also in Eq.~34! below#, which arises in
B-B̄ oscillations. Fixingak8 and settingb2350 andp ~re-
call that F and G are real in the SB-LR! we have indeed
found 64 distinct values forsd , in agreement with Ref.@20#.
More generally, for any pair of values of the input phas
ak8 andb23 there appear to be 32 distinct solutions.

Figure 2 shows frequency plots of the various qua
masses and rotation angles calculated using the input pa

8Note that the three quark mass ratios are ‘‘redundant’’ constra
in this context, although they are important in our numerical wo

s
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KIERS, KOLB, LEE, SONI, AND WU PHYSICAL REVIEW D66, 095002 ~2002!
FIG. 1. Regions of the input parameter space yielding viable quark masses and left-handed mixing angles. For each (b23,ak8) pair, the
adaptive Monte Carlo procedure was used to find a set of values for the nine parametersf i i andgi j that satisfied the level I constraints. N
extra constraints from theK or B systems have been imposed. The reader is referred to Appendix A for details concerning the nu
procedure used to find solutions.
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eter sets displayed in Fig. 1. The dashed vertical lines in e
plot represent the valuesyi

expt6si . The histograms are en
tirely contained within the dashed lines since our numer
procedure ensures that all constraints are satisfied to w
61s. ~We have opted for a somewhat restrictive approach
the present work, but one could easily relax the procedu!
Note that a narrower distribution indicates that the numer
procedure had a somewhat ‘‘easier’’ time satisfying the giv
constraint.

Figure 3 shows the various phases that characterize
left- and right-handed CKM matrices@see Eqs.~14!–~18!#
for the input parameter sets plotted in Fig. 1. These p
may be regarded as ‘‘predictions’’ of our model in the sen
that the points shown have passed all level I constraints.
plots show that all values are possible fordL ~the sole phase
in the left-handed CKM matrix! but that the right-handed
phases are typically quite limited by the level I constrain
Inclusion of level II constraints will, of course, further lim
the possible values that the left- and right-handed phases
assume~see Figs. 8 and 12 below, for example!. One very
interesting result in Fig. 3 is thatdL is very closely tied to the
fundamental phaseb23 in G:

dL'b231np60.25 rad, ~30!

wheren is an integer and where the ‘‘60.25 rad’’ indicates
the approximate spread of the values aroundb231np. This
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result is consistent with the result found in Ref.@20#, where
F and G were taken to be real matrices (b2350 or p! and
where two classes of solutions were found, one withudLu
<0.25 and the other withudL2pu<0.25. Also interesting is
the approximate equality betweendL anddR evident in Fig.
3,

dR'dL60.50 rad. ~31!

In order to understand this result, recall that in the qua
manifest case~real Higgs VEVs! one has the strict equality
dR5dL , while in the SB-LR~real F and G! one hasdR5
2dL . In the latter case, one has the additional phenome
logical result thatudLu<0.25 or udL2pu<0.25, so thatudR
2dLu<0.50. Equation~31! may thus be viewed as a ma
riage of the results from these two cases:dR is approximately
equal todL , as in the quasimanifest case, but with a spre
of 60.50, characteristic of the SB-LR.@Further discussion
along these lines may be found in Appendix B, where E
~30! and ~31! are derived using an approximate analytic
technique.# The remaining right-handed phases in Fig. 3 be
a very close resemblance to those one obtains in the SB
~obtained by restrictingb23 to the values 0 andp!. The
quasimanifest limit itself is also evident in Fig. 3: the phas
r i andh i reduce to 0 orp wheneverak85np. This behav-
2-8



dicate the

UBIQUITOUS CP VIOLATION IN A TOP-INSPIRED . . . PHYSICAL REVIEW D66, 095002 ~2002!
FIG. 2. Frequency spectrum of quark masses and rotation angles for the data set plotted in Fig. 1. The dashed vertical lines in
valuesyi

expt6si . The vertical axis gives the number of observations in each bin.
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ior is consistent with the known relation between the le
and right-handed CKM matrices in the quasimanifest ca
namelyVRi j

CKM56VLi j
CKM @7#.

The ratio of right- to left-handed rotation angles~actually,
their ‘‘sines’’! is shown in Fig. 4. The ratios are identical
unity wheneverak8 or b23 is equal tonp, since in these
limits our model reduces to the quasimanifest
pseudomanifest case, respectively. In a general nonman
model the ratios are permitted to depart from unity, althou
our numerical results indicate that they do not do so by v
much. The largest departure occurs for the ra
sinu13

R /sinu13, which is still typically within 20% of unity.
The other two ratios are even closer to unity, w
sinu23

R /sinu23 differing from unity by at most about 0.15%
In Appendix B we explain this intriguing agreement betwe
the left- and right-handed rotation angles. In the case of
ratio of 2–3 angles, for example, the departure from unity
of order l5 ~where l50.22), which is in good agreemen
with our numerical results.

V. LEVEL II CONSTRAINTS: K-K̄ AND B-B̄ MIXING

The preceding section described the effects of impos
the level I constraints on our model. That analysis was us
in that it served to highlight some of the basic properties
the model. In the present section we describe the leve
constraints, which are those coming from the neutralK andB
systems. Section VI describes the effects of imposing th
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additional constraints, an endeavor that is complicated so
what by the presence of two new degrees of freedom, nam
the Higgs boson andW2 masses. Table I contains a list of th
level II constraints. These have been discussed in deta
Ref. @20# and also in Refs.@17# and@19#. Here we summarize
some of the main results in those references. Note that w
not attempt to usee8 to place constraints on our results~ex-
cept in Sec. VI A, below, where we compare our results w
those found by previous authors within the SB-LR!.

A. Experimental constraints from DmBd
and DmBs

DmBd
and DmBs

can be quite sensitive to nonstanda
contributions in the left-right model@18,20,29#. The off-
diagonal terms in the mass matrices may be written in te
of a standard model piece and a left-right piece:

M125M12
SM1M12

LR5M12
SM~11kd~s!e

isd~s!!, ~32!

where

kd~s!5UM12
LR

M12
SMU'UVRtb

CKMVRtd~s!

CKM*

VLtb

CKMVLtd~s!

CKM*US BB
scalar

BB
D

3H S 7 TeV

MH
D 2

1h2
LRS 1.6 TeV

M2
D 2

3F0.05120.013 lnS 1.6 TeV

M2
D 2G J ~33!
2-9
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FIG. 3. Left- and right-handed CKM phases for the set of input parameters shown in Fig. 1. Note that the horizontal axes vary f
to plot. Also, recall the definitions of the phasesak8 andb23:ak85arg(k8) andb235arg(G23).
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sd~s!5argS 2
VRtb

CKMVRtd~s!

CKM*

VLtb

CKMVLtd~s!

CKM* D , ~34!

with BB
scalar/BB.1.2 andh2

LR.1.7 @20#. The expression for
kd(s) is an approximation that is accurate to about 5%
M2.1.4 TeV andMH.7 TeV. The full expression forM12

SM

may be found in Ref.@20#. Our expression forsd(s) is iden-
tical to that found in Ref.@20#, while that forkd(s) differs in
that it contains a ratio of right- and left-handed CKM matr
elements. This ratio is equal to unity in the spontaneou
broken model considered in Ref.@20#.

The above results may be used to solve for theB-B̄ mass
differences, since
09500
r

ly

DmBd~s!
52uM12u. ~35!

In the case ofBd , the mass difference is quite well know
experimentally. Nevertheless, various theoretical uncert
ties relax the bound somewhat, leading to the following co
straint @20#:

u~VLtb

CKMVLtd

CKM* !2~11kdeisd!u5~6.762.7!31025.

~36!

In terms of DmBd
itself, the above range corresponds

DmBd
50.47260.190 ps21, as is quoted in Table II. In the

case ofBs there is only an experimental lower bound on t
mass difference,DmBs

>15.0 ps21 @30–33#. When compar-
ing to theoretical expectations, the lower bound is usua
FIG. 4. Ratios of right- and left-handed rotation angles for the set of input parameters shown in Fig. 1.
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TABLE III. Short-distance contributions toeK andDmK for a particular data point that satisfies all level I~but not level II! constraints.
The left- and right-handed phases for this level I solution aredL50.9973 and (r1 ,r2 ,r3 ,h2 ,h3 ,dR)
5(2.979,0.1758,3.168,3.134,4.783,0.5801) and the sines of the right-handed rotation angles are (sinu12

R ,sinu23
R ,sinu13

R )
5(0.2254,0.0396,0.00279). We have setL350.350 GeV,m51.0 GeV andBK50.86.

M2

~TeV!
MH

~TeV!

eK
SD/eK

expt DmK
SD/DmK

expt

SM FCNH W1W2 S1W2 W1F6 SM FCNH W1W2 S1W2 W1F6

1.6 5 0.798 231.9 20.224 21.61 20.250 0.747 0.770 0.608 0.071 0.009
5 5 0.798 231.9 20.023 20.249 20.250 0.747 0.770 0.064 0.009 0.009
5 10 0.798 27.98 20.023 20.249 20.075 0.747 0.193 0.064 0.009 0.003
5 50 0.798 20.319 20.023 20.249 20.004 0.747 0.008 0.064 0.009 0.0001
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expressed as a ratio, since this tends to decrease the the
ical uncertainty. We enforce the following bound:

DmBs

DmBd

51.313U ~VLtb

CKMVLts

CKM* !2~11kse
iss!

~VLtb

CKMVLtd

CKM* !2~11kdeisd!
U

>27.2. ~37!

This bound takes into account theoretical uncertainties an
slightly modified from that given in Ref.@20#. The DmBs

constraint is enforced in a different manner than most ot
constraints, since it is only included as a ‘‘cut’’ after a pote
tial solution has been identified~i.e., DmBs

is not included in

the evaluation ofx (II )
2 ).

B. Experimental constraints from eK and DmK

The K-K̄ system has long played an important role
constraining the left-right model.DmK puts a lower bound of
about 1.6 TeV on the mass ofW2 @12#, while eK can in
principle put a lower bound of about 50 TeV on the Hig
boson mass@22#. This latter bound is due to the presence
a tree-level FCNH contribution toeK . As we shall see in
Sec. VI, a detailed numerical treatment of our model in
cates that the experimental bounds may be satisfied
Higgs boson masses as low as about 7 TeV. BotheK and
DmK are defined in terms ofM12, the off-diagonal term in
the K-K̄ mass matrix@20#,

eK5
eip/4

&
S Im~M12!

DmK
expt 1j0D ~38!

DmK52 Re~M12!, ~39!

where

j05
Im a0

Rea0
,

a0* 5^pp~ I 50!u2 iHeff
uDSu51uK̄0&weak. ~40!

DmK suffers from relatively large theoretical uncertainti
due to long-distance contributions, so we follow the us
practice of using the experimental value forDmK in Eq. ~38!
09500
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rather than the theoretical~short distance! expression obtain-
able fromM12. The term proportional toj0 in Eq. ~38! is
also subject to considerable theoretical uncertainties. Wi
the SM these uncertainties do not pose any particular d
culties because the contribution due to this term is qu
small and may safely be neglected. Such is not necess
the case within the left-right model, where the contributi
due toj0 can be of order 30% forM251.6 TeV @17,19,20#.
We follow Ref.@20# in ignoring thej0 contribution toeK and
in taking its effect into account through a theoretical unc
tainty.

Reference@17# contains a thorough discussion of the va
ous contributions toM12 within the left-right model. Inter-
estingly, the sum of box diagrams is not itself gauge inva
ant in the left-right model @34,35#. Nevertheless, the
diagrams restoring gauge invariance give very small con
butions in the ’t Hooft–Feynman gauge, and can safely
ignored while working in that gauge. Similarly, several of t
box diagrams generically give quite small contributions a
can be ignored, leaving a total of five terms in the theoreti
expression forM12 @17#,

M125M12
SM1M12

FCNH1M12
W1W21M12

S1W21M12
W1F6

,
~41!

where the first term is the usual SM contribution, the seco
corresponds to the tree-level FCNH contribution, andS1 and
F6 refer to one of the unphysical scalars and to the phys
charged Higgs, respectively.~Recall that, for simplicity, all
nonstandard Higgs bosons are taken to have the same
in the present work.! Explicit expressions for the variou
terms may be found in Refs.@17# and @36# and are not in-
cluded here.9

Table III shows a numerical evaluation of the five sho
distance contributions toeK andDmK for a particular level I
solution and gives a rough indication of how the vario
terms scale with increasing Higgs boson andW2 masses.
~There is nothing particularly ‘‘special’’ about this data poi
other than that it happens to give a SM contribution tha
close to the known experimental value.! One of the most
striking features of the table is the very large tree-le

9We use the NLO results in Ref.@36# for the SM piece and the LO
results in Ref.@17# for the left-right pieces.
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KIERS, KOLB, LEE, SONI, AND WU PHYSICAL REVIEW D66, 095002 ~2002!
FCNH contribution toeK . Pospelov studied this contributio
a few years ago in the case of manifest left-right symme
and concluded that the corresponding Higgs boson would
required to have a mass in excess of 50 TeV@22#. The ap-
propriateness of this bound is evident in the last row of
table, where the troublesome term is seen to reach a man
able size onceMH*50 TeV. Having said this, let us not
that we are in fact able to find complete level II solutio
with Higgs boson masses of order 7 TeV. Such solutions
require a certain amount of ‘‘fine-tuning,’’ but they exi
nonetheless.

The left-right contributions toeK in Ref. @17# are only
accurate to LO and display a relatively strong dependenc
the low-energy QCD scalesm andL3 . The SM piece, while
evaluated to NLO in the present work, is also subject
uncertainty due to the kaon bag parameter,BK . In order to
investigate the effects of these uncertainties, we have ex
ined eK predictions for a set of data points that passed
level I constraints. We combined the data points with vario
Higgs boson andW2 mass combinations and evaluatedeK
taking m, L3 and BK in the rangesm51.060.2 GeV, L3
50.35060.100 GeV andBK50.8660.15. The resulting
spread ofeK values typically fell within 20–30 % of the
mean. Rather than allowing these three parameters to va
our numerical work, we have fixed them to the ‘‘centra
values (m51.0 GeV, L350.350 GeV andBK50.86) and
have assigned a 20% theoretical uncertainty toeK . Using the
value eK52.2831023 @24# and ignoring the small experi
mental uncertainty, we obtain10

eK5@2.286„0.4613.53~1.0 TeV/M2!2
…#31023,

~42!

where the first term in the uncertainty is due to uncertain
in m, L3 andBK . The second term in the uncertainty is d
to our neglect of thej0 term in Eq.~38! and is taken from
Ref. @20#.

Theoretical expressions forDmK involve large uncertain-
ties due to long distance contributions, even within the c
text of the SM. The SM calculation of the short-distan
contribution toDmK gives roughly 70% of the known ex
perimental value~see Table III!. Within the SM, the remain-
ing 30% is thought to be due to long-distance effects. I
not clear how one might best useDmK to place constraints
on nonstandard physics, since the long-distance contribut
are somewhat unknown. We follow previous authors a
constrain new contributions to be at most as large asDmK

expt

itself. Our constraints are

21<2 Re~M12
LR!/DmK

expt<1 and Re~M12!.0.
~43!

10We have usedNf53 when evaluating the expressions in Re
@17#. In some of the expressions~such as in the treel-level FCNH
contribution! one could in principle evolve the Wilson coefficien
in several steps rather than all at once, but it is not clear that
would be appropriate in some of the other expressions.
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The DmK constraints are implemented as cuts and are
used in the evaluation ofx (II )

2 .

C. Experimental constraint from B\cKS

Recent measurements of sin 2bCKM
eff by the BABAR and

BELLE Collaborations yield the values 0.5960.1460.05
and 0.9960.1460.06, respectively @25,26#. Taking the
weighted average yields the value sin 2bCKM

eff 50.7960.11,
which is consistent with the slightly older CDF measurem
@27#. This experimental value actually acts to constrain b
the CKM angle ‘‘bCKM , ’’ as well as nonstandard effect
coming fromK-K̄ andB-B̄ mixing. The full theoretical ex-
pression is given by@20#

sin 2bCKM
eff 5sinF2bCKM1arg~11kdeisd!

2argS 11
M12

K,LR

M12
K,SMD G , ~44!

where

bCKM5argS 2
VLcd

CKMVLcb

CKM*

VLtd

CKMVLtb

CKM* D . ~45!

When employing sin 2bCKM
eff as a constraint we take into ac

count the experimental uncertainty, but do not include a
additional theoretical uncertainty.

VI. LEVEL II SOLUTIONS: NUMERICAL RESULTS

In this section we employ all the experimental constrai
in Table I in order to search the parameter space of the m
for level II solutions. Section VI A contains a study of ou
model in the pseudomanifest limit~F andG real!, in which
case our model reduces to the SB-LR@20#. In Secs. VI B and
VI C we perform two case studies. In the first we fix theW2
and Higgs boson masses to be 5 and 10 TeV, respectiv
while in the second we allow the masses to vary over p
scribed ranges.

A. Comparison with results in the SB-LR

We begin by using our method to rederive some of
results obtained in the SB-LR@20#, since this serves as
useful check of our method. Figure 5 shows plots
DmBd

/DmBd

expt, DmBs
/DmBs

SM and sin 2bCKM
eff for a set of level

I solutions generated for a particular value of the phaseak8 ,
where@20#

DmBd

DmBd

exp5
u~VLtb

CKMVLtd

CKM* !2~11kdeisd!u

~6.731025!
~46!

DmBs

DmBs

SM5
u~VLtb

CKMVLts

CKM* !2~11kse
iss!u

0.0392
.

~47!
is
2-12
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FIG. 5. Reproduction of some results obtained for the SB-LR in Ref.@20#. The above plots were obtained by settingb2350,p and
ak85sin21

„(12r 2)tanb/(2r)…, with r 5uk8/ku andb50.02, in the notation of Ballet al.The plots may be compared with theb50.02 case
in each of Figs. 4–7 in Ref.@20#. Note thatks5kd in the SB-LR, since the ratio of CKM matrix elements in Eq.~33! is equal to unity in that

case. Note also that the above plot of sin 2bCKM
eff neglects theK2K̄ mixing contribution, as does the analogous plot in Ref.@20#. Only

non-negative values of sin 2bCKM
eff are shown.
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In each case the plot was obtained by allowingb23 to take on
the values 0 andp, since our model reduces to the SB-LR f
these values ofb23. In order to reproduce the results of Ba
et al. more precisely, we have enforced the rather string
boundx (I )

2 ,231026 for this particular set of points. Com
parison of this figure with Figs. 4–7 in Ref.@20# shows quite
good agreement of our results with those obtained th
There are, however, two differences between our results
those in Ref.@20#. In the first place, the overall shapes of t
plots are slightly different. This difference is due to a sligh
different choice of quark masses and left-handed rota
angles. A second difference concerns the number of li
evident in the plots. In some places where we appear to h
a single line~or several very closely spaced lines!, Ball et al.
have several lines. One possibility would be that our meth
is actually missing some solutions. We do not believe this
be the case, however, since our evaluation ofsd for this case
shows 64 distinct values. The reason for this difference is
clear to us.

We may also draw a comparison with Fig. 9 in Ref.@20#,
which shows a plot ofeK versus sin 2bCKM

eff for a range of
values for M2 and MH . Figure 6 shows two plots ofeK

versus sin 2bCKM
eff for the case whenb2350, p. For each of

the plots a set of level I solutions is combined with ma
pairs ofW2 and Higgs boson masses. The points shown h
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passed theDmBd
, DmBs

and DmK bounds in Table I11 and

correspond to masses in the range 2,M2,16 TeV and 4
,MH,18 TeV. The plot on the right has passed an ad
tional cut one85eSM8 1eLR8 . In evaluatinge8, we have taken
the SM piece from Ref.@36#. For the LR piece we have use
the following expression@19#:

eLR8 .eip/4310223H F6.8F as~m2!

as~M2
2!G

22/b

20.30

3F as~m2!

as~M2
2!G

4/bG M1
2

M2
2 sin~2h2!1102z

3@sin~ak81r12h2!1sin~ak81r1!#29.6z

3@sin~ak81r2!1sin~ak81r22h2!#J , ~48!

where

11When comparing with the SB-LR we began with level I sol
tions and enforced all level II constraints as ‘‘cuts.’’
2-13
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FIG. 6. Plot ofeK versus sin 2bCKM
eff in the SB-LR. The plot on the left satisfies allDm-type bounds~as described in the text!. The plot

on the right satisfies the additional constrainte2 ip/4e8.0 and may be compared with Fig. 9 in Ref.@20#.
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z5
2r

11r 2 S M1

M2
D 2

, ~49!

with r 5uk8/ku andb51122Nf /3. The above expression fo
eLR8 has been modified from that in Ref.@19# in order to
account for a slight difference in gauge choice with resp
to the phases of the bidoublet Higgs VEVs.

Comparison of Fig. 6 in the present work with Fig. 9
Ref. @20# shows reasonable agreement between the two p
but there are a few differences. In particular, while Ballet al.
find no solutions near the experimental values foreK and
09500
t

ts,

sin 2bCKM
eff , we do find solutions that are somewhat close

these values. Also, while Ballet al. have very few points in
the third quadrant, our plot shows a fairly prominent band
this region. It is unclear to us why our results differ fro
those found by Ballet al., particularly given the good agree
ment between our Fig. 5 and their Figs. 4–7. It is possi
that the discrepancy is due to small differences in our eva
ation of the expressions foreK or DmK in Ref. @17# or in our
evaluation and application of thee8 constraint. We should
emphasize that, due to the significant theoretical uncert
ties involved in the calculation ofe8, we do not usee8 in the
FIG. 7. Regions of the input parameter space that yield level II solutions whenM255 TeV andMH510 TeV.
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FIG. 8. Left- and right-handed CKM phases for the set of input parameters in Fig. 7. These are level II solutions withM255 TeV and
MH510 TeV.
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remainder of our analysis. We have only discussed it in
present subsection in order to facilitate a comparison w
the work in Ref.@20#.12

B. A case study:M 2Ä5 TeV and M HÄ10 TeV

We turn now to a case study for a particular pair ofW2
and Higgs boson masses, choosingM255 TeV and MH
510 TeV. Figures 7–10 show our numerical results for le
II solutions in this case. Figure 7 contains a plot of the inp
parameter space showing points that satisfy the level II c
straints whenM255 TeV andMH510 TeV. This figure may

12We note here that the phenomenological estimates ofe8/e have
a very wide range within the context of the SM~see, e.g., Bertolini
@37#!. Not only does the calculation of the hadronic matrix eleme
of the relevant four-quark operators remain a formidable theore
challenge, but this difficulty is considerably compounded by
fact that there are large cancellations between the contribution
the QCD penguin diagrams and the electroweak penguin diagr
Recently, important advances have been made in the treatme
chiral symmetry on the lattice and this is facilitating several n
efforts @38–40#, but at present there are still significant sources
systematic errors that need to be brought under control. These
vances do give one hope, however, that with another few year
effort one may be in a much better position to make use of
precise experimental results@41,42# to constrain theories ofCP vio-
lation.
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be compared with Fig. 1, which shows a set of points t
pass only the level I constraints. Note that there are sev
constraints on the possible values forak8 and b23. In par-
ticular, both the quasimanifest (ak85np) and pseudomani-
fest (b235np) limits would appear to be ruled out for thi
particular pair of values for the massesM2 andMH . Figure
8 shows the left- and right-handed CKM phases for the se
input parameters in Fig. 7. This figure may similarly be co
pared with Fig. 3. The level II constraints rule out most
the possible values that the right-handed phases coul
principle assume. Figure 9 shows frequency distributions
the five quantities yielding the level II constraints. Th
dashed vertical lines indicate experimental and/or theoret
bounds in each case. The histogram plot in Fig. 10 shows
frequency distributions for each of the five short-distan
contributions toeK . The SM, FCNH andW1-W2 contribu-
tions can all be quite significant. Some further investigat
has also shown a relatively strong anticorrelation betw
the FCNH andW1-W2 contributions that yield level II solu-
tions: when the contributions are large they tend to be
opposite sign.

C. The generic case: variable masses

Figures 11–13 show the results obtained whenM2 and
MH are allowed to vary over prescribed ranges. Level
solutions were found for Higgs boson masses as low as a
7 TeV, despite the apparently dangerous tree-level FC

s
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e
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f
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FIG. 9. Frequency plots of the five level II constraints for the data set in Fig. 7. The dashed vertical lines foreK , sin 2bCKM
eff andDmBd

indicate the theoretical and/or experimental uncertainties. The dashed line forDmBs
indicates the lower bound onDmBs

/DmBd
@see Eq.

~37!#. The data in the plot are level II solutions withM255 TeV andMH510 TeV.

FIG. 10. Frequency plots of the five short-distance contributions toeK for the data set in Fig. 7. Note the different scales on the horizo
axes. The data in the plot are level II solutions withM255 TeV andMH510 TeV.
095002-16



ss

ur

w
d

t
i

th
l

to
e

t’’
n-
n.
is

lue

er-

l
t
-

the
the

hat
not

here
10
ce

to
all

ked
s in

lly
vely
p-
s

es
ften
ifest

rk
al
ed

cor-
re

e

he
ng
on
s

UBIQUITOUS CP VIOLATION IN A TOP-INSPIRED . . . PHYSICAL REVIEW D66, 095002 ~2002!
contribution in Eq.~41!. Solutions were also found forW2
masses as low as about 1.5 to 2 TeV. In choosing the ma
we have employed the restrictionsMH.M2 , M2.1.4 TeV
and MH.5 TeV ~otherwise, approximations in some of o
theoretical expressions begin to lose some accuracy! and
M2,13MH ~perturbativity bound@43#!. We have also placed
~somewhat arbitrary! upper limits on theW2 and Higgs bo-
son masses, as is evident in Fig. 11.

There are three sets of plots in Fig. 11. The top pair sho
the entire range of Higgs boson andW2 masses considere
~on the right! and the values ofak8 andb23 for which solu-
tions were found~on the left!. It would appear from this plot
that the quasimanifest limit~real Higgs VEVs;ak85np) is
disfavored, at least for the range of masses considered in
plot. ~The quasimanifest case can actually yield solutions
the decoupling limit; as we shall discuss below.! The middle
pair of plots shows the case in whichMH,20 TeV and in-
dicates that for these ‘‘moderate’’ Higgs boson masses
solutions in theb232ak8 plane form roughly horizonta
bands. The pseudomanifest case~real F and G; b235np)
does not appear to be ruled out, but does seem at least
slightly disfavored.~Recall that we could in principle com
to different conclusions than Ballet al., since we do not use

FIG. 11. Three pairs of plots showing level II solutions for t
variable mass case. The plots on the right indicate the mass ra
under consideration and the plots on the left show the corresp
ing values ofak8 and b23. The middle and lower pairs of plot
show subsets of the data contained in the upper pair of plots.
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thee8 constraint in our analysis.! The bottom pair of plots in
Fig. 11 shows the approach to the ‘‘decoupling limi
(MH ,M2→`). In the decoupling limit the nonstandard co
tributions all tend to zero, leaving only the SM contributio
In contrast with the SB-LR, our model survives into th
limit, since the usual left-handed phasedL can be made to
take on any value in our model by choosing a suitable va
for b23 @see Eq.~30! and Fig. 3#, whereasdL is quite close to
either 0 orp in the SB-LR.13 Some additional investigation
into the decoupling limit has shown that approximately v
tical bands of solutions develop in theb232ak8 plane in this
limit. These bands are located nearb23/p.0.4 andb23/p
.1.4. ~These values forb23 yield dL.1.2 rad, which is just
the usual result in the SM.! The beginnings of these vertica
‘‘decoupling limit bands’’ are evident in Fig. 11. Note tha
the decoupling limit version of Fig. 3 has very tightly con
strained regions fordL and also fordR ~the constraint ondR

is due to the strong correlation betweendR anddL).
Figure 12 shows the left-and right-handed phases in

variable mass case. Comparing with Fig. 3, we see that
level II constraints rule out many of the possible values t
the phases could in principle assume. The restrictions are
as severe, however, as in the case considered in Fig. 8, w
the W2 and Higgs boson masses were fixed to be 5 and
TeV, respectively. Figure 13 displays the five short-distan
contributions toeK ~as fractions ofeK

exp) in the variable mass
case. Since many of the solutions actually correspond
quite large masses, the nonstandard distributions are
peaked around zero and the SM contribution is pea
around unity. Nevertheless, the data set includes case
which the FCNH andW12W2 contributions are relatively
large ~and typically of opposite sign!.

VII. DISCUSSION AND CONCLUSIONS

The left-right model provides a viable and aesthetica
pleasing extension of the SM. We have presented a relati
exhaustive numerical investigation of a nonmanifest ‘‘to
inspired’’ version of the left-right model in which the Higg
VEVs are taken to be in the ratiomb :mt . This version of the
model is very attractive in that it quite naturally reproduc
the quark mass and rotation angle hierarchies. It has o
been the case in the past that studies of the nonman
left-right model have relied on variousansätzeregarding the
form of the right-handed CKM matrix. In the present wo
we have solved for this matrix numerically. Our numeric
work has yielded the intriguing result that the right-hand
rotation angles and the phasedR are very similar in size to
their left-handed counterparts. These relations have been
roborated analytically in Appendix B. One interesting featu

13Note that among the two fundamentalCP-violating phasesak8
and b23, the contribution fromak8 to the CKM phasedL is
Cabibbo-suppressed byl50.22 relative to that from the phaseb23.
Thus models with vanishingb23 ~such as the SB-LR! may not gen-
erate enoughCP violation in general, and certainly not when th
scale of new physics is very high~i.e., in the decoupling limit!.
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FIG. 12. Left-and right-handed CKM phases for level II solutions in the variable mass case. The data shown correspond to the m
shown in the upper-right plot in Fig. 11.

FIG. 13. Frequency plots of the five short-distance contributions toeK for the variable mass case.
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UBIQUITOUS CP VIOLATION IN A TOP-INSPIRED . . . PHYSICAL REVIEW D66, 095002 ~2002!
of the model is that, unlike the SB-LR, it reduces to the S
in the decoupling limit.

One of the key insights in the present work is that unita
rotations may be used to rotate away many superfluous
grees of freedom in the quark Yukawa matricesF and G,
yielding mass matrices that contain only two fundamen
CP-odd phases.CP-violating quantities such aseK and
sin 2bCKM

eff may then be used to place constraints on these
phases. Our numerical study indicates that the combi
consideration of the neutralK andB systems leads to quite
strong reduction in the size of the available parameter sp
In particular, the twoCP-odd phasesak8 and b23 are con-
fined to rather small regions. From the vantage point of t
numerical investigation, and with the range of masses c
sidered here, it would appear that both the quasimani
~real Higgs VEVs! and pseudomanifest~real Yukawa cou-
plings! versions of the model are disfavored. The latter
these results is in agreement with recent work by Ballet al.
@20#, although some of our numerical results appear to
mildly different from theirs. One very intriguing result of th
present work is thatW2 and Higgs boson masses as light
about 2 TeV and 7 TeV, respectively, are not inconsist
with current experimental constraints.
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APPENDIX A: ADAPTIVE MONTE CARLO ALGORITHM

The numerical solution of our model has been acco
plished using an adaptive Monte Carlo algorithm. The g
of the algorithm is to find sets of input paramete
( f i i ,gi j ,...) that satisfy the level I or level II constraints t
within some required tolerance. Table I lists the various c
straints employed and Eqs.~27! and~28! give the definitions
of x2 for level I and II constraints, respectively. The bas
procedure is to generate random values for the various in
parameters~see Table II! and then to ‘‘zoom in’’ on a solu-
tion by searching for small values ofx2. The procedure con
sists ofNit iterations~or ‘‘zooms’’!, with each iteration con-
sisting of the construction and diagonalization ofNcalc
separate sets of mass matrices. For each successive iter
the sizes of the input parameter ranges are reduced an
centered on the ‘‘best’’~as determined byx2) set of input
parameters for the run so far. For a typical run,Ncalc;15 and
Nit;5000.

The specific procedures for generating level I and II so
tions differ slightly; these differences are explained bel
after the description of the general algorithm. The gene
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algorithm for finding a solution is as follows:
~1! For thenth iteration (n50,1,2,...Nit) , randomly gen-

erate a set of values for the relevant input parametersxi ~see
Table II! within the ranges

xi ,n
cent6jnD i , ~A1!

where

jn5H 1, n50,

~1.5n!21, n.0.
~A2!

The above functional form forjn was found to be convenien
and relatively efficient. One could in principle choose a fo
for jn that decreases more quickly~exponentially, say!, but
we were not successful in getting such forms to converge
solutions.14

~2! Numerically diagonalize the mass matrices~see Sec. II
A! and determine the quark masses and the right- and
handed CKM matrices.

~3! Evaluate the appropriatex2 ~either x (I )
2 or x (II )

2 ) for
the set of input parameters@see Eqs.~27! and ~28!#.

~4! Return to step~1! and repeat the processNcalc times.
Keep track of the set of input parameters that has yielded
lowest value ofx2 for the run so far, calling this set$xi

best%.
~5! After repeating the processNcalc times, set the ‘‘central

values’’ of the various input parameters for the next iterat
to the values that have yielded the bestx2 so far for the run:

xi ,n11
cent 5xi

best. ~A3!

Incrementn by one and return to step~1!. Repeat the entire
processNit times. Note that on returning to step~1!, n has
increased, sojn has been reduced in size.

~6! Check the individualx i
2 once all Nit iterations are

completed. If each of thex i
2<1, the input parameter set is

solution.
A few modifications were made to the above procedure

order to increase its efficiency. For example, it was fou
empirically thatx2 decreased rather quickly on runs that a
tually resulted in a solution. We thus modified the proced
so that runs were abandoned ifx2 had not decreased below
some threshold value after a specified number of iteratio

1. Level I solutions

As noted in Sec. IV, the six quark masses and three r
tion angles provide nine essential constraints on the in
parameter space. As a result, level I solutions may be fo
for any pair of phasesak8 andb23 ~the nine constraints sim
ply act to constrain the nine input parametersf i i andgi j ). In
fact, in the limit thatx (I )

2 →0, there appear to be 32 solution
for each pair of values ofak8 and b23. In searching for a
level I solution, only thef i i andgi j are ‘‘zoomed in upon;’’
ak8 andb23 are fixed at the beginning of a particular run a

14Since our routine allows thef i i andgi j to ‘‘wander’’ out of their
original ranges, extra precautions were taken to ensure thatf 33,
g12, g13 andg23 all remained positive.
2-19
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are not altered throughout the course of the run. The lev
solutions for Figs. 1–4 were generated by settingNcalc515
and Nit51700. Slightly modified procedures were used
generate the data for Figs. 5 and 6.

2. Level II solutions

In order to find a level II solution, one must specify valu
for M2 andMH ~sinceeK , etc., depend on these!. As level II
solutions involve the addition of several new constrai
compared to level I solutions, it is convenient to allow bo
ak8 and b23 to be free parameters while zooming in on
solution. M2 and MH , however, may remain fixed for an
particular run.

A few slight modifications must be made to the gene
algorithm when searching for a level II solution, since
straightforward application of the algorithm does not seem
lead to solutions. The reason for the problem appears to
the inclusion ofeK in the evaluation ofx (II )

2 . eK is strongly
suppressed in the SM due in part to the presence of s
CKM matrix elements@36#. At the beginning of a particula
run, eK would typically be orders of magnitude too larg
because the elements in the CKM matrix would not initia
have the correct hierarchy. A similar problem occurs for
right-handed contributions toeK . The massive deviation o
eK from its experimental value at the beginning of a r
leads to a very large contribution tox2 and upsets the zoom
ing process. In order to get around the problem, we subst
approximate values~close to the known experimental value
for the left-handed angles! for both the left- and right-hande
rotation angles when determining the contribution ofeK ~and
also of sin 2bCKM

eff ) to x (II )
2 for the first several hundred itera

tions. At some point in each run a switch is made such t
the true numerical versions of the left- and right-hand
CKM matrices are used.~Note that part of the reason for th
success of this trick is the relatively good agreement betw
the left- and right-handed rotation angles evident in Fig.!
The level II solutions for Figs. 7–13 were generated by s
ting Ncalc518 andNit58000.

APPENDIX B: ROTATION ANGLE AND PHASE
RELATIONS IN THE MODEL

In this appendix, we derive analytical relations betwe
the left- and right-handed rotation angles and the CK
phasesdL anddR for the model considered in this paper. Th
analysis is greatly simplified by the smallness of the ratio
the VEVs: uk8/ku5mb /mt .
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1. Angle relations

As discussed in Sec. II, the quark mass matrices in
model exhibit a surprising simplicity due to the hierarchy
the VEVs of the scalar bidoublet. In particular,Mu5kF
1k8* G is nearly diagonal in our choice of basis, and
small rotation angles can be safely neglected compared to
corresponding CKM rotations; i.e.,

uVL
Uu.uVR

Uu.diag~1,1,1!. ~B1!

Thus, both left-handed~LH! CKM rotations and right-
handed~RH! rotations arise solely fromMd5k8F1k* G.
Note thatMd is neither Hermitian~due to the phaseak8) nor
symmetric~due to the phaseb23), and we need two separat
unitary rotation matricesVL

D andVR
D to diagonalizeMd . We

will show in this section that the LH and RH rotation angl
are closely related in this model due to the hierarchical str
ture in the observed quark mass spectrum and in the C
angles. This feature of the model is evident from the num
cal results presented in the text.

We start by noting the approximate but useful hierarchi
mu :mc :mt;l8:l4:1, md :ms :mb;l4:l2:1, and Vub;l4,
Vcb;l2, Vus5l50.22. MdMd

† is determined to a good
approximation from the LH CKM matrix, with the order o
magnitude of the different matrix elements given by

uMdMd
†u;mb

2S l6 l5 l4

l5 l4 l2

l4 l2 1
D . ~B2!

The hierarchical structure of this matrix will be useful as w
examine the rotation angles.

The matrixMd can be rewritten as

Md5H1P.H1meiak8S 0 0 0

0 0 0

0 0 1
D , ~B3!

where H5k* G is Hermitian, m5uk8 f 33u;mb , and P
5k8F and has been approximated by neglecting the sm
~1,1! and~2,2! elements for simplicity of analysis. The inclu
sion of all 3 diagonal elements ofP is straightforward and
does not affect our result. The LH and RH rotation matric
can be separately determined fromMdMd

† and Md
†Md ,

respectively:
MdMd
†5~H1P!~H1P* !.S H11

2 H12
2 H13

2 1e2 iak8H13m

H21
2 H22

2 H23
2 1e2 iak8H23m

H31
2 1eiak8H31m H32

2 1eiak8H32m H33
2 1m212 cosak8H33m

D , ~B4!

Md
†Md5~H1P* !~H1P!5MdMd

†~ak8→2ak8! ~B5!
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whereHi j
2 denotes the~i,j! element ofH2. Therefore, the LH

and RH rotation angles are also related byak8→2ak8 , and
for this reason, one would expect them to be of the sa
order of magnitude; i.e.,

u i j
L /u i j

R5O~1!. ~B6!

We thus arrive at the hierarchical structure of theMd ~thus
H! matrix,

uMdu;mbS l4 l3 l4

l3 l2 l2

l4 l2 1
D ;uHu, ~B7!

where only the order of magnitude of each matrix elemen
given. To be more precise, 0<uH33u/mb<O(1), andthis is
becauseuP33u5uk8 f 33u;mb . We have checked that Eq
~B9!, ~B12!, and~B14! are valid even whenuH33u/mb!1.

Due to the hierarchical structure ofMdMd
† @see Eq.

~B2!#, the LH angleu23
L ~i.e., uVcbu) is simply given by@44#

u23
L .U~MdMd

†!23

~MdMd
†!33

U
5UH23H331H22H231H21H131e2 iak8H23m

~MdMd
†!33

U. ~B8!

It is easy to see that (MdMd
†)33 is even underak8→

2ak8 . In the numerator in Eq.~B8!, only H23 ande2 iak8 are
complex. If we ignore the small term ofH21H13, we can
then factor outH23 and observe that the numerator~thusu23

L )
is invariant under ak8→2ak8 . Thus u23

R 5u23
L (ak8→

2ak8).u23
L . The inclusion of the small termH21H13 intro-

duces a tiny correction to this equality relation,

u23
R 5u23

L 3„11O~l5!…, ~B9!

where we have made use of Eq.~B7!. This correction is of
order 0.1% and is in good agreement with our numeri
analysis~see the second plot in Fig. 4!.

From Eq.~B2!, one can reason thatu13
L is given by

u13
L .U~MdMd

†!13

~MdMd
†!33

U
5Ue2 iak8H13m1H13H331H12H231H11H13

~MdMd
†!33

U.
~B10!

Substituting the different terms with their orders-o
magnitude and phases, we have

u13
L 5ue2 iak81O~1!1e2 ib23O~l!u3O~l4!, ~B11!

which gives the right size foruVubu. The corresponding RH
angle can then be deduced fromu13

L with ak8→2ak8 , and
we get
09500
e

is

l

u13
R 5u13

L 3„11O~l!…. ~B12!

This O~l! correction well explains the 20% fluctuatio
around unity in the third plot of Fig. 4.

The last step in the diagonalization ofMdMd
† involves a

~1,2! rotation. To first approximation, the matrix elements
the ~1,2! submatrix are invariant underak8→2ak8 , and we
get

u12
R .u12

L . ~B13!

To find out the correction to this relation, we need to inclu
the ‘‘residual effect’’ on the~1,2! and ~2,2! elements of
MdMd

† from the ~2,3! rotation. The~1,2! element is modi-
fied as

H12
2 →H12

2 1~H32
2 1eiak8H32m!~H13

2 1e2 iak8H13m!/O~mb
2!

5$11O~l!e2 ib23@eiak81e2 iak81O~1!#1O~l2!

3@eiak81O~1!#%3O~l5!mb
2.

Interestingly, the O~l! term is invariant underak8→
2ak8 , and the leading noninvariant term appears at a hig
order ofl2.

One can similarly calculate the effect of the~2,3! rotation
on the~2,2! element ofMdMd

† . We note that the noninvari
ant term underak8→2ak8 is of O(l5) relative to the in-
variant term. The LH rotation angleu12

L can now be calcu-
lated, and is given to first approximation by the ratio of t
modified ~1,2! and ~2,2! elements. The RH angleu12

R can be
obtained fromu12

L with the substitutionak8→2ak8 . We
thus get

u12
R 5u12

L 3„11O~l2!…. ~B14!

The O(l2) correction nicely explains the;4% deviation
from unity as presented in the first plot of Fig. 4.

Note that when either of the two phases vanishes, we h
the exact relationsu i j

L 5u i j
R . In particular, whenak850 or p

~quasimanifest case!, MdMd
†5Md

†Md becauseP5P* .
This yields identical LH and RH rotation angles. On th
other hand, whenb2350 or p ~pseudomanifest case!, it is
easily seen that the expressions foru i j

L are invariant under
ak8→2ak8 , thusu i j

L 5u i j
R .

2. Phase relations

Due to the hierarchical structure of the quark mass ma
ces in the model considered in this paper, we can use
triangular matrix technique developed in Ref.@44# to solve
for the CKM phasesdL anddR . In the triangular form, each
mass matrix element has a simple correspondence wi
quark mass or a rotation angle, and the CKM phasesdL and
dR are equal to linear combinations of the phases of cer
elements of the up-and down-type quark mass matrices@44#.
For practical purposes,Mu can be considered as diagonal
our model, and the CKM phasedL (dR) depends on the
phases of four matrix elements ofMd rewritten in the upper
~lower! triangular form@44#.
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For the purpose of comparingdL and dR later, Eq.~B7!
can be rewritten with real andO~1! coefficients as follows:

Md.mbS a1l4 a2l3 a3l4

a2l3 b1l2eidl sin ak8 b2l2eib23

a3l4 b2l2e2 ib23 eia8

D .

~B15!
a

p

t

09500
Note thatmbeia8[k8 f 331k* g33, and that we have useda8
to distinguish fromak85arg(k8). The O~l! phase factor in
Md(2,2) comes fromk8 f 22, andd. f 22uk8u/(mbl3b1) is an
O~1! coefficient. On the other hand,k8 f 11 modifiesMd(1,1)
by 11O(l4) and is thus neglected. For the phase relatio
we will include corrections up toO~l!.

Consider first the phasedL in the LH CKM matrix. To this
end, we apply RH rotations to Eq.~B15! to convert it to
upper-triangular form,
Md→Md
A.mbS a18l

4 a2l3 a3l4@11clei ~b231a8!#

0 b1l2eidl sin ak8 b2l2eib23

0 0 eia8
D , ~B16!

wherec5a2b2 /a3 , a1 has changed toa18 which itself carries anO~l! phase, and higher-order corrections inl are ignored.
The CKM phasedL can now be expressed in terms of four elements ofMd

A @44#,

dL.argFMd
A~1,2!Md

A~2,3!

Md
A~1,3!Md

A~2,2!G.b232cl sin~b231a8!2dl sinak81np, ~B17!

wherenp5arg(a2b2 /a3b1) and can be 0 or6p.
To obtain an expression fordR in the RH CKM matrix, we apply LH rotations to Eq.~B15! to convert it to lower-triangular

form,

Md→Md
B.mbS a18l

4 0 0

a2l3 b1l2eidl sin ak8 0

a3l4@11cle2 i ~b232a8!# b2l2e2 ib23 eia8
D . ~B18!
i-

R.
The phasedR can be similarly obtained,

dR.argFMd
B~2,2!Md

B~3,1!

Md
B~2,1!Md

B~3,2!G
.b232cl sin~b232a8!1dl sinak81np, ~B19!

wherenp5arg(a3b1 /a2b2)5arg(a2b2 /a3b1).
Some discussion is in order regarding several features

limits of the model.
~1! dR'dL . Comparing the expressions fordL and dR ,

we see that they differ only in the sign ofak8 ~thusa8), as
noted when we examined the LH and RH angles. More s
cifically,

dR5dL12cl cosb23sina812dl sinak81O~l2!.
~B20!

Therefore,dR and dL become degenerate ifak850 or p.
Noting thatc, d5O(1) and 2l50.44, Eq.~B20! well ex-
plains our numerical relation of Eq.~31! and the second plo
in Fig. 3,

dR'dL60.50 rad.
nd

e-

In other words,dL anddR are equal up toO~l! corrections
from a nonzeroak8 .

~2! dL'b23'dR(mod p). As c, d5O(1) andl50.22,
we see that Eq.~B17! is in good agreement with our numer
cal relation of Eq.~30! and the first plot in Fig. 3:

dL'b231np60.25 rad.

A similar expression is valid fordR . In both cases, the CKM
phase is simply equal tob23 ~modp! up toO~l! corrections.
In particular, the contribution todL,R from ak8 is Cabibbo-
suppressed byl relative to that fromb23.

~3! (Quasi)manifest limit. dL5dR . In the limit ak850 or
p ~thus a850 or p!, we recover the~quasi!manifest left-
right symmetric model, anddL5dR ~exactly!, as is well
known for this scenario. For our model, we have

dR5dL'H b232cl sinb231np ~a850!,

b231cl sinb231np ~a85p!.
~B21!

~4! Pseudomanifest limit (or SB-LR). dR52dL and
udL,R2npu<O(l). In the limit b2350 or p, we have the
pseudomanifest left-right symmetric model, or the SB-L
2-22
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As is well known for this case, we have the exact relat
dL52dR . In our model, we get

dR52dL

'H cl sina81dl sinak81np ~b2350!,

2cl sina81dl sinak81~n11!p ~b235p!.

~B22!

Interestingly, the magnitudes of both phases are Cabib
suppressed, i.e.
ss

hy

ys

09500
n

o-

udL,R2mpu<O~l! ~b2350 or p!, ~B23!

wherem50 or 1. Note that this suppression arises before
impose anyCP-violating constraints on the model. Our an
lytical result is consistent with the numerical findings of Ba
et al. @20#,

udL2mpu<0.25 ~m50,1!.

This Cabibbo-suppression of the CKM phases may help
plain why the SB-LR is disfavored by the sin 2bCKM

eff mea-
surement.
/

od.
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