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Ubiquitous CP violation in a top-inspired left-right model
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We exploreCP violation in a left-right-model that reproduces the quark mass and CKM rotation angle
hierarchies in a relatively natural way by fixing the bidoublet Higgs VEVs to be in themgtion, . Our model
is quite general and allows f&@P to be broken by both the Higgs VEVs and the Yukawa couplings. Despite
this generalityCP violation may be parametrized in terms of two basic phases. A very interesting feature of the
model is that the mixing angles in the right-handed sector are found to be equal to their left-handed counter-
parts to a very good approximation. Furthermore, the right-handed analogue of the usual CKMpplgse
found to satisfy the relationg~ 6, . The parameter space of the model is explored by using an adaptive Monte
Carlo algorithm and the allowed regions in parameter space are determined by enforcing experimental con-
straints from theK and B systems. This method of solution allows us to evaluate the left-and right-handed
CKM matrices numerically for various combinations of the two fundame@Babdd phases in the model. We
find that all experimental constraints may be satisfied with right-haidead flavor changing neutral Higgs
boson masses as low as about 2 TeV and 7 TeV, respectively.
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I. INTRODUCTION possibilities for nonstandar@P violation through the pres-
ence of extraCP-odd phases. These phases appear, for ex-
The left-handedness of the observed weak interactions hanple, in the right-handed analogue of the usual Cabibbo-
long been a source of curiosity in particle physics. Left-rightkobayashi-Maskawa(CKM) matrix [13,14 and are in
symmetry may be restored to the weak interactions at thfndacilrtifn to the single phase that appears in the usual CKM
Lagrangian level by introducing a new right-handed gaug ; . .
boson. The aesthetic appeal of the so-called left-right modgllve\l/lvmivsz? iIgrrngrlaﬁ:gt% eirt;%sz;ccg rtges Iﬁ(f)tt r;)gehénmsc'zsgilezrix-
has led many to study it over the past few decades and trW

. austively except in certain limiting cases. Two such cases
formal properties of the mpdel are well knq\&h—ll]. One  are represented by the quasimanifest and pseudomanifest
feature that has emerged is that the new right-handed gau

: ) YRrsions of the model. In the formeEP violation is present
boson must have a mass in the TeV range in order to evadgpjicitly in the Yukawa couplings; in the latter, it arises
the stringent bounds imposed Bymy [12]. This mass scale  spontaneously in the Higgs VEVs. In both of these cases the
was unattainable two decades ago, but is now within reachight-handed analogue of the usual CKM matrix is simplified
especially at upcoming colliders and perhaps also througfh that the three right-handed rotation angles are identical to
precision studies of low-energy observables inB®ystem.  their left-handed counterparts. In the nonmanifest version of
Another factor that motivates a reexamination of the left-the model(considered in the present workCP violation
right model is that the model naturally accommodates noneccurs in both the Higgs VEVs and the Yukawa couplings,
vanishing neutrino masses as well as the enormous disparighd the right-handed CKM matrix can in principle be quite
in masses observed among the quarks and leptons. Indeaetifferent from the left-handed one. In this case a full numeri-
very light neutrinos may be obtained through the seesawal solution needs to be undertaken in order to obtain de-
mechanism, while the heaviness of the top quark may beailed information regarding the right-handed sector of the
reproduced through a judicious choice of vacuum expectamodel.

tion values (VEVs) in the extended Higgs sector of the  Detailed numerical results were first obtained for the left-
model. The model is also able to account for the observedight model in the early 1980s, mostly within the context of
CP violation in the kaon and systems and has additional the pseudomanifest version of the mofiegb—18. The au-
thors of Ref.[19] improved upon earlier approximate meth-
ods of solution, while those of Reff20] and[21] imposed

*Electronic address: knkiers@tayloru.edu combined constraints coming from the neutkahnd B sys-
"Electronic address: jkolb@darkwing.uoregon.edu tems. These latter works were all performed within the con-
*Electronic address: johnee@tayloru.edu text of the pseudomanifest version of the model. To our
SElectronic address: soni@bnl.gov knowledge, a detailed numerical solution of the nonmanifest
IElectronic address: gwu@darkwing.uoregon.edu case(CP violation in the Higgs VEVs and in the Yukawa
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couplings, such as we present here, has not been performediodel. Section VII contains some concluding remarks. In
One important consideration in any numerical treatment ofAppendix A we describe some details of our Monte Carlo
the left-right model concerns the flavor changing neutrallgorithm. Appendix B contains a discussion of the relative
Higgs (FCNH) boson that is generically present. The FCNH sizes of the left-and right-handed CKM rotation angles as
contribution toex occurs at the tree level, leading in prin- Well as approximate expressions for the CKM phageand
Cip|e to a proh|b|t|ve|y |argd0f order 50 TeV[ZZ]) lower 5R in terms of the fundamental parametel’s in the model.
bound on the Higgs boson mass scale. Our numerical study

indicates that significantly lower values for the Higgs boson Il. THE MODEL

mass—on the order of 7 TeV—are actually tolerable. . , ) . .

In this paper we undertake a relatively exhaustive search !N this section we explain our notation and summarize
of the parameter space of the left-right model, while makingS°Me of the important formal aspects of our model. In par-
few assumptions regarding the structure of the model. Twdicular, Sec. Il B contains one of the central results of this
main features distinguish the present work from that of prePaper, namely that many of the apparent degrees of freedom
vious authors. In the first place, we allow f@P violation

in the nonmanifest model may be eliminated by a suitably
both in the Yukawa couplings and in the Higgs VEWence chosen unitary rotation. This insight leads to a considerable
the “ubiquitous” in the title of this paper' In the second, w.

e Simplification of our task and allows us to proceed with our

employ a novel approach to the numerical solution of the'umerical work. For the purpose of the work to follow, we

problem, using a Monte Carlo algorithm to search the param@'€® mainly concerned with the Yukawa couplings between
eter space of the model. Our main assumption concerns tH8€ guark and Higgs fields. The Higgs sector contains many
extended Higgs sector, where we take the bidoublet Higg¥trguing features, including af[avor changlng_ n_eutral Higgs
VEVs to be in the ratiom,:m,. This assumption is quite boson and a doubly charged Higgs boson. Minimal versions

appropriate in the left-right model and leads very naturally tcf the model include a bidoublet Higgs field and a pair of
the observed hierarchy in the left-handed CKM maffi%— either doublet or triplet Higgs fields. The triplet fields tend to

17,19. We also show that this assumption leads naturally td°€ favored in the literature, since they can lead quite natu-
other attractive features of this model, namely that the rotaf@!ly 10 very light neutrino masses through the seesaw
tion angles in the right-handed CKM matrix equal their left- Mechanism.

handed counterparts to a good approximation and that the

CKM phasessg and 8, are approximately equésee Appen- A. Quark mass matrices in the left-right symmetric model

dix B). Note that while we shall always fix the ratio of the

bidoublet Higgs VEVs, our method of solution is quite pow-
erf_ul _and could easily be generalized to the case where the,yces. In order to do so, we must first consider the Higgs
raflo Is notm, :m. _ fields. The left-right model is based on the gauge group
Throughout the present work we stress an important an U(2), X SU(2)gX U(1), with the symmetry being sponta-
general result that may not be widely known: assuming g5l broken down (1) through the Higgs mecha-
minimal Higgs sector _and three generations of quarks, th'ﬁism. The left- and right-handed quark fields transform as
guark mass matrices in the Ieft—rlght _model depend on foublets under the unbroken gauge grows(2), and
most two nonremovable phases. This insight allows for theS U(2), respectively. The particular left-right model that

numerical solution of what might otherwise be a very com- , ) . i i —
plicated problem. Perhaps more importantly, the model con?/€® consider con_talns a.bldouk.)Iet Higgs fiekd~(2,2,0) as
well as two triplet Higgs fieldsA; ~(3,1,2) and Ag

tains only one newCP-odd degree of freedom beyond the

one in the standard modéEM), a very desirable feature ~(1.32),
when comparing the model to forthcoming precision experi- 00 b
mental resultgparticularly those coming from thB facto- q):< ! 2 )
ries). In our notation, one of th€P-odd phases comes from b1 93]’
one of the Higgs VEVs and the other is present in the

Let us begin by deriving the relationship between the
uark mass matrices and the left- and right-handed CKM

Yukawa coupling matrices. The quasimanifest and AfR/ﬁ Af;
pseudomanifest models may be recovered as limits of our AL,R=( " N ) (1)
model by setting one or the other of these two fundamental Alr  —ALRMV2

phases to zero of.

The remainder of the paper is structured as follows. InThe bidoublet field couples to the quarks and leptons and is
Secs. Il and IIl we outline our model and method of solution.responsible for giving them masses, while the right-handed
Sections IV, V and VI discuss the various experimental condiriplet field is used to break the left-right symmetry at some
straints and show how these limit the parameter space of thgigh energy scale. The VEVs for these fields may be param-

etrized as follows:

When consideringP violation in the Higgs VEVs, we focus on
the Higgs bidoublet and ignore the right-handed triplet, since the ?Some authors used| g" for the VEVs of A| g but we prefer to
latter does not affect the quark mass matrices. See, for examplegserve the symbol§_ for phases appearing in the left- and right-
Ref.[11]. handed CKM matrices.
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k 0 0 O My=k'F+«*G. (8)
<CD>: 0 r|o <AL,R>: 0 . (2) . L .
K ULR M, and My are, in principle, complex matrices, and may be

In order to reproduce observed electroweak phenomenologg,"”‘gon""IIzed by biunitary transformations, yielding

one typically assumes thétg|>|«|, |«’'|>|v.|, in which A0 \UT g (Y 9)
casex and ' satisfy the constrairt23] ! L oTuTR
2 MG=VPTMgVR, (10)
WP e T (1740 GevE (@) - -
KK 02 ' ' where M33%=diagm, m;,m) and M3%=diag(my,ms,my).

One can always choose the unitary rotation matril:ké,;'g in

Although « and <" are both in principle complex, the only g,ch a way that the elements of the diagonalized mass ma-
physically observable phase comes from their produet,. trices are real and positive.

(One can always use a gauge rotation to eliminate the second yith the diagonalization matrices in hand, the charged-
phase). We shall, for simplicity, takex to be real and posi- . rrent Lagrangian may be written in terms of the

tive, so that the observable phase is carriedbyi.e., (unprimed quark mass eigenstates,
aqs=arg k). (4) g e g e
: . Lec=——uV d Wi — =uRpVv drWE™
The Yukawa couplings of the quarks to the bidoublet ~CC~ 5 b'b  YuttlL = 5 BRVR S VuERIR
Higgs fields may be written in terms of twox33 Hermitian
matricesF and G as follows: +H.c, (11)

5) where the generation indices have been suppressed and
where we have taken the left- and right-handed weak cou-

pling constants to be equa;, =gg=g. The left- and right-

handed CKM matrices in the above expression are given by

_L:Yukawa:EilL(Fijq)+Gija))l/lj'R+ H.c.,

where &= 7,&* r, and where the gauge eigenstaigs
are given by

!
UiL r

l//ilL'R:(dilL R/

The Hermiticity of F and G helps ensure the left-right sym- i ~ ) )
metry of the Lagrangiaf.Insertion of the bidoublet Higgs '€ matricesB andB are diagonal phase matrices that are

VEVs into Eq.(5) yields the up- and down-type quark mass used to rotate as many phases as possible out of the left-
matrices handed CKM matriXand hence into the right-handed CKM

matrix), IeavingV(,_:K'\’I in its “standard” form with only one
M=«kF+k'*G (7)  CP-violating phases, [24],

VKM= BTV VOB (12
) (6)

VEKM=pBTVETVEB. (13)

C12C13 S1:C13 SER
VEEM( 015, 053,013,80)=| —S1€23 C105:38138'F  C1Co5— 51553918 SpCiz | (14)
S12523~ C12C23515€' % —C15Sp3— 51025518t CoaCia

In the above expressio;;j=sing;, and all sines and co- nonremovable phases. A convenient parametrization for
sines are taken to be non-negative. The left-handed phase V5K is as follows:
is the usual CKM phase and is the sole sourc€Bfviola-
tion within the context of the SM. It is also very nearly equal VM=K VMR, 65, 0%, sr) KT, (16)
to the (perhaps more familiarangle y,

\/CKMy/CKMx Whe_re the r_ight-handed rotation angl@%_are again takc_an to

Lug “Lup be in the first quadrant, so that all sines and cosines are
S ~y=arg — “ckmy,CKMx | - (15 - . , = e
V,_Cd V,_Cb non-negative. The diagonal matridésandK contain five of
the six nonremovable phases\ig"

With the above parametrization farc“M, VM has six o
K=diag e'’1,e'’2,e'’3) 17

3See, for example, the discussion in R&f3]. R=diag 1 72,e'7), (18)

095002-3



KIERS, KOLB, LEE, SONI, AND WU PHYSICAL REVIEW D66, 095002 (2002

with the sixth phase beingr, the right-handed analogue of B. A top-inspired left-right model

6L. It is important to noteKNtlhat th%KsMeven nonremovable | the present work we consider a particular version of the
phases distributed among™ " and V& are not, in gen-  |eft-right model that is inspired by the relatively large masses
eral, all independent. In our model, for example, the sevenyt the third generation quarks as well as by the small mixing
phases are functions of only two “basic” phases,: and  that exists between the third generation and the first two in

Bos; see Egs(4) and(21)]. _ o o VKM It was pointed out many years ago that small 1-3 and
There are several ways to achie@® violation withinthe 5 _3 mixings follow naturally if one takes the ratid/« to
left-right model, and it is useful to enumerate these. be of ordem, /m, [15-17,19. This scenario was considered

(1) (Quasi)manifest left-right symmetrjhe simplest case  ecently in the “spontaneously broken left-right modéBB-

occurs whenCP is broken explicitly by the Yukawa cou- LR), where the authors chose to fix the ratio rag/m,
plings of the quarks to the Higgs fields. The produet’ is [20,21]

real (so thata,» =0 or ), butF andG (and hence the mass

matrices themselvgare complex and Hermitian. In this case k' my
one hasvgiM= =V, a situation referred to as “quasi- " m (20)

manifest left-right symmetry” in Ref[7]. “Manifest left-

right symmetry” refers to the special case in which the™

sign occurs for each of the nine elements of the matrices. The SB-LR is an example of a pseudomanifest left-right
(2). Pseudomanifest left-right symmetfne can also al- symmetric model. It contains many attractive features, such

low the productkx’ to carry theCP-violating phase and as spontaneouSP violation (arising from a singleCP-odd

requireF andG to remain realand symmetrig In this case phas¢ and upper limits on the Higgs and right-handéd

CP is broken spontaneously and the resulting mass matricesasses. However, according to R&0], the SB-LR predicts

are complex symmetric. The left- and right-handed CKMsin 288" ,,<0.1. This value is difficult to reconcile with re-

matrices in this case satisfy the relatiowVg“™  cent precision measurements, which give $f2,=0.79

=AVCEM* AT whereA andA are diagonal phase matrices; =0.11 [25—27.% The SB-LR, although quite attractive, is
i.e., elements of the two matrices are equal in magnitude, bigomewnhat tightly constrained because it does not allow for
could have different phases. This case is often referred to &xplicit CP violation in the Yukawa couplings. In the present
“pseudomanifest left-right symmetry.” work we retain the constraint given in E@Q0), but general-

(3). Nonmanifest |ef[-right symmetrin the most genera| ize the mode ofCP violation by aIIOWing the Yukawa cou-
case(considered in the present worlone allows both the Ppling matricesF and G to be (in principle) arbitrary 3x<3
productxx’ and the matrice§ andG to be complex, while Hermitian matrices. At first glance it might appear that our
maintaining the Hermiticity off and G. In this case, the generalization would hopelessly complicate matters by add-
mass matrices are in principle arbitrary complex matricednd many newCP-odd phases. As we demonstrate below,
and the left- and right-handed CKM matrices have no specidtowever, it is possible to simplify the forms &f and G
relations to each other. In particular, unlike in the previous(Without any loss of generalifyin such a way that our model
cases, the rotation angles W{*" and V™ need not be contains only one new phase compared to either the SB-LR
equal. Many authors have considered the general case, aRfthe SM[see Eq(21) below].
have made variousnsazefor the form OngKM_ Langacker It is usefu! tq consider the number of_degrees of freedom
and Sankar, for example, argued that a relatively light rightcontained within the quark mass matrices, as well as the

handedW could be accommodated ¥SXM took on one of experimental constraints that may be placed. on t'hese. The
the forms[23] R most general expressions for the mass matrices in the left-

right model are given in Eq$7) and(8), wherex is real, '
is complex and~= andG are Hermitian. The magnitudes ef

1.0 O 01 0 and«’ are fixed within our moddlsee Eqs(3) and(20)] and
CKM CKM the phase ok has been gauged away. This leaves just one
Vi) = 0 ¢ S|, Vge =|C 0 = degree of freedom amongandx’, namely the phase af'.
0 s s 0 =c SinceF and G are both Hermitian &3 matrices, it would

(19 appear at first glance that there are a total of 18 degrees of
freedom contained ifr and G, for a total of 19 degrees of
freedom within the quark mass matrices. It should be noted

The mixing angles in these expressions are clearly quite difthat six of these degrees of freedom would be new phases

ferent from those of the left-handed CKM matrix. when compared to the SB-LR. On the experimental side,
In the present work we use the experimentally determined

guark masses and left-handed rotation angles to delineate the——

various possibilities for the right-handed CKM matrix. We 4 determining the weighted average and its uncertainty, we use
find that the right-handed rotation angles are very similar ingnly the BABAR and BELLE results. The earlier Collider Detector
magnitude to their left-handed counterpaigee Fig. 4 and at Fermilab(CDF) and CERNe*e™ Collider LEP results are in
Appendix B), ruling out the forms given in Eq$19), at least  agreement with the value we use. Inclusion of the CDF and LEP
within the context of the class of models considered in thisesults would have only a very slight effect on the weighted average
paper. and its uncertainty.
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there are nine direct constraints on the quark mass matrices Before proceeding to the numerical solution of our model,
(the so-called “level I” constraints belowThese come from let us first obtain order-of-magnitude estimates for the ele-
the six quark masses and the three left-handed rotatioments of the Yukawa coupling matricEsandG. Our task is
angles. The mass matrices would thus appear to be severalyeatly simplified by the constraints in Eq&) and (20).
underconstrained, a situation that would not be ideal for ahese imply, in an interesting coincidence, that

numerical study of the model. Fortunately, however, eight of

the apparent degrees of freedom witRkirand G—including 2my,
five of the six phases—may be rotated away by performing a K~ N gz = 174.1 GeV-m, (22)
unitary rotation in flavor space. This leaves 11 degrees of
freedom with nine direct constraints placed upon them, a M2

L : m, [2my
much more agreeable situation from the standpoint of solv- |k’ |~ —\——~my. (23
ing the model numerically. my g

A rotation of all up, down, left and right quark fields by
the same unitary matrix is unobservable, so one may perfor
the rotationsi/Fi/" and UGU' with no observable conse-
guences. In particular, we can ugeo diagonalizeF, which
yields all real eigenvaluegsinceF is Hermitian). It is also
possible to change the overall signs of betlnd G (simul-
taneously with no observable consequences, so that a given

(onsider first the expression given 1, in Eq. (7). Since
xk>|k'|, we have, to a first approximation, that(,~ «F.

(The elements o& do contribute somewhat td1,,, but such
contributions are suppressed by the small siz&'oj Thus,
to a first approximation one might expect

element of the diagonalized version Bf may always be 10) ﬂ) 0 0
taken to be positive. Having diagonalizEdwe may perform my
a diagonal phase rotatidwhich does not affeck) in order F~ me (24)
to eliminate two phases 6. As a result, we may quite 0 O(ﬁ) 0
generally take= and G to be of the form t
0 0 O(1)
fu 0 0 We will see below that the above hierarchy is indeed ob-
F=| 0 f,n 0|, served by the numerical solutions. The down quark mass
0 0 fg matrix, My=k'F+ «*G, yields insight both into the ele-
ments ofG and into the sizes of the left- and right-handed
rotation angles. Consider first the 3-3 elemeni\df;. From
911 912 913 Egs. (23) and (24), we see thak'F3; is naturally of order
G=| g Uos 0P || 2) Mo If k* Gazis also to be of ordemy,, thenG_33 must t_:Je of
~iBos orderm,/m,. The other two elements df give relatively
913 92 Y33 small contributions to their respective down-type quark

massegsince k'F;; is “too small” in those two cases so
where allf;; andg;; are realf;3=0 andg;;=0 fori#j, and  «*G has primary responsibility for the masses of the first
where the sole nontrivial phasg,3, has(arbitrarily) been  and second generation down-type quarks. This confirms our
placed in the 2—3 element &.> One may also assume with- initial assertion thak'* G would give a relatively small con-
out loss of generality theft3z= |, =|f4|. It should be em- tribution to M,,. To the extent thatM,~ «F is a good ap-
phasized that the forms given fér and G in Eq. (21) are  proximation, we have thav{’ and Vi are approximately
completely general: the mass matrices of any left-rightgiagonal matrices. Thug“k™ andvE*M are essentially de-
model (containing only a single bidoublet Higgs figlthay  tarmined byv® andV2. [see Eqs(12) and(13)]. In a some-
be written in terms of only twdaCP-odd phases, which may ot poorer approximation, we could also almost taki

be parametrized as, =arg(') and 52;=argGz)-° ~ k* G, except for the 3-3 element. Noting that in our nota-
tion « is real, we then have that{, is “almost” Hermitian,
5 _ _ except for its 3-3 element. If\, and My were exactly
Note that if any of the off-diagonal elements Gfare zero then Hermitian, then the left- and right-handed CKM matrices

the phaseB,; may also be rotated away, yielding once again thewould have obeyed the “quasimanifest’ condition noted
pseudomanifest case. CKM_ _ \/CKM

61 : : ?bove,VRi- Gi . In practice, we find that the left-
he results of the preceding few paragraphs are easily general- d riaht fJ1 ded Jt fi les d bl I
ized to the case dfl quark generations. In that case, if one wishesan rght-handed rotation angies do agree reasonably we

to put as few phases as possible in the left-handed CKM matrixgsee Fig. 4, below_that SR~ ‘S_L and that the rlght-ha_nded
that number would beN—1)(N—2)/2, leavingN(N+1)/2 nonre-  Phases corresponding to the first and second generajgns (
movable phases for the right-handed CKM matrix. Regarding “fun-P2, and 7,) are aII_ close to ZEro otr. Th_e right-handed
damental” or “basic” phases in the model, there would be 1 non-Phases corresponding to the third generatiengnd ), by
removable phase among the bidoublet Higgs VEVs andway of contrast, can take on any valu€See Fig. 3 belowy.
(N—1)(N—2)/2 nonremovable phases in the Yukawa matrices Appendix B contains some further discussion along these
These latter phases could all be placed @™as has been done in lines, along with approximate analytical relations for various
the present work. CKM mixing angles and phases.
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TABLE I. Values used in the determination of level | and Il constraints. The first twelve rows correspond
to the level | constraints, while the addition of the last five rows yields the level Il constraints. The last two
constraints are not included in the calculationxéﬁ), but are imposed as “cuts” after(zl,) has satisfied the
required tolerance. Quark masses are in GeV and are evaluated at the energy,$eale Amg_ is in ps L.
Constraints 7—9 are taken from RE20]. The central values, uncertainties and limits listed in this table are
discussed in detall in Secs. IV and V.

i Yi Central value y&) Uncertainty @;) or limits
1 my 2.33x10°3 0.45x10°3
2 My 4.69x10°° 0.66x10°°
3 me 0.685 0.061
4 mg 0.0934 0.0130
5 m, 181 13
6 m, 3.00 0.11
7 sind,, 0.2200 0.0030
8 sin 6,3 0.0395 0.0017
9 siné;; 0.0032 0.0008
10 my /My 0.497 0.119
11 mg/my 19.9 3.9
12 (mg— (my+mg)/2)(myg—m,) 38.1 14.1
13 € 2.28<10°8 [0.46+3.5X (1.0 TeVM,)?]x 10 3
14 sin 282\, 0.79 0.11
15 Amg, 0.472 0.190
- AmBs/Ade - AmBS/Ade>27.2
- Amy -~ —1=<2 ReM}F)/AmEP<1
and Ref;,)>0
ll. NUMERICAL SOLUTION constraints to within some prescribed tolerance. In principle
OF THE MODEL—AN OVERVIEW one could search the entire input parameter space for such

solutions, but this is not possible in practice since the param-
We turn now to a brief explanation of the numerical so-eter space contains many dimensions, each of which contains
lution of our model. As noted above, the quark mass matricea continuum of values. Fortunately, we can narrow down the
in our model are described by eleven real “input” param- parameter space to several promising regions by using the
eters: namely, reasoning outlined in Sec. Il B. But even with the parameter
space pared down in this manner, it would still be very dif-
fii \Qije,r, and By3 (11 input parametefs (25  ficult (and inefficient to find solutions by simply slicing up
the multidimensional space into many small hypercubes. To
overcome this problem we have devised an adaptive Monte
Carlo routine(described in detail in Appendix)Ahat is able
to zoom in on solutions with relatively high efficiency.
When discussing constraints satisfied by “solutions” in

hat vield bl I f ities th our model, it is useful to distinguish between minimal and
parameters that yield acceptable values for quantities that afe o evel constraints. Table | lists the various constraints

"“OV_V” experimentally, such as the quark masses, left-hand ployed. The twelve “level I” constraints take into account
rotation angle_s and . . the quark masses and left-handed rotation angles, while the
. Each possm_le set of Input parameters may be _used to f_omTeveI [I” constraints include additional experimental inputs
trial mass matrices, which may then be dlagonallged to yield om the neutral kaon an® systems. Sections IV and V
the physpal quark Masses and ”“? left- and right-hande iscuss these experimental constraints in detail. When the
CKM matrices, as described above in Sec. Il A. The resultygq| | (or |1) constraints have been satisfied to within the

Ig:g ql:]ark masses and Iefz]ft-handed rotatu;]n arggiesl POSSI- 4 reauired tolerance, we call the set of input parameters a level
yr(])t' e|£ quantities, suc &T( eltc) may t Ien_ e"co1rtnpare | (or 1) solution. In order to judge how close a given set of
to their known experimental values. A *solution” refers to @ o+ barameters is o being a solution, we defingZafor

set of input parameters that satisfies all relevant experimentglach of the constraints, and then sum these up to obtgin a

for the appropriate constraint level; i.e.,

The model as a whole contains two more parametéis—
(the mass of the mostly right-handed heayandM,, (the
Higgs boson mass scdle-bringing the total number of “in-
put” parameters in the model to thirteen. The goal of the
numerical work is to find combinations of the various input

"We adopt the convention of several previous authors and assume (v _yexpt)z
that the various nonstandard physical Higgs bosons all have the Xi2: '—2' (26)
same masses. Tj
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TABLE II. Ranges used for the input parameters. The various IV. LEVEL | CONSTRAINTS: QUARK MASSES
parameters are defined in E¢4) and (21). The Monte Carlo pro- AND ROTATION ANGLES
cedure that searches for solutions takes the initial range faitlthe . . )
parameter to b&fg"™= A; . The reader is referred to Appendix A for It is useful to begin by applying only the level I con-

more details on the adaptive Monte Carlo algorithm. straints, that is, only those constraints that involve the quark
masses and left-handed CKM rotation angles in Table I. This
Initial central analysis will help in the comparison to work performed by
i Xi value (g’ Initial range @;) previous authors and will help clarify the mathematical
1 fiy 0 104 strucf[ure of the mo-del. the that any level | solution may in
° - 0 0.03 principle be comblned_ with vglues favl, and M (the
3 f 104 0.25 masses of the predomlngntly right-handed gauge boson and
33
4 the Higgs boson, respectivelsind checked to see if the com-
4 g1 0 3x10 L o ; =
5 Urs 0 35 103 plnatlon sapsﬂes the level Il constraints. This is not a par-
ticularly efficient method of finding level Il solutions W,
6 Y33 0_3 O?? andM, are fixed at certain values, but does work reasonably
7 912 10_3 10_3 well if many different pairs of masses are used.
8 Y13 10 10 Let us first discuss the level | constraints themselves. The
9 923 0.01 0.01 quark masses and uncertainties listed in the table are evalu-
10 Ay! ™ ™ ated at the scalen; [28]. These values were also used to
11 B3 ™ ™ determine the quark mass ratios and their uncertainties. The

resulting ranges for the mass ratios are reasonably consistent
with those quoted in Ref24], except that our range for the
5 ) third ratio is somewhat larger than that quoted in R24].
X(l):igl Xi (27) The central values and uncertainties of the sines of the three
rotation angles are taken from RE20].

Since the input parameter space is multi-dimensional, we
2 2 2 have found it convenient to display the regions of interest in
X(II)_X(I)+i§13 Xi- (28 4 series of two- and three-dimensional projections. Figure 1
shows several such plots for level | solutions. It is clear from
the plots that solutions exist for all values @f,, and B3.
This observation is consistent with our earlier discussion re-
. . ) . arding the number of input parameters and constraints.
duced theoretically using the_glven set of input parameter ince we have 11 degrees of freedom and nine essential
an(_j o represents the_uncertmn(tg_xpenmental and/ or theo- constraint$ we expect to have two unconstrained degrees of
retical for t'he constraint. A set of mput parameters is termedfreedom. The remainder of the input parameter space is bro-
a solution if each of the relevan’ is less than or equal to o) up into several disjoint regions. These regions actually

one.tlnlthebcase of adlevel I!”stcj)lugon, age\évgdld|tlozal cué; think to a series of points aé,) is reduced to zero.
Must also be passed, as Wit be described LEIoW. ADPENAIX A - o\ nmerical solutions provide an interesting point of

Qetalls the methoql .by.wh2|ch °“£ adappve Mohnte iar]o O contact with earlier work performed on the SB-ILR9,20,
tine attempts to minimiz&;) or x{;) as it searches the INput a6 it was pointed out that for each valueagf there are

parameter space for solutions. 64 physically distinct solutions. In the SB-LR one can asso-

Table Il summarizes the ranges of the input parametergi,ie relative signs with the quarks masses, giving 32 differ-
that yield viable values for the quark masses and left-handegdn: ~ombinations. Another factor of “2” in that context

CKM rotation angles. Denoting the various input parameters,mes from two possibilities fas, (close to zero or close to
byx; (i=1,2,...,11), we have found that solutions for each of .y "1t our approach is correct and exhaustive, it should be

In these expressiong™ represents the known “experimen-
tal” value for theith constrainty; represents the value pro-

thex; lie within the range able to find all 64 of these solutions. A good discriminator of
the 64 solutions is the physically observable phagdde-
X7 Ay, (290 fined in Ref[20] and also in Eq(34) below], which arises in

B-B oscillations. Fixinge,.: and settingB8,;=0 and = (re-
wherex{3"andA; are given in the table. The ranges listed in call thatF and G are real in the SB-LRwe have indeed
the table correspond to the initial regions that the adaptivéound 64 distinct values fatry, in agreement with Ref20].
Monte Carlo algorithm uses as it searches for solutionsMore generally, for any pair of values of the input phases
These ranges are consistent with the arguments made abowe, and 8,5 there appear to be 32 distinct solutions.
in Sec. Il B.(Note that the level | or Il solutions themselves  Figure 2 shows frequency plots of the various quark
form a subspace of the regions indicated in the table. masses and rotation angles calculated using the input param-

In the following three sections we discuss the two levels
of constraint in detail and show the numerical results in each———
case. We also provide comparisons, where appropriate, with®Note that the three quark mass ratios are “redundant” constraints
work performed by previous authors. in this context, although they are important in our numerical work.
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943

FIG. 1. Regions of the input parameter space yielding viable quark masses and left-handed mixing angles. B3k each pair, the
adaptive Monte Carlo procedure was used to find a set of values for the nine paradmetedy;; that satisfied the level | constraints. No
extra constraints from thiK or B systems have been imposed. The reader is referred to Appendix A for details concerning the numerical
procedure used to find solutions.

eter sets displayed in Fig. 1. The dashed vertical lines in eactesult is consistent with the result found in RgZ0], where
plot represent the valueg™*+a,. The histograms are en- F and G were taken to be real matriceg =0 or m) and
tirely contained within the dashed lines since our numericaivhere two classes of solutions were found, one Vigh|
procedure ensures that all constraints are satisfied to withis<0.25 and the other withs, — 7|<0.25. Also interesting is
+10. (We have opted for a somewhat restrictive approach irthe approximate equality betweéh and 5 evident in Fig.
the present work, but one could easily relax the proceflure3,
Note that a narrower distribution indicates that the numerical
procedure had a somewhat “easier” time satisfying the given
constraint. Or~6.*0.50 rad. (32)
Figure 3 shows the various phases that characterize the
left- and right-handed CKM matricdsee Eqs(14)—(18)] . i i
for the input parameter sets plotted in Fig. 1. These plotén or'der to understa}nd this result, recall that in the quasi-
may be regarded as “predictions” of our model in the sensénanifest casereal Higgs VEVS one has the strict equality
that the points shown have passed all level | constraints. Thér= 6. While in the SB-LR(real F and G) one haségr=
plots show that all values are possible fr (the sole phase — 5_L. In the latter case, one has the additional phenomeno-
in the left-handed CKM matrixbut that the right-handed logical result that 6, [<0.25 or|§ — m|<0.25, so that sy
phases are typically quite limited by the level | constraints.~ 6./<0.50. Equation(31) may thus be viewed as a mar-
Inclusion of level Il constraints will, of course, further limit fiage of the results from these two caségis approximately
the possible values that the left- and right-handed phases c&§lual tod, , as in the quasimanifest case, but with a spread
assume(see Figs. 8 and 12 below, for exampl@ne very 0f +0.50, characteristic of the SB-LRFurther discussion
interesting result in Fig. 3 is tha_is very closely tied to the along these lines may be found in Appendix B, where Eqgs.

fundamental phasg,; in G: (30) and (31) are derived using an approximate analytical
techniquel The remaining right-handed phases in Fig. 3 bear
8.~ Bt Nm+0.25 rad, (300  avery close resemblance to those one obtains in the SB-LR

(obtained by restricting3,5 to the values 0 andr). The
wheren is an integer and where the+0.25 rad” indicates  quasimanifest limit itself is also evident in Fig. 3: the phases
the approximate spread of the values aroght-n7r. This  p; and »; reduce to O orr whenevera,,=nar. This behav-
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FIG. 2. Frequency spectrum of quark masses and rotation angles for the data set plotted in Fig. 1. The dashed vertical lines indicate the
valuesy™™+ ¢; . The vertical axis gives the number of observations in each bin.

ior is consistent with the known relation between the left-additional constraints, an endeavor that is complicated some-
and right-handed CKM matrices in the quasimanifest caseyhat by the presence of two new degrees of freedom, namely
namelyvgﬁM: ivfi*j('\" [7]. the Higgs boson and/, masses. Table | contains a list of the
The ratio of right- to left-handed rotation angl@stually,  level I constraints. These have been discussed in de_tall in
their “sines”) is shown in Fig. 4. The ratios are identically Ref.[20]and also in Ref4.17] and[19]. Here we summarize
unity whenevera,., or B,3 is equal tonar, since in these SOMe of the main results in those references. Note that we do

, .
limits our model reduces to the quasimanifest Ornot attempt to use’ to place constraints on our resu(t5<-

pseudomanifest case, respectively. In a general nonmanife%?gst;”f osuencd \t/);/%rg\?ilngs’ ggﬁqrgrgvsvﬁﬁmgﬁgesc’g;[ssuItS with

model the ratios are permitted to depart from unity, althoug
our numerical results indicate that they do not do so by very
much. The largest departure occurs for the ratio
sin#7y/sin 6,3, which is still typically within 20% of unity. Amg, and Amg_can be quite sensitive to nonstandard
The other two ratios are even closer to unity, withcontributions in the left-right mode[18,20,29. The off-

sin 654/sin 6,5 differing from unity by at most about 0.15%. diagonal terms in the mass matrices may be written in terms
In Appendix B we explain this intriguing agreement betweenof a standard model piece and a left-right piece:

the left- and right-handed rotation angles. In the case of the SM LR SM .

ratio of 2—3 angles, for example, the departure from unity is M1=M7 + Mz =M7(1+kys€'74®), (32

of order \®> (where A =0.22), which is in good agreement

A. Experimental constraints from Ade and AmBS

. . where
with our numerical results.
LR CKM\ /CKM* calal
B B oo — M1, _ VRtb Vth(s) BE
V. LEVEL Il CONSTRAINTS: K-K AND B-B MIXING d(s) ™ Msz - \/CKMy/CKM* Bg

Liv  Lides)

The preceding section described the effects of imposing ) 5
the level | constraints on our model. That analysis was useful « (7 TeV) + 77LR( 16 Te\q
in that it served to highlight some of the basic properties of M 2 M,

the model. In the present section we describe the level I 16 TeVi2
0.0510.013|r('v) H (33
M,

constraints, which are those coming from the nelrahdB %
systems. Section VI describes the effects of imposing these
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FIG. 3. Left- and right-handed CKM phases for the set of input parameters shown in Fig. 1. Note that the horizontal axes vary from plot
to plot. Also, recall the definitions of the phases and B,3: @, =arg(x’) and B,;=argG,s).

and

O'd(s):al'

with BE?3/Bg=1.2 and75"=1.7 [20]. The expression for
Kq(s) IS @n approximation that is accurate to about 5% for
M,>1.4 TeV andM,>7 TeV. The full expression fok )"
may be found in Ref[20]. Our expression foo gy is iden-
tical to that found in Ref{20], while that forkys differs in
that it contains a ratio of right- and left-handed CKM matrix

CKMy /CKM*
Rib " Riacs)

"\ JCKMy ,CKM* |
Liv " Ltacs)

Ade ):2|M12|. (35)

(s
In the case oBy, the mass difference is quite well known
experimentally. Nevertheless, various theoretical uncertain-
ties relax the bound somewhat, leading to the following con-
straint[20]:

(34

[(VERMVERM)2(1 4 kye!"0)| = (6.7 2.7)x 10°°.
(30

In terms ofAde itself, the above range corresponds to

elements. This ratio is equal to unity in the spontaneously?Ms,=0.4720.190 ps*, as is quoted in Table II. In the
broken model considered in R¢R0].

The above results may be used to solve forBAB mass

differences, since
1.1
N,
o 1.05

1

Tzlsin

sin 0
o
©
[3)]

[323/1:

case ofB; there is only an experimental lower bound on the
mass differenceAmg =15.0 ps ! [30—-33. When compar-

ing to theoretical expectations, the lower bound is usually

1.002
o ol2

<&1.001 e
£ £
) : @
e & 1 [ 1
(=) <
= 0.999 < 08

0.998

0 1 2 0 1 2
[323/11: Bza/n

FIG. 4. Ratios of right- and left-handed rotation angles for the set of input parameters shown in Fig. 1.
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TABLE llI. Short-distance contributions tex and Amy for a particular data point that satisfies all levéblt not level 1) constraints.
The left- and right-handed phases for this level | solution aré =0.9973 and f1,02,p3,72,73,0R)
=(2.979,0.1758,3.168,3.134,4.783,0.5801) and the sines of the right-handed rotation angles af,s{si5;,sin k)
=(0.2254,0.0396,0.00279). We have 8et=0.350 GeV,u=1.0 GeV andBy=0.86.

M, " ex”) et AmZP/ AmEt

(TeV) (TeV) SM FCNH W, W, SIW, W, P SM FCNH  W,W, SW, W, d~
1.6 5 0.798  —31.9 —0.224 -1.61 —0.250  0.747 0.770 0.608 0.071 0.009
5 5 0.798  —-31.9 -0.023 —0.249 —-0.250  0.747 0.770 0.064 0.009 0.009
5 10 0.798 —7.98 -0.023 —0.249 —-0.075  0.747 0.193 0.064 0.009 0.003
5 50 0.798 —0.319 —-0.023 —0.249 —0.004  0.747 0.008 0.064 0.009 0.0001

expressed as a ratio, since this tends to decrease the theoneither than the theoretic&hort distanceexpression obtain-

ical uncertainty. We enforce the following bound: able fromM,. The term proportional t&, in Eq. (38) is
_ also subject to considerable theoretical uncertainties. Within
Amg_ (VE:;MVE::M*)Z(].-F kee'7s) the SM these uncertainties do not pose any particular diffi-
Am = 13X | — ok 2 -~ culties because the contribution due to this term is quite
By (Vi Vi, ) (1+keed) small and may safely be neglected. Such is not necessarily
=272 37) the case within the left-right model, where the contribution
—elhe due to§&, can be of order 30% foM,=1.6 TeV[17,19,2Q.

This bound takes into account theoretical uncertainties and i€ follow Ref.[20] in ignoring the, contribution toey and
in taking its effect into account through a theoretical uncer-

slightly modified from that given in Refi20]. The Amg_ tainty.

constra?nt is e_znfor_ce_d in a _different manner than most other Referencd17] contains a thorough discussion of the vari-
constraints, since it is only included as a “cut” after a poten- ;s contributions tdl;, within the left-right model. Inter-
tial solution has been |dent|f|e(de.,AmBs is not included in estingly, the sum of box diagrams is not itself gauge invari-

the evaluation oﬁ((z,l)). ant in the left-right model[34,35. Nevertheless, the
diagrams restoring gauge invariance give very small contri-
B. Experimental constraints from ex and Amy butions in the 't Hooft—Feynman gauge, and can safely be

_ ) ~ ignored while working in that gauge. Similarly, several of the
The K-K system has long played an important role inpoy diagrams generically give quite small contributions and

constraining the left-right modeA my puts a lower bound of  can be ignored, leaving a total of five terms in the theoretical
about 1.6 TeV on the mass aF, [12], while ex can in  expression foM ;, [17],

principle put a lower bound of about 50 TeV on the Higgs
boson mas$22]. This latter bound is due to the presence of
a tree-level FCNH contribution tey . As we shall see in

Sec. VI, a detailed numerical treatment of our model indi-

cates that the experimental bounds may be satisfied with ' : I
Higgs boson masses as low as about 7 TeV. Bgthand where the first term is the usual SM contribution, the second

: . o . corresponds to the tree-level FCNH contribution, &dnd
Amg are defined in terms il 1, the off-diagonal termin g% c s one of the unphysical scalars and to the physical

W d*
2
(41

_ aaSM A AFCNH | pgWaWo | n s SIW,
Mp=M7'+M; "+ M, 2+ M5+ M

the K-K mass matri{20], charged Higgs, respectivel§Recall that, for simplicity, all
&7 [ Im(M nonstandard Higgs bosons are taken to have the same mass
€= ( 12 +é ) (39) in the present work. Explicit expressions for the various
Koy | Amget o0 terms may be found in Ref$17] and[36] and are not in-
cluded heré.
Amg=2 RgMy), (39 Table Il shows a numerical evaluation of the five short-
distance contributions tex andAmy for a particular level |
where solution and gives a rough indication of how the various
terms scale with increasing Higgs boson ang masses.
0= Imag (There is nothing particularly “special” about this data point
Reay’ other than that it happens to give a SM contribution that is
. close to the known experimental valug®ne of the most
a =(mm(1=0)| =i HEI 7K yeak- (40)  striking features of the table is the very large tree-level

Amy suffers from relatively large theoretical uncertainties
due to long-distance contributions, so we follow the usual *we use the NLO results in Rdf36] for the SM piece and the LO
practice of using the experimental value fomy in Eq. (38) results in Ref[17] for the left-right pieces.
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FCNH contribution toey . Pospelov studied this contribution The Amy constraints are implemented as cuts and are not

a few years ago in the case of manifest left-right symmetryused in the evaluation Qf(z,,).

and concluded that the corresponding Higgs boson would be

requir_ed to have a mass in excess of 50 Te¥]. The ap- C. Experimental constraint from B— K

propriateness of this bound is evident in the last row of the )

table, where the troublesome term is seen to reach a manage- Recent measurements of sigg, by the BABAR and

able size oncé\AHZSO TeV. Having said thiS, let us note BELLE Collaborations yleld the values 0.59.14+0.05

that we are in fact able to find complete level Il solutionsand 0.98-0.14=0.06, respectively[25,26. Taking the

with Higgs boson masses of order 7 TeV. Such solutions daveighted average yields the value si§%,,=0.79+0.11,

require a certain amount of “fine-tuning,” but they exist which is consistent with the slightly older CDF measurement

nonetheless. [27]. This experimental value actually acts to constrain both
The left-right contributions toex in Ref. [17] are only ~ the CKM angle ‘Bcym,” as well as nonstandard effects

accurate to LO and display a relatively strong dependence ofoming fromK-K andB-B mixing. The full theoretical ex-

the low-energy QCD scalgs andA ;. The SM piece, while  pression is given by20]

evaluated to NLO in the present work, is also subject to

uncertainty due to the kaon bag parameBa, In order to . off . .
investigate the effects of these uncertainties, we have exam- sin 2Bcim=Sin 2Bckm+arg1+kqe'’d)

ined ey predictions for a set of data points that passed the

level | constraints. We combined the data points with various MR

Higgs boson andV, mass combinations and evaluateg —arg 1+ MEsSH| | (44)
taking 4, A3 and Bk in the rangesu=1.0=0.2 GeV, A, 12

=0.350+-0.100 GeV andBx=0.86+0.15. The resulting where

spread ofex values typically fell within 20—-30% of the

mean. Rather than allowing these three parameters to vary in VEKdMVEKbM*

our numerical work, we have fixed them to the “central” Bekw=arg — W) (45)
values w=1.0GeV, A;=0.350 GeV andBx=0.86) and L “Lw

have assigned a 20% theoretical uncertaintygto Using the ) e ) )

value e, =2.28x 103 [24] and ignoring the small experi- When employing sin B2k as a constraint we take into ac-

mental uncertainty, we obtdfh count the experimental uncertainty, but do not include any
additional theoretical uncertainty.

ex=[2.28+(0.46+3.5X (1.0 TeVM,)?)]x 10 3,
(42) VI. LEVEL Il SOLUTIONS: NUMERICAL RESULTS

In this section we employ all the experimental constraints
where the first term in the uncertainty is due to uncertaintiesn Table | in order to search the parameter space of the model
in u, A3 andBy . The second term in the uncertainty is duefor level Il solutions. Section VI A contains a study of our
to our neglect of the, term in Eq.(38) and is taken from model in the pseudomanifest limiE and G rea), in which
Ref.[20]. case our model reduces to the SB-[R)]. In Secs. VI B and

Theoretical expressions farmy involve large uncertain- VI C we perform two case studies. In the first we fix thg
ties due to long distance contributions, even within the conand Higgs boson masses to be 5 and 10 TeV, respectively,
text of the SM. The SM calculation of the short-distancewhile in the second we allow the masses to vary over pre-
contribution toAmy gives roughly 70% of the known ex- scribed ranges.
perimental valugsee Table Ill. Within the SM, the remain-
ing 30% is thought to be due to long-distance effects. It is A. Comparison with results in the SB-LR
not clear how one might best uaamy to place constraints We beain b . thod t deri f th
on nonstandard physics, since the long-distance contributions € begin by using our method fo rederive some ot the
are somewhat unknown. We follow previous authors an esults obtained in the SB-LR20], since this serves as a

constrain new contributions to be at most as Iargﬁa@’(pt useful Chgf'f of our ”;?}h"d' .Figuife 5 shows plots of
itself. Our constraints are Amg /AmgP, Amg_ /Amg " and sin By for a set of level

| solutions generated for a particular value of the phase

where[20
—1<2 RgM:R/AMZP<1 and RéM;,)>0. [20)
(43 Amg,  [(VEEMVEEM*)2(1+kqe'7a)]
= 4
Amg’;p (6.7xX10 ) (46)
e have usedN;=3 when evaluating the expressions in Ref. _
[17]. In some of the expressiorisuch as in the treel-level FCNH Amg |(Vf':MVEKM*)2(1+ kee'7s)|
contribution one could in principle evolve the Wilson coefficients S:/IZ ‘ ' 3
in several steps rather than all at once, but it is not clear that this AmBs 0.03
would be appropriate in some of the other expressions. (47
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FIG. 5. Reproduction of some results obtained for the SB-LR in R&&f]. The above plots were obtained by settidgs=0,7 and
a . =sin"1((1-r?)tangl(2r)), with r=|x'/ k| and8=0.02, in the notation of Bakt al. The plots may be compared with tjge=0.02 case
in each of Figs. 4—7 in Ref20]. Note thatk;=kg in the SB-LR, since the ratio of CKM matrix elements in E8Q) is equal to unity in that
case. Note also that the above plot of stéM neglects theK —K mixing contribution, as does the analogous plot in R26]. Only
non-negative values of singgn, are shown.

In each case the plot was obtained by allowgg to take on  passed the\ Mg, AmBs and Amy bounds in Table! and
the values 0 and’, since our model reduces to the SB-LR for Correspond to masses in the rangg M2< 16 TeV and 4

these values 0B,3. In order to reproduce the results of Ball <\, <18 TeV. The plot on the right has passed an addi-
et al. more precisely, we have enforced the rather stringenfignal cut one’ = eLy+ € . In evaluatinge’, we have taken
bound x{;,<2x10"° for this particular set of points. Com-  tnhe SM piece from Re{36]. For the LR piece we have used
parison of this figure with FlgS 4-7in RQQO] shows quite the fo”owing expressi().ﬁlg]:

good agreement of our results with those obtained there.

There are, however, two differences between our results and

those in Ref[20]. In the first place, the overall shapes of the , ag(u?) ]2
- . L i . ’ iwl4 —2 s\H
plots are slightly different. This difference is due to a slightly € r=€"X10 "X 16.8~ ™z 0.30
different choice of quark masses and left-handed rotation sih2
angles. A second difference concerns the number of lines ag(p?) ] Mi
evident in the plots. In some places where we appear to have a(M) Wsin( —12) +10Z
S 2 2

a single line(or several very closely spaced lingBall et al.
have several_ Iin_es. One possil_)ility would be that our mef[hod X[SiNa,+py— 75) +sin(a,.+py)]— 9.6
is actually missing some solutions. We do not believe this to
be the case, however, since our evaluation gfor this case . .
shows 64 distinct values. The reason for this difference is not X[sin(a,:+pz) +sin(a, +py— 7]2)]} : (48)
clear to us.
We may also draw a comparison with Fig. 9 in Ref0],
which shows a plot ofx versus sin BCQEM for a range of where
values forM, and M. Figure 6 shows two plots oy
versus sin Béf,f(,vl for the case wherB,3=0, 7. For each of
the plots a set of level | solutions is combined with many when comparing with the SB-LR we began with level | solu-
pairs of W, and Higgs boson masses. The points shown havéons and enforced all level Il constraints as “cuts.”
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FIG. 6. Plot ofex versus sin B§EM in the SB-LR. The plot on the left satisfies alim-type boundgas described in the tgxiThe plot
on the right satisfies the additional constrant ™*e’ >0 and may be compared with Fig. 9 in RE20].

2r [M)\? sin 2881, we do find solutions that are somewhat close to
= 1+r2(|\/|2) ' (49) these values. Also, while Badlt al. have very few points in
the third quadrant, our plot shows a fairly prominent band in
with r =|«’/ k| andb=11—2N;/3. The above expression for this region. It is unclear to us why our results differ from
€/ r has been modified from that in R€f19] in order to  those found by Balet al, particularly given the good agree-
account for a slight difference in gauge choice with respectnent between our Fig. 5 and their Figs. 4—7. It is possible
to the phases of the bidoublet Higgs VEVs. that the discrepancy is due to small differences in our evalu-
Comparison of Fig. 6 in the present work with Fig. 9 in ation of the expressions fei or Amy in Ref.[17] or in our
Ref.[20] shows reasonable agreement between the two plotgvaluation and application of th€ constraint. We should
but there are a few differences. In particular, while Balal.  emphasize that, due to the significant theoretical uncertain-
find no solutions near the experimental values égrand ties involved in the calculation of’, we do not use' in the

vt .
[ R
» N1~
"ea N
05 1 15 2
Bog/m

FIG. 7. Regions of the input parameter space that yield level Il solutions When5 TeV andM =10 TeV.
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FIG. 8. Left- and right-handed CKM phases for the set of input parameters in Fig. 7. These are level Il solutiavs wiiTeV and

M,=10 TeV.

remainder of our analysis. We have only discussed it in thdoe compared with Fig. 1, which shows a set of points that
present subsection in order to facilitate a comparison wittpass only the level | constraints. Note that there are severe

the work in Ref.[20].2

B. A case study:M,=5 TeV and M =10 TeV

We turn now to a case study for a particular pairVis
and Higgs boson masses, choosiit,=5 TeV and My

=10 TeV. Figures 7—10 show our numerical results for level
[l solutions in this case. Figure 7 contains a plot of the inpu
parameter space showing points that satisfy the level Il con-
straints wherM ,=5 TeV andM =10 TeV. This figure may

constraints on the possible values fof, and B,3. In par-
ticular, both the quasimanifesty(,=nw) and pseudomani-
fest (B,3=nm) limits would appear to be ruled out for this
particular pair of values for the massigls, andM, . Figure

8 shows the left- and right-handed CKM phases for the set of
input parameters in Fig. 7. This figure may similarly be com-
ared with Fig. 3. The level Il constraints rule out most of
he possible values that the right-handed phases could in
principle assume. Figure 9 shows frequency distributions for
the five quantities yielding the level Il constraints. The
dashed vertical lines indicate experimental and/or theoretical
bounds in each case. The histogram plot in Fig. 10 shows the

2We note here that the phenomenological estimates faf have f distributi f h of the fi hort-di
a very wide range within the context of the Ske, e.g., Bertolini requency distributions for each of the five short-distance

[37]). Not only does the calculation of the hadronic matrix elementsCOntributions toey . The SM, FCNH andW;-W, contribu-

of the relevant four-quark operators remain a formidable theoreticalions can all be quite significant. Some further investigation
challenge, but this difficulty is considerably compounded by thehas also shown a relatively strong anticorrelation between
fact that there are large cancellations between the contributions dhe FCNH andW;-W, contributions that yield level Il solu-
the QCD penguin diagrams and the electroweak penguin diagramtions: when the contributions are large they tend to be of
Recently, important advances have been made in the treatment opposite sign.

chiral symmetry on the lattice and this is facilitating several new
efforts [38—4(, but at present there are still significant sources of
systematic errors that need to be brought under control. These ad-
vances do give one hope, however, that with another few years of Figures 11-13 show the results obtained wiép and
effort one may be in a much better position to make use of thdMly are allowed to vary over prescribed ranges. Level I

C. The generic case: variable masses

precise experimental resu[#1,42 to constrain theories &P vio-
lation.

solutions were found for Higgs boson masses as low as about
7 TeV, despite the apparently dangerous tree-level FCNH
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FIG. 9. Frequency plots of the five level Il constraints for the data set in Fig. 7. The dashed vertical lings &m 282", andAmg,
indicate the theoretical and/or experimental uncertainties. The dashed Iinmf@Srindicates the lower bound oﬁmBs/Ade [see Eq.
(37)]. The data in the plot are level Il solutions with,=5 TeV andM =10 TeV.
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FIG. 10. Frequency plots of the five short-distance contributiorsg tor the data set in Fig. 7. Note the different scales on the horizontal
axes. The data in the plot are level Il solutions with=5 TeV andM =10 TeV.

095002-16



UBIQUITOUS CP VIOLATION IN A TOP-INSPIRED . . . PHYSICAL REVIEW D66, 095002 (2002

2 the e’ constraint in our analysisThe bottom pair of plots in
15 Fig. 11 shows the approach to the “decoupling limit”
R ' (My ,M5,—0). In the decoupling limit the nonstandard con-
~ 1f tributions all tend to zero, leaving only the SM contribution.
® : In contrast with the SB-LR, our model survives into this
05 limit, since the usual left-handed phasg can be made to
0 take on any value in our model by choosing a suitable value
0 15 for B,3[see Eq(30) and Fig. 3, whereass, is quite close to
either 0 orm in the SB-LR!® Some additional investigation
into the decoupling limit has shown that approximately ver-
2 50 . . . e
e e tical bands of solutions develop in tiy;— «,. plane in this
15 ) limit. These bands are located ne@y;/w=0.4 andB,3/ 7
& | o 7= =1.4.(These values foB,; yield 5, =1.2 rad, which is just
R g the usual result in the SMThe beginnings of these vertical
05 A ! “decoupling limit bands” are evident in Fig. 11. Note that
il L the decoupling limit version of Fig. 3 has very tightly con-
0 : 0 strained regions fob, and also fordg (the constraint oSy
0 1 2 0 5 10 15 ; .
B, /x M, (TeV) is due to the strong correlation betweég and 6, ).
28 2 Figure 12 shows the left-and right-handed phases in the
2 50 variable mass case. Comparing with Fig. 3, we see that the
;” 3 40 [ level Il constraints rule out many of the possible values that
15 3, s the phases could in principle assume. The restrictions are not
5}‘ 1 o * §3° as severe, however, as in the case considered in Fig. 8, where
B ‘s z S0 the W, and Higgs boson masses were fixed to be 5 and 10
05 . . 10 TeV, respectively. Figure 13 displays the five short-distance
0 o > 0 contributions toey (as fractions okg™®) in the variable mass
0 1 2 0 5 10 15 case. Since many of the solutions actually correspond to
By/m M, (TeV) quite large masses, the nonstandard distributions are all

. . ) peaked around zero and the SM contribution is peaked
FIG. 11. Three pairs of plots showing level Il solutions for the 5.5nd unity. Nevertheless, the data set includes cases in

variable mass case. The plots on the right indicate the mass rang ich the FCNH andW; —W, contributions are relatively
under consideration and the plots on the left show the corresponny-ﬂ’I . Lo
arge (and typically of opposite sign

ing values ofa,, and B,3. The middle and lower pairs of plots

show subsets of the data contained in the upper pair of plots.
VIl. DISCUSSION AND CONCLUSIONS

contribution in Eq.(41). Solutions were also found faN, The left-right model provides a viable and aesthetically
masses as low as about 1.5 to 2 TeV. In choosing the massggasing extension of the SM. We have presented a relatively
we have employed the restrictiohd,>M;, M,>1.4TeV  exhaustive numerical investigation of a nonmanifest “top-
andMy>5 TeV (otherwise, approximations in some of our inspired” version of the left-right model in which the Higgs
theoretical expressions begin to lose some accliracgl  EVs are taken to be in the rati, :m, . This version of the
M,<13My (perturbativity bound43]). We have also placed model is very attractive in that it quite naturally reproduces
(somewhat arbitrajyupper limits on theW, and Higgs bo-  the quark mass and rotation angle hierarchies. It has often
son masses, as is evident in Fig. 11. . been the case in the past that studies of the nonmanifest
There are three sets of plots in Fig. 11. The top pair showgeft-right model have relied on variowsazeregarding the
the entire range of Higgs boson akd, masses considered form of the right-handed CKM matrix. In the present work
(on the right and the values of, and 8,3 for which solu- e have solved for this matrix numerically. Our numerical
tions were foundon the lefi. It would appear from this plot  \ork has yielded the intriguing result that the right-handed
that the quasimanifest limireal Higgs VEVs;a,»=nm) is  rotation angles and the phasg are very similar in size to
disfavored, at least for the range of masses considered in thgejr left-handed counterparts. These relations have been cor-

plot. (The quasimanifest case can actually yield solutions inghorated analytically in Appendix B. One interesting feature
the decoupling limit; as we shall discuss belpW®he middle

pair of plots shows the case in whith, <20 TeV and in-
dicates that for these “moderate” Higgs boson masses thei3\gte that among the two fundamen@P-violating phasese,..

solutions in theBy;—a,  plane form roughly horizontal ang g,,, the contribution frome,., to the CKM phases, is
bands. The pseudomanifest cdseal F and G; B,3=nm)  Cabibbo-suppressed by=0.22 relative to that from the phagg;.
does not appear to be ruled out, but does seem at least to hgus models with vanishing,s (such as the SB-LRmay not gen-
slightly disfavored.(Recall that we could in principle come erate enougtCP violation in general, and certainly not when the
to different conclusions than Badit al, since we do not use scale of new physics is very highe., in the decoupling limjt
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FIG. 12. Left-and right-handed CKM phases for level Il solutions in the variable mass case. The data shown correspond to the mass range
shown in the upper-right plot in Fig. 11.
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FIG. 13. Frequency plots of the five short-distance contributionstor the variable mass case.
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of the model is that, unlike the SB-LR, it reduces to the SMalgorithm for finding a solution is as follows:

in the decoupling limit. (1) For thenth iteration f=0,1,2,..N;), randomly gen-
One of the key insights in the present work is that unitaryerate a set of values for the relevant input parametetsee

rotations may be used to rotate away many superfluous d&able 1) within the ranges

grees of freedom in the quark Yukawa matridesand G, cen

yielding mass matrices that contain only two fundamental Xi,ntiani, (A1)

CP-odd phases.CP-violating quantities such agx and

sin 282", may then be used to place constraints on these w/here

phases. Our numerical study indicates that the combined 1 n=0
consideration of the neutr&l andB systems leads to quite a =1 . ’ (A2)
strong reduction in the size of the available parameter space. (1.510)"%, n>0.

In particular, the twoCP-odd phasesy,. and B,3 are con- . .
fined to rather small regions. From the vantage point of thisTrl:g ?tio'x\? fluncftflio ?arlltfocr)mn fog, V\llg?nfm:irr:d itol behconvem?nrtm
numerical investigation, and with the range of masses cor@nd reiativety efiicient. one cou principie choose a 1o

sidered here, it would appear that both the quasimanifesr,’f)r ¢n that decreases more quyckﬂyxponenually, say but
(real Higgs VEV3 and pseudomanifesteal Yukawa cou- we were not successful in getting such forms to converge to

i nald
plings) versions of the model are disfavored. The latter ofSOIUI'OnS' . . . .
these results is in agreement with recent work by Bakl. (2) Numerically diagonalize the mass matri¢ese Sec. |l

[20], although some of our numerical results appear to b ) and determine the quark masses and the right- and left-

mildly different from theirs. One very intriguing result of the anded CKM matrices. I 2 P
present work is that, and Higgs boson masses as light as (3 Evaluate the appropriate” (€ither x{;, or xg,) for

about 2 TeV and 7 TeV, respectively, are not inconsistenfN® Set of input parametefsee Eqs(27) and(28)].
with current experimental constraints. (4) Return to ste(1) and repeat the procedé, times.

Keep track of the set of input parameters that has yielded the
lowest value ofy? for the run so far, calling this sé¢xP*s}.

ACKNOWLEDGMENTS (5) After repeating the procedé., . times, set the “central
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Incrementn by one and return to stefd). Repeat the entire
r|3rocessNit times. Note that on returning to stép), n has
y’mcreased, s@, has been reduced in size.

(6) Check the individualy? once allN; iterations are
completed. If each of thgizs 1, the input parameter set is a

this work. X
solution.
A few modifications were made to the above procedure in
APPENDIX A: ADAPTIVE MONTE CARLO ALGORITHM order to increase its efficiency. For example, it was found

The numerical solution of our model has been aCCom_empirically thaty? decreased rather quickly on runs that ac-

plished using an adaptive Monte Carlo algorithm. The goafually resulted in a solution. We thus modified the procedure
of the algorithm is to find sets of input parametersso that runs were abandonedyf had not decreased below

(fi1,9ij ....) that satisfy the level | or level Il constraints to some threshold value after a specified number of iterations.

within some required tolerance. Table | lists the various con-
straints employed and Eq&7) and(28) give the definitions
of x? for level | and Il constraints, respectively. The basic ~As noted in Sec. IV, the six quark masses and three rota-
procedure is to generate random values for the various inpuiton angles provide nine essential constraints on the input
parametergsee Table Il and then to “zoom in” on a solu- parameter space. As a result, level | solutions may be found
tion by searching for small values gf. The procedure con- for any pair of phaseg,, and 8,3 (the nine constraints sim-
sists ofNj iterations(or “zooms”), with each iteration con- ply act to constrain the nine input parametggsandg;;). In
sisting of the construction and diagonalization Nf,. fact, in the limit thatX(zl)—>O, there appear to be 32 solutions
separate sets of mass matrices. For each successive iteratifor, each pair of values ofr,, and B8,3. In searching for a
the sizes of the input parameter ranges are reduced and devel | solution, only thef;; andg;; are “zoomed in upon;”
centered on the “best{as determined by?) set of input  «,, andB,; are fixed at the beginning of a particular run and
parameters for the run so far. For a typical riiR, .~ 15 and
N;;~5000.

The SpECifiC procedures for generating level | and Il solu- 4sjnce our routine allows thi; andgij to “wander” out of their
tions differ slightly; these differences are explained beloworiginal ranges, extra precautions were taken to ensurefthat
after the description of the general algorithm. The generad;,, g,; andg,; all remained positive.

1. Level | solutions
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are not altered throughout the course of the run. The level | 1. Angle relations
solutions for Figs. 1-4 were generated by setfiig,.= 15 As discussed in Sec. Il, the quark mass matrices in this
and N;;=1700. Slightly modified procedures were used ©0mqde| exhibit a surprising simplicity due to the hierarchy of
generate the data for Figs. 5 and 6. the VEVs of the scalar bidoublet. In particulakt,= xF
+«'*G is nearly diagonal in our choice of basis, and its
small rotation angles can be safely neglected compared to the

In order to find a level Il solution, one must specify valuescorresponding CKM rotations; i.e.,
for M, andM, (sinceeg, etc., depend on thesds level I
solutions involve the addition of several new constraints IVY|=|Vp|=diag 1,1,2). (B1)
compared to level | solutions, it is convenient to allow both
a, and B,3 to be free parameters while zooming in on aThus, both left-handedLH) CKM rotations and right-
solution. M, and My, however, may remain fixed for any handed(RH) rotations arise solely from\y=«'F+ «k*G.
particular run. Note thatMy is neither Hermitiaridue to the phase,) nor

A few slight modifications must be made to the generalsymmetric(due to the phasg,s), and we need two separate
algorithm when searching for a level Il solution, since aunitary rotation matrice¥® andV{ to diagonalizeMy. We
straightforward application of the algorithm does not seem tayill show in this section that the LH and RH rotation angles
lead to solutions. The reason for the problem appears to bgre closely related in this model due to the hierarchical struc-
the inclusion ofey in the evaluation Of)((zn). € is strongly  ture in the observed quark mass spectrum and in the CKM
suppressed in the SM due in part to the presence of smadingles. This feature of the model is evident from the numeri-
CKM matrix elementg436]. At the beginning of a particular cal results presented in the text.
run, ex would typically be orders of magnitude too large  We start by noting the approximate but useful hierarchies,
because the elements in the CKM matrix would not initially m, :m. :m,~X8\%1, mg:mg:my~A*:A2:1, and V,~\4,
have the correct hierarchy. A similar problem occurs for thev ,~\?, V =A=0.22. MqM] is determined to a good
right-handed contributions te, . The massive deviation of approximation from the LH CKM matrix, with the order of
ek from its experimental value at the beginning of a runmagnitude of the different matrix elements given by
leads to a very large contribution §& and upsets the zoom-
ing process. In order to get around the problem, we substitute PRI D
approximate value&lose to the known experimental values 5 4 2
o the left-handed anglesor both the left- o right-handed [ MM ~mg| 2> A AF (B2)
rotation angles when determining the contributioregf(and Mo
also of sin Bgky) to x{,, for the first several hundred itera- . . . o
tions. At some point in each run a switch is made such thaf he hierarchical structure of this matrix will be useful as we
the true numerical versions of the left- and right-handecgxamine the rotation angles.
CKM matrices are usedNote that part of the reason for the ~ The matrix Mgy can be rewritten as
success of this trick is the relatively good agreement between
the left- and right-handed rotation angles evident in Fig. 4. 0
'I_'he level Il solutions for Figs. 7—13 were generated by set- My=H+P=H+méd| 0
ting Ncac= 18 andN;=8000. 0

2. Level Il solutions

: (B3)

o O O
= O O

APPENDIX B: ROTATION ANGLE AND PHASE

= c* i iti = 4 ~
RELATIONS IN THE MODEL where H=«k*G is Hermitian, m=|«'f3~m,, and P

=k'F and has been approximated by neglecting the small
In this appendix, we derive analytical relations between(1,1) and(2,2) elements for simplicity of analysis. The inclu-
the left- and right-handed rotation angles and the CKMsion of all 3 diagonal elements & is straightforward and
phasess, and &y for the model considered in this paper. The does not affect our result. The LH and RH rotation matrices
analysis is greatly simplified by the smallness of the ratio ofcan be separately determined fronMg and MgMd,

the VEVs: |k'/k|=m,/m;. respectively:
HE, HZ, Histe ™ “Hgm
MgMi=(H+P)(H+P*)= H3, H2 Hog+e ! Hagm ' (B4)

H3,+€e'*Hgym H,+e % Hgm  Hi,+m?+2 cosa, Hagm

MIMg=H+P*)(H+P)= MgMi(ao——a,) (B5)
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WhereHiZJ- denotes théi,j) element ofH?. Therefore, the LH
and RH rotation angles are also relateddgy— — «,», and
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6= 05X (1+ O(N)). (B12

for this reason, one would expect them to be of the samdhis O(\) correction well explains the 20% fluctuation

order of magnitude; i.e.,

05165 =0(1). (B6)

We thus arrive at the hierarchical structure of th&; (thus
H) matrix,

A NE N

| Mgl~mp| A° N2 A2

D |

~[HI, (B7)

around unity in the third plot of Fig. 4.

The last step in the diagonalization Md/\/lg involves a
(1,2 rotation. To first approximation, the matrix elements of
the (1,2 submatrix are invariant under,, — — «,,, and we
get

0= 05, (B13)
To find out the correction to this relation, we need to include
the “residual effect” on the(1,2) and (2,2 elements of
Md/\/lg from the (2,3 rotation. The(1,2) element is modi-
fied as

where only the order of magnitude of each matrix element is

given. To be more precise,<gHgqy/m,<O(1), andthis is

because|Ps4 =|k'f3d~m,. We have checked that Egs.

(B9), (B12), and(B14) are valid even whefH35/m,<1.
Due to the hierarchical structure of1y M [see Eq.
(B2)], the LH angleds; (i.e.,|Vcp|) is simply given by[44]

(MgM)o

(MgMy)sg

L
237

HogH g+ HooH o3+ HygHyg+ €71 «'H 23m‘
(MgMg)ss ‘

It is easy to see thatNigMJ)s3 is even undera,, —

—a, . In the numerator in E¢B8), only H,; ande "%« are
complex. If we ignore the small term df,;H3, we can
then factor out,3 and observe that the numerafthus 65,)

is invariant under a,——a, . Thus 65= 65—

—,)= 053. The inclusion of the small terml ,4H 15 intro-
duces a tiny correction to this equality relation,

05,= 055X (1+ O(\®)), (B9)

where we have made use of HE&7). This correction is of

HE,— Hip+ (H3+ € Ham) (His+ e "' Hyam)/ O(m})
={1+0O(\)e P el +e 1% + O(1)]+ O(\?)
X[el% +O(1)]} X O(N®)m2.

Interestingly, the O(\) term is invariant undera,, —
—a,, and the leading noninvariant term appears at a higher
order of\2.

One can similarly calculate the effect of tf#&3) rotation
on the(2,2) element ofMy M. We note that the noninvari-
ant term undew,, — — a, is of O(\°) relative to the in-
variant term. The LH rotation anglé}, can now be calcu-
lated, and is given to first approximation by the ratio of the
modified (1,2) and(2,2) elements. The RH angl@2 can be
obtained from#}, with the substitutiona,, ——a,,. We
thus get

0= 05,% (L+ O(\?)). (B14)

The O(\?) correction nicely explains the-4% deviation
from unity as presented in the first plot of Fig. 4.

Note that when either of the two phases vanishes, we have
the exact relations; = 6}; . In particular, whenx,, =0 or 7

order 0.1% and is in good agreement with our numericalquasimanifest cage M M= MM, becauseP=P*.

analysis(see the second plot in Fig).4
From Eq.(B2), one can reason thﬂfig is given by
M Z‘WdM&)m
13 (Mde)SS

e “'Hygm+HygHgg+ HyHogt HygHig
(MgM)as ‘ '
(B10)

Substituting the different terms with their orders-of-

magnitude and phases, we have
05,=le "+ O(1)+e P30\ )| X O(\%), (B1))

which gives the right size fojV,,|. The corresponding RH
angle can then be deduced fra?ip3 with ¢, — —«,,, and
we get

This yields identical LH and RH rotation angles. On the
other hand, wherB,3=0 or 7 (pseudomanifest caget is
easily seen that the expressions Hb]r are invariant under
a,——a, , thus Bi"j = 05 .

2. Phase relations

Due to the hierarchical structure of the quark mass matri-
ces in the model considered in this paper, we can use the
triangular matrix technique developed in Rpf4] to solve
for the CKM phase®, anddg. In the triangular form, each
mass matrix element has a simple correspondence with a
quark mass or a rotation angle, and the CKM pha%eand
Or are equal to linear combinations of the phases of certain
elements of the up-and down-type quark mass matfitéls
For practical purposesy1,, can be considered as diagonal in
our model, and the CKM phasé, (6g) depends on the
phases of four matrix elements 8fl4 rewritten in the upper
(lower) triangular form[44].
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For the purpose of comparing and 6y later, EQ.(B7)  Note thatm,e'® =« f 33+ * g33, and that we have used
can be rewritten with real an@(1) coefficients as follows: g distinguish froma . =arg(c'). The O(\) phase factor in

My(2,2) comes from’ f,,, andd="f,,|«’|/(my\°3b,) is an

a\* ah3 agh* O(1) coefficient. On the other hand, f; modifiesM4(1,1)
by 1+ O(\*) and is thus neglected. For the phase relations,
Mg=m,| a22® bl snes b\%efz | we will include corrections up t@()).
Consider first the phas® in the LH CKM matrix. To this
ag\*  bo\%e P gle’ end, we apply RH rotations to E@B15) to convert it to

(B15) upper-triangular form,

ant an® as\[1+chei(Bzta’)]
Md_h/\/lﬁz mb O bl)\Zeid)\ SinDzKr bz)\Zei,323 ' (816)
0 0 eia’

wherec=a,b,/as, a; has changed ta; which itself carries arO(\) phase, and higher-order correctionskirare ignored.
The CKM phases; can now be expressed in terms of four elementsMﬁ‘ [44],

5 —ar ME(L,ME(2,3)
MGLIME(2,2

:B23_C)\ Sin(,823+a')—d)\ SinaKr+n7T, (Bl?)

wherens=arg@,b,/asb;) and can be 0 or-r.
To obtain an expression fdi; in the RH CKM matrix, we apply LH rotations to E¢B15) to convert it to lower-triangular
form,

ai)\4 0 0

M B a N3 b.\2eid\sina,s
a— Mg=my 2 1 . (B19)
ag\‘[1+che Bz e)]  bo\%e Pz gle

The phase’g can be similarly obtained, In other words,s, and g are equal up t@(\) corrections

5 5 from a nonzerax,. .
S —ar Mg(2,2 Mg(3,1) (2) 8.~ PBog~3dr(mod 7). Asc, d=0O(1) andr=0.22,
RETIMB(2,)MB(3,2)

we see that EqB17) is in good agreement with our numeri-
zﬁzg_ CA Sir(ﬁzg_ a’)+ dX\ sin o, +na, (Blg)

cal relation of Eq(30) and the first plot in Fig. 3:

O~ Bzt nmx0.25 rad.

wheren= arg@sh, /ab,) =arg@sb, /asb,).

Some discussion is in order regarding several features andl similar expression is valid fods . In both cases, the CKM
limits of the model. phase is simply equal t8,3 (mod ) up to O(\) corrections.

(1) dr~ 6. . Comparing the expressions fo; and 6g,  In particular, the contribution té,  from . is Cabibbo-
we see that they differ only in the sign ef,, (thusa'), as  suppressed by relative to that fromB.s.
noted when we examined the LH and RH angles. More spe- (3) (Quasi)manifest limits, = 8. In the limit ;.. =0 or
cifically, 7 (thus o’=0 or 7), we recover the(quasjmanifest left-
right symmetric model, andS, =g (exactly, as is well

_ H 2 H 2
Or= O+ 2C\ COSByzsina’ +2d\ sina, + O(N7). known for this scenario. For our model, we have

(B20)
Therefore, 55 and 5, become degenerate if,,=0 or . Sr= 8.~ Bas~CA s?n,823+n77 (a'= (B21)
Noting thatc, d=(1) and 2 =0.44, Eq.(B20) well ex- BaztChsinBoztnm  (a'=m).
plains our numerical relation of E¢31) and the second plot
in Fig. 3, (4) Pseudomanifest limit (or SB-LR)ég=—45, and
|8, r—Nnw|<O(N). In the limit B,3=0 or 7, we have the
Og~ 06, *=0.50 rad. pseudomanifest left-right symmetric model, or the SB-LR.
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As is well known for this case, we have the exact relation

8. =— 6r. In our model, we get

Sa=—0,
cAsina’+d\sina, +nw (B23=0),
| —cnsina’+dn sina, +(N+1)m (By=m).
(B22)

PHYSICAL REVIEW D66, 095002 (2002

|5|_‘R_m7T|$O()\) (ﬁ2320 or 7T), (823)

wherem=0 or 1. Note that this suppression arises before we
impose anyCP-violating constraints on the model. Our ana-
lytical result is consistent with the numerical findings of Ball
et al.[20],

|6, —mm|<0.25 (m=0,1).
This Cabibbo-suppression of the CKM phases may help ex-

Interestingly, the magnitudes of both phases are Cabibbglain why the SB-LR is disfavored by the siy??;M mea-

suppressed, i.e.

surement.
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