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Application of the maximum entropy method to the „2¿1…D four-fermion model
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We investigate spectral functions extracted using the maximum entropy method from correlators measured
in lattice simulations of the (211)-dimensional four-fermion model. This model is particularly interesting
because it has both a chirally broken phase with a rich spectrum of mesonic bound states and a symmetric
phase where there are only resonances. In the broken phase we study the elementary fermion, pion, sigma, and
massive pseudoscalar meson; our results confirm the Goldstone nature of thep and permit an estimate of the
meson binding energy. We have, however, seen no signal ofs→pp decay as the chiral limit is approached. In
the symmetric phase we observe a resonance of nonzero width in qualitative agreement with analytic expec-
tations; in addition the ultraviolet behavior of the spectral functions is consistent with the large nonperturbative
anomalous dimension for fermion composite operators expected in this model.

DOI: 10.1103/PhysRevD.66.094511 PACS number~s!: 11.15.Ha, 11.10.Kk, 12.40.Yx
s
ica

d
a
ic

c-

n

nd

a

V
f
-

o
n

um.
ly

as

as

s

and

di-

e

l in-
I. INTRODUCTION

The Gross-Neveu model ind53 spacetime dimension
(GNM3) has been the object of much analytic and numer
study in recent years. Its Lagrangian density is

L5c̄ i~]”1m!c i2
g2

2Nf
@~ c̄ ic i !

22~ c̄ ig5c i !
2#

;c̄ i S ]”1m1
g

ANf
~s1 ig5p! Dc i1

1

2
~s21p2!,

~1.1!

where the indexi runs overNf fermion flavors and in the
second line we have introduced scalars and pseudoscalarp
auxiliary boson fields. Apart from the obvious numerical a
vantages of working with a relatively simple theory in
reduced dimensionality there are several features wh
make GNM3 interesting for the modeling of strong intera
tions @1#.

For sufficiently strong couplingg2.gc
2 it exhibits spon-

taneous chiral symmetry breaking implying dynamical ge
eration of a fermion massM f , the pion fieldp being the
associated Goldstone boson. A separation of scalesmp

!M f is possible.
The spectrum of excitations contains both ‘‘baryons’’ a

‘‘mesons,’’ namely the elementary fermionsf and the com-
posite f f̄ states.

For 2,d,4 there is an interacting continuum limit at
critical value of the coupling, which ford53 has a numeri-
cal valuegc

2/a'1.0 in the large-Nf limit if a lattice regular-
ization is employed@2#. There is a renormalization group U
fixed point atg25gc

2 , signaled by the renormalizability o
the 1/Nf expansion@1#, entirely analagous to the Wilson
Fisher fixed point in scalar field theory.

Numerical simulations with baryon chemical potentialm
Þ0 show qualitatively correct behavior, in that the onset
matter occurs form of the same order as the constitue
0556-2821/2002/66~9!/094511~12!/$20.00 66 0945
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quark scaleM f @3#, rather than form'mp/2, which happens
in gauge theory simulations with a real measure det(M†M )
because of the presence of a baryonic pion in the spectr
This makes GNM3 an ideal arena in which to test strong
interacting thermodynamics@4#.

Let us briefly review the physical content of the model
predicted by the large-Nf approach@1,2#. For g2.gc

2 the
fermion has a dynamically generated massM f given, up to
corrections of order 1/Nf , by

M f5
g

ANf

^s&5
g2

Nf
^c̄c&. ~1.2!

Its inverse defines a correlation length which diverges
(g22gc

2)2n with critical indexn511O(1/Nf). In addition

as a result off f̄ loop corrections thes andp fields acquire
nontrivial dynamics, the inverses propagator being given a
a function ofd to leading order in 1/Nf by

Ds~k2!5
1

g2

~4p!d/2

2GS 22
d

2D
3

M f
42d

~k214M f
2!FS 1,22

d

2
;
3

2
;2

k2

4M f
2D . ~1.3!

Immediately we see the difference between this model
QCD. Fork2!M f

2 F'1, implying that to this order thes
resembles a weakly bound meson of massMs52M f ; how-
ever, the hypergeometric function in the denominator in
cates a strongly interactingf f̄ continuum immediately above
the threshold 2M f . This implies that if truly bound, its bind-
ing energy isO(1/Nf) at best~to our knowledge there hav
so far been no analytic calculations!, implying little if any
separation between pole and threshold. Since all residua
teractions are subleading in 1/Nf , we surmize that all other
©2002 The American Physical Society11-1
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mesons are similarly weakly bound states of massive fer
ons, and hence effectively described by a two-dimensio
‘‘nonrelativistic quark model.’’ A recent study of meson
wave functions in GNM3 provides evidence for this pictur
@5#. In an asymptotically free but confining theory like QCD
by contrast, one expects isolated poles and/or resonan
corresponding to relativistic bound states in the channe
question, which are well separated from a threshold
nearly-free quark behavior which sets in at typically 1.3–
GeV @6#.

The exception to this rule is the pion. The Lagrangi
~1.1! can be defined with either a continuous U~1! or discrete
Z2 chiral symmetry, the latter case being realized by sett
the p field to zero. In the case of U~1! chiral symmetry, for
m50 and g2.gc

2 the pion propagatorDp is given by a
similar expression to Eq.~1.3! with the factor (k214M f

2)
replaced byk2; the massless pole demonstrates thatp
couples to a Goldstone mode. Form.0, we expect by the
usual PCAC~partial conservation of axial-vector current! ar-
guments that thep acquires a massmp}Am, and that the
ratio mp /M f can be tuned to be arbitrarily small. In partic
lar, once it is less than unity thes becomes unstable with
respect to decay into 2p. Note, however, that the Goldston
mechanism in GNM3 is fundamentally different from that in
QCD. In GNM3 the diagrams responsible for making th
pion light are flavor-singlet chains of disconnectedf f̄

bubbles@3#. The nonsinglet connectedf f̄ diagram which in-
terpolates the pion in QCD corresponds in GNM3 to a pseu-
doscalar state with massO(2M f).

For g2,gc
2 the model is chirally symmetric, and hence a

states are massless, asm→0. In this limit Ds andDp coin-
cide, and in the large-Nf limit neither has a pole on the
physical sheet@1#. The auxiliary fields in this case do no
interpolate to a stable particle. A dimensionful scale is s
defined, however, by the widthm of a resonance inf f̄ scat-
tering in these channels; this diverges as (gc

22g2)2n with the
same exponentn @2#.

It is clear that despite its simplicity GNM3 exhibits phe-
nomena such as resonances, decays and multiparticle
tinua which are not easily analyzed using the traditional te
niques of single- and multiexponential fitting to Euclide
correlators developed for quenched QCD. This was rec
nized in early studies, which attempted fits inspired by
large-Nf forms ofDs in both chirally broken and symmetri
phases, with ambiguous results@2#. A more systematic ap
proach, however, is to focus on thespectral density function
r(v), defined implicitly via the Euclidean time slice meso
correlatorC(t) by

C~ t !5(
xW

^J~0W ,0!J†~xW ,t !&5E
0

`

dvr~v!e2vt. ~1.4!

Here J is a local fermion bilinearc̄Gc which in principle
projects onto all physical states consistent with a given se
quantum numbers. All information about bound states, re
nances and particle production thresholds as a function
energyv is contained inr. The procedures for fitting lattice
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generated data to date have assumedAnsätze for r such as
one or more bound state poles of the formd(v2M ), or
perhaps a free particle continuum above some threshold@7#.
However, more recent works have attemptedab initio calcu-
lations of r(v) @8–10#. This is a difficult problem: the in-
version of Eq.~1.4! is ill posed sincer(v) is a continuous
function whereas lattice simulations only yieldC(t) for a
discrete, finite set of points, and moreover with some sta
tical uncertainty. The approach adopted in Refs.@9# is to
apply themaximum entropy method~MEM! which attempts
to fit r(v) subject to reasonable assumptions of smoothn
and stability with respect to small variations in the inp
data.

In this paper we present results from a study of spec
functions extracted from numerical simulations of GNM3 us-
ing MEM techniques. To our knowledge this is the first su
study beyond the quenched approximation. Our goal is
explore some of the features described above which dis
guish GNM3 from quenched QCD. In this regard it is wort
noting that because the two most important mesonic ch
nels, s and p, are represented by bosonic auxiliary field
the correlation functions in these channels automatically
clude the disconnected diagrams which are so expensiv
calculate in QCD; in GNM3, by contrast, these can be me
sured with high statistics relatively cheaply. We will als
examine the fermion and nonsinglet pseudoscalar~PS! chan-
nels. As surveyed above, simulations of GNM3 offer the
freedom to vary the phase of the theory@by varying sgn(g2

2gc
2)], the correlation length~by varying ug22gc

2u), the
symmetry group~by including or omitting p), the ratio
mp /M f ~by varying m), and the interaction strength~by
varying Nf)—in the current study we will exploit most o
these opportunities. In future work we plan also to study
model with both nonzero temperatureT and baryon chemica
potentialm.

In Sec. II we survey MEM and explain our implement
tion of it. Section III outlines some theoretical expectatio
related tor(v) in GNM3 based on the large-Nf approach,
and Sec. IV details the lattice formulation and numeric
simulations. Our results are presented in Sec. V, and con
sions in Sec. VI.

II. THE MAXIMUM ENTROPY METHOD

The theoretical basis for MEM is Bayes’ theorem in pro
ability theory @11#:

P@XuY#5
P@YuX#P@X#

P@Y#
, ~2.1!

whereP@XuY# denotes the conditional probability ofX given
Y. In terms of the lattice dataD, spectral functionr and alla
priori knowledgeH, Bayes’ theorem reads

P@ruDH#5
P@DurH#P@ruH#

P@DuH#
. ~2.2!

P@DurH# is known as thelikelihood functionand is the
equivalent of the familiarx2 in the least squares metho
1-2
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@12#. For a large number of Monte Carlo measurements o
correlation function, the dataD are expected to obey
Gaussian distribution according to the central limit theore

P@DurH#5
1

ZL
e2L[r] , ~2.3!

L@r#5
1

2 (
i , j 51

Nt

„D~ t i !2Dr~ t i !…Ci j
21

„D~ t j !2Dr~ t j !…,

~2.4!

where the normalization factorZL5(2p)Nt/2AdetC and Nt
is the number of temporal points. Lattice data averaged o
Ncfg gauge configurationsD(t), the covariance matrixCi j ,
and the propagator constructed from the spectral functior
using the lattice kernelK(v,t) are defined by

D~ t i !5
1

Ncfg
(

m51

Ncfg

Dm~ t i !, ~2.5!

Ci j 5
1

Ncfg~Ncfg21! (
m51

Ncfg

„Dm~ t i !

2D~ t i !…„D
m~ t j !2D~ t j !…, ~2.6!

Dr~ t !5E
0

`

K~ t,v!r~v!dv. ~2.7!

In all our work we use a lattice kernel defined
exp(2vt).

The factor P@ruH# appearing in the numerator of Eq
~2.2! is theprior probability, which is written in terms of the
Shannon-Jaynes entropyS@r# @13# for a givendefault model
r0(v). The default model is usually chosen to be the spec
function for a noninteracting two-particle continuum; for m
son states we haver0(v)}vd22 ~see Sec. III!. The final
result, however, should be insensitive to the choice ofr0.
The entropyS@r#<0 and becomes zero only whenr(v)
5r0(v):

P@ruHar0#5
1

ZS~a!
eaS[r] , ~2.8!

S@r#5E
0

`Fr~v!2r0~v!2r~v!lnS r~v!

r0~v! D Gdv

~2.9!

→ (
,51

Nv Fr,2r0,2r,lnS r,

r0,
D GDv,

~2.10!

where Eq.~2.10! results from discretizing thev axis intoNv

bins of width Dv, and the normalization factorZS
>(2p/a)Nv/2. Note that two extra parameters previous
implicit in H have been written in explicitly;a is a real
positive parameter andr0(v) a real positive function. This
09451
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form of entropy leads to a positive semidefinite spect
function in MEM. In our work we useNv5600 andDva
50.01.

Combining Eqs.~2.3! and ~2.8! gives

P@ruDHar0#}
1

ZSZL
eQ[r] , ~2.11!

Q[aS2L. ~2.12!

and the condition satisfied by the most probable spec
function ra(v) is

dQ

dr~v!
U

r5ra

50. ~2.13!

The parametera is in effect a relative weighting between th
entropyS and the likelihoodL, and there are three differen
ways to deal with it. The valuea5â can be chosen which
either givesx25Nt or maximizesP@auDHr0#; these meth-
ods are known asclassicandhistoric @13# respectively. Al-
ternatively, a weighted average overP@auDHr0# can be per-
formed; this is known asBryan’s method@14# and is the one
we adopt:

rout~v!5E
amin

amax
dara~v!P@auDHr0#, ~2.14!

whereamin andamax are chosen to satisfy

P@amin,maxuDHr0#50.01P@âuDHr0#. ~2.15!

A. Testing MEM

To test our implementation of MEM, we studied an id
alized QCD spectral function in the chargedr-meson chan-
nel @6,8#:

r in~v!

v2
5

2

p FFr
2 Grmr

~v22mr
2!21Gr

2mr
2

1
1

8p S 11
as

p D 1

11e(v02v)/dG , ~2.16!

where the pole residueFr5 f rmr is defined by

^0ud̄gmuur&em5A2 f rmr
2em , ~2.17!

em being the polarization vector. The following energ
dependent width is chosen with au-function included to give
the correct threshold behavior of ther→pp decay

Gr~v!5
grpp

2

48p
mrS 12

4mp
2

v2 D 3/2

u~v22mp!. ~2.18!

The values of the parameters input into Eq.~2.16! are taken
to be

mr50.77, mp50.14, v051.3, ~2.19!
1-3
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grpp55.45, f r50.184, d50.2, as50.3,

where the numerical values of the first three parameters
in GeV.

Test lattice correlator data were constructed from
spectral function using Eq.~2.7!. Gaussian noise with vari
ances(t i)5bDin(t i)t i was added to this data to simulate t
effect of decreasing signal-to-noise ratio with temporal se
ration @8#. For simplicity we use a diagonal covariance m
trix, which thus neglects correlations between differentt. The
default model used isr0(v)5m0v2, motivated by the
asymptotic behavior ofr in . The parameterm0 is chosen to
be limv→`r in(v)50.0277. We setvmax56 GeV, Dv
510 MeV andNv5600, and vary the noise parameterb
from 0.1 to 0.001. Figure 1 shows a comparison betweenr in
androut for variousb. As expected, decreasingb leads to a
better agreement between input and output spectral fu
tions.

III. THEORETICAL PRELIMINARIES

Our main focus will be the mesonic Euclidean time sli
correlation functions defined in Eq.~1.4!. With this defini-
tion, if J couples to a stable~i.e. zero width! bound state of
massM with strengthA ~i.e. ^0uJukW ,M &5A), then r(v)
5(uAu2/2M )d(v2M ). Since ind spacetime dimensions th
engineering dimension@J#5d21 and @ ukW ,M &] 512d/2, it
is readily checked that the combinationr(v)/vd22 is di-
mensionless. This also motivates the use of the default m
r0(v)}vd22, which corresponds in configuration space
the propagation of free massless fermions; i.e.C(t)
}t2(d21). For an asymptotically free theory such as QC
we expect limv→`r(v)5r0(v), as illustrated in Fig. 1:
however since GNM3’s UV behavior is described by a reno
malization group fixed point with nonvanishing interactio
strength@1,2# this is not a constraint in the current study.

The asymptotic form ofr(v) is easiest to analyze in th
symmetric phaseg2,gc

2 of the model, where we have
large-Nf prediction@15,2#. In the scalar channel, the mome
tum space propagator

FIG. 1. Comparison ofr in androut for idealized data in ther
channel withNt532.
09451
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Ds~k2!}
md22

~Ak2!d221md22 ~3.1!

where 2,d,4 and m is a dimensionful scale which in
creases as (gc

22g2)1/(d22), i.e. as an inverse correlatio
length. Ford53 this implies@16#

Cs~ t !}mE
0

`

dk
coskt

k1m
[mE

0

`

dv
v

v21m2 e2vt, ~3.2!

and hence the large-Nf prediction

rs~v!}
mv

v21m2 . ~3.3!

In the asymptotic regime we thus havers→rUV(v)}v21

rather thanr0(v)}v. This is a consequence of the larg
nonperturbative anomalous dimensionhc̄c5d22 acquired
by the scalar density at the UV fixed point@2#, which relates
the asymptotic forms via

rUV~v!}r0~v!v22hc̄c. ~3.4!

At smaller energy scales we interpretr as describing a reso
nance whose central position and width are bothO(m) and
hence increase as the couplingg2 is reduced. A second pre
diction of Eq. ~3.3! is that the dimensionless combinatio
r(v)/v tends to a constant in the IR limitv→0.

Another situation of interest is the possibility ofs decay
in the chirally broken phase. Denote the physical ferm
mass byM f ; the s is then expected to be a weakly boun
state of massMs&2M f whereas, for the case of a continu
ous chiral symmetry, the pion massmp may be much
smaller. If 2mp,Ms , the decays→2p is allowed and
should show up as a threshold in the scalar spectral funct
This should be a good warm-up exercise for studying
physical decayr→2p in QCD; as well as the computationa
saving, an important technical consideration in the pres
case is that unlike in QCD the two pions can be produced
a state of zero relative momentum.

Let us first derive an expectation for the form of th
threshold using the 1/Nf expansion. The contribution of th
two pion intermediate state to thes correlator is shown dia-
gramatically in Fig. 2. To leading order in 1/Nf , using the
conventions of Sec. II of@2# thes propagator is given by Eq
~1.3! where for momentak!M f the hypergeometric function
in the denominator may be approximated byF'1. We will
assume that for bare fermion massm.0, the pion propaga-
tor Dp is given by the same expression with the factor (k2

14M f
2) in the denominator replaced by (k21mp

2 ). The ver-

FIG. 2. Contribution toDs from a 2p intermediate state.
1-4
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tex Gspp is assumed to arise from a single fermion loop
indicated in Fig. 2. It is identically zero if chiral symmetry
unbroken. Using the bare vertex2g/ANf , it is straightfor-
ward to show

Gspp.2Gspp

g3M f
d23

ANf
~3.5!

whereGspp is a dimensionlessd-dependent constant.
With these components in place it is now possible to c

culateDs including the effects of the two pion intermedia
state. Specializing tod53, we find

Ds
21~k2!M f

2!5
g2

4pM f
Fk214M f

2

2
Gspp

2

Nf

M f
3

Ak2 tan21S Ak2

2mp
D G . ~3.6!

Besides the pole atk2.24M f
2 , there is now a contribution

at O(1/Nf) to the time slice correlation function given by

Cs
(1)~ t !}

Gspp
2 M f

3

Nf
E dk

2p

eikt

k~k214M f
2!2tan21S k

2mp
D .

~3.7!

The two pion threshold manifests itself via branch cuts in
inverse tangent running fromk2524mp

2 out to 6 i`. Ap-
proximatingk2!M f

2 as before we integrate around the cut
the upper half plane to obtain

Cs
(1)~ t !}

Gspp
2

32NfM f
E

2mp

` dv

v
e2vt ~3.8!

from which we read off

rs
(1)~v!}

Gspp
2

32NfM f

1

v
u~v22mp!. ~3.9!

Equation ~3.9! predicts that as well as a pole atv
.2M f , there should also be a spectral feature atv52mp

whose strength scales as (NfM fmp)21; this is in principle
testable by varying the simulation parametersNf , g2 andm.
On a finite volume it will, however, prove difficult to stud
the detailed form of the spectral function above thresho
This is because the number of modes into which thes can
decay is strictly delimited by the allowed pion wave vecto
kWp52pnW /Ls , wherenW has integer-valued components, a
2Amp

2 1kp
2 ,Ms . The optical theorem, however, implie

that the only intermediate states which can contribute
r(v) are possible decay modes of thes; we infer that on a
finite lattice, thev21 shape predicted by Eq.~3.9! is replaced
by a set ofd functions, each arising from an allowedkWp .
With imperfect~i.e. finite! statistical data, however, it is pos
sible that under MEM these isolated poles will blend into
continuum of approximately the correct shape.
09451
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IV. SIMULATIONS

The fermionic part of the lattice action we have used
the semibosonized GNM3 with U(1) chiral symmetry is
given by @3#

Sf er5x̄ i~x!Mi jxyx j~y!

5(
i 51

N S (
x,y

x̄ i~x!Mxyx i~y!1
1

8 (
x

x̄ i~x!x i~x!

3F (
^ x̃,x&

s~ x̃!1 i e~x! (
^ x̃,x&

p~ x̃!G D , ~4.1!

where x i and x̄ i are Grassmann-valued staggered ferm
fields defined on the lattice sites, the auxiliary fieldss andp

are defined on the dual lattice sites, and the symbol^ x̃,x&
denotes the set of 8 dual lattice sitesx̃ surrounding the direct
lattice sitex. The fermion kinetic operatorM is given by

Mx,y5
1

2 (
n

hn~x!@dy,x1 n̂2dy,x2 n̂#1mdx,y , ~4.2!

where hn(x) are the Kawamoto-Smit phase
(21)x01•••1xn21, and the symbole(x) denotes the alternat
ing phase (21)x01x11x2. The auxiliary fieldss and p are
weighted in the path integral by an additional factor cor
sponding to

Saux5
N

2g2 (
x̃

@s2~ x̃!1p2~ x̃!#. ~4.3!

The simulations were performed using a standard hyb
Monte Carlo~HMC! algorithm without even-odd partioning
implying that simulation ofN staggered fermions describe
Nf54N continuum species@3#; the full symmetry of the lat-
tice model in the continuum limit, however, isU(Nf /2)V
^ U(Nf /2)V^ U(1) rather thanU(Nf)V^ U(1). At nonzero
lattice spacing the symmetry group is smaller st
U(Nf /4)V^ U(Nf /4)V^ U(1). In the Z2-symmetric model
thep fields are switched off andM becomes real so that rea
pseudofermion fields can be used. In this caseN staggered
fermions describeNf52N continuum species. Further de
tails of the algorithm and the optimization of its performan
can be found in@2,3#.

Using point sources we calculated the zero moment
fermion ~f! correlator at different values of the couplingb
[1/g2. In order to compare MEM to conventional spectro
copy we also estimated the fermion mass using a simple
fit using the function

Cf~ t !5Af@e2M ft2~21! te2M f (Lt2t)#. ~4.4!

Similarly, the zero momentum auxiliaryp correlator was
measured and its mass estimated using a cosh fit. The
sonic correlators are given by
1-5
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CM~ t !5 (
x,x1 ,x2

F~x1!F~x2!WM~x!

3G~x,t;x1,0!G†~x,t;x2,0!, ~4.5!

whereG is the lattice fermion propagator andWM(x) a phase
factor which picks out a channel with particular symme
properties i.e.WM(x)5e(x) for the S channel andWM(x)
51 for the PS channel. The functionF(x) is either a point
source dx,(0,0) or a staggered fermion wall sourc
(m,n50

Ls/221dx,(2m,2n) @17#. In all the simulations we used poin
sinks. These correlators were fitted to a functionCM(t) given
by

CM~ t !5A@e2MMt1e2MM(Lt2t)#

1Ã~21! t@e2M̃Mt1e2M̃M(Lt2t)#. ~4.6!

Note that composite operators made from staggered ferm
fields project onto more than one set of continuum quan
numbers. The first square bracket represents the ‘‘direct’’
nal with massM M and the second an ‘‘alternating’’ signa
with massM̃ M . Continuum quantum numbers for variou
mesonic channels are given in@5#—in this study we focus on
the PSdirect channel, withJP502. Although expected to be
the tightest bound meson since it is the only one for wh
s-wave binding is available, as stressed in@3,5# this state
does not project onto the Goldstone mode in the brok
phase.

V. RESULTS

A. The p, f and PS channels in the broken phase

We first discuss results from the chirally broken pha
obtained withb,bc'1.0. Figure 3 shows the propagato
for p, f and PS channels on a log scale~using data obtained
with a wall source and point sink in the latter case!, resulting
from approximately 40000 HMC trajectories of mean leng
1.0. All three look to be well-approximated by straight line
implying that each channel is dominated by a single part

FIG. 3. Propagators in three different channels from simulati
of the U~1! model on a 322348 lattice atb50.55, m50.01.
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pole. Figure 4 shows the spectral functions obtained in
same three channels using Bryan’s method. All three app
as well-localized peaks suggesting simple poles and he
stable particle states. The cross shown on each peak is
tained as follows. The spectral feature is fitted to a fo
ZG(v2M /G) whereG(x) is the normalized Gaussian dis
tribution, M the peak position,G the full width at half maxi-
mum, andZ a normalization factor. The horizontal bar’s po
sition and width representM and G respectively, and its
height represents the area ofZG(v2M /G) evaluated be-
tweenv2G andv1G. The vertical error bar represents th
error in this area as determined by the Bryan algorithm@14#.
For a narrow Gaussian, of course, the central value is in
preted as the particle mass.

In Table I we list the masses obtained from simulations
the U~1! model from both single exponential fits and MEM
as well as the area under the Gaussian peak, using corre
data from time slices 2–10 for thep; for f and PS time slices
2–8 were used. Note that for the lightest state, namely thep,
MEM systematically yields a lower mass, suggesting tha
is less affected by excited state contamination, although in
cases the two methods are within a standard deviation.
ure 5 demonstrates that the pion mass extracted using M
over a range of bare fermion masses is consistent with
PCAC behaviormp}Am expected for broken chiral symme
try. For thef and PS channels there is excellent agreemen
almost all cases between the two methods. The PS ma
roughly twice that of the fermion, consistent with its being
weakly bound state. With the precision we have obtained
possible to estimate the binding energy defined asDM
52M f2MPS; the results are tabulated in Table II. ForNf
54 DM'2.8% of the bound state mass, but the figure dro
to '0.15% forNf536, which is roughly consistent with th
analytical expectation thatDM}1/Nf ~note, however, that the
Nf536 simulations were performed on a smaller volume!. It
was observed in@5# that the PS wave function has conside
ably greater spatial extent for largerNf , again implying it is
less strongly bound.

As discussed in Sec. III the area under the peak is rela
to the strengthA of the coupling of the operatorJ to the

s
FIG. 4. Bryan image ofr(v)/v in three different channels us

ing the same data as Fig. 3.
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TABLE I. Broken phase spectroscopy.

Nf Volume b m
Mass

~1-exp!
Mass

~MEM! Area

p 4 322348 0.55 0.005 0.114~4! 0.112~6! 0.501~129!
4 322348 0.55 0.01 0.168~5! 0.154~9! 0.176~15!

4 322348 0.55 0.02 0.232~5! 0.231~7! 0.0617~98!

4 322348 0.55 0.03 0.280~10! 0.263~15! 0.0351~37!

4 322348 0.55 0.045 0.349~8! 0.326~14! 0.0193~15!

4 322348 0.55 0.06 0.447~24! 0.435~1.9! 0.0102~5.7!
4 322348 0.65 0.01 0.193~4! 0.187~8! 0.0810~78!

4 322348 0.65 0.02 0.277~4! 0.267~6! 0.0289~19!

36 242332 0.55 0.01 0.150~5! 0.144~18! 0.053~19!

36 242332 0.55 0.02 0.238~6! 0.229~8! 0.0140~14!

36 242332 0.55 0.03 0.287~10! 0.271~17! 0.0081~10!

f 4 322348 0.55 0.005 0.555~7! 0.556~4! 2.15~49!

4 322348 0.55 0.01 0.564~1! 0.564~1! 2.37~3!

4 322348 0.55 0.02 0.5853~7! 0.5858~13! 2.14~27!

4 322348 0.55 0.03 0.599~1! 0.599~1! 2.06~5!

4 322348 0.55 0.045 0.623~1! 0.623~1! 1.90~4!

4 322348 0.55 0.06 0.644~2! 0.643~2! 1.63~8!

4 322348 0.65 0.01 0.3978~8! 0.3965~13! 5.11~9!

4 322348 0.65 0.02 0.4285~6! 0.4384~44! 4.10~33!

36 242332 0.55 0.01 0.6796~3! 0.6796~3! 1.77~8!

36 242332 0.55 0.02 0.6911~3! 0.6908~3! 1.72~7!

36 242332 0.55 0.03 0.7025~4! 0.7023~5! 1.59~2!

PS 4 322348 0.55 0.005 1.0807~8! 1.0807~8! 164.3~6!

4 322348 0.55 0.01 1.0973~8! 1.0979~7! 160.~3!

4 322348 0.55 0.02 1.1395~6! 1.1396~5! 147.2~5!

4 322348 0.55 0.03 1.1715~11! 1.1716~11! 130.~2!

4 322348 0.55 0.045 1.2253~6! 1.2231~6! 119.1~9!

4 322348 0.55 0.06 1.2693~13! 1.2691~2! 103.~2!

4 322348 0.65 0.01 0.7722~6! 0.7711~4! 426.~32!

4 322348 0.65 0.02 0.8362~5! 0.8381~45! 343.~462!
36 242332 0.55 0.01 1.3568~2! 1.3569~2! 50.1~3!

36 242332 0.55 0.02 1.3806~2! 1.3808~2! 48.4~2!

36 242332 0.55 0.03 1.4030~3! 1.4030~3! 45.5~3!
FIG. 5. Pion massmp
2 vs bare massm for b50.55, showing

evidence for the Goldstone nature of thep.
09451
TABLE II. Binding energy in the PS channel.

Nf Volume b m DM DM

~1-exp! ~MEM!

4 322348 0.55 0.005 0.0293~140! 0.0313~80!

4 322348 0.55 0.01 0.0307~22! 0.0301~21!

4 322348 0.55 0.02 0.0311~15! 0.0320~26!

4 322348 0.55 0.03 0.0265~23! 0.0264~23!

4 322348 0.55 0.045 0.0207~21! 0.0229~21!

4 322348 0.55 0.06 0.0187~42! 0.0169~40!

4 322348 0.65 0.01 0.0234~17! 0.0219~26!

4 322348 0.65 0.02 0.0208~13! 0.0387~63!

36 242332 0.55 0.01 0.0024~6! 0.0023~6!

36 242332 0.55 0.02 0.0016~6! 0.0008~6!

36 242332 0.55 0.03 0.0020~9! 0.0016~10!
1-7
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ALLTON et al. PHYSICAL REVIEW D 66, 094511 ~2002!
single particle state, and hence to physical decay const
Our results show a systematic decrease in this coup
strength with bare fermion massm, the effect being mos
pronounced for thep.

Finally in Fig. 6 we explore the effects of using differe
meson sources following Eq.~4.5! using data from time
slices 1–8. As in Fig. 4, the spectral functions have be
rescaled so as to fit all on the same plot. When a wall is u
at either sink or source, the signal is completely domina
by the bound state; however, for the point-to-point correla
there is a significant contribution out tova'2.5. Since we
have discarded data from small time slices we should
expect much quantitative information from the asympto
form of r(v) in this case; indeed, asv→` it decays much
faster than either of the idealized formsr0(v) or rUV(v)
discussed in Sec. III. Figure 6 provides a graphic illustrati
however, of the importance of choice of source in maxim
ing the projection onto the ground state.

B. Symmetric phase

Next we turn to the chirally symmetric phase found f
b.bc , where according to the discussion of Sec. III t
bound state poles should be replaced by resonances
nonvanishing widths. Our simulations in this section we
performed for the Z2 model on a 322348 lattice at couplings
b50.92, 1.0 and 1.25 withO(40000) configurations sepa
rated by HMC trajectories of mean length 1.0, and for U~1!
on a 323 lattice atb51.0 and 1.25 with respectively 3000
and 60000 trajectories of mean length 0.6. In all casesNf
54 fermion flavors were used. It proved considerably ea
in this phase to simulate the model with Z2 chiral symmetry:
the U~1! simulations required a much smaller molecular d
namics time step making them more expensive, and the
correspondingly of not such good quality. Data for the Z2 s
timeslice correlator are shown on a log scale in Fig. 7.
contrast to the broken phase correlators of Fig. 3 it is cl
that a simple pole fit will not be successful; indeed, the c
relators become almost flat at larget, which means that to-
wards the center of the lattice we have to worry about s

FIG. 6. Bryan image ofr(v)/v in the PS channel 322348
lattice atb50.55, m50.01 using correlators with different comb
nations of wall and point sources.
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nificant contributions from not just a backwards-propagat
signal, but also ‘‘image’’ sources displaced by integer m
litples of Lt from the original source@2#.

If we are to successfully identify spectral features
something other than simple poles, then it is important
study systematic effects. Figure 8 presents results from ths
channel, where the resonance is anticipated, showing the
fects of varying the time slice sample used in the MEM
Data from within a time window@ t1 ,t2# were fitted; in all
cases we chose a rather conservative valuet2511 to mini-
mize finite volume~actually nonzero temperature! effects
due to the image sources discussed above, although we
checked that the results are insensitive to reducingt2. Figure
8 shows a broad feature centered atva.0.5, whose
‘‘width’’ ~actually the ratio of width to area, as indicated b
the crosses! increases as data from smaller times is includ
Ignoring the divergence asv→0 which we take to be an
artifact ~possibly due to a small residual vacuum expectat
^s&Þ0; see discussion below in Sec. V C!, the shape of the
spectrum appears qualitatively similar to the large-Nf predic-
tion ~3.3!. The fact that the shape of the spectrum in t

FIG. 7. s correlator for 3 different couplings in the chirall
symmetric phase on a 322348 lattice.

FIG. 8. Bryan image ofr(v)/v vs v in the s channel atb
51.25 on a 322348 lattice, showing 3 different time windows.
1-8
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APPLICATION OF THE MAXIMUM ENTROPY METHOD . . . PHYSICAL REVIEW D66, 094511 ~2002!
massless phase is sensitive to the data at short time
slightly counter-intuitive, but is consistent with the observ
tion in @2# that extraction of a physical scale, namely t
resonance widthm, from timeslice correlator data actuall
depends on corrections to the expected power law fal
(mt)22 at smallvalues ofmt. Note thatr(v)/v falls to zero
asv→`, in contrast to the constant behavior expected in
asymptotically-free theory such as QCD and exemplified
Fig. 1. The falloff is approximately power law of the form
v2p, but with p'426, in contrast to the valuep52 pre-
dicted by Eq.~3.3!.

It is also legitimate to ask whether the nonzero width
the spectral feature is due to insufficient statistics. Fig
shows the feature evolving as data is added to the sam
There is no significant reduction in the width of the featu
as the statistics accumulate fromO(10000) to O(40000)
configurations, although the central position and height
the peak both vary slightly, supporting the conclusion tha
resonance is present.

In Fig. 10 we compare the results from 3 different co

FIG. 9. The same as Fig. 8 using fits from time slices 0–
showing the effects of varying the amount of data.

FIG. 10. Rescaled Bryan image ofr(v)/v in the s channel
from time slices 0–11, for three different couplings.
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plings. Since the artifact atv→0 distorts the normalization
of our result, we have rescaled each curve so that the r
angles of equal area to the fitted peak have the same he
The resulting curves show both the position and width of
resonance increasing withb. This is consistent with Eq
~3.3!, which predicts both are proportional to a single sc
m, if m increases withb as expected. Within errors we fin
the ratio of width to central position constant and appro
mately equal to 50%. Note, however, that ignoring the sp
at v50 the dip in the curve suggests limv→0r(v)/v→0,
rather than tending to a constant as predicted by Eq.~3.3!.

Finally in Figs. 11 and 12 we show some results fro
simulations of the U~1! model. In this case it is possible t
extract and compare spectra from boths and p channels.
The fitted time window is@1,10#. The bare fermion massm is
set to zero implying that forb.bc the two channels should
be physically indistinguishable, and Fig. 12 suggests that
large v this is indeed the case. There is, however, a la
disparity asv→0 betweenb51.00, wherer(v) appears to
diverge, andb51.25 where it seems to tend smoothly
zero. Figure 11 confirms that the behavior of the correlat

, FIG. 11. s andp timeslice correlators from simulations of th
U~1! model on a 323 lattice.

FIG. 12. Bryan image ofr(v)/v in both s and p channels
using the correlator data of Fig. 11.
1-9
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ALLTON et al. PHYSICAL REVIEW D 66, 094511 ~2002!
at larget is not really under control yet with the precision w
have been able to obtain. Also in both cases there is m
power in thes channel at smallv. This indicates we still
lack a full understanding of systematics in this regime.
triguingly, however, the large-v behavior is much closer to
the large-Nf prediction; the dash-dotted line in Fig. 12 is a
of the formr(v)}v21.4, to be compared with the expecte
v21.

To summarize, there is encouraging evidence that M
analysis can successfully identify a resonance with nonz
width in this phase of the model, whose properties are c
sistent, at least in part, with theoretical expectations. Des
uncertainty about thev→0 limit that would probably re-
quire lattices considerably longer in the Euclidean time
mension to resolve, the MEM method is capable of yield
semiquantitative information in this regime.

C. The s channel in the broken phase

Finally we return to the chirally broken phase and swit
our attention to thes channel. Recall that since thes is
modelled via an auxiliary boson field, diagrams formed fro
disconnected fermion lines are automatically included in
calculation of the correlator. The main physical issues to
dress are whether thes is a bound state, and if it is possib
to detect a signal fors→pp decay. Conventional spectros
copy, using both simple pole fits and large-Nf inspired forms
which include af f̄ threshold, have proved at best ambiguo
for this case@2#. Moreover because of the auxiliary nature
the field it is impossible to study the wave function, which
other channels provides clear evidence off f̄ binding @5#.

Figure 13 shows spectral functions in thes channel from
simulations of the U~1! model at two different values of bar
fermion massm, and a comparison simulation of the mas
less Z2 model, in which there is no pion degree of freedo
We used a large statistical sample; respectively 1.73106

@U~1! ma50.01], 43105 @U~1! ma50.04], and 1.13106

(Z2 m50) configurations were generated, and in all ca
Nf54. Since thes has the same quantum numbers as

FIG. 13. Rescaled Bryan image ofr(v)/v in the s channel
from time slices 1–10 atb50.65, for two different masses in th
U~1! model on a 322324 lattice, and form50 in the Z2 model on
a 243 lattice.
09451
re

-

ro
n-
te

-
g

e
-

s

-
.

s
e

vacuum, it is necessary to subtract the vacuum termCvac

5(xW ,t^s(0W ,0)&^s(xW ,t)& from the raw data to define a con
nected Green function. Because of statistical fluctuations
procedure is hard to implement exactly, despite the la
sample generated, and we believe that uncertainity in
vacuum subtraction is the origin of the sharp spike in
U~1! m50.01 spectrum centered atva50.092. This feature
is otherwise hard to explain since the lightest particle in
spectrum~see Table I!, thep, has massmpa.0.19. We have
checked that varying the subtraction constantCvac within a
standard deviation causes dramatic alterations to both
strength and position of this feature without significantly a
fecting the peaks at higherv, and conclude that it is no
physical.

Proceeding on this assumption we identify spectral f
tures centered atva50.81(2) @U~1! ma50.04], va
50.66(1) @U~1! ma50.01], and va50.64(1) (Z2 ma
50). The width of the features areO(0.05) and appear
stable as the number of configurations sampled is increa
which suggests they are not simple poles. Unlike the
spectrum of Fig. 6, however, their shapes are roughly sy
metric, which contrasts with the large-Nf expectation that
r(v) should be sharply cut off on the low-v side but fall
away more slowly on the high-v side due to af f̄ continuum.
The central value of the peak for the U~1! m50.01 data
indicates that the state it describes is lighter than the co
sponding PS state in the U~1! model~see Table I!, which has
mass 0.77—thef f̄ threshold in this case is at 0.793~3!, which
lies well above the point wherer(v)/v appears to fall to
zero. We deduce that for finiteNf there is a bound state in th
s channel, which is more tightly-bound than the PS mes
for which there are no disconnected fermion line contrib
tions. This conclusion would have been difficult to rea
without MEM.

Unfortunately there is no sign of any spectral feature
the two pion threshold, expected following the discussion
Sec. III at va.0.38 for ma50.01 andva.0.75 for ma
50.04 ~implying thats→pp decay is certainly possible o
energetic grounds in the former case!. We have checked tha
there is no significant difference between spectra found
U~1! and Z2 simulations performed at the same parame
values. Possibly this is because the height of the expe
feature is suppressed by a power of 1/Nf @recall Eq.~3.9!#
and would need a series of simulations with varyingNf to
expose it. Thus far, however, we are unable to report ob
vation of bound state decay in this model.

VI. SUMMARY AND OUTLOOK

Lattice simulations of theories other than quenched Q
at zero temperature will require spectrum analysis techniq
of greater sophistication than the currently-used single-
multiexponential fits, which implicitly assume a spectr
density function made up from a series of isolated sim
poles. In this paper we have applied one of the more pro
ising, the maximum entropy method, for the first time to
lattice model with dynamical fermions. Our main finding
are summarized below:
1-10
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APPLICATION OF THE MAXIMUM ENTROPY METHOD . . . PHYSICAL REVIEW D66, 094511 ~2002!
In the chirally broken phase of the model we have fou
sharply defined spectral features corresponding to the
ementary fermionf, the simplest mesonicf f̄ bound state, and
the Goldstone bosonp. These results corroborate earli
simulations @3,5#, and for the first time have permitted
plausible estimate for the meson binding energy.

In the chirally symmetric phase we have identified
broad resonance feature whose position and width a
qualitatively with the expectations of the large-Nf approach.
The behavior asv→` is distinct from that of an asymptoti
cally free theory, and is evidence for a nonperturbat
anomalous dimension associated with a UV renormaliza
group fixed point.

In the chirally broken phase we have made the first qu
titative study of thes channel, and found that it is mor
tightly bound than the conventional PS meson, possibly
to the additional contribution of disconnected fermion li
diagrams. We have been unable to find evidence fos
→pp decay.

Since the philosophy of the MEM method is to make t
maximum possible use of data, we have used correlator
from as wide a time window as possible consistent with s
bility of the fit. The main problem we have faced has be
systematic errors associated with the upper end of the
window used in the fit, particularly since we have been a
ious to avoid finite volume effects. This has made it impo
sible to have control of thev→0 limit. As explained in Sec.
V C, in thes channel there may also be artifacts associa
with vacuum subtraction. Overall, our conclusion is th
MEM has proved a useful semiquantitative analysis tool,
that there remains room for improvement.

In the future it will be interesting to study (211)D four-
fermion models at nonzero temperature and/or density. S
spectral analysis requires data from many Euclidean t
o,
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separations to be effective, it is likely to be some time bef
an equivalent analysis can be applied to QCD with dyna
cal fermions.1 However, in the vicinity of the deconfining o
chiral symmetry restoring transition the dominant modific
tion to the zero-T spectrum is expected to be collision
broadening due to pions, an effect absent from quenc
QCD, where the lightest states are glueballs, but in princ
present in the current model. Additionally, there is no long
any ambiguity about the IR cutoff, which is nowT21, and
the v→0 limit should become accessible@10#; the slope of
r(v) in this limit yields information about transport coeffi
cients such as electrical conductivity via the Kubo formu
@18#. Finally, the four-fermi model is currently the onl
model simulable at nonzero baryon chemical potentialm
which has a Fermi surface@4#; there may be rich physics
associated with phenomena such as first and zero soun
superfluidity via BCS condensation to explore.
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