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Application of the maximum entropy method to the (2+1)D four-fermion model
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We investigate spectral functions extracted using the maximum entropy method from correlators measured
in lattice simulations of the (2 1)-dimensional four-fermion model. This model is particularly interesting
because it has both a chirally broken phase with a rich spectrum of mesonic bound states and a symmetric
phase where there are only resonances. In the broken phase we study the elementary fermion, pion, sigma, and
massive pseudoscalar meson; our results confirm the Goldstone naturerofititepermit an estimate of the
meson binding energy. We have, however, seen no signat-efr decay as the chiral limit is approached. In
the symmetric phase we observe a resonance of nonzero width in qualitative agreement with analytic expec-
tations; in addition the ultraviolet behavior of the spectral functions is consistent with the large nonperturbative
anomalous dimension for fermion composite operators expected in this model.
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[. INTRODUCTION quark scaleM; [3], rather than fow~m_/2, which happens
in gauge theory simulations with a real measure Mét{l)

The Gross-Neveu model id=3 spacetime dimensions because of the presence of a baryonic pion in the spectrum.
(GNM3;) has been the object of much analytic and numericallhis makes GNM an ideal arena in which to test strongly
study in recent years. Its Lagrangian density is interacting thermodynamidg].

Let us briefly review the physical content of the r;nodel as
= 9" — 5 — 5 predicted by the largd approach[1,2]. For g>>gZ the
L=gi(b+m)gi— 2_Nf[('f/’i i)™= (hivsi)”] fermion has a dynamically generated mass given, up to
corrections of order N;, by

2
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where the index runs overN; fermion flavors and in the |ts inverse defines a correlation length which diverges as
second line we have introduced scafaand pseudoscalar  (g2—g?)~* with critical index v=1+O(1/Ny). In addition

auxiliary boson fields. Apart from the obvious numerical ad-
vantages of working with a relatively simple theory in a
reduced dimensionality there are several features whic
make GNM interesting for the modeling of strong interac-

as a result off_loop corrections ther and 7 fields acquire
ontrivial dynamics, the inverse propagator being given as
function ofd to leading order in M by

tions[1]. 1 (4m)92
For sufficiently strong coupling®>g? it exhibits spon- D, (k==

taneous chiral symmetry breaking implying dynamical gen- ZF( 2_ _)

eration of a fermion masM;, the pion field7 being the 2

associated Goldstone boson. A separation of scaies M4—d
f

<M:; is possible. % 5 (1.3
The spectrum of excitations contains both “baryons” and Kt AM2E| 10— 9 ) § . k
“mesons,” namely the elementary fermiofisand the com- ( ) R 4|v|§

positeff states.
For 2<d<4 there is an interacting continuum limit at a Immediately we see the difference between this model and
critical value of the coupling, which fad=3 has a numeri- QCD. Fork2<Mf2 F~1, implying that to this order the
cal valueg?/a~1.0 in the largeN; limit if a lattice regular- resembles a weakly bound meson of miks=2M;; how-
ization is employed2]. There is a renormalization group UV ever, the hypergeometric function in the denominator indi-
fixed point atg?=gZ, signaled by the renormalizability of cates a strongly interactinig continuum immediately above
the 1N; expansion[1], entirely analagous to the Wilson- the threshold ®1;. This implies that if truly bound, its bind-
Fisher fixed point in scalar field theory. ing energy isO(1/N;) at best(to our knowledge there have
Numerical simulations with baryon chemical potential so far been no analytic calculationsmplying little if any
#0 show qualitatively correct behavior, in that the onset ofseparation between pole and threshold. Since all residual in-
matter occurs foru of the same order as the constituentteractions are subleading inNl/, we surmize that all other
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mesons are similarly weakly bound states of massive fermigenerated data to date have assumedaze for p such as
ons, and hence effectively described by a two-dimensionabne or more bound state poles of the fodfw—M), or
“nonrelativistic quark model.” A recent study of mesonic perhaps a free particle continuum above some thregfidld
wave functions in GNM provides evidence for this picture However, more recent works have attempadxdinitio calcu-
[5]. In an asymptotically free but confining theory like QCD, lations of p(w) [8—10]. This is a difficult problem: the in-
by contrast, one expects isolated poles and/or resonancasrsion of Eq.(1.4) is ill posed sincep(w) is a continuous
corresponding to relativistic bound states in the channel ifunction whereas lattice simulations only yiefe(t) for a
question, which are well separated from a threshold taliscrete, finite set of points, and moreover with some statis-
nearly-free quark behavior which sets in at typically 1.3—1.5tical uncertainty. The approach adopted in Ré. is to
GeV|[6]. apply themaximum entropy methadEM) which attempts
The exception to this rule is the pion. The Lagrangianto fit p(w) subject to reasonable assumptions of smoothness
(1.1) can be defined with either a continuouélWor discrete  and stability with respect to small variations in the input
Z, chiral symmetry, the latter case being realized by settinglata.
the 7 field to zero. In the case of @) chiral symmetry, for In this paper we present results from a study of spectral
m=0 and g2>g§ the pion propagatoD . is given by a functions extracted from numerical simulations of G-
similar expression to Eq(1.3) with the factor (<2+4|\/|f2) ing MEM techniques. To our knowledge this is the first such
replaced byk? the massless pole demonstrates that Study beyond the quenched approximation. Our goal is to
couples to a Goldstone mode. For>0, we expect by the explore some of the features described above which distin-
usual PCAQ(partial conservation of axial-vector currgar-  guish GNM; from quenched QCD. In this regard it is worth
guments that ther acquires a mase,=,m, and that the noting that because the two most important mesonic chan-
ratiom_/M; can be tuned to be arbitrarily small. In particu- Nels, o and 7, are represented by bosonic auxiliary fields,
lar, once it is less than unity the becomes unstable with the correlation functions in these channels automatically in-
respect to decay into2 Note, however, that the Goldstone clude the disconnected diagrams which are so expensive to
mechanism in GNM is fundamentally different from that in calculate in QCD; in GNM, by contrast, these can be mea-
QCD In GN'\/[3 the diagrams responsib|e for making the SUrEd- with hlgh Statistics rela_tively Cheaply. We will also
pion light are flavor-singlet chains of disconnectéd examine the fermion and non_smgle.t pseudoso@ay chan-

. — L nels. As surveyed above, simulations of GjMffer the
bubbleq[3]. The_nonsmglet connectdd dlt_;lgram which in- freedom to vary the phase of the thedby varying sgng?
terpolates the pion in QCD corresponds in GNid a pseu- 2 : : 27 2

) —g;:)], the correlation lengthlby varying |g°—gg|), the
doscalar state with mas3(2M;). by includi itting ), the ratio
Forg2<g2 the model is chirally symmetric, and hence all symmetry group_( y including or- omiting ),

¢ A . m_./M; (by varying m), and the interaction strengtfby
sfcates are _massless,raSﬁQ. !n th|.s limit D,, andD, coin- varying N;)—in the current study we will exploit most of
C'de’. and in the largék “r.n.'t ne!ther has a pole on the these opportunities. In future work we plan also to study the
physmal sheef1]. The aUX|_I|ary flelpls n _th|s case dq Ot model with both nonzero temperatureand baryon chemical
interpolate to a stable particle. A dimensionful scale is still

_ ) e potential w.
defined, however, by the widih of a resonance mf scat- In Sec. Il we survey MEM and explain our implementa-
tering in these channels; this diverges @5g?) " with the  tion of it. Section Il outlines some theoretical expectations
same exponent [2]. related top(w) in GNM; based on the largl; approach,

It is clear that despite its simplicity GNMexhibits phe-  and Sec. IV details the lattice formulation and numerical
nomena such as resonances, decays and multiparticle cogimulations. Our results are presented in Sec. V, and conclu-
tinua which are not easily analyzed using the traditional techsjons in Sec. VI.
nigues of single- and multiexponential fitting to Euclidean
correlators developed for quenched QCD. This was recog- Il. THE MAXIMUM ENTROPY METHOD
nized in early studies, which attempted fits inspired by the
largeN; forms of D, in both chirally broken and symmetric ~ The theoretical basis for MEM is Bayes’ theorem in prob-
phases, with ambiguous resuft&]. A more systematic ap- ability theory[11]:
proach, however, is to focus on thpectral density function
p(w), defined implicitly via the Euclidean time slice meson PLX| Y] PLY|X]P[X] 2.0
correlatorC(t) by P[Y] ' '

. . o whereP[ X|Y] denotes the conditional probability Bfgiven
c)=> (J(O,O)JT(X,W:I dop(w)e™ . (1.4 Y. Interms of the lattice dat®, spectral functiorp and alla
X 0 priori knowledgeH, Bayes’ theorem reads

Here J is a local fermion bilinearyI" s which in principle Pl ol DH1= P[D|pH]P[p|H]
projects onto all physical states consistent with a given set of [pIDH]= P[D|H]
guantum numbers. All information about bound states, reso-

nances and particle production thresholds as a function d?[D|pH] is known as thelikelihood functionand is the
energyw is contained irp. The procedures for fitting lattice- equivalent of the familiary? in the least squares method

(2.2
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[12]. For a large number of Monte Carlo measurements of dorm of entropy leads to a positive semidefinite spectral
correlation function, the dat® are expected to obey a function in MEM. In our work we useN,=600 andAwa
Gaussian distribution according to the central limit theorem,=0.01.

Combining Eqs(2.3) and(2.8) gives

1
P[D|pH]= Z—Le—L[Pl, (2.3

P[p|DHapq]= eRlel, (2.12)

ZsZ,
Ny

1
Llp]=5 iJZ:l (D(t) D ,(t))C;; XD (1))~ D (1)), Q=aS-L. (2.12
(2.9 and the condition satisfied by the most probable spectral

function p(w) is
where the normalization factat, = (27)"'?\/detC and N,

is the number of temporal points. Lattice data averaged over oQ —0 2.13
Nctg gauge configurationB(t), the covariance matric;; , op(w)| _ e '
and the propagator constructed from the spectral fungiion PPa
using the lattice kernek(w,t) are defined by The parameter is in effect a relative weighting between the
Nej entropyS and the likelihood., and there are three different
cig . . ~ .
D(t)) = E DM(t,), (2.5 ways to dealzv_vlth it. The _va_luez—a can be .chosen which
Nerg m=1 either givesy®= N, or maximizesP[ a|DHp,]; these meth-
ods are known aslassicand historic [13] respectively. Al-
Nefg ternatively, a weighted average owra|DHp,] can be per-
Cij= NoNe—T) E (D™(t;) formed; this is known aBryan’s method14] and is the one
cfg( cfg™ ) m=1 we adopt:
~D(1;))(D"(t)~D(t;)), (2.6
Poutl @) = dapa(w)P[@[DHpel,  (2.14
0 ®min
Dp(t)ZJ K(t,w)p(w)dw. 2.7 .
0 where a i, and a5, are chosen to satisfy
In all our work we use a lattice kernel defined as P[amm,maxlDHpO]=0.01P[&|DHp0]. (2.15
exp(— wt).
The factor P[p|H] appearing in the numerator of Eq. A. Testing MEM
(2.2) is theprior probability, which is written in terms of the ) ) ) )

po(w). The default model is usually chosen to be the spectraflized QCD spectral function in the chargeemeson chan-
function for a noninteracting two-particle continuum; for me- nel[6,8]:
son states we havgy(w)xw? ? (see Sec. I\ The final

result, however, should be insensitive to the choice@f pin(®) _ E 2 I',m,
The entropyS p]<0 and becomes zero only wher{w) w? T (0= m)24+T2m?
=po():
+ Tl - | (219
1 87 . wg—w)/8|’ :
P H — eas[p], 2.8 8 T 1+e( 0 )
[p|Hapo] 74 (2.9
where the pole residug,=f,m, is defined by
” p(w) —
S[P]:fo P(w)_Po(w)_P(w)m(po(w)) do <O|d'y#u|p>6M=\/§me§e#, (2.17
(2.9 €, being the polarization vector. The following energy-
N dependent width is chosen withdafunction included to give
3 Pe the correct threshold behavior of t deca
HZI Pe_Poe_Pem(E) Aw, e Y
210 T )—g’%”m 1- A 3/20( -2m,). (2.18
plw)= 487 e o2 w ) .

where Eq(2.10 results from discretizing the axis intoN,,
bins of width Aw, and the normalization factoZs  The values of the parameters input into E2116) are taken
=(2m/a)N?. Note that two extra parameters previously i pe

implicit in H have been written in explicitlyp is a real

positive parameter angy(w) a real positive function. This m,=0.77, m;=0.14, =13, (2.19
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where 2<d<4 and u is a dimensionful scale which in-
creases asgé—g?)Y2), je. as an inverse correlation
length. Ford= 3 this implies[16]

[
0

and hence the large; prediction

cosk
k+

t
=u

cg(t)owfo dkq

w
— ot
a);;7;7zge y (3&3

where the numerical values of the first three parameters are

in GeV.

Test lattice correlator data were constructed from the

spectral function using Eq2.7). Gaussian noise with vari-
anceo(t;)=bD;,(t;)t; was added to this data to simulate the
effect of decreasing signal-to-noise ratio with temporal sep
ration[8]. For simplicity we use a diagonal covariance ma-
trix, which thus neglects correlations between diffetteithe
default model used iso(w)=myw?, motivated by the
asymptotic behavior op;,. The parametem, is chosen to
be lim,_.pin(w)=0.0277. We setwya=6 GeV, Aw
=10 MeV andN_,=600, and vary the noise parameter
from 0.1 to 0.001. Figure 1 shows a comparison betwegn
and p,,; for variousb. As expected, decreasitfgleads to a

a_

polw)x (3.3

0>+ u?’
In the asymptotic regime we thus hape— pyy(w)*w ?
rather thanpg(w)>w. This is a consequence of the large
nonperturbative anomalous dimensigfy,=d—2 acquired
by the scalar density at the UV fixed poir#], which relates
the asymptotic forms via
puv(®)po(w)w™ 27w, (3.9
At smaller energy scales we interpgefas describing a reso-

nance whose central position and width are bo{tw) and
hence increase as the couplig§is reduced. A second pre-

better agreement between input and output spectral fungiction of Eq. (3.3 is that the dimensionless combination

tions.

Ill. THEORETICAL PRELIMINARIES

Our main focus will be the mesonic Euclidean time slice
correlation functions defined in Eql.4). With this defini-
tion, if J couples to a stablé.e. zero width bound state of
massM with strengthA (i.e. (0|J|k,M)=A), then p(w)
=(|A|?/2M) 6(w—M). Since ind spacetime dimensions the
engineering dimensiopd]=d—-1 and[llZ,M)]zl—d/Z, it
is readily checked that the combinatigifw)/w® 2 is di-

p(w)/w tends to a constant in the IR limié— 0.

Another situation of interest is the possibility of decay
in the chirally broken phase. Denote the physical fermion
mass byM; ; the o is then expected to be a weakly bound
state of mas# ,<2M; whereas, for the case of a continu-
ous chiral symmetry, the pion mass, may be much
smaller. If 2m_<M,, the decayoc—2s is allowed and
should show up as a threshold in the scalar spectral function.
This should be a good warm-up exercise for studying the
physical decay— 2 in QCD; as well as the computational
saving, an important technical consideration in the present

mensionless. This also motivates the use of the default modehse is that unlike in QCD the two pions can be produced in

4=2 " which corresponds in configuration space to

i@(t)

po(w)*w
the propagation of free massless fermions;

a state of zero relative momentum.
Let us first derive an expectation for the form of the

«t~ (@1 For an asymptotically free theory such as QCDthreshold using the I; expansion. The contribution of the

we expect lim,_ .p(w)=po(w), as illustrated in Fig. 1:
however since GNMs UV behavior is described by a renor-
malization group fixed point with nonvanishing interaction
strength[1,2] this is not a constraint in the current study.
The asymptotic form op(w) is easiest to analyze in the
symmetric phasegz<g§ of the model, where we have a

two pion intermediate state to thecorrelator is shown dia-

gramatically in Fig. 2. To leading order inN{, using the
conventions of Sec. Il di2] the o propagator is given by Eq.
(1.3) where for moment&a<M; the hypergeometric function
in the denominator may be approximated By 1. We will
assume that for bare fermion mass>0, the pion propaga-

largeN; prediction[15,2]. In the scalar channel, the momen- tor D, is given by the same expression with the factif (

tum space propagator

+4M?) in the denominator replaced byd+ m2). The ver-

094511-4



APPLICATION OF THE MAXIMUM ENTROPY METHOD. .. PHYSICAL REVIEW D66, 094511 (2002

tex ', is assumed to arise from a single fermion loop as IV. SIMULATIONS
indicated in Fig. 2. It is identically zero if chiral symmetry is
unbroken. Using the bare vertexg/ N;, it is straightfor-
ward to show

The fermionic part of the lattice action we have used for
the semibosonized GNMwith U(1) chiral symmetry is

given by[3]
g°Mf -
Fo’Trﬂ'2 —GUWWT (35) Sfer:Xi(X)Mijxij(y)
N
_ 1 —
whereG,, ... is a dimensionlesd-dependent constant. =2 | 2 X0 Myyxi(y) + 3 > xi)xi(x)
With these components in place it is now possible to cal- =1 xy X

culateD,, including the effects of the two pion intermediate

state. Specializing td=3, we find X[ > o) +ie(x) D m(X) ) 4.1
<;(,X> 6(,)()
g2
“1(1 22 M2) — 2 2 _
D, (K'<M7) A7M; K™+ AMj where y; and x; are Grassmann-valued staggered fermion

) 3 5 fields defined on the lattice sites, the auxiliary fietdand
 Gorr M§ a1 k ) . (3¢ are defined on the dual lattice sites, and the syndhiot)

Ne VK 2my, denotes the set of 8 dual lattice sitesurrounding the direct

) ) . o lattice sitex. The fermion kinetic operataM is given by
Besides the pole &’=—4M?#, there is now a contribution

at O(1/N;¢) to the time slice correlation function given by

k
2m, /"

3.7

1
Mx,yZEZ ﬂv(x)[gy,x-#;_ 5y,x—;]+m5x,yl (4-2)

cH(t)= :

GiWM?f dk ekt
N; 27 K(K2+4M

sptan”
) where 7,(x) are the Kawamoto-Smit phases
(—1)%* *%-1 and the symbok(x) denotes the alternat-

H XptX1+X il ;

The two pion threshold manifests itself via branch cuts in the"d. phasel FLyon > The auxiliary f'e.k.jsa and « are
. . — 2 . weighted in the path integral by an additional factor corre-
inverse tangent running frotk?= —4m?Z out to +ix. Ap- sponding to

proximatingk®< M? as before we integrate around the cut in

the upper half plane to obtain

N ~ ~
G (7 de Sy 7 2 [P+ () 4.3
C.,/(t)x 32NfoJ-2m7T o€ (3.9
The simulations were performed using a standard hybrid
from which we read off Monte Carlo(HMC) algorithm without even-odd partioning,
implying that simulation ofN staggered fermions describes
2 1 N;=4N continuum specief3]; the full symmetry of the lat-
pgl)(w)oc T 9(w—2m,). (3.9  tice model in the continuum limit, however, 19(N¢/2)y
SNMy w ®U(N¢/2)y®U(1) rather tharlJ (N¢)y®U(1). At nonzero

) ) lattice spacing the symmetry group is smaller still:
Equation (3.9 predicts that as well as a pole af  y(N,/4),®U(N;/4),®U(1). In the Z,-symmetric model
=2Mj, there should also be a spectral featurevsat2m,  the 7 fields are switched off anMl becomes real so that real
whose strength scales aliMm,)~*; this is in principle  pseudofermion fields can be used. In this chisstaggered
testable by varying the simulation parametisks g° andm.  fermions describeN;=2N continuum species. Further de-

On a finite volume it will, however, prove difficult to study +taj|s of the algorithm and the optimization of its performance
the detailed form of the spectral function above thresholdcan pe found irf2,3].

This is because the number of modes into which d¢hean Using point sources we calculated the zero momentum
decay is strictly delimited by the allowed pion wave vectorsfermion (f) correlator at different values of the couplirgy
k,=2mnl/Lg, wheren has integer-valued components, and=1/g2. In order to compare MEM to conventional spectros-
2\mZ+k2<M,. The optical theorem, however, implies copy we also estimated the fermion mass using a simple pole
that the only intermediate states which can contribute tdit using the function

p(w) are possible decay modes of the we infer that on a

finite lattice, thew ! shape predicted by E¢B.9) is replaced Cit)=A[e Mit—(—1)le " Mite=D7], (4.4

by a set ofé functions, each arising from an aIIowé?q,.

With imperfect(i.e. finite) statistical data, however, it is pos- Similarly, the zero momentum auxiliaryr correlator was
sible that under MEM these isolated poles will blend into ameasured and its mass estimated using a cosh fit. The me-
continuum of approximately the correct shape. sonic correlators are given by
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FIG. 4. Bryan image op(w)/w in three different channels us-

FIG. 3. Propagators in three different channels from simulation§ng the same data as Fig. 3.

of the U(1) model on a 32x 48 lattice at3=0.55, m=0.01.

pole. Figure 4 shows the spectral functions obtained in the

Cu(t)= 2 D(x)P (X)) Wiy (X) same three channels using Bryan's method. All three appear
X2 as well-localized peaks suggesting simple poles and hence
X G(X,t;x1,00GT(x,t;%,,0), (4.5 stable particle states. The cross shown on each peak is ob-

tained as follows. The spectral feature is fitted to a form
whereG is the lattice fermion propagator aidy,(x) a phase ZG(w—M/I") whereG(x) is the normalized Gaussian dis-
factor which picks out a channel with particular symmetrytribution, M the peak positionl” the full width at half maxi-
properties i.e Wy (x) = e(x) for the S channel an@lVy(x) mum, andZ a normalization factor. The horizontal bar’s po-
=1 for the PS channel. The functieh(x) is either a point sition and width representl and I' respectively, and its
source 6, o0 Or a staggered fermion wall source height represents the area Bf3(w—M/I') evaluated be-
ELS/Z*léxy(Zm,Zn) [17]. In all the simulations we used point tweeno—1I" andw+1I". The vertical error bar represents the

m,n=0 . . . .
sinks. These correlators were fitted to a funci@yp(t) given  €rror in this area as determined by the Bryan algoriftid.

by For a narrow Gaussian, of course, the central value is inter-
preted as the particle mass.
Cu(t)=Ale Mmi4 e Mm(Li=1)] In Table | we list the masses obtained from simulations of
_ - - the U1) model from both single exponential fits and MEM,
+A(-1) (e Mut+e MuleD] (4.6)  as well as the area under the Gaussian peak, using correlator

data from time slices 2—10 for the; for f and PS time slices

Note that composite operators made from staggered fermiof_g yere used. Note that for the lightest state, namelyrthe
fields project onto more than one set of continuum quantuny;ep systematically yields a lower mass, suggesting that it
numbers. The first square bracket represents the “direct” sigis |ess affected by excited state contamination, although in all
nal with massMy, and the second an “alternating” signal cases the two methods are within a standard deviation. Fig-
with massM), . Continuum quantum numbers for various ure 5 demonstrates that the pion mass extracted using MEM
mesonic channels are given[f]—in this study we focus on over a range of bare fermion masses is consistent with the
the PSjrec; channel, withd®=0". Although expected to be PCAC behaviom, o m expected for broken chiral symme-
the tightest bound meson since it is the only one for whichtry. For thef and PS channels there is excellent agreement in
swave binding is available, as stressed[$)5] this state  almost all cases between the two methods. The PS mass is
does not project onto the Goldstone mode in the brokenroughly twice that of the fermion, consistent with its being a
phase. weakly bound state. With the precision we have obtained it is
possible to estimate the binding energy defined A%
V. RESULTS =2M;—Mpg; the results are tabulated in Table Il. s
=4 A\ ~2.8% of the bound state mass, but the figure drops
to ~0.15% forN;= 36, which is roughly consistent with the
We first discuss results from the chirally broken phaseanalytical expectation that,, «1/N; (note, however, that the
obtained withg< B.~1.0. Figure 3 shows the propagators N;=36 simulations were performed on a smaller voljintie
for o, f and PS channels on a log scélsing data obtained was observed ifi5] that the PS wave function has consider-
with a wall source and point sink in the latter cggesulting  ably greater spatial extent for largi , again implying it is
from approximately 40000 HMC trajectories of mean lengthless strongly bound.
1.0. All three look to be well-approximated by straight lines, As discussed in Sec. Ill the area under the peak is related
implying that each channel is dominated by a single particléo the strengthA of the coupling of the operatad to the

A. The @, f and PS channels in the broken phase
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TABLE |. Broken phase spectroscopy.

Mass Mass
N¢ Volume B m (1-exp (MEM) Area
o 4 32x48 0.55 0.005 0.114) 0.1126) 0.501(129
4 32x48 0.55 0.01 0.168) 0.1549) 0.17415)
4 32x48 0.55 0.02 0.23%) 0.2317) 0.061799)
4 32x48 0.55 0.03 0.2800) 0.26315) 0.035137)
4 32x48 0.55 0.045 0.348) 0.32614) 0.019315)
4 32x48 0.55 0.06 0.4424) 0.4351.9 0.01025.7)
4 32x48 0.65 0.01 0.193) 0.1878) 0.081a79)
4 32x48 0.65 0.02 0.273) 0.2616) 0.028919)
36 28%32 0.55 0.01 0.15@) 0.14418) 0.05319)
36 28%32 0.55 0.02 0.238) 0.2298) 0.014G14)
36 28%32 0.55 0.03 0.2810) 0.27117) 0.008110)
f 4 32x48 0.55 0.005 0.55%) 0.5564) 2.1549)
4 32x48 0.55 0.01 0.564) 0.5641) 2.373)
4 32x48 0.55 0.02 0.5853) 0.585813) 2.1427)
4 32x48 0.55 0.03 0.599) 0.5991) 2.0605)
4 32x48 0.55 0.045 0.623) 0.6231) 1.904)
4 32x48 0.55 0.06 0.642) 0.6432) 1.638)
4 32x48 0.65 0.01 0.39718) 0.396513) 5.11(9)
4 32x48 0.65 0.02 0.4285) 0.438444) 4.1033
36 28x%32 0.55 0.01 0.6798) 0.679§3) 1.778)
36 28%32 0.55 0.02 0.6918) 0.69083) 1.727)
36 284%32 0.55 0.03 0.7028) 0.70235) 1.592)
PS 4 33x48 0.55 0.005 1.0803) 1.08078) 164.36)
4 32x48 0.55 0.01 1.0978) 1.09797) 160(3)
4 32x48 0.55 0.02 1.1396) 1.13965) 147.25)
4 32x48 0.55 0.03 1.17141) 1.171611) 130(2)
4 32x48 0.55 0.045 1.2258) 1.22316) 119.19)
4 32x48 0.55 0.06 1.26933) 1.26912) 103(2)
4 32x48 0.65 0.01 0.7728) 0.77114) 426(32)
4 32x48 0.65 0.02 0.8363) 0.838145) 343(462
36 28#%32 0.55 0.01 1.3568) 1.35692) 50.1(3)
36 28% 32 0.55 0.02 1.3808) 1.38082) 48.42)
36 28%32 0.55 0.03 1.4038) 1.403@3) 45.53)

T I TABLE Il. Binding energy in the PS channel.
o Data points
orsf |2 ol erep AL e e s e
m'd ’§ 4 3%x48 055 0.005 0.029340  0.031380)
0.1 % 7 4 32x48 055 0.01 0.03022) 0.030121)
> 4 32x48 0.55 0.02 0.03115) 0.032G26)
g 4 32x48 0.55 0.03 0.02623) 0.026423)
005 el il 4 3Px48 055 0045 0.0202)  0.02292)
/o/ 4 32x48 055 0.06 0.01822) 0.016940)
0 _4‘/,0 . i 4 32x48 065 001 0.02347) 0.021926)
F— 0.'01 . 0.62 . : 0.64 : : 0'66 507 4 32x48 065 0.02 0.02083) 0.038763)
ma 36 2#x32 055 0.01 0.0026) 0.00236)
36 28%32 0.55 0.02 0.0016) 0.00086)
FIG. 5. Pion massni vs bare massn for 8=0.55, showing 36 2£%32 0.55 0.03 0.0020) 0.001610)

evidence for the Goldstone nature of the
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FIG. 6. Bryan image ofp(w)/w in the PS channel 3x48
lattice at@=0.55, m=0.01 using correlators with different combi-
nations of wall and point sources.

FIG. 7. o correlator for 3 different couplings in the chirally
symmetric phase on a 32 48 lattice.

single particle state, and hence to physical decay constantdificant contributions from not just a backwards-propagating
Our results show a systematic decrease in this coupling'9nal. but also “image” sources displaced by integer mu-
strength with bare fermion mass, the effect being most N'tPles of L from the original sourcg2].
pronounced for ther. If we are to successfully identify spectral features as
Finally in Fig. 6 we explore the effects of using different SOMething other than simple poles, then it is important to
meson sources following Eq4.5 using data from time study systematic effects. Figure 8 presents results frora-the
slices 1-8. As in Fig. 4, the spectral functions have beeghannel, where the resonance is anticipated, showing the ef-
rescaled so as to fit all on the same plot. When a wall is useffcts Of varying the time slice sample used in the. MEM fit.
at either sink or source, the signal is completely dominated®@t@ from within a time windowt,,t;] were fitted; in all
by the bound state; however, for the point-to-point correlato€aS€s We chose a rather conservative vajeell to mini-
there is a significant contribution out wa~2.5. Since we Mize finite volume(actually nonzero temperatyreffects
have discarded data from small time slices we should nofue to the image sources discussed above, although we have
expect much quantitative information from the asymptoticchecked that the results are insensitive to redugjngrigure
form of p(w) in this case; indeed, as— it decays much 8 shows a broad feature centered @a=0.5, whose
faster than either of the idealized formpg(w) or pyy(w) width (ac;ually the ratio of width to area, as mdpated by
discussed in Sec. IIl. Figure 6 provides a graphic illustrationtn® crossesincreases as data from smaller times is included.
however, of the importance of choice of source in maximiz-'9noring the divergence a®—0 which we take to be an
ing the projection onto the ground state. artifact (possibly due to a small residual vacuum expectation
(o)#0; see discussion below in Sec. V,Ghe shape of the
spectrum appears qualitatively similar to the laMNyepredic-

tion (3.3). The fact that the shape of the spectrum in the
Next we turn to the chirally symmetric phase found for

B>pB., where according to the discussion of Sec. Il the

B. Symmetric phase

bound state poles should be replaced by resonances wit SE '

nonvanishing widths. Our simulations in this section were i e
performed for the Zmodel on a 32x 48 lattice at couplings 0.0041g' ----- =2-11| -
B£=0.92, 1.0 and 1.25 witl©(40000) configurations sepa- Ly

rated by HMC trajectories of mean length 1.0, and f@¢i)U E |
on a 32 lattice at3=1.0 and 1.25 with respectively 30000 0.003 ]

and 60000 trajectories of mean length 0.6. In all cases POV 3

=4 fermion flavors were used. It proved considerably easier 0.002[t .
in this phase to simulate the model with Zhiral symmetry: B

the U(1) simulations required a much smaller molecular dy- i

namics time step making them more expensive, and the dat O’OOH;j ]
correspondingly of not such good quality. Data for thea? K

timeslice correlator are shown on a log scale in Fig. 7. In oo" >

contrast to the broken phase correlators of Fig. 3 it is clear
that a simple pole fit will not be successful; indeed, the cor-
relators become almost flat at largewhich means that to-

FIG. 8. Bryan image op(w)/w vs w in the o channel atB
wards the center of the lattice we have to worry about sig=1.25 on a 32x 48 lattice, showing 3 different time windows.
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FIG. 9. The same as Fig. 8 using fits from time slices 0-11,

howing the effects of ing th t of dat FIG. 11. o and 7 timeslice correlators from simulations of the
showing the effects of varying the amount of data. U(1) model on a 32 lattice.

m.assless phas:_a is_ .sensitiw.a to th? data at short times ﬁings. Since the artifact ab— 0 distorts the normalization
slightly counter-intuitive, but is consistent with the observa- ¢ J//r result. we have rescaled each curve so that the rect-
tion in [2] th‘?‘é extr?ctlon_ of al' phy3|call scalz, namely Itlheangles of equal area to the fitted peak have the same height.
resonance widthx, from timeslice correlator data actually g resyiting curves show both the position and width of the
depe_nzds on corrections to the expected power law fa”OfPesonance increasing witB. This is consistent with Eq.
(ut)~“ atsmallvalues ofut. Note thaip(w)/w falls to zero (3 3 \yhich predicts both are proportional to a single scale
asw—, in contrast to the constant behavior expected inan, u increases with3 as expected. Within errors we find
a_symptotr;ca:clyl-lfr?re_ theory S.UCh als QCD a?d ex]?nrlpll;led the ratio of width to central position constant and approxi-
F'Qb 1T € taliolt 1S app_roxmatey power law Oit € form mately equal to 50%. Note, however, that ignoring the spike
g ,dblL)J'[ with p~4—6, in contrast to the valup=2 pre- at w=0 the dip in the curve suggests |jmop(w)/w—0,

icted by Eq.(3.3. . rather than tending to a constant as predicted by(ES).

It is also legitimate to ask whether the nonzero width of Finally in Figs. 11 and 12 we show some results from
the spectral feature is QUe to |nsuff_|0|ent statistics. Fig. gsimulations of the @) model. In this case it is possible to
shows the feature evolving as data is added to the sampl xtract and compare spectra from bathand 7 channels
There is no significant reduction in the width of the feature-l-he fitted time window i$1,10]. The bare fermion masa is.
as the stgtlstlcs accumulate from(lOOOC_))_ toO(4OOQO) et to zero implying that foB> .. the two channels should
configurations, although the central position and height olyo v sically indistinguishable, and Fig. 12 suggests that for
the peak both vary slightly, supporting the conclusion that %rge o this is indeed the case. There is, however, a large
resonance is present. dispari _ ' '

. . parity asw— 0 betweenB=1.00, wherep(w) appears to

In Fig. 10 we compare the results from 3 different Cou'diverge, andB=1.25 where it seems to tend smoothly to

zero. Figure 11 confirms that the behavior of the correlators
2
! 0.008
-—-- T B=1.25|
r < 0 M}_—Dp=1 1 Y oo e o] ﬁ=1.25
0.006 ---- 1 B=1.00|
@ == G P=1.00
0)/0 -14 |1
1+ P —p~o

0.004

0.002};

FIG. 10. Rescaled Bryan image p{w)/w in the o channel

FIG. 12. Bryan image op(w)/w in both o and 7 channels
from time slices 0—11, for three different couplings.

using the correlator data of Fig. 11.
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' ' vacuum, it is necessary to subtract the vacuum teyy.

-—-- U(l)mfgg‘lt | ==:(0o(0,0))(c(x,t)) from the raw data to define a con-
""" IZJ(I) $ -0.00 nected Green function. Because of statistical fluctuations this
—Z, m=0.

procedure is hard to implement exactly, despite the large

I EE ] sample generated, and we believe that uncertainity in the
b vacuum subtraction is the origin of the sharp spike in the

p@yor EE U(1) m=0.01 spectrum centered @a=0.092. This feature
005 ia:. is otherwise hard to explain since the lightest particle in the

spectrum(see Table)l, the 7, has massn,a=0.19. We have
checked that varying the subtraction constapj. within a
standard deviation causes dramatic alterations to both the
strength and position of this feature without significantly af-
1 fecting the peaks at highepv, and conclude that it is not
physical.

FIQ. 13. _Rescaled Bryan image p’(w)/_w in the o char_mel turepsrocfeendtg]r%donaiwm:\jSS;]TS;IOFU\E\;j I?fanifg gz]eCt;ill fea

from time slices 1-10 aB=0.65, for two different masses in the ’ ’ ’

U(1) model on a 32x 24 lattice, and fom=0 in the Z model on =0.66(1) [U_(l) ma=0.01], and wa=0.64(1) (% ma
a 24 lattice. =0). The width of the features ar®(0.05) and appear

stable as the number of configurations sampled is increased,
at larget is not really under control yet with the precision we Which suggests they are not simple poles. Unlike the PS
have been able to obtain. Also in both cases there is morgPectrum of Fig. 6, however, their shapes are roughly sym-
power in theo channel at smallo. This indicates we still metric, which contrasts with the lardér expectation that
lack a full understanding of systematics in this regime. In-p(®) should be sharply cut off on the low-side but fall
triguingly, however, the larger behavior is much closer to away more slowly on the high-side due to df continuum.
the largeN; prediction; the dash-dotted line in Fig. 12 is a fit The central value of the peak for the(l) m=0.01 data
of the formp(w)=w 14 to be compared with the expected indicates that the state it describes is lighter than the corre-
o L sponding PS state in the(l) model(see Table), which has

To summarize, there is encouraging evidence that MEMnass 0.77—théf threshold in this case is at 0.7@3, which

analysis can successfully identify a resonance with nonzerges well above the point wherg(w)/w appears to fall to
width in this phase of the model, whose properties are conzero, We deduce that for finité there is a bound state in the
sistent, at least in part, with theoretical expectations. Despitg. channel, which is more tightly-bound than the PS meson
uncertainty about thev—0 limit that would probably re- for which there are no disconnected fermion line contribu-

mension to resolve, the MEM method is capable of yieldingyithout MEM.

e ——————

semiquantitative information in this regime. Unfortunately there is no sign of any spectral feature at
the two pion threshold, expected following the discussion of
C. The o channel in the broken phase Sec. lll at wa=0.38 for ma=0.01 andwa=0.75 for ma

Finally we return to the chirally broken phase and switch=0-04(implying thato— 77 decay is certainly possible on
our attention to thes channel. Recall that since the is ~ €Nergetic grounds in the former case/e have checked that
modelled via an auxiliary boson field, diagrams formed fromthere is no significant difference between spectra found in
disconnected fermion lines are automatically included in théJ(1) and Z simulations performed at the same parameter
calculation of the correlator. The main physical issues to advalues. Possibly this is because the height of the expected
dress are whether the is a bound state, and if it is possible feature is suppressed by a power oNi{recall Eq.(3.9]
to detect a signal fo— mr decay. Conventional spectros- @hd would need a series of simulations with varyNgto

copy, using both simple pole fits and larlyg-inspired forms ~ €XPose it. Thus far, however, we are unable to report obser-

which include af f threshold, have proved at best ambiguousvatlon of bound state decay in this model.

for this casd 2]. Moreover because of the auxiliary nature of
the field it is impossible to study the wave function, which in

other channels provides clear evidence bhinding [5]. Lattice simulations of theories other than quenched QCD

Figure 13 shows spectral functions in trechannel from  at zero temperature will require spectrum analysis techniques
simulations of the 1) model at two different values of bare of greater sophistication than the currently-used single- and
fermion masam, and a comparison simulation of the mass-multiexponential fits, which implicitly assume a spectral
less z model, in which there is no pion degree of freedom.density function made up from a series of isolated simple
We used a large statistical sample; respectivelyx1@® poles. In this paper we have applied one of the more prom-
[U(1) ma=0.01], 4x10° [U(1) ma=0.04], and 1.k 10° ising, the maximum entropy method, for the first time to a
(Z, m=0) configurations were generated, and in all casegattice model with dynamical fermions. Our main findings
N;=4. Since thes has the same quantum numbers as theare summarized below:

VI. SUMMARY AND OUTLOOK
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In the chirally broken phase of the model we have foundseparations to be effective, it is likely to be some time before
sharply defined spectral features corresponding to the ekn equivalent analysis can be applied to QCD with dynami-

ementary fermiorﬁ, the Simp|est mesoni‘bf_bound state, and cal fermionS].' However, in the V|C|n|ty of the deconfining or
the Goldstone bosonr. These results corroborate earlier chiral symmetry restoring transition the dominant modifica-
simulations[3,5], and for the first time have permitted a tion to the zerdt spectrum is expected to be collision-
plausible estimate for the meson binding energy. broadening due to pions, an effect absent from quenched
In the chirally symmetric phase we have identified aQCD, where the lightest states are glueballs, but in principle
broad resonance feature whose position and width agrdyesent in the current model. Addltlonally, there is no |Onger
qualitatively with the expectations of the larg-approach. ~any ambiguity about the IR cutoff, which is now *, and
The behavior as— = is distinct from that of an asymptoti- the @—0 limit should become accessitlI20]; the slope of
cally free theory, and is evidence for a nonperturbativep(w) in this limit yields information about transport coeffi-
anomalous dimension associated with a UV renormalizatio§i€nts such as electrical conductivity via the Kubo formula
group fixed point. [18]. Finally, the four-fermi model is currently the only
In the chirally broken phase we have made the first quanmodel simulable at nonzero baryon chemical potential
titative study of theo channel, and found that it is more Which has a Fermi surfacgt]; there may be rich physics
tightly bound than the conventional PS meson, possibly du@ssociated with phenomena such as first and zero sound or
to the additional contribution of disconnected fermion line superfluidity via BCS condensation to explore.
diagrams. We have been unable to find evidence dor
— oo decay.
Since the philosophy of the MEM method is to make the ACKNOWLEDGMENTS
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