
PHYSICAL REVIEW D 66, 094509 ~2002!
One loop calculation of the renormalized anisotropy for improved anisotropic
gluon actions on a lattice

I. T. Drummond, A. Hart,* R. R. Horgan, and L. C. Storoni
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Using the infrared dispersion relation of the on-shell gluon, we calculate the renormalization of the aniso-
tropy, x, to one loop in perturbation theory for lattice Yang-Mills theories, including the Wilson action and
actions with Symanzik and/or tadpole improvement. Using twisted boundary conditions as a gauge invariant
infrared regulator, we show for an SU~3! gauge group inD5311 dimensions that the one loop anisotropy is
accurate toO(3%) for arange ofg2 andx covering current simulations. In doing so we also present Feynman
rules for SU(N) gauge groups with generic anisotropy structure~including ‘‘311’’ and ‘‘2 12’’ cases! for both
twisted and untwisted boundary conditions.
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I. INTRODUCTION

Lattice Monte Carlo simulations operate by dividing
finite volume of space and time into a grid, such that in
given directionm we haveLm points distanceam apart. The
desire to obtain results free from uncontrolled finite volum
contamination dictates that the productamLm be chosen to be
suitably large in spatial directions~3 fm is often quoted for
QCD!. Controlling discretization effects similarly require
thatam be suitably small, but this must be balanced with t
computational overhead that increases withLm . Reducing
the dependence of simulation results on the lattice spacin
clearly advantageous, and so-called~Symanzik! improved
actions may achieve this, permitting the use of coarser
tices without increasing discretization effects@1#.

In many cases, lattice results~such as hadron masses
decay constants! are obtained from the decay of correlatio
functions,C(t), over a range of temporal separations,t. It
is a feature of such correlation functions that the signa
noise ratio decreases with increasingt, and beyond sometc
measurements are dominated by statistical fluctuations.
precise value oftc depends upon many factors, including t
operators correlated and the number of Monte Carlo m
surements made, but appears to be relatively insensitiv
the temporal lattice spacing,at . As measurements can on
be made fort an integer multiple ofat , if the temporal
lattice spacing is large compared totc it will be hard to
obtain an accurate picture ofC(t,tc). Improving the action
does not help in this respect, and in addition, the inclusion
improvement in the temporal direction leads to the introd
tion of spurious~sometimes called ‘‘ghost’’! poles in the glu-
onic propagator@1#. By not temporally improving the action
we avoid this, but at the cost of increased discretization
rors for givenat . Controlling these, and the desire for in
creased temporal resolution of correlation functions, arg
for the use of a smallat .

We are thus motivated to choose a temporal lattice sp
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ing that is smaller than the spatial,as , and such ‘‘anisotrop-
ic’’ lattices can be created by tuning action couplings in t
temporal direction differently to those in the spatial@2#. An-
isotropic actions have already been successfully applied
many situations, including the glueball spectrum@3#, the
spectrum of excitations of the inter-quark potential@4#,
heavy hybrids@5,6#, and the fine structure of the quarkoniu
spectrum@7#. More recently, anisotropic lattices have be
shown to be very successful in nonrelativistic QC
~NRQCD! studies of two- and three-point correlators a
finite momentum hadrons and semileptonicB decays@8,9#.

A more widespread use has been hampered by the
that the bare anisotropy~or aspect ratio! in the simulated
action,x5as /at , is not, due to quantum mechanical effec
the same as the measured value,xR . Typically, we wish to
estimate the continuum limit ratio of a mass,M, to a given
scale,K, using the lattice measurements,M̂ ~in units of at)
and K̂ ~often derived from the static quark potential, and
units of as) respectively. Up to finite lattice spacing corre
tions,

M

K
5

M̂

xRK̂
. ~1!

We thus requirexR , and with a sufficiently small error tha
this does not represent the dominant uncertainty in the fi
estimate.xR may be measured in Monte Carlo simulation
e.g. @10#, but it is an expensive calculation which must b
repeated for every choice of the bare couplings.

More generally,~lattice! perturbation theory may be use
to calculate the renormalization of quantities, and it is w
known that with ‘‘tadpole improvement’’ such calculation
converge quickly to the measured data at simulated value
the gauge coupling,g2 @1#. In this paper we obtain
Z(g2,x)[xR /x to one loop for a wide range of anisotropie
for SU~3! gauge theories in four dimensions. We focus on
Wilson action and a commonly used Symanzik improv
action. Our results apply both to actions with and witho
tadpole improvement; in the Wilson case we cover b
plaquette and~Landau! mean link improvement, whilst in the
Symanzik improved case we discuss here only the mean
improved case.
,
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These is no reason,a priori, why the lattice spacing
should be identical in all spatial directions, and indeed th
are situations where we might choose this not to be the c
A typical example is where increased momentum resolu
is desired for correlation functions of operators at finite m
mentum. Rather than increase the computational overhea
a global rescaling,a can be made smaller in one spatial d
rection @11#. While we do not consider calculations for th
case explicitly in this paper, when we describe the Feynm
rules in Sec. II we allow for arbitrary anisotropic lattic
structure as well as general actions. We use twisted boun
conditions as a gauge invariant infrared regulator. In Sec
we describe our calculation of the anisotropy from the d
persion relation of the on-shell gluon propagator. We co
pare these one loop results to measurements ofxR from
simulations, and show that the one loop result is accurat
within 3–4 % over the range of couplings covered by Mon
Carlo simulations. Finally, in Sec. IV we provide a summa
of our findings and some conclusions.

II. THE PERTURBATION THEORY

It is useful to consider the derivation of an anisotrop
lattice action from the isotropic continuum theory in tw
stages. We first obtain an action for an anisotropic c
tinuum, which is then discretized.

A. Continuum anisotropy

The starting point, and the fixed point of the lattice actio
is a D-dimensional continuum field theory in an Euclide
space-time that is invariant under Lorentz transformati
and hence isotropic. We may choose to change our meas
ment units in the continuum theory, and by different facto
in different directions, which leads to the introduction of
anisotropy factor~or factors!, x, into the action, being the
ratio of the length units in different directions. Nonethele
Ward identities~derived by considering anisotropies diffe
ing infinitesimally from unity! can be enforced to ensure th
the underlying theory maintains the correct Lorentz inva
ance under renormalization.

We distinguish quantities in the isotropic theory fro
those in the anisotropic by the use of ‘‘hats’’ in the form
case. Although the original metric is

ĝab5diag~11,11, . . . ,11!, ~2!

we find it convenient to introduce the notation of covaria
and contravariant indices. The contraction of a moment
and position@22#, p̂• x̂[ p̂ax̂a, must be invariant under res
caling, i.e.,

p̂ax̂a5pmxm. ~3!

We can relate the rescaled fields to the original by the us
a set of vierbeins

xm5em
ax̂a, pm5em

ap̂a . ~4!

The metric in these variables is
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gmn5em
aena , g[detgmn . ~5!

In the most general case there will beD21 anisotropy fac-
tors, but for the rescaling in the temporal direction only,
we consider in this paper,

em
a5~x,1, . . . ,1!, em

a5S 1

x
,1, . . . ,1D , ~6!

and

gmn5diagS 1

x2
,1, . . . ,1D , g5

1

x2
. ~7!

Using these conventions, the natural position vector is co
riant under rescaling,x̂5( x̂a)5(t,x), so the momentum

must be contravariantp̂5( p̂a)5(E,p) such that Eq.~3! is
satisfied. The volume element is given by

dx̂5dx)
m51

D

em
a5dxAg5

dx

x
. ~8!

The dimensionful~color! vector potential and derivatives be
have asp̂, and so the Yang-Mills action becomes

SYM5
1

4E dx̂F̂abF̂ab5
1

4E dxAgFabFab

5
1

4E dxAggmsgntFmnFst . ~9!

For the specific example above,

SYM5
1

4E dx

x
~x2F0iF0i1Fi j Fi j !. ~10!

B. The propagator

To construct the Feynman diagrams for any action
gluon propagator must be computed. This is done for a gi
momentum by inverting the two-point gluon vertex, whic
for the isotropic ~continuum! case is given byV̂(2)ab( k̂)
5 k̂ek̂

edab2 k̂ak̂b. Before this can be done the gauge mu
be fixed and we add to the action a gauge fixing term a
source, which in momentum space appear as

Sg.f.5E dk̂

~2p!4

1

2a
Âm~ k̂!k̂mk̂nÂn~2 k̂!2 Ĵm~ k̂!Âm~2 k̂!.

~11!

The parametera is the usual gauge-fixing parameter and, f
example,a51 corresponds to Feynman gauge. In moving
the anisotropic theory,dk̂5dk/Ag, which affects functional
derivatives with respect to the anisotropic source,Jm. We
can rescaleAm to absorb this metric factor, which multiplie
terms quadratic inAm by Ag. The two point function,
9-2
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ONE LOOP CALCULATION OF THE RENORMALIZED . . . PHYSICAL REVIEW D66, 094509 ~2002!
V(2)mn(k), that we shall shortly derive from the action, w
already contain this factor and the inverse propagator
comes

G (a)mn~k!5V(2)mn~k!1
kmkn

a
Ag. ~12!

By illustration, the inverse propagator in the continuum
a51 has the form

G (a51)mn~k!5dmnAgkrkr5
dmn

x S x2k̂0
21(

i
k̂i

2D ~13!

where the latter expression uses the isotropic mome
which for a lattice theory we shall equate to the ‘‘physica
ones.

The propagator is

Gmn
(a)5~G (a)mn!21. ~14!

To fix to Landau gauge we must be more careful. Consi
the case where we wish to change the gauge froma to g
after inversion. Then

G (g)mn5G (a)mn1S 1

g
2

1

a D kmknAg. ~15!

We write

Gmn
(g)5Gmn

(a)1Dmn , ~16!

and thenDmn satisfies

FG (a)mn1S 1

g
2

1

a D kmknAgG~Gnr
(a)1Dnr!5dm

r . ~17!

The solution forDmn is

Dmn52
~a2g!

Ag

kmkn

~kaka!2 . ~18!

C. Discretization

The anisotropically formulated theory may be discretiz
in the normal way, and in these anisotropic units we set
lattice spacing,a, to be the same in each direction.

On a cubical latticeLD in dimensionD ~with xPLD ,
m51, . . . ,D) the gauge field is denotedU,

U5$Um~x!:Um~x!PSU~N!%, ~19!

whereUm(x) is associated with the link (x,m).
We define the perturbative gauge fieldA by

A5H AmS x1
1

2
emD : AmS x1

1

2
emDPalg„SU~N!…J ,

~20!

with em the lattice basis vectors, all of unit length and chan
ing covariantly with rescaling. Expanding in the color inde
a,
09450
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Am5Am
a Ta , @Ta ,Tb#52 f abcTc , Tr~TaTb!52

1

2
dab ,

~21!

whereTa are the~anti-Hermitian! generators ofSU(N) with
structure constantsf abc . It is expedient to associate th
gauge potential with the center of the link, and then

Um~x!5expFgAmS x1
1

2
emD G , ~22!

whereg is the bare coupling constant, and we have absor
a factor ofa into each component ofAm .

For a lattice withLm sites in them direction the momen-
tum vectork is

k5
2p

a
S k̄1

L1
, . . . ,

k̄D

LD
D , 0< k̄m,Lm , k̄mPZ, ~23!

and the sum overk stands for the sum over the componen
k̄m . In the limit thatLm→` we have

1

aLm
(
k̄m

→E dkm

2p
. ~24!

The Fourier transform to momentum space is

Ãm~k!5(
x

e2 ik•[x1(1/2)em]AmS x1
1

2
emD ,

AmS x1
1

2
emD5

1

V(
k

eik•[x1(1/2)em]Ãm~k!, ~25!

whereV5)mLm is the number of lattice points. It is usefu
to reexpress the position of a gauge potential asvm52(x
1 1

2 em), which is aD-dimensional vector with integer~cova-
riant! components.

D. Vertex functions

To permit us to compute perturbation theory for a range
actions, we have developed an algorithmic method for
panding a general gauge theory action on a lattice in an
propriate form for perturbative calculations to be carried o
The approach follows closely the method and notation
Lüscher and Weisz@12# but is extended to accommodat
inter alia, anisotropy, fermionic actions, actions for no
relativistic heavy quarks~NRQCD! and more complicated
definitions of the action in the purely gluonic sector. T
algorithm is implemented in thePYTHON programming lan-
guage. For the work presented in this paper we briefly rev
the notation relevant to the present calculation and refe
@12# for further information.

The lattice action for the pure glue sector can be writ
as a sum over contours

S@U#5(
x,a

caRe Tr„Pa~U;x!…, ~26!
9-3
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DRUMMOND et al. PHYSICAL REVIEW D 66, 094509 ~2002!
which is defined in terms of the coupling constants,ca , and
the Pa , which are closed Wilson loops.

The perturbative action is the expansion ofS@U# as a
polynomial in A and the coefficients of the monomials w
determine the vertices of the theory. We denote this actio
S@A# and following @12# we write

S@A#5(
r

gr

r ! (
k1 ,m1 ,a1

••• (
kr ,mr ,ar

Ãm1

a1 ~k1! . . . Ãmr

ar ~kr !

3Vr~k1 ,m1 ,a1 ; . . . ;kr ,m r ,ar !. ~27!

By a choice of units we set the lattice spacing toa51. The
value of the lattice spacing in physical units is determined
a calculation of a physical dimensionful quality and depen
on g and hence on the renormalized coupling const
through the standardb function. Other quantities, such as th
bare anisotropy, are determined by the coupling coefficie
ca .

The Euclidean Feynman rule for ther-point gluon vertex
function is (2grVr), where the vertexVr can be expresse
as @12#

Vr~k1,m1,a1; . . . ;kr ,m r ,ar !5 (
sPSr

s•Cr~a1 , . . . ,ar !

3s•Yr~k1 ,m1 ; . . . ;kr ,m r !,

~28!

where we symmetrize overSr , the permutation group ofr
objects.

TheCr are the Clebsch-Gordan coefficients which, owi
to the reality of the action, are defined by

Cr~a1 , . . . ,ar !5Tr~Ta1
. . . Tar

!1~21!rTr~Tar
. . . Ta1

!.

~29!

Under Zr , the subgroup of cyclic permutations and inve
sion, theCr have simple properties,

s•Cr5x r~s!Cr sPZr ,

x r~s!5H 1 for s a cyclic permutation,

~21!r for s the inversion,
~30!

so it is useful to split the symmetrization operation into tw
steps:

Vr~k1,m1,a1; . . . ;kr ,m r ,ar !5 (
sPSr /Zr

s•Cr~a1, . . . ,a r !

3s•Yr~k1,m1; . . . ;kr ,m r !,

Yr5(
a

Yr
a ,

Yr
a5 (

sPZr

x r~s!s•Ȳr
a .

~31!
09450
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The symmetrization overZr is carried out within thePYTHON

vertex generation code, whereas any remaining permutat
~for r>4) must be carried out during the loop integratio
Ȳr

a is the contribution from the Wilson loopPa given by a
sum ofnr terms with the same momentum and Lorentz str
ture

Ȳr
a~k1 ,m1 ; . . . ;kr ,m r !5ca (

n51

nr f n
a

2r !

3expS i

2
~k1•v1

n1 . . . 1kr•v r
n! D .

~32!

The factor of (r !) normalizes the symmetrization, and th
dependence on the Lorentz indicesm1 , . . . ,m r has been sup-
pressed. The prefactor of1

2 normalizes Eq.~29!. The expan-
sion of S@U# can thus be represented as a set of ‘‘entitie
@ f n ;v1

n , . . . ,v r
n#, n51, . . . ,nr , where f n is an amplitude

which is an integer for simple actions. ThePYTHON code
produces data files where these are appropriately labele
that, given the Lorentz indices (m1 , . . . ,m r) and the incom-
ing momentak1 , . . . ,kr , the corresponding value of th
r-point vertex functionVr can be computed. The relevan
Feynman diagrams can be constructed and the integrals
loop momenta performed either by direct summation o
modes or using numerical integration routines. The glu
r-point functions are generated with the anisotropy fixed
the chosen~bare! value, and thus encoded in the amplitude
f. We find this allows greater simplification of the data fil
produced by thePYTHON and more efficient loop integra
evaluation code. The time taken to rerun the vertex gen
tion code for differentx is negligible, especially when offse
against this. A more complete description of the impleme
tation may be found in@13,14#.

The gluonic propagator is derived asper the continuum
theory, using the two point vertex for the particular actio
V2(k,m;2k,n), and pairs of forward and backward neare
neighbor difference operators,

D̂a5~D0 ,D i !⇒Dm5S D0

x
,D i D , Dm5~xD0 ,D i !,

D̂25D̂a
6D̂7a5D̂0

6D̂0
71(

i
D̂ i

6D̂ i
7 ~33!

to replace the position space derivatives in the gauge fix
term. The difference operators are

D̂15 f ~x1m̂!2 f ~x!

D̂25 f ~x!2 f ~x2m̂! ~34!

for somef (x). The net effect is merely to replace momentu
components,pm , prior to any raising of the index, byp̃m
[2 sin(pm/2) in Eqs.~12!–~18!.
9-4



-
bl
ar
th
ce
ly

g
in

n

that
is a
ice

ot
.

ea-

his

ich
rms

ors
-

c-

-

ne
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E. Faddeev-Popov ghosts

The Faddeev-Popov ghost term is of the formSghost

5*dxh̄aMabhb, whereh̄ and h are the usual adjoint anti
commuting ghost fields. The ghost fields are not observa
and form only internal lines in Feynman diagrams. We
thus free to choose the normalization of the fields such
explicit factors ofAg do not appear in the momentum spa
Feynman rules@23# for the ghosts. The anisotropy then on
appears implicitly in the raising of indices.

The Faddeev-Popov matrixDab is determined by the
gauge fixing condition corresponding to the choice of gau
in the propagator. The gauge fixing is done by introduc
the identity in the form

15E daE ) dAmd~F@Am#2l!exp~2l2/2a!. ~35!

We use the linear gauge functionF@Am#5(D2)mAm and, as
is well known, the matrixDab is independent ofa in this
case. We denote the gauge transformation field by

g~x!5exp@v~x!#, ~36!

wherev(x)5va(x)Ta. For infinitesimalv the gauge field
transforms as

Am
v a5Am

a 1Vm
a 2

g

2
Ām

abVm
1b1 (

n52

`

gnan~Ām
n !ab

•Vm
b

Vm52Dm
1v, Vm

15~21Dm
1!v, ~37!

whereĀm is the adjoint representation for the gauge field a
an is the coefficient ofxn in the expansion of

b~x!5
x

ex21
5 (

n50

`

anxn. ~38!

The Faddeev-Popov matrix is then

Mab@Am#5
dF@Am

v a#

dvb U
v50

5~D2!mF2Dm
1dab2

g

2
Ām

ab~21Dm
1!

2 (
n52

`

gnan~Ām
n !abDm

1G . ~39!

The inverse ghost propagator is given by theO(g0) term and
is

Dab~x,y!52dabD2~x,y!, ~40!

giving rise to the standard 1/p2 ghost propagator.
The one-gluon vertex is given by theO(g) term which

gives the contribution to the action

gh̄af abc~D2!m@Am
b ~11Dm

1/2!hc#, ~41!
09450
e,
e
at

e
g

d

and, integrating by parts, we get

2g@~D1!mh̄a# f abcAm
b hc2

1

2
g@~D1!mh̄a# f abc~Dm

1hc!.

~42!

The first term generates the standard three-point vertex
one expects from the continuum but the second term
lattice artifact which is suppressed by a power of the latt
spacinga as we should expect.

At order g2 there is a two-gluon vertex which, usinga2
51/12, can be read from Eq.~39! to be

g2

12
@~D1!mh̄a#Am

d Am
e f dacf ecb~Dm

1hb!. ~43!

Higher order vertices follow a similar pattern but do n
contribute to the one loop calculation we are considering

F. The Haar measure

The field measure in the function integral is the Haar m
sure for integration over the lattice fieldsUm(x) which take
values in the Lie group. For the perturbative calculation t
measure is reexpressed as the measure for the fieldsAm(x),
which take values in the Lie algebra, times a Jacobian wh
can be expanded perturbatively and included as counterte
in the perturbative action. We relate the infinitesimal vect
dj5djaTa and dA5dAaTa in the fundamental representa
tion of the Lie algebra by

egdj5e2gAeg(A1dA) ~44!

from which we derive the relation

dAa5b~gĀ!abdjb ~45!

where againĀ is in the adjoint representation and the fun
tion b(x) is defined in Eq.~38!. The Haar measure is

)
m,x

djm~x!5)
m,x

]jm~x!

]Am~x!)m,x
dAm~x!. ~46!

The Jacobian then leads to the term in the action

Smeas52E dx(
m

Tr@ logb„gĀm~x!…#

5 (
n50

`

gnbnE dx(
m

Tr„Ām
n ~x!…. ~47!

Noting that

2x
d

dx
logb~x!5b~x!, ~48!

we find thatbn5an /n with an the coefficients in the expan
sion of b(x) defined in Eq.~38!.

The O(g2) vertex from the measure relevant to the o
loop calculation is then
9-5
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1

8E dx(
a,m

@Am
a ~x!#2. ~49!

G. Twisted boundary conditions

We follow Lüscher and Weisz and use twisted period
boundary conditions for the gauge field. There is then
zero mode and hence no concomitant infrared divergence
the gluon self-energy while gauge invariance is maintain
We briefly review these boundary conditions and refer
@12# for further details.

For an orthogonal twist the twisted boundary conditi
for gauge fields is

Um~x1Lnen!5VnUm~x!Vn
21 , ~50!

where the twist matricesVn are constantSU(N) matrices
which satisfy

VmVn5zmnVnVm ~51!

and zmn5exp(2pinmn /N) is an element of the center o
SU~N! with nmn50,1, . . . ,N21. The particular boundary
conditions imposed are uniquely specified by the antisy
metric integer tensornmn and a complete discussion may b
found in @15#. The condition that the twist be orthogonal
that nmnñmn50 modN, where ñmn5emnsrnsr . The gauge
potentialAm(x) also satisfies the periodicity condition in E
~50!.

Following @12# we choosenmn50 everywhere, saven12
52n2151. V1 andV2 are then determined up to a unita
SU(N) transformation andV35V451. In the case of or-
thogonal twistV3 , V4 can be expressed in terms ofV1 and
V2 once the values ofnmn are given. This will affect the
momentum spectrum in the 3,4 directions, but the Feynm
rules given below are unchanged.

The lattice is here taken to be continuous in the 3,4 dir
tions and of extentL sites in the 1,2 directions. The mome
tum spectrum,k, is then continuous ink3 ,k4 and discrete in
k1 ,k2 with

ki5
2p k̄i

Li
1

2pni

NLi
,

i 51,2, 0< k̄i,Li , 0<ni,N, k̄i ,niPZ,
~52!

with n15n250 excluded to eliminate the zero mode a
impose a gauge-invariant infrared cutoff momentum
2p/NL. Negative momentum in these directions is2ki

5(2 k̄i ,2ni), adding appropriate multiples ofL and N to
remain in the ranges defined above.

The Fourier expansion of a color fieldf(x) is

f~x!5
1

NL1L2
(

k1 ,k2

E dk3

2p

dk4

2p
eik[x1(1/2)em]G~n!f̃n~k!,

~53!
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wheref̃n(k) is a scalar field and the sum overk1 ,k2 signi-
fies the sum is overk̄1 ,k̄2 and the twist vectorn[(n1 ,n2).
The N221 SU(N) matrices,G(n), are given in terms of
V1 ,V2 by

G~n!5z(n11n2)(n11n221)/2V1
2n2V2

n1 , ~54!

wherez5exp(2ip/N) is an element of the center ofSU(N).
We do not need to construct theG(n) explicitly but only
evaluate the trace algebra associated with the perturba
vertices. We introduce the coefficients

gna5Tr„G†~n!Ta…, ~55!

for which we have the relations

2

N
gan

† gnb5dab ,

2

N
gnagam

† 5dnm ,

Ta5
1

N
G~n!gna ,

G~n!52Tagan
† . ~56!

In addition, for an adjoint field we can define the set of sca
fields labeled byn

fn~x!5gnafa⇒f~x!5
1

N
G~n!fn~x!. ~57!

Using Eq.~53! fn(x) has Fourier transformf̃n(k). Note that
the related scalar field

f̄n~x!5e22p i (n1x11n2x2)/NLfn~x! ~58!

is periodic on the lattice and has a momentum spectrum
fined by thek̄i in Eq. ~52!, which allows the numerical Fou
rier transform to be easily computed.

Defining the symmetric and antisymmetric products
twist vectors

~n,m!5n1m11n2m21~n11m1!~n21m2!,

^n,m&5n1m22n2m1 , ~59!

the Clebsch-Gordan coefficients given in Eq.~29! are modi-
fied to become

Cr
TW~n1 , . . . ,nr !5

1

N
@Tr„G~n1! . . . G~nr !…

1~21!rTr„G~nr ! . . . G~n1!…#.

~60!

The Cr
TW can be evaluated using the relations

G~n!51, n50 mod N,
9-6
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ONE LOOP CALCULATION OF THE RENORMALIZED . . . PHYSICAL REVIEW D66, 094509 ~2002!
Tr„G~n!…50, nÞ0 mod N,

G~n!†5z2(1/2)(n,n)G~2n!,

G~n8!G~n!5z(1/2)(^n8,n&2(n8,n))G~n81n!,
~61!

where (n mod N) is understood to apply to each compone
n1,2, and the argument ofG is evaluated modN. We then
derive the useful result

Cr
TW~2n1 , . . . ,2nr !

5~21!rz2(1/2)(
i 51

r

(ni ,ni )Cr
TW* ~n1 , . . . ,nr !.

~62!

For the inverse propagator we have

C2
TW~n,2n!52z(n,n)/2. ~63!

The r-point vertex function is then given in a similar form t
that in Eq.~31! by

Vr~k1 ,m1 ; . . . ;kr ,m r !5 (
sPSr /Zr

s•Cr
TW~n1 , . . . ,nr !

3s•Yr~k1 ,m1 ; . . . ;kr ,m r !.

~64!

Note that the momentum argumentsk implicitly define the
associated twist integersn. To simplify the notation, we re-
place in most subsequent expressions the twist vector wit
‘‘parent’’ momentum, understanding that only the twist ve
tor will contribute in functions such asG(k).

The structure of the vertex functionsYr is unaffected by
the choice of boundary condition which is manifested only
the momentum spectrum used.

A simplifying feature is to note that all diagrams contri
uting to an r-point function carry the same overall pha
factor from the center of the gauge group. These phases
be taken out as overall factors and the remaining parts of
Clebsch-Gordan coefficients and propagator are real.
overall phase can be restored at the end of the calculati

For the 3-point vertex on the left-hand side of Fig. 1~a! we
have~using momentum conservationp1k1q50) @24#

C3
TW~123!5

1

N
Tr„G~2q2p!…@G~q!,G~p!#

5
1

N
Tr„G~q1p!G~2q2p!…~z(1/2)[^q,p&2(q,p)]

2z(1/2)[^p,q&2(p,q)] !

52i sinS 2p

3
^q,p& D z(1/4)[(q,q)1(p,p)1(q1p,q1p)] .

~65!
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In the diagram contributing to the gluon self-energy of F
1~a! the phase factors for both vertices are identical and, w
the phases of internal lines, yields an overall phase
z(1/2)(p,p) as expected for a term in the self-energy.

For the 4-point vertex loop of Fig. 1~b! there are three
contributions from the permutationsS4 /Z4 corresponding to
(1234), (1243), (1324) and in each case theY4 are real. We
then find the Clebsch-Gordan factors to be

C4
TW~1234!5C4

TW~1243!52z(k,k)/2z(p,p)/2

C4
TW~1324!52cosS 2p

3
^k,p& D z(k,k)/2z(p,p)/2.

~66!

The z(k,k)/2 cancels thez2(k,k)/2 from the internal propagato
giving an overall factor ofz(p,p)/2, which is the expected
phase.

H. Ghost and measure Feynman rules

We choose the Fourier representation for the anti-gh
field h̄ given in Eq.~53! but use the conjugate twist matrice
G†(2n). In this case the ghost propagator is real and giv
by

D~p,2p!5
1

p̃ap̃a
. ~67!

Now consider the relevant part of theh̄Ah vertex,

E dx f abch̄aAbhc5E dx 2Tr~ h̄@A,h#!

5
2

N3Tr„G†~2k!

3@G~p!,G~q!#…E dx h̄kAphq ,

~68!

FIG. 1. Self-energy graphs atO(g2) for the gluon propagator.
Graph ~f! arises from treating the spatial mean link factor as
counterterm, and has a coupling proportional to the one loop
pression for this.
9-7
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where terms such ash̄k refer to the decomposition in Eq
~57!, with the momentum subscript restricted to the tw
vector. The Clebsch-Gordan structure is

F3~k,p,q!5Tr„G†~2k!@G~p!,G~q!#…

5z2(1/2)(k,k)C3
TW~k,p,q!. ~69!

From the full structure of theh̄Ah vertex in Eq.~42! the
momentum space Feynman vertex with momentum ass
ment shown in Fig. 1~c! is

2 igk̃mcosS qm

2 DF3~k,p,q!, ~70!

where there is no implied sum overm. Note that
C3

TW(k,p,q) plays the role of a structure constant. With
real ghost propagator this vertex contributes the same p
factor as does the 3-point gluon vertex and so it can be
sorbed into the overall phase factor of the diagram.

The two-gluon vertex, Eq.~43!, can be similarly analyzed
Assigning the ghost momentum@2k in Fig. 1~d!# asq, and
that of the second gluon@2p in Fig. 1~d!# asr , the Clebsch-
Gordan factor is

F4~k,p,q,r !5z2(1/2)(k,k)(
l

z2(1/2)(l,l)@C3
TW~k,p,l!

3C3
TW~q,r ,2 l!1C3

TW~k,r ,l!C3
TW~q,p,2 l!#.

~71!

In the above we sum over a twist vectorl. The corresponding
Feynman vertex is, with no sum implied overm,

2
g2

12
k̃mq̃mdmnF4~k,p,q,r !. ~72!

The Lorentz index of the second gluon isn. It is not so easy
to extract an overall center phase for twisted boundary c
ditions, but for the contribution to the propagator self-ene
in Fig. 1~d! we use Eq.~62! to find the vertex contribution is
proportional toz(1/2)(p,p)uC3

TW(k,p,l)u2 ~where we sum over
twist vector l), which carries the phase appropriate to t
self-energy.

The measure creates an insertion in the gluon propag
and at leading order ing2, is

g2
z(1/2)(p,p)

2
dmn , ~73!

which carries the correct phase. As expected, these exp
sions are independent of the anisotropy.

Although we do not utilize them in this paper, for com
pleteness we also give the Feynman rules for untwis
boundary conditions in our notation. The ghost propaga
Eq. ~67!, gains an extra factor ofdab for the ghost color
indices, and the measure insertion becomes
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2g2
dmndab

4
~74!

at leading order. In the vertices of Eqs.~70!,~72!, the
Clebsch-Gordan factors are replaced by

F3~k,p,q!52Tr~Tk@Tp ,Tq# !52C3~k,p,q!52 f kpq ,

F4~k,p,q,r !54(
e

@C3~k,p,e!C3~q,r ,e!

1C3~k,r ,e!C3~q,p,e!#, ~75!

where, inF4, we sum over a color index,e51 . . .N221. In
both expressions, each momentum factor is understood t
replaced by the color index associated with that leg of
vertex.

III. ANISOTROPY RENORMALIZATION

In a lattice simulation the renormalized anisotropy is ty
cally determined by comparing the correlation lengths of
operator measured along different lattice axes. In a pertu
tive calculation there is a much smaller choice of quantit
sensitive to the anisotropy.

The use of twisted boundary conditions provides o
such, by providing a gauge invariant gluon mass. The ren
malized anisotropy can be derived from the calculation of
on-shell dispersion relation for the gluon propagator defin
in the theory with twisted boundary conditions. The deta
of the theory are fully discussed by Lu¨scher and Weisz in
@12# and we shall follow their notation. We use a lattice
size L in the 1,2 directions to which the twisted bounda
conditions apply, and of extentI→` in the 0,3 directions.
We consider the gluon mode~called theA meson in@12#!
which has~Euclidean! momentum

p5~ iE0 ,m0,0,p3!, m052p/NL, ~76!

whereE0 and p3 are continuous. In this section we unde
stand all momentum components to be measured in the s
units, i.e. to refer to the isotropic coordinate system. F
clarity of presentation, however, we omit the carets used
distinguish such quantities in Sec. II A. Infrared divergenc
are regulated by finiteL, andm0 is the pole mass of the bar
gluon propagator. In@12# the one loop renormalization ofm0
is calculated and is used to determine the radiative cor
tions to parameters in the improved action. We follow a sim
lar procedure and for anisotropic actions calculate the p
energy of the propagator as a function ofp3. For sufficiently
small p3 the infrared dispersion relation so derived can
fitted to the standard quadratic form using the renormali
mass and renormalized anisotropy as parameters.

To carry out the calculation we use Feynman gauge
described in Sec. II B witha51, but we verified that the
results were unchanged when other gauges are chose
demanded by gauge invariance. The diagrams that contri
to the one loop gluon self-energySmn(p) are shown in Fig. 1
and the Feynman integrals were constructed using the v
ces and rules of the previous section.
9-8
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ONE LOOP CALCULATION OF THE RENORMALIZED . . . PHYSICAL REVIEW D66, 094509 ~2002!
At tree level the on-shell dispersion relation is given
Gmn

(a51)(p)50 for p of the form above, and whereGmn
(a)(p) is

defined in Eq.~12!. In the continuum, Eq.~13!, this gives

Agpmpm5
1

x
~2x2E0

21p3
21m0

2!50 ~77!

and the bare mass is defined byE05m0 /x at p350. On the
lattice for very smallp3 this becomes

1

x
@2x2Ft~E0!1p3

21Fs~m0!#50 ~78!

whereFs,t are determined by the details of the inverse pro
gator. For the Wilson actionFs(m)54sin2(m/2), and a more
complicated function with the same continuum limit for th
Symanzik improved case. For the actions we consider be
the need to avoid extra ghost poles in the gluonic propag
~not to be confused with ghost fields! means that the tempo
ral function is always unimproved:Ft(E)54 sinh2(E/2).

Adding one loop corrections, the on-shell condition b
comes

GRmn
(a51)~p!5Gmn

(a51)~ iER ,m0,0,p3!2g2Smn~ iE0 ,m0,0,p3!

50. ~79!

Since we are working toO(g2), it is sufficient to evaluate
Smn(p) at the tree level on-shell energy,E0, as per Eq.~78!.
In general this requires taking into account the full mat
structure ofGmn

(a) but for the form of the momentum chose
Eq. ~76!, it can be shown that of the elementsGR2n

(a) and
GRm 2

(a) , only GR2 2
(a) is non-zero and thus thatp is a zero of this

on-diagonal element and no diagonalization ofGmn
(a) is re-

quired. For givenL,p3, we determine the bare pole valueE0
by numerical solution.

As described in@12# the field theory for theA meson is a
2D theory, and we can write by analogy with Eq.~78! an
effective dispersion relation for the infrared modes~i.e. small
p3) in terms of a renormalized mass,mR , and anisotropy,
xR :

xR
2Ft~ER!5p3

21Fs~mR!. ~80!

Using Eq.~79!, we have

1

x
@2x2Ft~ER!1p3

21Fs~m0!#2g2S~ iE0 ,m0,0,p3!50.

~81!

Substituting in Eq.~80! gives

2
x2

xR
2 @p3

21Fs~mR!#1p3
21Fs~m0!5g2xS~ iE0 ,m0,0,p3!.

~82!

We define

Z~g2,x![xR /x511h~x!g21O~g4!, ~83!
09450
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andmR5m01g2m11O(g4), and at one loop obtain the re
lation

2h@p3
21Fs~m0!#2m1Fs8~m0!5xS~ iE0 ,m0,0,p3!.

~84!

For L→` we have

hS p3
21m0

2

x2 D 2
m1m0

x2 5
S

2x
. ~85!

The values ofh(L) and m1(L) are determined by a~very
good! straight line fit to Eq.~84!.

A. The calculation

We work with theD5311 SU~3! gauge theory and con
sider the Wilson action~W! and the Symanzik improved~SI!
action defined in@10#.

1. The Wilson action

The Wilson action has a two-dimensional coupling spa
and is

SW~b,x!52bS x(
x,s

Ps,t1
1

x (
x,s.s8

Ps,s8D ~86!

wheres,s8 run over spatial links in different, positive direc
tions,Ps,s8 andPs,t are plaquettes andx is the~unrenormal-
ized! anisotropy as per Eq.~10!. Spatial and temporal tadpol
improvement factors,us,t , arising from favorite self-
consistency conditions may be written in, but this amou
merely to a reparametrization of the same action

S b[
2N

g2 D 5S b0

us
3ut

[
2N

g0
2 D , x5

x0us

ut
, ~87!

and the measured anisotropy,xR , is invariant. We shall
evaluate Eq.~83! perturbatively. In doing so, we span the fu
space of couplings and our calculation ofZ(g2,x) applies
equally well to any form of the Wilson action.

To one loop the diagrams for self-energy function for t
gluon are shown in Fig. 1~a–e!. The calculations were don
on lattices with 8L2I 2 twisted momentum grid points. Th
loop momentumk to be summed over is

~k0 ,k1 ,k2 ,k3!5S 2p

I
n0 ,

2p

3L
n1 ,

2p

3L
n2 ,

2p

I
n3D

0<n0 ,n3,I , 0<n1 ,n2,3L. ~88!

There is a pole in the integrands ink of the graphs in Fig.
1~a,c! for on-shell external momentum so thek0 integration
contour is shifted byk0→k02 iE0/2. In addition, we use the
change of variablesk→k8 suggested by Lu¨scher and Weisz
@12#,

km8 5km2amsin~km!, ~89!
9-9
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DRUMMOND et al. PHYSICAL REVIEW D 66, 094509 ~2002!
which gives an integrand with much broader peaks that
easier to evaluate numerically. It is easy to see that a rea
able choice of parameter isam;12(xLm)21 and this was
found to work well, significantly reducing the dependence
L.

The integrals were done as direct summations over
discrete momentum modes but in principle they can be
culated using an adaptive Monte Carlo integrator even
finite L,I . A common example of such an importance sa
pling integration package isVEGAS @16# ~and described in
@17#!, but this expects the integrand to be a continuous fu
tion of its arguments. This can be achieved by a chang
variable using a stepped functionZ(x,L) defined by

Z~x,L !5 int~xL!, 0<x,1, ~90!

so thatZ(x,L) takes integer values in the range 0, . . . ,L
21 and a given discrete momentum component isk(x)
52pZ(x,L)/L. It turns out that for one loop integrations th
summation over modes is much more efficient. For t
loops, however, it will be necessary to useVEGAS to get a
result of acceptable accuracy.

We considered lattice sizes in the range 4<L<32 andI
large enough for the error due to finiteI to be essentially
undetectable. In practice,I .50 sufficed. We calculated th
self-energy at eachL for a number of very small values ofp3
and using Eq.~84! calculated the parametersh(L) and
m1(L). All computations were done on a single proces
PC and took between 2 and 16 h per integral, depending
L.

A fit as a function ofL allows theL→` values to be
deduced. In Fig. 2 we show theL dependence ofh(L) for
x52, and the~excellent! fit shown is given by

h~L !50.08530320.0188471
1

L2 20.0073487
log~L2!

L2 .

~91!

FIG. 2. Anisotropy renormalization for the Wilson action as
function of L for bare anisotropyx52.
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For x51 we found that, as expected,h(L)50 for all L and
that the mass renormalization parameterm1 was

m1

m0
520.037923~9!, ~92!

a value which agrees with that given by Snippe using
background field method@18#. Extrapolated values ofh
shown in Table I agree closely with results obtained by Pe´rez
and van Baal@19#, also using background field gauge. F
instance, we find

h~x52!50.085303 ~1!, h~x54!50.127901 ~2!,
~93!

compared with Pe´rez’s and van Baal’s values of 0.085303
and 0.1278990, respectively. Combining our data with tha
@19#, we find a close phenomenological fit is

h~x!50.1687 ~2!20.16397 ~4!
1

x
20.005245 ~2!

1

x2
.

~94!

2. The Symanzik improved action

The general form of the action has, in addition to t
couplingsb andx, an additional parameter,v:

SSI~b,x,v !52bx(
x,s

H 4

3
Ps,t2

1

12

Rss,t

v2 J
2b

1

x (
x,s.s8

H 5

3
Ps,s82

1

12

Rss,s8

v2

2
1

12

Rs8s8,s

v2 J ~95!

whereRss,s8 andRss,t are 231 loops. The anisotropy renor
malization factor,Z(x,b,v), is a function of all three param
eters.

TABLE I. Anisotropy renormalization,h, for variousx for Wil-
son and Symanzik improved actions. The latter is shown~a! without
and ~b! with the spatial mean link counterterm contribution of Fi
1~f!.

Wilson Spatially improved
x ~a! ~b!

1 0 20.02907~1! 20.01461~30!

1.5 - 0.005654~5! 0.03163~30!

2 0.085303~1! 0.021446~4! 0.05037~30!

2.5 - 0.03027~1! 0.06097~30!

3 - 0.035692~8! 0.06753~30!

3.5 - 0.03955~1! 0.07218~30!

4 0.127901~2! 0.04251~1! 0.07567~30!

5 - 0.04851~2! 0.08000~30!

6 - 0.04851~2! 0.08279~30!

8 - 0.05172~5! 0.08637~30!
9-10
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ONE LOOP CALCULATION OF THE RENORMALIZED . . . PHYSICAL REVIEW D66, 094509 ~2002!
It is usual to restrict the simulated parameters to a tw
dimensional surface in the coupling space. The particu
surface is determined by the chosen method of tadpole
provement, demandingv5us(g

2,x) for the reparametriza
tion in Eq.~87!. If, for given anisotropy,us has a perturbative
expansionus(g

2)511dsg
21O(g4), then we can rewrite

the action as

SSI~b,x,v !5SSI~b,x,v51!1g2DSSI1O~g4!,

DSSI52bds (
x,s.s8

2
1

6 H xRss,t1
1

x
~Rss,s8

1Rs8s8,s!J . ~96!

This form is numerically more convenient than the repara
etrized form in that the dependence of the action on
gauge coupling is lessened.

In this paper we calculateZ(g2,x) over two such sur-
faces:v51, corresponding to an action without tadpole im
provement~in which caseDSSI makes no contribution!, and
the surfacev5us , corresponding to Landau mean link im
provement whereus,t are defined as the expectation values
the traced link matrices in the Landau gauge@20#

us5^Us&L , ut5^Ut&L . ~97!

Us,t are gauge fields in the spatial and temporal directio
The actual values ofus,t are established self-consistently b
an appropriate iteration procedure, usually for fixedb0 and
x0 ~which we comment upon in Sec. IV!. As DSSI is O(g2)
relative to other terms in the actions, we treat it as a co
terterm, giving rise to a gluon propagator insertion shown
Fig. 1~f!. The coupling,ds , is determined numerically in
each case for an identical lattice@13,14#.

In both cases the actual calculation proceeds as for
Wilson action~the only changes in the loop integration co
being thePYTHON–generated input files!. In Fig. 3 we plot
h(x) as a function ofx. The results are also presented
Table I. The slightly larger errors in the full calculation r
flects a greater uncertainty in the extrapolation inL due to
reduced data.

These values can be fitted extremely well, as is dem
strated in Fig. 3, by

h~x!50.0602~1!20.0656~2!
1

x
20.0237~1!

1

x2
~98!

without the mean link counterterm contribution, and

h~x!50.0955~4!20.0702~16!
1

x
20.0399~14!

1

x2

~99!

when this is included.
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B. Comparison with measured data

The goal of this paper is to provide determinations of t
renormalized anisotropy using perturbation theory. It is cl
that for sufficiently small couplings the one loop result w
be sufficient, but at couplings more typical of current latti
simulations we must check what systematic truncation er
are introduced by neglecting contributions of higher orde
We can do this by comparing the perturbative predictio
with what measurements have been made in Monte C
simulations.

We start with the Symanzik improved action, for whic
measurements ofxR have been published in@10,9#, derived
from torelon dispersion relations and the so-called sidew
potential.

We have obtained as a perturbative series,Z(g2,x,v)
511h(x,v)g21O(g4). Such a series, however, show
poor convergence and thus large truncation errors. We
reexpress it as a power series in the ‘‘self-consistent,’’
‘‘boosted’’ coupling,g0

2:

Z~g0
2 ,x!511h~x,v5us!g0

21O~g0
4!, ~100!

using the definitions in Eq.~87!. For appropriate choices o
tadpole improvement schemes, the convergence is much
proved. In resumming the series, we formally require o
that us,t are self-consistent for fixedb0 ,x0 up to a suitable
order of perturbation theory, and thatv5us to the same or-
der. There are arguments, however, for satisfying these c
ditions at a numerical level for greater convergence. The
loop result is, of course, unchanged under resummation.

The action in@9,10# contains explicit factors ofus,t and
before applyingZ it is necessary to rescalex0 to x using the
simulated values of the mean link factors. In Table II w
compare the one loop perturbative determination with
published measurements. The couplings are larger than t
used in many simulations~giving a relatively coarse spatia

FIG. 3. Anisotropy renormalization for the spatially improve
action as a function of the bare anisotropyx, showing fits quadratic
in x21.
9-11
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TABLE II. Renormalized anisotropy as determined from torelon dispersion relations and the sid
potential@9,10#, and from one loop perturbation theory.

b0 x0 us ut as
21 xR

(meas.) x h(x) xR
(pert.)

~MeV!

1.7 4 0.7164 0.98295 661~11! 3.56 ~2! 2.915 0.0667 3.601
6 0.7100 0.99158 779~28! 5.28 ~2! 4.296 0.0770 5.463

1.8 4 0.7279 0.98243 797~21! 3.61 ~2! 2.964 0.0673 3.629
6 0.7216 0.99208 839~9! 5.31 ~2! 4.364 0.0773 5.489

2.4 3 0.7868 0.9771 1200~50! 2.71 ~3! 2.416 0.0596 2.776
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pi-
lattice!, and the anisotropy factors are at the higher end
those usually employed, making this a rather stringent tes
the perturbative series. Despite this, we find this error to
uniformly small. Forx0<4 the error is 2%, and forx056 it
is only 3%. If we attribute the difference between the me
sured and one loop estimate to be that due to truncatio
the perturbative series, it is clear that the two loop contri
tion to Z is very small. The range of couplings, however,
insufficient to allow us to reliably estimate the two loop c
efficient from the data.

A comparison of the one loop perturbative and measu
anisotropy has been carried out for the Wilson action
Klassen@21#. Corroboration of this analysis is hampered by
lack of published tadpole improvement factors. Whilstx is
quoted directly,us,t are required to obtain the self-consiste
coupling,g0

2, appropriate to simulated values ofb. We may
estimate the tadpole factors, but in doing so we introduc
second systematic error into the estimate ofxR . This arises
from the difference between our estimate and the num
cally self-consistent tadpole values. It is in addition to t
systematic error arising from the one loop truncation of
perturbative expansion ofZ. We anticipate the latter being o
order 3%, and we thus require values ofus,t at least this
accurate. Such an estimate can come from a two loop pe
bative estimate@13,14#. Using this we have confirmed Klas
sen’s analysis~which used plaquette tadpole factors! using
the Landau mean link improvement. We find the combin
two loop tadpole, one loop anisotropy prediction forxR to be
correct to within 5% forb>5.6, and to 2% forb>6.3 for
1.5<x<6. With the correctus,t values, a more precise est
mate of the truncation errors inZ(x,g2) would be possible,
and we expect them to show that the one loop anisotr
renormalization calculation is as accurate for the Wilson
tion as we have demonstrated it to be for the Symanzik
proved case.

IV. SUMMARY

We have presented perturbative calculations of the re
malization of the anisotropy in simple gluonic lattice actio
for SU~3! in D5311. These have been carried out b
studying the infrared dispersion relation of the on-shell g
onic propagator, regulated through the use of twisted bou
ary conditions as in@12#. We have reviewed the derivation o
the Feynman rules for general actions and anisotropy st
ture, using both twisted and untwisted boundary conditio
09450
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We have~briefly! outlined our method for generating th
gluon r-point vertex functions using aPYTHON code and
evaluating the loop integrals using a compiled programm
language. The strength of this dual-pronged approach is
generality; at the price of not carrying out optimization sp
cific to a particular action, a flexibility to rapidly chang
actions is acquired. Further details of the implementat
will be given in @14#.

We have focused our attention on two actions, the Wils
plaquette action and an action~Symanzik! improved at tree
level through the addition of 132 loops extending two lat-
tice spacings in spatial directions only. This lack of symm
try is necessary to avoid spurious ghost poles in the gluo
propagator, and in consequence even an isotropic lattice
not remain so under quantum corrections. Temporal
provement is not crucial, of course, whenat is small.

Both actions are considered with and without tadpole i
provement of the links. In the case of the Wilson action
explicit reference tous,t need be made in the perturbatio
theory. Specific tadpole improvement schemes manifest o
in rescaling the gauge coupling.

For the Symanzik improved action, the lack of tempo
improvement means all reference tout can be reparametrize
away, but dependence onus remains in the form of a coun
terterm to the~tadpole! unimproved action. The presence
the counterterm necessarily specialized the perturbative
culation to one form of tadpole improvement, and we s
lected self-consistent Landau gauge mean links for this wo

There are also advantages in using this reparametriza
when tuning actions such asSSI for Monte Carlo simulation,
when explicit tadpole factorsus,t are often present. Reparam
etrizing to remove dependence onut makes the finding of a
self-consistentus for fixed (b,x) a one parameter problem
Similarly tuningut is done by varying (b0 ,x0 ,ut) together
along the single parameter curve of constant (b,x,us). This
two stage approach is much faster than a simultaneous
ploration of the two parameter space.

For the Symanzik improved action, we presented res
over a spread of bare anisotropies 1<x0<8, and give inter-
polating fits, Eqs.~98!,~99!, respectively, with and withou
~Landau! mean link tadpole improvement. Comparing the
numbers with measurements in simulations shows that
one loop perturbative determinations of the renormalized
isotropy are accurate to within 2% forx<4 across a range in
couplings and lattice spacings much larger than would ty
cally be used in lattice simulations. Forx56, which is larger
9-12
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than that currently employed in large scale simulations,
deviation is 3%.

In the case of the Wilson action we have verified exist
results ~calculated using the background field method! by
Snippe@18# and Pe´rez and van Baal@19#. Using an interpo-
lating fit, Eq. ~94!, we have carried out a comparison wi
lattice simulation results by Klassen@21#. We find the agree-
ment to be approximately 3–4 % for gauge couplings in
typically simulated range andx<6, but this uncertainty in-
cludes a systematic error from having to estimate tadp
improvement factors, and the error in the anisotropy alon
almost certainly less.

We conclude that the renormalization of the anisotro
which is difficult to calculate accurately in simulations,
an

nd

13

i,

09450
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,

well described by lattice perturbation theory. If the anis
ropy is to be used, for instance, to set the scale in lat
calculations as per Eq.~1!, then a 3% systematic error inxR

is sufficiently small that is unlikely to represent the domina
uncertainty in the final estimate, and the one loop deter
nations presented in this paper are all that is required.
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