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One loop calculation of the renormalized anisotropy for improved anisotropic
gluon actions on a lattice
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Using the infrared dispersion relation of the on-shell gluon, we calculate the renormalization of the aniso-
tropy, x, to one loop in perturbation theory for lattice Yang-Mills theories, including the Wilson action and
actions with Symanzik and/or tadpole improvement. Using twisted boundary conditions as a gauge invariant
infrared regulator, we show for an $8) gauge group ilD =3+ 1 dimensions that the one loop anisotropy is
accurate t@(3%) for arange ofg? and y covering current simulations. In doing so we also present Feynman
rules for SUN) gauge groups with generic anisotropy structimeluding “3+ 1" and “2 + 2" case$ for both
twisted and untwisted boundary conditions.
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[. INTRODUCTION ing that is smaller than the spatial,, and such “anisotrop-
ic” lattices can be created by tuning action couplings in the
Lattice Monte Carlo simulations operate by dividing a temporal direction differently to those in the spafia]. An-
finite volume of space and time into a grid, such that in alSotropic actions have already been successfully applied in
given directionu we havel , points distance,, apart. The Many situations, including the glueball spectrBi, the

desire to obtain results free from uncontrolled finite volumeﬁzggtr%mbr?é {gxg]ltztrl%nfheoginglgtrl:]ct?ur;gli)a;rtﬁepoltg:tk[ﬂ’ium
contamination dictates that the prodagt_, be chosen to be y y i 9

. . N ) spectrum[7]. More recently, anisotropic lattices have been
suitably large in spatial direction@ fm is often quoted for ¢own to be very successful in nonrelativistic QCD

QCD). Controlling discretization effects similarly requires (N\RQCD) studies of two- and three-point correlators and
thataM be suitably small, but this must be balanced with thefinite momentum hadrons and semileptoBiclecay8,9].
computational overhead that increases with. Reducing A more widespread use has been hampered by the fact
the dependence of simulation results on the lattice spacing that the bare anisotropfor aspect ratipin the simulated
clearly advantageous, and so-callé8lymanzik improved action,y=as/a;, is not, due to quantum mechanical effects,
actions may achieve this, permitting the use of coarser latthe same as the measured valyg, Typically, we wish to
tices without increasing discretization effe€ig. estimate the continuum limit ratio of a mad4, to a given

In many cases, lattice resultsuch as hadron masses or scale K, using the lattice measuremenks, (in units of a,)
decay constantsare obtained from the decay of correlation gndK (often derived from the static quark potential, and in

functions,C(r), over a range of temporal separatioms|t  ynits ofa,) respectively. Up to finite lattice spacing correc-
is a feature of such correlation functions that the signal tgjons,

noise ratio decreases with increasingand beyond some,
measurements are dominated by statistical fluctuations. The M M
precise value of, depends upon many factors, including the K- _R
operators correlated and the number of Monte Carlo mea- XR
surements made, but appears to be relatively insensitive ¥/e thus requireyg, and with a sufficiently small error that
the temporal lattice spacing,. As measurements can only this does not represent the dominant uncertainty in the final
be made forr an integer multiple ofa, if the temporal  estimate,yg may be measured in Monte Carlo simulations,
lattice spacing is large compared tQ it will be hard to  e.g.[10], but it is an expensive calculation which must be
obtain an accurate picture G 7<< ;). Improving the action repeated for every choice of the bare couplings.
does not help in this respect, and in addition, the inclusion of More generally(lattice) perturbation theory may be used
improvement in the temporal direction leads to the introducto calculate the renormalization of quantities, and it is well
tion of spurioussometimes called “ghosy’poles in the glu-  known that with “tadpole improvement” such calculations
onic propagatof1]. By not temporally improving the action converge quickly to the measured data at simulated values of
we avoid this, but at the cost of increased discretization erthe gauge coupling,g®> [1]. In this paper we obtain
rors for givena,. Controlling these, and the desire for in- Z(g?,y)= xr/x to one loop for a wide range of anisotropies
creased temporal resolution of correlation functions, arguetor SU(3) gauge theories in four dimensions. We focus on the
for the use of a smak, . Wilson action and a commonly used Symanzik improved
We are thus motivated to choose a temporal lattice spacaction. Our results apply both to actions with and without
tadpole improvement; in the Wilson case we cover both
plaquette andLanday mean link improvement, whilst in the
*Current address: School of Physics, University of Edinburgh,Symanzik improved case we discuss here only the mean link
King's Buildings, Edinburgh EH9 3JZ, United Kingdom. improved case.
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These is no reasora priori, why the lattice spacing
should be identical in all spatial directions, and indeed there

are situations where we might choose this not to be the casg the most general case there will Be-1 anisotropy fac-
A typical example is where increased momentum resolutionors, but for the rescaling in the temporal direction only, as
is desired for correlation functions of operators at finite mo-we consider in this paper,
mentum. Rather than increase the computational overhead by
a global rescalinga can be made smaller in one spatial di- 1
rection[11]. While we do not consider calculations for this e“=(x.1,....0, e, Z( 1)
case explicitly in this paper, when we describe the Feynman
rules in Sec. Il we allow for arbitrary anisotropic lattice 4
structure as well as general actions. We use twisted boundary
conditions as a gauge invariant infrared regulator. In Sec. Il 1 1
gWZdia% —2,1, ,1), g=

gur=0,%€,, g=detg,,. 5

, (6)

we describe our calculation of the anisotropy from the dis- R (7)
persion relation of the on-shell gluon propagator. We com- x?

pare these one loop results to measurementyofrom

simulations, and show that the one loop result is accurate t&/sing these conventions, the natural position vector is cova-
within 3—4 % over the range of couplings covered by Monteriant under rescalingx=(x*)=(t,x), so the momentum
Carlo simulations. Finally, in Sec. IV we provide a summary st be contravariarﬁ)=(f)a)=(E,T)) such that Eq(3) is

of our findings and some conclusions. satisfied. The volume element is given by

Il. THE PERTURBATION THEORY D

dk=dx[] e, ~dx 5= = ®)
It is useful to consider the derivation of an anisotropic x= X,L:l € = OXNE= X

lattice action from the isotropic continuum theory in two
stages. We first obtain an action for an anisotropic conThe dimensionfulcolor) vector potential and derivatives be-

tinuum, which is then discretized. have ag, and so the Yang-Mills action becomes

A. Continuum anisotropy 1 dXE Eab 1j dxVaF, JF8
= — X ap — __ X «,
The starting point, and the fixed point of the lattice action, S 4 f 4 I ap
is a D-dimensional continuum field theory in an Euclidean 1
space-time that is invariant under Lorentz transformations == | dx\/gg""g""F , F (9)
H H 4 X gg g My ot

and hence isotropic. We may choose to change our measure-
ment units in the continuum theory, and by different factors -~
in different directions, which leads to the introduction of an For the specific example above,
anisotropy factor(or factors, y, into the action, being the
ratio of the length units in different directions. Nonetheless,
Ward identities(derived by considering anisotropies differ-
ing infinitesimally from unity can be enforced to ensure that
the underlying theory maintains the correct Lorentz invari-
ance under renormalization. _ _

We distinguish quantities in the isotropic theory from To construct the Feynman diagrams for any action the
those in the anisotropic by the use of “hats” in the former gluon propagator must be computed. This is done for a given
case. Although the original metric is momentum by inverting the two-point gluon vertex, which
for the isotropic (continuum case is given by(?«A(k)
=k kes*P—kkP. Before this can be done the gauge must
we find it convenient to introduce the notation of covariantbgu]:zsdv\?hqgh\/\iﬁ ri%(:nteonttl?% 2Ct;%2 2 gael.;greagxmg term and
and contravariant indices. The contraction of a momentun® ' P PP
and position[22], p-x=p,x¢, must be invariant under res- ak 1.

. . — - MV _ — M —
caling, i.e., q.f f —(277)4 2aAM(k)k K'A(—K)—J*(K)A,(—K).
PaX™= PX-. 3 (11)
We can relate the rescaled fields to the original by the use of e Parametes is the usual gauge-fixing parameter and, for
a set of vierbeins examplea=1 corresponds to Feynman gauge. In moving to

the anisotropic theorydk=dk/+/g, which affects functional

1(dx
SYM:ZJ Y(X FoiFoitFijFij). (10

B. The propagator

Jap=diag +1,+1,... +1), 2)

XH=et X, pﬂze#“ﬁa. (4) derivatives with respect to the anisotropic sourd¢, We
can rescalé\ , to absorb this metric factor, which multiplies
The metric in these variables is terms quadratic inA, by Jg. The two point function,
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VLK), that we shall shortly derive from the action, will .

already contain this factor and the inverse propagator beAu=AuTa: [Ta,Tol==TapcTc, TH(TaTp)=— §5ab'
comes (21)
k" Vs (12) whereT, are the(anti-Hermitiar) generators oS U(N) with

a V¥ structure constant$,,.. It is expedient to associate the

. ) ) ) ) gauge potential with the center of the link, and then
By illustration, the inverse propagator in the continuum for

a=1 has the form

k
r(@er(k)=v@rrk)+

1
X+ e,/ (22

2

U, (x)= ex;{gAﬁ

LV

‘5X (f&g@_ &3) 13

[(e=Dur(K) = 5MV\/Ekka: _ _
whereg is the bare coupling constant, and we have absorbed
) ) ) a factor ofa into each component o, .
where the latter expression uses the isotropic momenta, gqy g |attice withL . sites in thew direction the momen-
which for a lattice theory we shall equate to the “physical” 1, vectork is K’
ones.
The propagator is 20 E ?D o .
=—|—,...,— =<k, <
GEL"V)z(F(““’“”)‘l. 14 k a |\, o) Os=k,<L,, k,eZ, (23

To fix to Landau gauge we must be more careful. Consideand the sum ovek stands for the sum over the components

the case where we wish to change the gauge feoto y k, . In the limit thatL ,—c we have
after inversion. Then

11 1 > dk, 24
— | =~
rwr=p(@ury ;—;) k“k”\/g. (15) alL, € 27
We write The Fourier transform to momentum space is
MN=g ~ . 1
c=6{Y+D,,, (16) Aﬂ(k)zzx e kxRl | x4+ =t
and thenD ,, satisfies
1 1 . ~
11 N Alx+=e )=— elk Xt (128 (k), 25
NG ;—;) k“k”\/a}(GS}p)-FDyp):ﬁ”p. (17) w2 v; w(K) 3

whereV=II L, is the number of lattice points. It is useful
to reexpress the position of a gauge potentialwgs-2(x

(a—v) k,k, + %e#), which is aD-dimensional vector with integécova-
D=~ Tg (kko)2" (18 riant) components.

The solution forD ,, is

. o D. Vertex functions
C. Discretization ) )
To permit us to compute perturbation theory for a range of

_ The anisotropically formulated theory may be discretized,qjons, we have developed an algorithmic method for ex-
in the normal way, and in these anisotropic units we set th‘f:)anding a general gauge theory action on a lattice in an ap-

lattice spacingg, to be the same in each direction. propriate form for perturbative calculations to be carried out.
On a cubical latticeAp in dimensionD (with xe Ap,  The approach follows closely the method and notation of
n=1,...D) the gauge field is denoted, Luscher and Weis#12] but is extended to accommodate,

_ . inter alia, anisotropy, fermionic actions, actions for non-
U={U,00:U,,(x) € SUN), (19 relativistic heavy quark§NRQCD) and more complicated
whereU () is associated with the linkx{s). definitions of the action in the purely gluonic sector. The

We define the perturbative gauge fieddby algorithm is implemented in th_eYTH_ON programmi_ng Ian-_
guage. For the work presented in this paper we briefly review

1 1 the notation relevant to the present calculation and refer to
A= 1AL X 58,0 Ayl X+ 58, ealg(SU(N)) ¢, [12] for further information.
(20) The lattice action for the pure glue sector can be written

as a sum over contours
with e, the lattice basis vectors, all of unit length and chang-

ing covariantly with rescaling. Expanding in the color index, S[U]=2 c,Re THP,(U:x)) (26)
a, a o
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which is defined in terms of the coupling constamts, and  The symmetrization oveg, is carried out within theyTHON

the P, , which are closed Wilson loops. vertex generation code, whereas any remaining permutations
The perturbative action is the expansion §fU] as a (for r=4) must be carried out during the loop integration.

polynomial in A and the coefficients of the monomials will Vra is the contribution from the Wilson loop, given by a

determine the vertices of the theory. We denote this action agym ofn, terms with the same momentum and Lorentz struc-

S A] and following[12] we write ture
gr xa xa n a
JAI=X 5 X - X A%(ky) .. A% (k) a \f
r M ay Keomroa  H1 ! e Yy(ky, s ek, :Mr):CO‘nZl %
er(klwu“llal; ;krl/'LTYar)' (27)

i
—_— . n . n
By a choice of units we set the lattice spacingate 1. The XexF{ 5kivgt Ak )

value of the lattice spacing in physical units is determined by
a calculation of a physical dimensionful quality and depends
on g and hence on the renormalized coupling constan
through the standard function. Other quantities, such as the
bare anisotropy, are determined by the coupling coefficient
Cq-

The Euclidean Feynman rule for thepoint gluon vertex

(32

I]’he factor of ¢!) normalizes the symmetrization, and the
gependence on the Lorentz indiges, . . . ,u, has been sup-
pressed. The prefactor gfnormalizes Eq(29). The expan-
sion of J U] can thus be represented as a set of “entities”

function is (—g"V,), where the verteX/, can be expressed [fn,;vrl]’, e ,v}‘], n=1,...n,, wheref, is an amplitude
as[12] which is an integer for simple actions. ThPG’THON code
produces data files where these are appropriately labeled so
that, given the Lorentz indicesu, . . . ,«,) and the incom-
Vi(kypmg,aq; K pp,ap) = ES o-C(ag, ....a) ing momentak,, ... k,, the corresponding value of the
T r-point vertex functionV, can be computed. The relevant
Xo Yk, pq; oK ), Feynman diagrams can be constructed and the integrals over

29) loop momenta performed either by direct summation over
modes or using numerical integration routines. The gluon

where we symmetrize ove$, , the permutation group af ~ f-point functions are generated with the anisotropy fixed at

objects. the choseribare value, and thus encoded in the amplitudes,
TheC, are the Clebsch-Gordan coefficients which, owingf- We find this allows greater simplification of the data files
to the reality of the action, are defined by produced by theeYTHON and more efficient loop integral
evaluation code. The time taken to rerun the vertex genera-
C/(ag, ... ,a,)=Tr(Tal .. -Ta,)+(— 1)rTr(Tar .. .Tal). tion code for differenty is negligible, especially when offset

against this. A more complete description of the implemen-
(29  tation may be found in13,14.
The gluonic propagator is derived gsr the continuum
Under Z,, the subgroup of cyclic permutations and inver-theory, using the two point vertex for the particular action,
sion, theC, have simple properties, V,(k,u; —k,v), and pairs of forward and backward nearest

neighbor difference operators,
o-C=x(0)C; oeZ,

1 for o acyclic permutation, A,=(Ag,A)=A = ﬂ,Ai)- A*=(xAg,A)),
xi(o)= ; , : (30) “ ol x
(=1)" for o theinversion,
gfegsl§, useful to split the symmetrization operation into two 32=A§&:“=A§A§ + 2 AiiAiI (33)
. |
V,(Kq,pq,85; Ko phrap) = 2 o-Culay, ....a) to replace the position space derivatives in the gauge fixing
oeSIZ term. The difference operators are
Xo- YKy, pqs .ok wy), A -
(K, g rir) A+=f(X+M)—f(X)
Y':za; ME Am=f(x)—f(x—p) (34)

= for somef(x). The net effect is merely to replace momentum
Y= 2 xi(o)o- Y.

oeZ, componentsp,,, prior to any raising of the index, bﬁM
(31 =2sin(,/2) in Egs.(12)—(18).
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E. Faddeev-Popov ghosts and, integrating by parts, we get

The Faddeev-Popov ghost term is of the foSg.

= [dx5®M3"5P, where 5 and # are the usual adjoint anti- —g[(A+)”na]fabCAZnc—%g[(AJr)“na]fabc(A; 7).
commuting ghost fields. The ghost fields are not observable, (42)

and form only internal lines in Feynman diagrams. We are

thus free to choose the normalization of the fields such thathe first term generates the standard three-point vertex that
explicit factors of\/g do not appear in the momentum spaceone expects from the continuum but the second term is a

Feynman rule$23] for the ghosts. The anisotropy then only |attice artifact which is suppressed by a power of the lattice

appears implicitly in the raising of indices.

The Faddeev-Popov matria®® is determined by the

spacinga as we should expect.
At order g2 there is a two-gluon vertex which, using

gauge fixing condition corresponding to the choice of gauge=1/12, can be read from E¢39) to be
in the propagator. The gauge fixing is done by introducing

the identity in the form

1= | de | [] dA,S8(F[A,]—N)exp(—\2/2a). (35)
| de | T an,aFia,

We use the linear gauge functiégijA,]=(A")*A, and, as
is well known, the matrixA2® is independent ofx in this
case. We denote the gauge transformation field by

g(x)=exg w(x)], (36)
where w(x) = w4(x) T?. For infinitesimalw the gauge field
transforms as

9 S N
wa_ pa a abn +b nyab b
A=A+ QL SATO +n§2 g"an(A})2-QF,

Q,=—Afw, Q)=(2+A)), (37)

2

g —
E[(A*)“na]AZAZfd“f“b(A; 7°). (43
Higher order vertices follow a similar pattern but do not
contribute to the one loop calculation we are considering.

F. The Haar measure

The field measure in the function integral is the Haar mea-
sure for integration over the lattice fieltls, (x) which take
values in the Lie group. For the perturbative calculation this
measure is reexpressed as the measure for the fields),
which take values in the Lie algebra, times a Jacobian which
can be expanded perturbatively and included as counterterms
in the perturbative action. We relate the infinitesimal vectors
dé=d¢, T2 anddA=dA,T? in the fundamental representa-
tion of the Lie algebra by

egd§: engeg(AerA) (44)

whereA , is the adjoint representation for the gauge field andrrom which we derive the relation

a,, is the coefficient ok" in the expansion of

X o]
b(X)= m:nzo aan. (38)

The Faddeev-Popov matrix is then
wa
SF[A, 7]

SwP

M2A,]=

w=0

:(A)M[ — A 5%~ ng;b(erA;)

—gz g arn(AT)PA . (39)

The inverse ghost propagator is given by @g°) term and
is
AP(x,y) = — 5*PA%(x,y), (40
giving rise to the standard g7 ghost propagator.
The one-gluon vertex is given by th@(g) term which
gives the contribution to the action

g;afabC(A*)M[AZ(l-l-A’:/Z) 7], (41)

dA2=Db(gA)2Pd P (45)

where agairKis in the adjoint representation and the func-
tion b(x) is defined in Eq(38). The Haar measure is

17 96.(X)
I;IX <;|§M(x)—1;[X aA#(X)}:[X dA,(X). (46)
The Jacobian then leads to the term in the action
Smeas™ — f dx>, Ti{logh(gA,(x))]
M
=> g"6n f dx> Tr(Al(x)). (47)
n=0 "
Noting that
d —
—X&Iog b(x) =b(x), (48)

we find thatB,= a,/n with «, the coefficients in the expan-
sion of b(x) defined in Eq.(38).

The O(g?) vertex from the measure relevant to the one
loop calculation is then
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where¢,(k) is a scalar field and the sum over,k, signi-
fies the sum is ovek;,k, and the twist vecton=(n,n,).
The N>—1 SU(N) matrices,I'(n), are given in terms of
Ql!QZ by

dx> [A(x)]2 (49)
a,p

G. Twisted boundary conditions

We follow Lischer and Weisz and use twisted periodic I'(n) =2+ tn2- 1720 200 (54
boundary conditions for the gauge field. There is then no
zero mode and hence no concomitant infrared divergences Mherez=exp(2x/N) is an element of the center 8U(N).
the gluon self-energy while gauge invariance is maintainedVe do not need to construct tH&(n) explicitly but only
We briefly review these boundary conditions and refer toevaluate the trace algebra associated with the perturbative
[12] for further details. vertices. We introduce the coefficients

For an orthogonal twist the twisted boundary condition

for gauge fields is na=Tr(CT(MT,), (55)

for which we have the relations

— -1
U,(x+L,e)=0,U,(x)Q, ", (50
2
where the twist matrice§), are constanSU(N) matrices N ?’;nynbz Sab
which satisfy
2
2,0,=2,,0,Q9, (51 N'}’na')’;m: Snm»

and z,,=exp(2rin,,/N) is an element of the center of 1
SU(N) with n,,=0,1,...N—1. The particular boundary Ta=—T(N)Yna
conditions imposed are uniquely specified by the antisym- N
metric integer tenson,, and a complete discussion may be

_ T
found in[15]. The condition that the twist be orthogonal is I'(n)=2Tavan- (56)
that n,,n,,=0 mocN, wheren,,=e,,,,N,,- The gauge |y addition, for an adjoint field we can define the set of scalar
potentlaIA (x) also satisfies the perlod|C|ty condition in EQ. fie|ds labeled byn
(50).
Following [12] we choosen,,,=0 everywhere, sava;, 1
=—ny,=1. O, andQ), are then determined up to a unitary $n(X) = Ynada= ¢(X) = T'(N) hn(X). (57)

SU(N) transformation andl;=Q,=1. In the case of or-
thogonal twist(5, €1, can be expressed in terms@h and  ysing Eq.(53) ¢,(x) has Fourier transforrg,(k). Note that
), once the values oh,, are given. This will affect the the related scalar field
momentum spectrum in the 3,4 directions, but the Feynman
rules given below are unchanged. gn(x)ze*Z’T‘(”1X1+“2X2)’N'-¢n(x) (58)
The lattice is here taken to be continuous in the 3,4 direc-
tions and of extent sites in the 1,2 directions. The momen- is periodic on the lattice and has a momentum spectrum de-
tum spectrumk, is then continuous ik3,k, and discrete in  fined by thek; in Eq. (52), which allows the numerical Fou-

ky,ko with rier transform to be easily computed.
Defining the symmetric and antisymmetric products of
2wk 27 twist vectors
K=" NL
! : (n,m)=n;my+n;my+ (N +my)(Ny+my),
i=1,2, O<ki<L;, 0=n<N, Kkj,neZ, (n,m)=nim,—n,m,, (59
(52)

the Clebsch-Gordan coefficients given in E29) are modi-

with n;=n,=0 excluded to eliminate the zero mode and fied to become
impose a gauge-invariant infrared cutoff momentum of

27T/N_L. Negative momentum in these directions -sk; CrTW(nl, ...n)= E[Tr(l“(nl) ...T(n,))
=(—k;,—n;), adding appropriate multiples d&f and N to N
remain in the ranges defined above. +(=1)'TrT(n,) ... T(n)].

The Fourier expansion of a color fielpl(x) is 60

dks dkg4 W : i
H(X)= ——— NLLL o 5e ekl (2.1 (n) b, (K), The C, ™ can be evaluated using the relations
2 ky ko
(53 I'(n)=1, n=0 mod N,
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Tr(C'(n))=0, n#0 mod N, (@) (b)
k
T(n)t=z" WOy, /2:3 K )&
F(nr)r(n):Z(1/2)(<n’,n)—(n’,n))r(n/_I_n)' P c:\ P
(61) (c) (d) e
k ," “‘
where ( mod N) is understood to apply to each component, . " k(4 ¥ kv
ny,, and the argument df is evaluated modN. We then ISANENVARL vy
derive the useful result P b P
c™(-ny,...,—ny) (e) "
Haar measure one-loop mean link

r

& vy

FIG. 1. Self-energy graphs &(g?) for the gluon propagator.
(62) Graph (f) arises from treating the spatial mean link factor as a
counterterm, and has a coupling proportional to the one loop ex-
For the inverse propagator we have pression for this.

=(—1)rz*<1’2>z1 MM ™s(ng, LLony).

ng(n,—n)=22(”'”)’2. (63) In the diagram contributing to the gluon self-energy of Fig.
1(a) the phase factors for both vertices are identical and, with
Ther-point vertex function is then given in a similar form to the phases of internal lines, yields an overall phase of
that in Eq.(31) by z(M2k.P) a5 expected for a term in the self-energy.
For the 4-point vertex loop of Fig.(l) there are three
W contributions from the permutatiors, / Z, corresponding to
Vi(ky,pqs ook )= E;/z o-C (g, ...n) (1234), (1243), (1324) and in each case Yheare real. We
TEs then find the Clebsch-Gordan factors to be
Xo-Ye(Kyprs oK pp).

64 C;"(1234=C} (1243 = 27k W/2zlPP)/2
Note that the momentum argumertsmplicitly define the C4TW(1324)=2005<2—W<k,p))z(k'k)’zz(p'p)’2.
associated twist integers To simplify the notation, we re- 3 (66)
place in most subsequent expressions the twist vector with its
“parent” momentum, understanding that only the twist vec- The 2(kK/2 cancels the ()2 from the internal propagator
tor will contribute in functions such as(k). giving an overall factor ofz»P’2, which is the expected
The structure of the vertex function4 is unaffected by phase.
the choice of boundary condition which is manifested only in
the momentum spectrum used. H. Ghost and measure Feynman rules
A simplifying feature is to note that all diagrams contrib- . . .
uting to anr-point function carry the same overall phase We choose the Fourier representation for the anti-ghost
factor from the center of the gauge group. These phases céﬁ'd 7 given in Eq.(53) but use the conjugate twist matrices
be taken out as overall factors and the remaining parts of thE'(—n). In this case the ghost propagator is real and given
Clebsch-Gordan coefficients and propagator are real. They
overall phase can be restored at the end of the calculation.
For the 3-point vertex on the left-hand side of Figp)lwe A 1 6
have (using momentum conservatign- k+q=0) [24] (P~ p)_f)a[} ’ (67)

1 i e
ng(123) _ NTr(F(—q— ONIT(Q).T(p)] Now consider the relevant part of thgA#n vertex,

1 f dx faPCpaAP ¢ = f dx 2Tr( 5[ A, 7])
— —q— (1/2)[(g,p)—(a.p)]
NTr(F(q+p)F( q—p))(z

2
_ Z12p.a— (P = @i (=k)

. [27 —
_oi Sm(?<q,p>)2(1/4>[(q,q)+(p,p)+(q+p,q+p>]_ X[F(p)’r(q)])f AX A0
(65) (68)
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where terms such ag, refer to the decomposition in Eq. 5 %urOab
(57), with the momentum subscript restricted to the twist -9 T4 (74)
vector. The Clebsch-Gordan structure is

at leading order. In the vertices of EQq§70),(72), the

Fs(k,p,q)=Tr("''(—K)[T(p),T'(q)]) Clebsch-Gordan factors are replaced by
=z WAKNCIW(k,p,q). (69) Fa(k,p, @) =2THT [ Tp, Tql)=2C4(K,p,q) = —fipq
From the full structure of theyA# vertex in Eq.(42) the F4(k,p,q,r)=4§ [Ca(k,p,€)Cs(aur,€)

momentum space Feynman vertex with momentum assign-
ment shown in Fig. ) is

+Ca(k,r,e)Cs(q,p,e)], (79
_igT(Mcoﬁ( qz_“) Fs(k,p,q), (700 Wwhere, inF,, we sum over a color indee=1 . . N2=1.1In
both expressions, each momentum factor is understood to be

. o replaced by the color index associated with that leg of the
where there is no implied sum oven. Note that vertex.

ng(k,p,q) plays the role of a structure constant. With a

real ghost propagator this vertex contributes the same phase I1l. ANISOTROPY RENORMALIZATION
factor as does the 3-point gluon vertex and so it can be ab- o ) ) ) ) .
sorbed into the overall phase factor of the diagram. In a lattice simulation the renormalized anisotropy is typi-

The two-gluon vertex, Eq43), can be similarly analyzed. cally determined by comparing the correlation lengths of an
Assigning the ghost momentupa-k in Fig. 1(d)] asq, and ~ Operator measured along different lattice axes. In a perturba-

that of the second gludn-p in Fig. 1(d)] asr, the Clebsch- tive calculation there is a much smaller choice of quantities
Gordan factor is sensitive to the anisotropy.

The use of twisted boundary conditions provides one
such, by providing a gauge invariant gluon mass. The renor-

Fa(k,p,q,r)=z" MK 7= cIW(K p 1) malized anisotropy can be derived from the calculation of the
! on-shell dispersion relation for the gluon propagator defined
Xcgw(q,r,—I)+C§W(k,r,l)C;W(q,p,—I)]. in the theory with twisted boundary conditions. The details

of the theory are fully discussed by &cher and Weisz in
(7)) [12] and we shall follow their notation. We use a lattice of
sizeL in the 1,2 directions to which the twisted boundary
In the above we sum over a twist vectoiThe corresponding conditions apply, and of extert— in the 0,3 directions.
Feynman vertex is, with no sum implied over We consider the gluon modealled theA meson in[12])
, which has(Euclidean momentum
_%szqué,uVF4(kip!q!r)' (72) p:(iEo,mo,pr?,): m0:27T/NL, (76)

whereE, and p3 are continuous. In this section we under-

The Lorentz index of the second gluonu; Itis not so easy stand all momentum components to be measured in the same
to extract an overall center phase for twisted boundary con-

ditions, but for the contribution to the propagator self energyunits’ .e. to refer to the isotropic coordinate system. For
R . o= larity of ion, h it th
in Fig. 1(d) we use Eq(62) to find the vertex contribution is clarity of presentation, however, we omit the carets used to

. distinguish such quantities in Sec. Il A. Infrared divergences
proportional toz*2®P|CcIW(k,p,1)|? (where we sum over v p 9

) . . ) are regulated by finite, andm, is the pole mass of the bare
tsV:zII?te\r/zcr:gt;?/rl), which carries the phase appropriate to thegluon propagator. Iil2] the one loop renormalization ofi,

. o is calculated and is used to determine the radiative correc-
The measure creates an insertion in the gluon propagatqfyng 1o parameters in the improved action. We follow a simi-
and at leading order ig”, is lar procedure and for anisotropic actions calculate the pole
energy of the propagator as a functionpaf For sufficiently
73) small p5 the infrared dispersion relation so derived can be
fitted to the standard quadratic form using the renormalized
mass and renormalized anisotropy as parameters.
which carries the correct phase. As expected, these expres- To carry out the calculation we use Feynman gauge as
sions are independent of the anisotropy. described in Sec. Il B witw=1, but we verified that the
Although we do not utilize them in this paper, for com- results were unchanged when other gauges are chosen, as
pleteness we also give the Feynman rules for untwistedemanded by gauge invariance. The diagrams that contribute
boundary conditions in our notation. The ghost propagatorto the one loop gluon self-energ@y, ,(p) are shown in Fig. 1
Eqg. (67), gains an extra factor ob,,, for the ghost color and the Feynman integrals were constructed using the verti-
indices, and the measure insertion becomes ces and rules of the previous section.

A(112)(.p)
2
g 2 5”,1/ ]
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At tree level the on-shell dispersion relation is given byandmg=my+g?m;+0O(g?), and at one loop obtain the re-

I'e=Y(p)=0 for p of the form above, and wheii&l)(p) is
defined in Eq(12). In the continuum, Eq(13), this gives

1
Japﬂp”=;<—x2E%+p§+m%>=o 77)

and the bare mass is defined By=m,/x at p;=0. On the
lattice for very smallp; this becomes

1 2 2
;[‘X Fi(Eo) +p3+Fs(mg)]=0 (78)

lation

29[ p3+ Fs(mg)1—m;F(mg) = x= (iEg,my,0,p3).
(84)

For L—« we have
2 2
p3+my

X2

mm, X
x> 2x

7 (85

The values ofp(L) and m,(L) are determined by &very
good straight line fit to Eq.(84).

whereF g ; are determined by the details of the inverse propa-

gator. For the Wilson actioR((m)=4sirf(m/2), and a more

complicated function with the same continuum limit for the

A. The calculation

We work with theD=3+1 SU3) gauge theory and con-

Symanzik improved case. For the actions we consider beloviqer the Wilson actiofiw) and the Symanzik improve|)
the need to avoid extra ghost poles in the gluonic propagatal iion defined if10].

(not to be confused with ghost fieldsieans that the tempo-
ral function is always unimproved(E) =4 sint?(E/2).

Adding one loop corrections, the on-shell condition be-
comes

1. The Wilson action

The Wilson action has a two-dimensional coupling space,
and is

IR D(p) =T V(i ER,Mo,0p3) —g%S ,,(IEg,Mo,0p3)
(79)

z Ps,s’

x,s>s’

1
0. Sw(B.X)==B| X2 Pet M (86)
Since we are working t®(g?), it is sufficient to evaluate
3 ,,(p) at the tree level on-shell enerdy,, as per Eq(78).
In general this requires taking into account the full matrix
structure ofFEf‘V) but for the form of the momentum chosen
Eq. (76), it can be shown that of the elemerifgs® and

'R, only I'g$) is non-zero and thus thatis a zero of this

wheres,s’ run over spatial links in different, positive direc-

tions, Ps o andPg, are plaquettes ang is the (unrenormal-

ized) anisotropy as per Eq10). Spatial and temporal tadpole

' improvement factors,us,, arising from favorite self-
consistency conditions may be written in, but this amounts

2
onfidiagonal element and no diagonalizationIdf) is re-
quired. For giverL,p3, we determine the bare pole valkg
by numerical solution.

As described irf12] the field theory for thed meson is a
2D theory, and we can write by analogy with E@8) an
effective dispersion relation for the infrared modes. small
p3) in terms of a renormalized massiz, and anisotropy,

XR-
X&F(ER)=p3+Fs(mg). (80)

Using EQq.(79), we have

1
;[—szt<ER>+p§+ Fs(mg)]—g%2(iEq,mg,0,p3)=0.

(81)
Substituting in Eq(80) gives
X 2 o
— = [p3+Fs(mg)]+p3+Fs(Mg) =g“x = (iEo,Mp,0,p3).
XR 82
We define
Z(9% x)=xr/x=1+n(x)9*+0(g"), (83)

merely to a reparametrization of the same action
2N

(BE_ :(ﬁEZ_N> L Yol
o*) \udu of)’ U

and the measured anisotropygr, is invariant. We shall
evaluate Eq(83) perturbatively. In doing so, we span the full
space of couplings and our calculation Bfg?, x) applies
equally well to any form of the Wilson action.

To one loop the diagrams for self-energy function for the
gluon are shown in Fig.(2—6. The calculations were done
on lattices with & 212 twisted momentum grid points. The
loop momentunk to be summed over is

(87)

21 2 2w 21
(Ko, Kkq,kz,k3)= I_nOvﬁnlvﬁnZal_na
0=<ng,n3<l, 0=<nq,n,<3L. (89

There is a pole in the integrands knof the graphs in Fig.
1(a,0 for on-shell external momentum so thg integration

contour is shifted byky,— ky—iEy/2. In addition, we use the
change of variablek—k’ suggested by Lscher and Weisz
[12],

K=k, — a,sin(k,), (89)
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o4 12 8 6 L 4 TABLE I. Anisptropy renormqlizatiom;, for vqriousx for Wil-
0.086 . , : ‘ son and Symanzik improved actions. The latter is sh@ywithout
and (b) with the spatial mean link counterterm contribution of Fig.
1(f).
£ 0.085 \-( . Wilson Spatially improved
= :
“% M \ X @ (b)
§ S 1 0 —0.02907(2) —0.01461(30)
g 0084 - A 1 15 - 0.0056545) 0.03163(30)
2 N N 2 0.085303(1) 0.021446(4) 0.05037(30)
3 Sl 25 - 0.030271) 0.06097(30)
g 0.083 | Sl | 3 - 0.035692(8) 0.06753(30)
N 35 - 0.03955(1) 0.07218(30)
N - 4 0.127901(2) 0.04251(1) 0.07567(30)
5 - 0.04851(2) 0.08000(30)
0.082 =5 0.02 0.04 0.06 oos 6 - 0.04851(2) 0.08279(30)
e 8 - 0.05172(5) 0.08637(30)

FIG. 2. Anisotropy renormalization for the Wilson action as a
function of L for bare anisotropy=2. For y=1 we found that, as expecteg(L)=0 for all L and
that the mass renormalization parametgrwas
which gives an integrand with much broader peaks that are
easier to evaluate numerically. It is easy to see that a reason- m;
able choice of parameter i8,~1—(xL,) * and this was m_o: —0.0379289), (92)
found to work well, significantly reducing the dependence on
L. a value which agrees with that given by Snippe using the
The integrals were done as direct summations over thbackground field method18]. Extrapolated values ofy
discrete momentum modes but in principle they can be calshown in Table | agree closely with results obtained byePe
culated using an adaptive Monte Carlo integrator even foand van Baa[19], also using background field gauge. For
finite L,1. A common example of such an importance sam-instance, we find
pling integration package iI8EGAS [16] (and described in
[17]), but this expects the integrand to be a continuous func- 7(x=2)=0.085303(1), #n(x=4)=0.127901(2),

tion of its arguments. This can be achieved by a change of (93
variable using a stepped functid@{x,L) defined by compared with Pez’s and van Baal’s values of 0.0853037
and 0.1278990, respectively. Combining our data with that in

Z(x,L)=int(xL), 0Os=x<1, (90 [19], we find a close phenomenological fit is

so thatZ(x,L) takes integer values in the range.O. L B 1 1
—1 and a given discrete momentum componenk(g) 7;()()—0.1687(2)—0.16397(4);—0.005245(2);.

=2mwZ(x,L)/L. It turns out that for one loop integrations the (94)
summation over modes is much more efficient. For two
loops, however, it will be necessary to USEGAS to get a 2. The Symanzik improved action
result of acceptable accuracy. , i .
We considered lattice sizes in the range <32 and!| The general form of the action has, in addition to the
large enough for the error due to finiteto be essentially CcoUPlingsB andy, an additional parametes;
undetectable. In practicé>50 sufficed. We calculated the 4 1R
. sst
self-energy at each for a number of very small values pf§ Ss((Box,v) = _’BXXZS [§P }

and using EQq.(84) calculated the parameterg(L) and st12 2
m,(L). All computations were done on a single processor
PC and took between 2 and 16 h per integral, depending on _ﬁl 2 §P B i Rsss’
L _ X oo |3 SST 12,2
A fit as a function ofL allows theL—o values to be
deduced. In Fig. 2 we show tHe dependence of(L) for 1 Ryg s
x=2, and the(excellenj fit shown is given by T (95
v
1 log(L?) whereR.s andRg, are 2x 1 loops. The anisot -
_ B ss’ sst ps. The anisotropy renor
7(L)=0.085303- 0'0188471117 0.007348 Lz malization factorZ(x,B,v), is a function of all three param-

(91 eters.
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It is usual to restrict the simulated parameters to a two- , x
. . ; . : inf. 86 4 3 2 1.5 1
dimensional surface in the coupling space. The particular 012 — R [ , [
surface is determined by the chosen method of tadpole im-
provement, demanding=ug(g?,x) for the reparametriza- - = including counter-term
tion in Eq.(87). If, for given anisotropyy, has a perturbative R * without counter-term
expansionug(g?) =1+d.g?+0(g*), then we can rewrite = 008 e, 1
the action as 8 -
3 RN i
.:_; \** \*\
Ssi(B.xv)=Ssi( B.x.v=1)+g"ASs+0(g"), oo T, -
5 = -
1 1 g e Y
ASSI:_IBdS 2 = XRsst+_(Rsss’ 72 o~ AN
vsos' O X & o000} ?5»\—7—7%—7 1
\\ \\
+Rs's’,s)]- (96) \\¥
-0.04 L 1 1 1 1 i
i _ ) _ 0 0.2 0.4 0.6 0.8 1
This form is numerically more convenient than the reparam- bare anisotropy, "
etrized form in that the dependence of the action on the
gauge coupling is lessened. FIG. 3. Anisotropy renormalization for the spatially improved

In this paper we calculat&(g?,x) over two such sur- action as a function of the bare anisotrgpyshowing fits quadratic
faces:v =1, corresponding to an action without tadpole im- " Xt
provement(in which caseA Sg; makes no contribution and

the surfacev =ug, corresponding to Landau mean link im- B. Comparison with measured data
provement where; are defined as the expectation values of  The goal of this paper is to provide determinations of the
the traced link matrices in the Landau gauge] renormalized anisotropy using perturbation theory. It is clear
that for sufficiently small couplings the one loop result will
Uus={(Ug), U=(Uy_. (97)  be sulfficient, but at couplings more typical of current lattice

simulations we must check what systematic truncation errors

U, are gauge fields in the spatial and temporal directionsare introduced by neglecting contributions of higher orders.
The actual values dig are established self-consistently by We can do this by comparing the perturbative predictions
an appropriate iteration procedure, usually for fix@gand vx(lth What measurements have been made in Monte Carlo
Xo (which we comment upon in Sec. JVAs ASg, is O(g?)  Simulations.

relative to other terms in the actions, we treat it as a coun- We start with the Symanzik improved action, for which
terterm, giving rise to a gluon propagator insertion shown inheasurements ofr have been published {i0,9], derived

Fig. 1(f). The coupling,d, is determined numerically in from tqrelon dispersion relations and the so-called sideways
each case for an identical latti¢&3,14. potential.

In both cases the actual calculation proceeds as for the We have obtained as a perturbative seriggg®,x,v)
Wilson action(the only changes in the loop integration code =1+ 7(x,v)g°+0(g*). Such a series, however, shows
being thePyTHON—generated input filesIn Fig. 3 we plot  Poor convergence and thus large truncation errors. We can
7(x) as a function ofy. The results are also presented in fee€xpress it as a power series in the “self-consistent,” or
Table I. The slightly larger errors in the full calculation re- “boosted” coupling, g§:
flects a greater uncertainty in the extrapolatiorLimue to

reduced data. Z(g5.x)=1+ n(x,v=u9gg+0(gg), (100
These values can be fitted extremely well, as is demon-
strated in Fig. 3, by using the definitions in Eq87). For appropriate choices of

tadpole improvement schemes, the convergence is much im-
1 1 proved. In resumming the series, we formally require only
7(x)=0.06021)—0.06562) — —0.02371)— (98)  thatus, are self-consistent for fixeB,,xo up to a suitable
X Xx° order of perturbation theory, and that ug to the same or-
der. There are arguments, however, for satisfying these con-
without the mean link counterterm contribution, and ditions at a numerical level for greater convergence. The one
loop result is, of course, unchanged under resummation.
1 1 The action in[9,10] contains explicit factors ofis; and
7(x)=0.0955%4)—0.070216) — —0.039914) — before applyindZ it is necessary to rescajg to y using the
X x? simulated values of the mean link factors. In Table Il we
(99 compare the one loop perturbative determination with the
published measurements. The couplings are larger than those
when this is included. used in many simulationgiving a relatively coarse spatial
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TABLE II. Renormalized anisotropy as determined from torelon dispersion relations and the sideways
potential[9,10], and from one loop perturbation theory.

Bo Xo Us U ag’ xgreas) X 7(x) xe)
(MeV)
17 4 0.7164  0.98295 66(1L1) 356(2) 2915  0.0667  3.601
6 07100  0.99158 778 528(2) 4296  0.0770  5.463
18 4 0.7279  0.98243 7921) 361(2) 2964 00673  3.629
6 0.7216  0.99208 83M) 531(2) 4364 00773  5.489
2.4 3 0.7868 0.9771 120600 2.71(3)  2.416 00596  2.776

lattice), and the anisotropy factors are at the higher end ofVe have (briefly) outlined our method for generating the
those usually employed, making this a rather stringent test ajluon r-point vertex functions using &yTHON code and

the perturbative series. Despite this, we find this error to bevaluating the loop integrals using a compiled programming
uniformly small. Foryo<4 the error is 2%, and foy,=6 it language. The strength of this dual-pronged approach is the
is only 3%. If we attribute the difference between the meagenerality; at the price of not carrying out optimization spe-
sured and one loop estimate to be that due to truncation Gfific to a particular action, a flexibility to rapidly change
the perturbative series, it is clear that the two loop contribuxctions is acquired. Further details of the implementation
tion to Z is very small. The range of couplings, however, is | pe given in[14].

insufficient to allow us to reliably estimate the two 100p co-  \ne have focused our attention on two actions, the Wilson

efficient ffo”.‘ the data. . laguette action and an acti@gBymanzik improved at tree
.A comparison of the one loop perturbatlvg and me'asureﬁevel through the addition of X2 loops extending two lat-
anisotropy has been carried out for the Wilson action by

; : o tice i i atial directions only. This lack of symme-
Klassen 21]. Corroboration of this analysis is hampered by a IC€ SPacings In spata cirectons ony. "is ac sy

: . . try is necessary to avoid spurious ghost poles in the gluonic
lack of p_ubllshed tadpole |mprovemen_t factors. Wh)[s_ts propagator, and in consequence even an isotropic lattice will
quoted directlyug; are required to obtain the self-consistent

: > ) ; not remain so under quantum corrections. Temporal im-
coupling,g,, appropriate to simulated values 8f We may  rovement is not crucial, of course, whepis small.

estimate the tadpole factors, but in doing so we introduce a pgth actions are considered with and without tadpole im-
second systematic error into the estimateygt This arises  prgvement of the links. In the case of the Wilson action no
from the difference between our estimate and the nuMeriayplicit reference tais, need be made in the perturbation

cally self-consistent tadpole values. It is in addition to thegheory, Specific tadpole improvement schemes manifest only
systematic error arising from the one loop truncation of thgp, rescaling the gauge coupling.

perturbative expansion &. We_anticipate the latter being_ of For the Symanzik improved action, the lack of temporal
order 3%, and we thus require values wf; at least this  jmprovement means all referencettocan be reparametrized
acc_urate. .Such an estlma_te can come from a tv_vo loop pertugway, but dependence an remains in the form of a coun-
bative estimat¢13,14. Using this we have confirmed Klas- tgrterm to thetadpolé unimproved action. The presence of
sen's analysigwhich used plaquette tadpole faclorsing  the counterterm necessarily specialized the perturbative cal-
the Landau mean link improvement. We find the combinedyjation to one form of tadpole improvement, and we se-
two loop tadpole, one loop anisotropy prediction fgrto be  |ected self-consistent Landau gauge mean links for this work.
correct to within 5% for3=5.6, and to 2% fo8=6.3 for  There are also advantages in using this reparametrization
1.5<x=6. With the correcus valuezs, a more precise estl- \yhen tuning actions such &, for Monte Carlo simulation,
mate of the truncation errors &(x,g”) would be possible, \yhen explicit tadpole factons , are often present. Reparam-
and we expect them to show that the one loop anisotrop¥trizing to remove dependence apmakes the finding of a
r_enormahzatlon calculation is as accurate for the Wllsqn aCself-consistent, for fixed (3,x) a one parameter problem.
tion as we have demonstrated it to be for the Symanzik IMSimilarly tuningu, is done by varying 8o, xo,U;) together
proved case. along the single parameter curve of constahiy( us). This
two stage approach is much faster than a simultaneous ex-
ploration of the two parameter space.

For the Symanzik improved action, we presented results

We have presented perturbative calculations of the renomver a spread of bare anisotropies =<8, and give inter-
malization of the anisotropy in simple gluonic lattice actionspolating fits, Eqs.(98),(99), respectively, with and without
for SU3) in D=3+1. These have been carried out by (Landay mean link tadpole improvement. Comparing these
studying the infrared dispersion relation of the on-shell glu-numbers with measurements in simulations shows that the
onic propagator, regulated through the use of twisted boundsne loop perturbative determinations of the renormalized an-
ary conditions as ifil12]. We have reviewed the derivation of isotropy are accurate to within 2% fgr<4 across a range in
the Feynman rules for general actions and anisotropy struecouplings and lattice spacings much larger than would typi-
ture, using both twisted and untwisted boundary conditionscally be used in lattice simulations. Fge= 6, which is larger

IV. SUMMARY

094509-12



ONE LOOP CALCULATION OF THE RENORMALIZED . .. PHYSICAL REVIEW 66, 094509 (2002

than that currently employed in large scale simulations, thevell described by lattice perturbation theory. If the anisot-
deviation is 3%. ropy is to be used, for instance, to set the scale in lattice
In the case of the Wilson action we have verified existingcalculations as per Eql), then a 3% systematic error jk
results (calculated using the background field methdy s sufficiently small that is unlikely to represent the dominant
Snippe[18] and Peez and van Badl19]. Using an interpo-  yncertainty in the final estimate, and the one loop determi-

lating fit, Eq. (94), we have carried out a comparison with pations presented in this paper are all that is required.
lattice simulation results by Klass¢a1]. We find the agree-

ment to be approximately 3—4 % for gauge couplings in the
typically simulated range ang<#6, but this uncertainty in-
cludes a systematic error from having to estimate tadpole
improvement factors, and the error in the anisotropy alone is We are pleased to acknowledge the use of the Hitachi
almost certainly less. SR2201 at the University of Tokyo Computing Center and

We conclude that the renormalization of the anisotropythe Cambridge—Cranfield High Performance Computing Fa-
which is difficult to calculate accurately in simulations, is cility for this work.
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