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Nicolai mapping versus exact chiral symmetry on the lattice
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The two-dimensionaN =2 Wess-Zumino model is constructed on the lattice through Nicolai mapping with
a Ginsparg-Wilson fermion. The Nicolai mapping requires a certain would-be surface term in the bosonic
action which ensures the vacuum energy cancellation even on the lattice, but inevitably breaks chiral symme-
try. With the Ginsparg-Wilson fermion, the holomorphic structure of the would-be surface term is maintained,
leaving a discrete subgroup of the exact chiral symmetry intact for a monomial scalar potential. Through this
feature both the boson and fermion can be kept massless on the lattice without any fine-tuning.
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[. INTRODUCTION original model can be associated with the four different
methods to construct the Nicolai mapping. The resulted four
The recent rediscovery of the Ginsparg-Wilson relationdifferent would-be surface terms reduce to surface terms in
[1-3] and the realization of exact chiral symmetry on thethe continuum limit through the Leibniz rule, and then the
lattice [4] are interesting developments from the point of four supersymmetries are realized at the same time. But at
view of the constructive approach to quantum field thédty. finite lattice spacing they define four different lattice models
is a challenge to extend this idea to other aspects of quantugd in €ach model only one supersymmetry is realized.
field theory. The construction of supersymmetric theories is Another unsatisfactory feature of the above construction

one possibility in this direction, although it has been known's_tha(‘jt ch(ijral symmetry of the o_rig(ijnal nkwodel ri1s r:jot main-
to be difficult because of the lack of infinitesimal translation [2iN€d and a fine-tuning is required to keep the degenerate

invariance on the lattice and the breakdown of the Leibniz>95" and fermion light or massless. This is partly because
rule [6—11]. Based on the domain wall fermida2,13, the he fermion theory obtained through the lattice Nicolai map-

) : : . ping turns out to be the Wilson-Dirac fermion. More seri-
overlap formalism/14], and the Ginsparg-Wilson relation, ously, the would-be surface term required in the bosonic ac-
there haye been- sever al attem[dts—_zg S0 -far. tion breaks chiral symmetry explicitly.

Despite the difficulties, the two-dimensiordi=2 Wess- The purpose of this paper is to construct two-dimensional
Zumino model has been constructed successfully based qQ0_ 5 \wWess-zumino model with the Ginsparg-Wilson fer-
Nicolai mapping[23] in the Hamiltonian formalism by Ce- mion and examine the above problems. We construct the
cotti and Girardelld 24] and on a Euclidean lattice by Sakai

: ; _ Rt lattice Nicolai mapping so that its Jacobian reproduces the
and Sakamot§25], respectively. The Nicolai mapping is the ¢ nctional determinant of the Ginsparg-Wilson fermion pos-
transformation of the bosonic field variables to the Gaussia

. . R I%essing Yukawa coupling with the exact chiral symmetry. We
stochastic variables whose Jacobian just reproduces the fungz cae that the use of the Ginsparg-Wilson fermion im-
tional determinant of the fermions in the model. The Euclid

; . . ; _ “proves the holomorphic structure of the would-be surface
ean lattice version of the Nicolai mappfgroduces a cer-

. . ) . term. Although it still breaks chiral symmetry explicitly in
tain would-be surface term in the bosonic action and ensure, g y y exp y

. . 5enera|, but for monomial scalar potentials

the vacuum energy cancellation even on the lattice. More=

over, one special combination out of four supersymmetries of W[p]=\¢", n=345..., (1)
the N=2 model is manifest in the lattice actidrf.

In this construction, however, the remaining three superit leaves a discrete subgroup of exact chiral symmetry intact
symmetries cannot be maintained. As clarified by Catteraland both boson and fermion can be kept massless on the
and Karamo\ 28], the four different supersymmetries in the lattice without any fine-tuning.

We will also discuss how the asymmetric treatment be-
tween the field and antifield of the Ginsparg-Wilson fermion

*E-mail address: kikukawa@eken.phys.nagoya-u.ac.jp affects the structure of the Nicolai mapping. Actually, be-

"E-mail address: yoichi@eken.phys.nagoya-u.ac.jp cause of the asymmetric treatment, the Cauchy-Riemann

'Fujikawa has proposed a new class of Dirac operators by theondition can be satisfied for only two cases out of four
algebraic extension of the Ginsparg-Wilson relatigih possible Nicolai mappings discussed by Catterall and Kara-

2The Nicolai mapping on the spacial lattice in the Hamiltonian mov [28].
formalism was first constructed by Cecotti and Girardello in Ref.

[24]. The Nicolai mapping on the two-dimensional Euclidean lattice || T\WWO-DIMENSIONAL N=2 WESS-ZUMINO MODEL—

3The lattice model with certain fermionic symmetry has recently
been proposed by Itoh, Kato, Sawanaka, So, and JRB& The action of the two-dimensiond =2 Wess-Zumino

“In the same spirit, but in a quite new approach, the constructioomodel in the continuum limit is give by
of super-Yang-Mills theory on the spacial lattice has recently been
proposed by Kaplan, Katz, and Ungar]. S=53+ 5, (2
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sB=J dzxL‘B(x)=J (9,6 0,6+ W 'W'}, (3 891=0,  89,=0, ()

where¢ is a one-component Grassmann parameter and

— — 1+ ’}/3
S =fd2xc (X)=fd2x[wy 9+ W2y A R —
" " e 2 o=\, ] =), (12
— Y3 . o . -
+YW* — Y- (4)  This transformation is a certain combination of the super-
symmetry transformation of thBl=2 model, which has a

This action is invariant under four independent supersymmeSPECial feature: the total Lagrangian which includes ,the extra
try transformations associated with four independent reafurface terms required by the Nicolai mappindy (x)
Grassmann parameters. The Lagrangian is invariant up to £8(X)+£Lr(x) is exactly invariant without leaving any
terms which can be rewritten into a total divergence througrsurface term. See the Appendix for details. Therefore, this
the Leibniz rule. This property of the supersymmetry trans_spemal supersymmetry has a fair chance to be realized on the
formations immediately causes a trouble on the lattice, belattice. _ o
cause the Leibniz rule does not hold for the field products of [N fact, as shown by Sakai and Sakamf@b], the Nicolai
more than quadratic orders. mapping can be constructed successfully on the two-

This model, however, possesses the so-called Nicolddimensional Euclidean lattice. Their result reads
mapping M(X)=(— V35— V4= VHA(X)— V5B(x)+U(x),

- _ _ 13
MO AR T BRI, NGO =~ 500 + (V- VA-THBOO V00,

NEGO= = 32A()+ 9,B00) +V(x), ) where VA'S are defined by forward and backward differen-
whereA,B andU,V are real and imaginary parts gf and ~ U2° 35
W', respectively, . .
VP=S(V/+V)), Vi=5(V/-V)). (14)
Vs NG i i
- E(A+IB)’ W= E(Uﬂv)' © The Jacobian of this lattice Nicolai mapping reproduces the

functional determinant of the Wilson-Dirac fermion with the
The Jacobian of this transformation of the bosonic field vari-yukawa coupling
ables just coincides with the functional determinant of the

fermion M N
q JA  JA
UL o
1+y3 1-1vy3 R R
_ " " JB B
det oM oN det{yM&MvLW 5 +W* > [
R R 1+y3 1-1y3
0B 0B — S_yvA W + ”
@ de\[%(nvﬂ Vi)W W
(15

while the Gaussian weight favl(x) and N(x) reproduces

the bosonic part of the Lagrangiaiy(x) while the bosonic action determined by the lattice Nicolai
mapping contains the following “would-be surface terms:”

1
SIMOOENOCOT =0, 4% 0, + WH W'+ W' 7,0 G(VS—IVIW' + ¢* (VS+i VW — p(V+VHW*’
FWH T 9,% = L 4(X) ) —¢* (VI+ V)W'. (16)
up to the surface termeV’ dyd+W* ' d,¢* = W+ a,W* . By virtue of these terms, the vacuum energy cancellation

The Gaussian path-integral bf(x) andN(x) can reproduce holds on the lattice. Moreover, the total action possesses a

the partition function of the original model. supersymmetry under the same transformation as &s.
From the structure of the above Nicolai mapping, it fol- (10), and(12).
lows that the action is invariant under the following fermi-

onic transformatiori29,30: lll. NICOLAI MAPPING

WITH GINSPARG-WILSON FERMION

SA=y1€, OB=—iyy, C) Now we construct the two-dimensiondl=2 Wess-
Zumino model with the Ginsparg-Wilson fermion, relying on
Op1=—EM,  Siypr=iéN, (100  the existence of the Nicolai mapping as the guiding principle
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to maintain supersymmetry as in REZ5]. Our strategy is as T+S, iS,
follows. First we fix the fermionic part of the action so that D= i, T-s. |’ (19
the Yukawa coupling possesses the exact chiral symmetry i 1
based on the Ginsparg-Wilson relation. Then we Construcf hereT S s, are defined as
the Nicolai mapping so that its Jacobian reproduces the func- o
tional determinant of the Ginsparg-Wilson fermion with the 1 1 VAL VA
Yukawa coupling. Finally, the bosonic part of the action is - _< - -l 2ot (20)
determined so that it coincides with the Gaussian weight for e VXX VXX
the Nicolai-mapped bosonic variables.
We take the following fermionic action: s VJ-S g ) 1)
= —= Yy i = 1, 1
1T X o)
=>, y(D+F
S 2 y(D+F)y X=1-aDy,. (22
— 1+ 1+ In this notation, the Ginsparg-Wilson relation can be written
Y3t 73
X,y
1-ys 1= a(T2— S-S =2T. 23)
P W ), a7 (TS (
Y By construction, the fermionic part of the acti¢h?) is in-

where D is a lattice Dirac operator which satisfies the variant under lattice chiral rotatiof]

Ginsparg-Wilson relation . -
) ) Y—expliOys) g, h— P explifys),
Dys+y3sD=0, vy3=7vys(1—aD). (18 , - (29
W' —W’exp(2i6), W*"—W*"exp(—2i6).
As an explicit example, we adopt the overlap Dirac operator
given by Neubergef3]: By inserting the Dirac operatgi9) into (17), we obtain

JuU a JV a BEAY a Ju
Al 3(T+S) | ==2 35S, oAl 1= 5(T=S) | =255

T+S, iS, ) A

D+F=| . +
-is, T-S;

whereA,B,U,V are real and imaginary parts ¢f, W’

N=AS,+B(T—S,)+V 1—2(T—51))—ugsz,
— XA+ R U (29)
6= \5A+iB), W=/5U+V). (20

Then the Nicolai mapping should solve the differential equawhereM,N,A,B,U,V are functions ofx and difference op-

tion eratorsT,S;,S, are multiplied from the right. As to other
possible solutions, we will discuss later.
IM IN We now evaluate the bosonic part of the action implied by
A iﬂ the above Nicolai mapping
+F= .
D+F M 6N @
9B B

1
sB=§2 {M2+N?}. (30)
X
We can find a solution to this equation as follows:
The Ginsparg-Wilson relation plays an important role

through the calculation: as an illustrative example, we show
(28) AXU term andBXV term

M=A(T+S;)+BS,+U

1 a T+S Va
5( 1) 552,
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a difference is in that the terms with the structurl¢,x ¢*
Si+T— E(TZ—SE—S@) U andW* ' X ¢, do not appear in Eq32), and this implies that
the holomorphic structure of the would-be surface terms is
a maintained just as in the continuum theory. As we have seen
—5+T- E(TZ— Si-S9) ) \ explicitly in Eq. (31), these terms vanish identically by virtue
of the Ginsparg-Wilson relation. Thus the use of the
a Ginsparg-Wilson fermion can improve the holomorphic
= ¢* ( T- E(Tz— St — Sﬁ))W’ structure of the would-be surface term.
The would-be surface terms in E@32) still break the
a exact chiral symmetry on the lattice explicitly. They cannot
T— —(T2—S§—S§)>W* "+ PSW' + p* W, be eliminated, because these terms are playing a crucial role
2 in order to maintain the supersymmetry of the action. There-
(31) fore the breakdown of the exact chiral symmetry on the lat-
tice seems inevitable.
Here we note that the combinatidn- a/2 (T?— S?—S3) is Thanks to the improved holomorphic structure, however,
equal to zero by Eq23). We finally obtain the bosonic part if one assumes that the superpotential is a monomial

of the action as W(¢p)=\¢", n=345..., 37
2

a . then the total action is invariant under the discrete chiral
_ * 4 . 4 I —
Se zx: [d) Aprw? (l 4 A)W WIS +iS) 4 rotation with the angled=wk/n for arbitrary integerk. By

this remaining discrete exact chiral symmetry, both boson
and fermion can be kept massless on the lattice without any
fine-tuning. We would have the same situation in the con-
tinuum theory if we keep the total divergence term implied
where A is defined byD'D=A-1 and A=(T2—S§—S§) by the Nicolai mapping in the action so that an exact super-
=27T/a. symmetry is maintained at the Lagrangian level. So, we
Thanks to the existence of the Nicolai mappif@g) and  think, it is not quite a lattice artifact. ,

(29), it is ensured that all the nice features of the construction !t i not difficult to prove in any order of the lattice per-
by Sakai and Sakamof@5] are maintained in our construc- turbation expansion that the fermion mass term would not be

tion. The total actiors=Sg+ Sr. given by Eqs(32) and(17) produced in this lattice model with a monomial potential.
possesses a supersymrﬁetrypunder the transformation " The possible coupling terms appear in the following combi-

A

+B

té

+V\/*’(—Sl—i82)¢*], (32

nations:
5A:l//1§, 5B:_il//2§, (33) ¢n71¢*nfl, ¢n, d)*n! ZL(lsn*leR, ERd)*n*Zl/IL, (38)
Sihy=—EM, Sihp=iéN, (39 where we omit derivatives and proportional factors. In per-
turbation expansion, we should consider all possible dia-
Syy=0, Siy=0, (350  grams produced by the product of those couplings. The mass

. term must have the external |eg_§-¢R (or ¢r-1p), while
where{ is a one-component Grassmann parameter and  the n—2 legs of scalar field coming from the combination

L ('ﬂL‘f’n_zlﬂR)(Hl)(¢R¢*_n_2¢L)I (1=0,1,2...) cannot be
¢:( ) = (y, ). (36) closed by—n legs coming fromp* " or by any other product
7. of the interaction term3 Therefore we can conclude that the
fermion mass term would not be generated in our model.
%hen the supersymmetry implies that the boson would not
cquire mass, neither. Here we should emphasize that the
ame result cannot be obtained in the case of the Wilson
fermion, because there are no mechanisms to suppress non-
holomorphic scalar self-interaction.

The vacuum energy cancellation also holds even at the finit
lattice spacing(One may verify through explicit calculations
that the vacuum energy is canceled exactly in any orders
the lattice perturbation theojy.

IV. CHIRAL SYMMETRY
IN THE SUPERSYMMETRIC ACTION V. SOLUBILITY OF NICOLAI MAPPINGS

Now let us examine the chiral properties of the lattice Two-dimensionalN=2 Wess-Zumino model is invariant
action of the two-dimensionaN=2 Wess-Zumino model under four supersymmetry transformations which can be re-
obtained in the previous section. The fermionic part of thelated to four types of the Nicolai mappings as clarified in
action (17) respects the exact chiral symmetry on the latticeRef. [28]. In the case with Wilson-Dirac fermions, we can
by our construction. Then the question is the chiral propertieactually obtain all the four mappings.
of the bosonic part of the actidi32).

First of all, the bosonic part of the actid82) should be
compared with the counterpart in the construction by Sakai >~ jn=n-2 cannot be satisfied by any integgr for n
and Sakamotd@16) or Eq. (3.6) in Ref.[25]. An important =345... .
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In the case with Ginsparg-Wilson fermions, however, thethen we can solve the differential equations which corre-
situation differs due to the asymmetric choice of chiral pro-spond to Eqs(41) and(42), while the Cauchy-Riemann con-
jectors(17). The four differential equations corresponding to ditions for the equations which correspond to E@8) and

the four Nicolai mappings are given by (40) break down.
oM oN VI. SUMMARY
[ I —_—
| oA A We have constructed two-dimension&l=2 Wess-
Sl OM N | (39 Zumino model on the lattice which possesses both the super-

= = symmetry based on the Nicolai mapping and the exact chiral

B B symmetry based on the Ginsparg-Wilson relation. The Nico-
lai mapping ensures that the vacuum energy cancellation
M R\ holds and boson and fermion are degenerate. The use of the
9B —| B Ginsparg-Wilson fermion maintains the holomorphic struc-
D+F= , (400  ture of the would-be surface term, leaving a discrete sub-
iﬂ ﬂ group of the exact chiral symmetry intact for a monomial
dA A scalar potential. Thus both boson and fermion can be kept
massless on the lattice without any fine-tuning.
M oM
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B A
D+F= N oN | (42) APPENDIX: NICOLAI MAPPING
_i— = AND SUPERSYMMETRY
B 9A

In this appendix we examine the properties of the super-
symmetry which follows from the Nicolai mapping in the
continuum theory. Supercharges in two-dimensioNat 2
theory are written as

The solution of the first on€39) is the solution given in Sec.
lll. The solution of the second on@o0) is obtained in the
similar manner using dU/dA=dV/9B and JU/JB

= —9V/9A.® However, the rest two cases cannot be solved.
. . s 1 d 0 — 1 J — J
The Cauchy-Riemann condition, which is the necessary con- Q,=—| ——-6_—|, = ——0_—,
dition for the solubility, does not hold for the latter two NAYTE Iz J21396 Jz
cases. For example, the Cauchy-Riemann condition for the (A1)
third one(41) is evaluated as
Q- 1 J 7 J 6 _ 1 Jd p 1%
J 0 To2\aby TTaz) T 2\, Tez)
&_B(D+F)ll_lo"_A(D+F)12 (A2)
9?U 92V TheseQ'’s satisfy following SUSY algebra:
=-a “AJB Sl+—(9A(?BSZ #0. (43

— d — d
{Q+!Q+}:_5' {Q—!Q—}:___‘ (Ag)
This violation of the Cauchy-Riemann condition is the con- 9z
sequence of the asymmetric choice of the chiral projectors, , : o
Therefore the Nicolai mappings related to the other two suﬁ—Ne can define the chiral superfield in such theory as

persymmetries have no solutions.

If we perform singular change of the field variables as D.®=0, (Ad)
where
’ a T a o
W'=|1-5D |y, ¢'=y¢|1-5D| . (49 5_1(a+;a) = _ Lo a)
To2\ee- TTez)t T \2\ae, oz
(A5)
5The bosonic action given by the solution of E40) has the form
(32) with the sign ofS; reversed. The form of the chiral superfield is
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D=p(z+60_6_,2-0.0.)+\20_¢,(z+0_0_,z — ) (W*' 9,¢* ) = —W*' 3,(— eih_) = (— ep_)W* "9, *
—0.0,)+\20, p_(z+0_0_,2-0,0.) = (Y- 0 W* " +W* '3, ). (A13)
+20.60_D(z+0_60_,2—0,0,), (A6) SO if we redefine Lagrangian including/*'d,¢* and its

complex conjugate
where .. and Et are chiral components of the Dirac fer- ~

mion L=LAW T+ W' d,0%, (A14)
1+ ys R then we have the symmetry und&— &, at the Lagrangian
Y= > U, Y=y 5 (A7)  level.

Now let us see the relation between this symmetry and the

On the other hand, the antichiral superfield is written as Nicolai mapping. The Nicolai mapping in continuum is writ

ten as
DO=¢*(z—0_60_,2+0,.0,)—\20_y,(z—60_0_,2 M=d;A—3,B+U, (A15)
+0.0.)— 20,4 (z—0_6_,2+6.6,) N=—d,A—3d,B+V (A16)
—20,0.D*(z—60_0_,2+60.,0.). (A8)  so that fermionic action is given by
By Calculati_ngeQ+d>, ngf, we introduce supersymmetry M IM
transformation as e
_ S A JB e
=+ =
Bid=e, 816*=0, R B A
'9A 9B
614+=0, o19-=0, (A17)
o o (A9)
Sip_=€eD, Sp.=—€d,Pp*, where A and B are real and imaginary pa¢hormalized by
1/\/2) of ¢ andU andV are those ofV’. The total action
6,.D=0, 6D*=€d, implied by the Nicolai mapping is just equal to E@\14).
- o We can also see that the supersymmetry transformation im-
and fromeQ_®, eQ_®, introduce another one plied by the Nicolai mapping
5,=0, S,  =—e€_, OA= €y, oB=—iey,
S, =0, Sp_=0, oy =0, SY,=0, (A18)
Soth_= €dy, Sy, = — eD*, Spy=—€eM,  Syp=ieN
8,D=—edyp,, 8,D*=0. (A10) is nothing but the transformatios; — 5, described above.
Actually, by inserting
Now we take Lagrangiad as
1 1
[DD]p et ([W(P) g ot H.C.) ¢+=E(lﬁ1+ ), ‘//—:E(’/fl_l/fz)v (A19)
=y T+ 0 -+ ,8% —D* D+ W'y, . .
RV o " o N o= (i — o , __:__+_ A20
W'D+, W*" iy —W*'D [/ \/E(l/fl ba), Y \/E('ﬂl ) (A20)

=L, (A11)
into Eq. (A18), then we obtain
where we have arranged total divergence terms appropri-
ately. The variation of this Lagrangian undéy gives total op=€y,, op* =€y,
divergence term

SY_=—edzp— eW*', Sih,=—€d,p' — W'
—e(P_ W+ WH' ). (A12) (A21)

On the other hand, the variation #*'d,¢* under—&8, and this coincides with5;— &, after eliminating auxiliary
gives fieldsD andD* by their equation of motion.
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