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Nicolai mapping versus exact chiral symmetry on the lattice

Yoshio Kikukawa* and Yoichi Nakayama†

Department of Physics, Nagoya University, Nagoya 464-8602, Japan
~Received 25 July 2002; published 27 November 2002!

The two-dimensionalN52 Wess-Zumino model is constructed on the lattice through Nicolai mapping with
a Ginsparg-Wilson fermion. The Nicolai mapping requires a certain would-be surface term in the bosonic
action which ensures the vacuum energy cancellation even on the lattice, but inevitably breaks chiral symme-
try. With the Ginsparg-Wilson fermion, the holomorphic structure of the would-be surface term is maintained,
leaving a discrete subgroup of the exact chiral symmetry intact for a monomial scalar potential. Through this
feature both the boson and fermion can be kept massless on the lattice without any fine-tuning.
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I. INTRODUCTION

The recent rediscovery of the Ginsparg-Wilson relat
@1–3# and the realization of exact chiral symmetry on t
lattice @4# are interesting developments from the point
view of the constructive approach to quantum field theory.1 It
is a challenge to extend this idea to other aspects of quan
field theory. The construction of supersymmetric theories
one possibility in this direction, although it has been kno
to be difficult because of the lack of infinitesimal translati
invariance on the lattice and the breakdown of the Leib
rule @6–11#. Based on the domain wall fermion@12,13#, the
overlap formalism@14#, and the Ginsparg-Wilson relation
there have been several attempts@15–22# so far.

Despite the difficulties, the two-dimensionalN52 Wess-
Zumino model has been constructed successfully base
Nicolai mapping@23# in the Hamiltonian formalism by Ce
cotti and Girardello@24# and on a Euclidean lattice by Sak
and Sakamoto@25#, respectively. The Nicolai mapping is th
transformation of the bosonic field variables to the Gauss
stochastic variables whose Jacobian just reproduces the
tional determinant of the fermions in the model. The Eucl
ean lattice version of the Nicolai mapping2 produces a cer-
tain would-be surface term in the bosonic action and ens
the vacuum energy cancellation even on the lattice. Mo
over, one special combination out of four supersymmetrie
the N52 model is manifest in the lattice action.3 ,4

In this construction, however, the remaining three sup
symmetries cannot be maintained. As clarified by Catte
and Karamov@28#, the four different supersymmetries in th

*E-mail address: kikukawa@eken.phys.nagoya-u.ac.jp
†E-mail address: yoichi@eken.phys.nagoya-u.ac.jp
1Fujikawa has proposed a new class of Dirac operators by

algebraic extension of the Ginsparg-Wilson relation@5#.
2The Nicolai mapping on the spacial lattice in the Hamiltoni

formalism was first constructed by Cecotti and Girardello in R
@24#. The Nicolai mapping on the two-dimensional Euclidean latt
was obtained by Sakai and Sakamoto in Ref.@25#.

3The lattice model with certain fermionic symmetry has recen
been proposed by Itoh, Kato, Sawanaka, So, and Ukita@26#.

4In the same spirit, but in a quite new approach, the construc
of super-Yang-Mills theory on the spacial lattice has recently b
proposed by Kaplan, Katz, and Unsal@27#.
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original model can be associated with the four differe
methods to construct the Nicolai mapping. The resulted f
different would-be surface terms reduce to surface term
the continuum limit through the Leibniz rule, and then t
four supersymmetries are realized at the same time. Bu
finite lattice spacing they define four different lattice mode
and in each model only one supersymmetry is realized.

Another unsatisfactory feature of the above construct
is that chiral symmetry of the original model is not mai
tained and a fine-tuning is required to keep the degene
boson and fermion light or massless. This is partly beca
the fermion theory obtained through the lattice Nicolai ma
ping turns out to be the Wilson-Dirac fermion. More se
ously, the would-be surface term required in the bosonic
tion breaks chiral symmetry explicitly.

The purpose of this paper is to construct two-dimensio
N52 Wess-Zumino model with the Ginsparg-Wilson fe
mion and examine the above problems. We construct
lattice Nicolai mapping so that its Jacobian reproduces
functional determinant of the Ginsparg-Wilson fermion po
sessing Yukawa coupling with the exact chiral symmetry.
will see that the use of the Ginsparg-Wilson fermion im
proves the holomorphic structure of the would-be surfa
term. Although it still breaks chiral symmetry explicitly in
general, but for monomial scalar potentials

W@f#5lfn, n53,4,5, . . . , ~1!

it leaves a discrete subgroup of exact chiral symmetry in
and both boson and fermion can be kept massless on
lattice without any fine-tuning.

We will also discuss how the asymmetric treatment b
tween the field and antifield of the Ginsparg-Wilson fermi
affects the structure of the Nicolai mapping. Actually, b
cause of the asymmetric treatment, the Cauchy-Riem
condition can be satisfied for only two cases out of fo
possible Nicolai mappings discussed by Catterall and Ka
mov @28#.

II. TWO-DIMENSIONAL NÄ2 WESS-ZUMINO MODEL—
NICOLAI MAPPING AND SUPERSYMMETRY

The action of the two-dimensionalN52 Wess-Zumino
model in the continuum limit is give by

S5SB1SF , ~2!
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SB5E d2x LB~x!5E d2x$]mf* ]mf1W* 8W8%, ~3!

SF5E d2x LF~x!5E d2xH c̄gm]mc1c̄W9
11g3

2
c

1c̄W* 9
12g3

2
cJ . ~4!

This action is invariant under four independent supersym
try transformations associated with four independent r
Grassmann parameters. The Lagrangian is invariant u
terms which can be rewritten into a total divergence throu
the Leibniz rule. This property of the supersymmetry tra
formations immediately causes a trouble on the lattice,
cause the Leibniz rule does not hold for the field products
more than quadratic orders.

This model, however, possesses the so-called Nic
mapping

M ~x!52]1A~x!2]2B~x!1U~x!,

N~x!52]2A~x!1]1B~x!1V~x!, ~5!

whereA,B andU,V are real and imaginary parts off and
W8, respectively,

f5A1

2
~A1 iB !, W85A1

2
~U1 iV !. ~6!

The Jacobian of this transformation of the bosonic field va
ables just coincides with the functional determinant of
fermion

detS ]M

]A

]N

]A

]M

]B

]N

]B

D 5detH gm]m1W9
11g3

2
1W* 9

12g3

2 J ,

~7!

while the Gaussian weight forM (x) and N(x) reproduces
the bosonic part of the LagrangianLB(x)

1

2
$M ~x!21N~x!2%5]mf* ]mf1W* 8W81W8] z̄f

1W* 8]zf* [L B8 ~x! ~8!

up to the surface termsW8] z̄f1W* 8]zf* 5] z̄W1]zW* .
The Gaussian path-integral ofM (x) andN(x) can reproduce
the partition function of the original model.

From the structure of the above Nicolai mapping, it fo
lows that the action is invariant under the following ferm
onic transformation@29,30#:

dA5c̄1j, dB52 i c̄2j, ~9!

dc152jM , dc25 i jN, ~10!
09450
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dc̄150, dc̄250, ~11!

wherej is a one-component Grassmann parameter and

c5S c1

c2
D , c̄5~ c̄1 ,c̄2!. ~12!

This transformation is a certain combination of the sup
symmetry transformation of theN52 model, which has a
special feature: the total Lagrangian which includes the e
surface terms required by the Nicolai mappingL 8(x)
5L B8 (x)1LF(x) is exactly invariant without leaving any
surface term. See the Appendix for details. Therefore,
special supersymmetry has a fair chance to be realized on
lattice.

In fact, as shown by Sakai and Sakamoto@25#, the Nicolai
mapping can be constructed successfully on the tw
dimensional Euclidean lattice. Their result reads

M ~x!5~2¹1
S2¹1

A2¹2
A!A~x!2¹2

SB~x!1U~x!,
~13!

N~x!52¹2
SA~x!1~¹1

S2¹1
A2¹2

A!B~x!1V~x!,

where¹A,S are defined by forward and backward differe
tials as

¹ j
S5

1

2
~¹ j

11¹ j
2!, ¹ j

A5
1

2
~¹ j

12¹ j
2!. ~14!

The Jacobian of this lattice Nicolai mapping reproduces
functional determinant of the Wilson-Dirac fermion with th
Yukawa coupling

detS ]M

]A

]N

]A

]M

]B

]N

]B

D
5detH(

m
~gm¹m

S2¹m
A!1W9

11g3

2
1W* 9

12g3

2 J ,

~15!

while the bosonic action determined by the lattice Nico
mapping contains the following ‘‘would-be surface terms:

f~¹1
S2 i¹2

S!W81f* ~¹1
S1 i¹2

S!W* 82f~¹1
A1¹2

A!W* 8

2f* ~¹1
A1¹2

A!W8. ~16!

By virtue of these terms, the vacuum energy cancellat
holds on the lattice. Moreover, the total action possesse
supersymmetry under the same transformation as Eqs.~9!,
~10!, and~11!.

III. NICOLAI MAPPING
WITH GINSPARG-WILSON FERMION

Now we construct the two-dimensionalN52 Wess-
Zumino model with the Ginsparg-Wilson fermion, relying o
the existence of the Nicolai mapping as the guiding princi
8-2
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to maintain supersymmetry as in Ref.@25#. Our strategy is as
follows. First we fix the fermionic part of the action so th
the Yukawa coupling possesses the exact chiral symm
based on the Ginsparg-Wilson relation. Then we const
the Nicolai mapping so that its Jacobian reproduces the fu
tional determinant of the Ginsparg-Wilson fermion with t
Yukawa coupling. Finally, the bosonic part of the action
determined so that it coincides with the Gaussian weight
the Nicolai-mapped bosonic variables.

We take the following fermionic action:

SF5(
x

c̄~D1F !c

5(
x,y

c̄~x!S D1
11g3

2
W9

11ĝ3

2

1
12g3

2
W* 9

12ĝ3

2
D

x,y

c~y!, ~17!

where D is a lattice Dirac operator which satisfies th
Ginsparg-Wilson relation

Dĝ31g3D50, ĝ35g3~12aD!. ~18!

As an explicit example, we adopt the overlap Dirac opera
given by Neuberger@3#:
ua

09450
ry
ct
c-

r

r

D5S T1S1 iS2

2 iS2 T2S1
D , ~19!

whereT, S1 , S2 are defined as

T5
1

a S 12
1

AX†X
D 2

¹1
A1¹2

A

AX†X
5 tT, ~20!

Sj5
¹ j

S

AX†X
52 tSj , j 51,2 ~21!

X512aDW . ~22!

In this notation, the Ginsparg-Wilson relation can be writt
as

a~T22S1
22S2

2!52T. ~23!

By construction, the fermionic part of the action~17! is in-
variant under lattice chiral rotation@4#

c→exp~ iuĝ3!c, c̄→c̄ exp~ iug3!,
~24!

W9→W9exp~2iu!, W* 9→W* 9exp~22iu!.

By inserting the Dirac operator~19! into ~17!, we obtain
D1F5S T1S1 iS2

2 iS2 T2S1
D 1S ]U

]A S 12
a

2
~T1S1! D2

]V

]A

a

2
S2 i H ]V

]A S 12
a

2
~T2S1! D2

]U

]A

a

2
S2J

2 i H ]U

]B S 12
a

2
~T1S1! D2

]V

]B

a

2
S2J ]V

]B S 12
a

2
~T2S1! D2

]U

]B

a

2
S2

D , ~25!
r

by

le
ow
whereA,B,U,V are real and imaginary parts off, W8

f5A1

2
~A1 iB !, W85A1

2
~U1 iV !. ~26!

Then the Nicolai mapping should solve the differential eq
tion

D1F5S ]M

]A
i
]N

]A

2 i
]M

]B

]N

]B

D . ~27!

We can find a solution to this equation as follows:

M5A~T1S1!1BS21US 12
a

2
~T1S1! D2V

a

2
S2 ,

~28!
-

N5AS21B~T2S1!1VS 12
a

2
~T2S1! D2U

a

2
S2 ,

~29!

whereM ,N,A,B,U,V are functions ofx and difference op-
eratorsT,S1 ,S2 are multiplied from the right. As to othe
possible solutions, we will discuss later.

We now evaluate the bosonic part of the action implied
the above Nicolai mapping

SB5
1

2 (
x

$M21N2%. ~30!

The Ginsparg-Wilson relation plays an important ro
through the calculation: as an illustrative example, we sh
A3U term andB3V term
8-3



t

io
-

ni
s
s

ce
l
th
ic
tie

k

is
een
e
he
ic

ot
role
re-

lat-

er,

iral

on
any
n-

ed
er-
we

r-
t be
al.
bi-

er-
ia-
ass

n

e
el.

not
the

son
non-

t
re-
in
n

Y. KIKUKAWA AND Y. NAKAYAMA PHYSICAL REVIEW D 66, 094508 ~2002!
AS S11T2
a

2
~T22S1

22S2
2! DU

1BS 2S11T2
a

2
~T22S1

22S2
2! DV

5f* S T2
a

2
~T22S1

22S2
2! DW8

1fS T2
a

2
~T22S1

22S2
2! DW* 81fS1W81f* S1W* 8.

~31!

Here we note that the combinationT2 a/2 (T22S1
22S2

2) is
equal to zero by Eq.~23!. We finally obtain the bosonic par
of the action as

SB5(
x

H f* Df1W* 8S 12
a2

4
D DW81W8~2S11 iS2!f

1W* 8~2S12 iS2!f* J , ~32!

where D is defined byD†D5D•1 and D5(T22S1
22S2

2)
52T/a.

Thanks to the existence of the Nicolai mapping,~28! and
~29!, it is ensured that all the nice features of the construct
by Sakai and Sakamoto@25# are maintained in our construc
tion. The total actionS5SB1SF given by Eqs.~32! and~17!,
possesses a supersymmetry under the transformation

dA5c̄1j, dB52 i c̄2j, ~33!

dc152jM , dc25 i jN, ~34!

dc̄150, dc̄250, ~35!

wherej is a one-component Grassmann parameter and

c5S c1

c2
D , c̄5~ c̄1 ,c̄2!. ~36!

The vacuum energy cancellation also holds even at the fi
lattice spacing.~One may verify through explicit calculation
that the vacuum energy is canceled exactly in any order
the lattice perturbation theory.!

IV. CHIRAL SYMMETRY
IN THE SUPERSYMMETRIC ACTION

Now let us examine the chiral properties of the latti
action of the two-dimensionalN52 Wess-Zumino mode
obtained in the previous section. The fermionic part of
action ~17! respects the exact chiral symmetry on the latt
by our construction. Then the question is the chiral proper
of the bosonic part of the action~32!.

First of all, the bosonic part of the action~32! should be
compared with the counterpart in the construction by Sa
and Sakamoto~16! or Eq. ~3.6! in Ref. @25#. An important
09450
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difference is in that the terms with the structures,W83f*
andW* 83f, do not appear in Eq.~32!, and this implies that
the holomorphic structure of the would-be surface terms
maintained just as in the continuum theory. As we have s
explicitly in Eq. ~31!, these terms vanish identically by virtu
of the Ginsparg-Wilson relation. Thus the use of t
Ginsparg-Wilson fermion can improve the holomorph
structure of the would-be surface term.

The would-be surface terms in Eq.~32! still break the
exact chiral symmetry on the lattice explicitly. They cann
be eliminated, because these terms are playing a crucial
in order to maintain the supersymmetry of the action. The
fore the breakdown of the exact chiral symmetry on the
tice seems inevitable.

Thanks to the improved holomorphic structure, howev
if one assumes that the superpotential is a monomial

W~f!5lfn, n53,4,5, . . . , ~37!

then the total action is invariant under the discrete ch
rotation with the angleu5pk/n for arbitrary integerk. By
this remaining discrete exact chiral symmetry, both bos
and fermion can be kept massless on the lattice without
fine-tuning. We would have the same situation in the co
tinuum theory if we keep the total divergence term impli
by the Nicolai mapping in the action so that an exact sup
symmetry is maintained at the Lagrangian level. So,
think, it is not quite a lattice artifact.

It is not difficult to prove in any order of the lattice pe
turbation expansion that the fermion mass term would no
produced in this lattice model with a monomial potenti
The possible coupling terms appear in the following com
nations:

fn21f* n21, fn, f* n, c̄Lfn22cR , c̄Rf* n22cL , ~38!

where we omit derivatives and proportional factors. In p
turbation expansion, we should consider all possible d
grams produced by the product of those couplings. The m
term must have the external legsc̄L-cR ~or c̄R-cL), while
the n22 legs of scalar field coming from the combinatio
(c̄Lfn22cR)( l 11)(c̄Rf* n22cL) l ( l 50,1,2, . . . ) cannot be
closed by2n legs coming fromf* n or by any other product
of the interaction terms.5 Therefore we can conclude that th
fermion mass term would not be generated in our mod
Then the supersymmetry implies that the boson would
acquire mass, neither. Here we should emphasize that
same result cannot be obtained in the case of the Wil
fermion, because there are no mechanisms to suppress
holomorphic scalar self-interaction.

V. SOLUBILITY OF NICOLAI MAPPINGS

Two-dimensionalN52 Wess-Zumino model is invarian
under four supersymmetry transformations which can be
lated to four types of the Nicolai mappings as clarified
Ref. @28#. In the case with Wilson-Dirac fermions, we ca
actually obtain all the four mappings.

52 jn5n22 cannot be satisfied by any integerj for n
53,4,5, . . . .
8-4
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In the case with Ginsparg-Wilson fermions, however,
situation differs due to the asymmetric choice of chiral p
jectors~17!. The four differential equations corresponding
the four Nicolai mappings are given by

D1F5S ]M

]A
i
]N

]A

2 i
]M

]B

]N

]B

D , ~39!

D1F5S ]M

]B
2 i

]N

]B

i
]M

]A

]N

]A

D , ~40!

D1F5S ]M

]A
2 i

]M

]B

i
]N

]A

]N

]B

D , ~41!

D1F5S ]M

]B
i
]M

]A

2 i
]N

]B

]N

]A

D . ~42!

The solution of the first one~39! is the solution given in Sec
III. The solution of the second one~40! is obtained in the
similar manner using ]U/]A5]V/]B and ]U/]B
52]V/]A.6 However, the rest two cases cannot be solv
The Cauchy-Riemann condition, which is the necessary c
dition for the solubility, does not hold for the latter tw
cases. For example, the Cauchy-Riemann condition for
third one~41! is evaluated as

]

]B
~D1F !112 i

]

]A
~D1F !12

52aH ]2U

]A]B
S11

]2V

]A]B
S2J Þ0. ~43!

This violation of the Cauchy-Riemann condition is the co
sequence of the asymmetric choice of the chiral project
Therefore the Nicolai mappings related to the other two
persymmetries have no solutions.

If we perform singular change of the field variables as

c85S 12
a

2
D Dc, c̄85c̄S 12

a

2
D D 21

, ~44!

6The bosonic action given by the solution of Eq.~40! has the form
~32! with the sign ofSj reversed.
09450
e
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then we can solve the differential equations which cor
spond to Eqs.~41! and~42!, while the Cauchy-Riemann con
ditions for the equations which correspond to Eqs.~39! and
~40! break down.

VI. SUMMARY

We have constructed two-dimensionalN52 Wess-
Zumino model on the lattice which possesses both the su
symmetry based on the Nicolai mapping and the exact ch
symmetry based on the Ginsparg-Wilson relation. The Ni
lai mapping ensures that the vacuum energy cancella
holds and boson and fermion are degenerate. The use o
Ginsparg-Wilson fermion maintains the holomorphic stru
ture of the would-be surface term, leaving a discrete s
group of the exact chiral symmetry intact for a monom
scalar potential. Thus both boson and fermion can be k
massless on the lattice without any fine-tuning.
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APPENDIX: NICOLAI MAPPING
AND SUPERSYMMETRY

In this appendix we examine the properties of the sup
symmetry which follows from the Nicolai mapping in th
continuum theory. Supercharges in two-dimensionalN52
theory are written as

Q15
1

A2
S ]

]ū2

2u2

]

]zD , Q̄15
1

A2
S ]

]u2
2 ū2

]

]zD ,

~A1!

Q25
1

A2
S ]

]u1
2 ū1

]

] z̄
D , Q̄25

1

A2
S ]

]ū1

2u1

]

] z̄
D .

~A2!

TheseQ’s satisfy following SUSY algebra:

$Q1 ,Q̄1%52
]

]z
, $Q2 ,Q̄2%52

]

] z̄
. ~A3!

We can define the chiral superfield in such theory as

D̄6F50, ~A4!

where

D̄15
1

A2
S ]

]u2
1 ū2

]

]zD , D̄25
1

A2
S ]

]ū1

1u1

]

] z̄
D .

~A5!

The form of the chiral superfield is
8-5
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F5f~z1 ū2u2 ,z̄2 ū1u1!1A2ū2c1~z1 ū2u2 ,z̄

2 ū1u1!1A2u1c̄2~z1 ū2u2 ,z̄2 ū1u1!

12u1ū2D~z1 ū2u2 ,z̄2 ū1u1!, ~A6!

wherec6 and c̄6 are chiral components of the Dirac fe
mion

c65
16g3

2
c, c̄75c̄

16g3

2
. ~A7!

On the other hand, the antichiral superfield is written as

F̄5f* ~z2 ū2u2 ,z̄1 ū1u1!2A2u2c̄1~z2 ū2u2 ,z̄

1 ū1u1!2A2ū1c2~z2 ū2u2 ,z̄1 ū1u1!

22ū1u2D* ~z2 ū2u2 ,z̄1 ū1u1!. ~A8!

By calculatingeQ1F, eQ1F̄, we introduce supersymmetr
transformation as

d1f5ec1 , d1f* 50,

d1c150, d1c250,
~A9!

d1c̄25eD, d1c̄152e]zf* ,

d1D50, d1D* 5e]zc2 ,

and fromeQ̄2F, eQ̄2F̄, introduce another one

d2f50, d2f* 52ec2 ,

d2c150, d2c250,

d2c̄25e] z̄f, d2c̄152eD* ,

d2D52e] z̄c1 , d2D* 50. ~A10!

Now we take LagrangianL as

@F̄F#D term1~@W~F!#F term1H.c.!

>c̄1] z̄c11c̄2]zc21]zf* ] z̄f2D* D1c̄2W9c1

2W8D1c̄1W* 9c22W* 8D8

[L, ~A11!

where we have arranged total divergence terms appro
ately. The variation of this Lagrangian underd1 gives total
divergence term

2e~c2]zW* 81W* 8]zc2!. ~A12!

On the other hand, the variation ofW* 8]zf* under 2d2
gives
09450
ri-

2d2~W* 8]zf* !52W* 8]z~2ec2!2~2ec2!W* 9]zf*

5e~c2]zW* 81W* 8]zc2!. ~A13!

So if we redefine Lagrangian includingW* 8]zf* and its
complex conjugate

L̃[L1W8] z̄f1W* 8]zf* , ~A14!

then we have the symmetry underd12d2 at the Lagrangian
level.

Now let us see the relation between this symmetry and
Nicolai mapping. The Nicolai mapping in continuum is wri
ten as

M5]1A2]2B1U, ~A15!

N52]2A2]1B1V ~A16!

so that fermionic action is given by

c̄~D1F !c5~ c̄1c̄2!S ]M

]A
2 i

]M

]B

i
]N

]A

]N

]B

D S c1

c2
D ,

~A17!

whereA and B are real and imaginary part~normalized by
1/A2) of f and U and V are those ofW8. The total action
implied by the Nicolai mapping is just equal to Eq.~A14!.
We can also see that the supersymmetry transformation
plied by the Nicolai mapping

dA5ec1 , dB52 i ec2 ,

dc150, dc250, ~A18!

dc̄152eM , dc̄25 i eN

is nothing but the transformationd12d2 described above
Actually, by inserting

c15
1

A2
~c11c2!, c25

1

A2
~c12c2!, ~A19!

c̄15
1

A2
~ c̄12c̄2!, c̄25

1

A2
~ c̄11c̄2! ~A20!

into Eq. ~A18!, then we obtain

df5ec1 , df* 5ec2 ,

dc̄252e] z̄f2eW* 8, dc̄152e]zf82eW8
~A21!

and this coincides withd12d2 after eliminating auxiliary
fields D andD* by their equation of motion.
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@4# M. Lüscher, Phys. Lett. B428, 342 ~1998!.
@5# K. Fujikawa, Nucl. Phys.B589, 487 ~2000!; K. Fujikawa and

M. Ishibashi,ibid. B587, 419 ~2000!; B605, 365 ~2001!.
@6# T. Banks and P. Windey, Nucl. Phys.B198, 226 ~1982!; S.

Elitzur, E. Rabinovici, and A. Schwimmer, Phys. Lett.119B,
165 ~1982!; R. Nakayama and Y. Okada,ibid. 134B, 241
~1984!; I. Ichinose,ibid. 122B, 68 ~1983!.

@7# J. Bartels and J.B. Bronzan, Phys. Rev. D28, 818 ~1983!.
@8# S. Nojiri, Prog. Theor. Phys.74, 819 ~1985!.
@9# G. Curci and G. Veneziano, Nucl. Phys.B292, 555 ~1987!.

@10# J. Bartels and G. Kramer, Z. Phys. C20, 159 ~1983!.
@11# Y. Taniguchi, Phys. Rev. D63, 014502~2001!.
@12# D.B. Kaplan, Phys. Lett. B288, 342 ~1992!.
@13# Y. Shamir, Nucl. Phys.B406, 90 ~1993!; V. Furman and Y.

Shamir,ibid. B439, 54 ~1999!.
@14# R. Narayanan and H. Neuberger, Nucl. Phys.B412, 574

~1994!; Phys. Rev. Lett.71, 3251 ~1993!; Nucl. Phys.B443,
09450
305 ~1995!.
@15# J. Nishimura, Phys. Lett. B406, 215 ~1997!; N. Maru and J.

Nishimura, Int. J. Mod. Phys. A13, 2841~1998!.
@16# H. Neuberger, Phys. Rev. D57, 5417~1998!.
@17# T. Aoyama and Y. Kikukawa, Phys. Rev. D59, 054507~1999!.
@18# D.B. Kaplan and M. Schmaltz, Chin. J. Phys.~Taipei! 38, 543

~2000!.
@19# W. Bietenholz, Mod. Phys. Lett. A14, 51 ~1999!.
@20# H. So and N. Ukita, Phys. Lett. B457, 314 ~1999!.
@21# K. Fujikawa and M. Ishibashi, Nucl. Phys.B622, 115 ~2002!.
@22# K. Fujikawa, Nucl. Phys.B636, 80 ~2002!.
@23# H. Nicolai, Phys. Lett.89B, 341 ~1980!.
@24# S. Cecotti and L. Girardello, Nucl. Phys.B226, 417 ~1983!.
@25# N. Sakai and M. Sakamoto, Nucl. Phys.B229, 173 ~1983!.
@26# K. Itoh, M. Kato, H. Sawanaka, H. So, and N. Ukita

hep-lat/0112052.
@27# D.B. Kaplan, E. Katz, and M. Unsal, hep-lat/0206019.
@28# S. Catterall and S. Karamov, Phys. Rev. D65, 094501~2002!.
@29# G. Parisi and N. Sourlas, Nucl. Phys.B206, 321 ~1982!.
@30# K. Fujikawa and M. Ishibashi, Phys. Lett. B528, 295 ~2002!.
8-7


