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Order-v* corrections to S'wave quarkonium decay
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We compute corrections of relative ordet to the rates for the decays 68, heavy quarkonium into two
photons and into light hadrons and for the decaySSf heavy quarkonium into a lepton pair and into light
hadrons. In particular, we compute the coefficients of the decay operators that have the same quantum numbers
as the heavy quarkonium. We also confirm previous calculations of the ofderections to these rates. We
find that thev expansion converges well for the decays'&§ heavy quarkonium and for the decay 8,
heavy quarkonium into a lepton pair. Large higher-ordes-inerrections appear in the decay 8, heavy
quarkonium into light hadrons. However, we find that the series of coefficients of operatoréSyituantum
numbers, which yields a large correction in oraér yields a smaller correction in ordef.
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I. INTRODUCTION haved for the decays dfS, quarkonium and for the decay of
33, quarkonium into lepton pairs. In the case of the decay of
A formalism for the first-principles calculation of heavy- 3s, quarkonium into light hadrons, large coefficients are as-
quarkonium decay rates in quantum chromodynaf@8D)  sociated with some of the operators of higher ordar.itfror
has been given in Refl]. This formalism is based on the the operators with’S; quantum numbers, a large correction
effective field theory nonrelativistic quantum chromodynam-to the decay rate appears in orde, but the correction in
ics (NRQCD). In it, one can write the decay rate of a quarko- order v* is considerably smaller. This suggests that the

nium stateH as expansion for operators with a given quantum number may
converge well once one goes beyond the first nontrivial or-
der.
M= — " (HIOH) (1.
B n mdn—4 ’ ' II. NRQCD DECAY RATES

In this section, we present the NRQCD factorization ex-
whereF, is a perturbatively calculable short-distance coef-pressions for the rates dfS, quarkonium(e.g. 7. or )
ficient, mis the heavy-quark mass, tlg&, are four-fermion  decay to light hadron$LH), 3S,; quarkonium(e.g.J/ or
NRQCD operators, and, is the mass dimension ¢?,. The  Y) decay to light hadrons!S, quarkonium decay to two
terms in the sum ovem may be classified according to their photons, ant; quarkonium decay te*e™.
orders inv (Ref.[1]), wherev is the heavy-quark—antiquark Through relative ordes®, the rate for the decay of &S,
relativezvelocity. For charmoniumy?~0.3; for bottomo-  state into light hadrons is given by
nium, v<~0.1.

We concern ourselves in this paper with the decay S 1 _Fi('S) le 1
quarkonium into light hadrons and the decays'8f quarko- I'("So—LH)= m2 ("Sol O1(*Sp)| *Sp)
nium into lepton pairs and into light hadrons. The coeffi-
cients of the operators of leading orderunand of relative G,(1sy) L L L
orderv? have been computed previousgli—9]. Some of the + ————("So| P1(*So)| *So)
coefficients of the ordes? operators are sufficiently large as m
to cast doubt on the convergence of theexpansion for Fo(3S)
charmonium and bottomonium. In particular, the ordér- + (150 0g(3Sy)] 1Sy
correction to the rate for the decay 88, quarkonium into m?
light hadrons is—5.32v?), where(v?) is the ratio of the N
expectation values of the ordef-and order® operators in + Fsl SO)<150|O (180)| 1Sy
the quarkonium state. Hence, in the case of charmonium, the m? 8
orderv? correction is more than 100%.

In this paper, we compute the short-distance coefficients g(1Py) 1 1 1
of the decay operators, through ordér that have the same + T( Sol Og(*P1)[ *Sp)
guantum numbers as the quarkonium. Our calculations con-
firm previous results for the short-distance coefficients of the Hi(1sy)
orderv? operators. We find that the expansion is well be- + T<180| Q1(*Sy)| *Sp)
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The operators appearing in EQ.1) are defined by The contributions of ordea§ and ordera§ to the short-
distance coefficienE(1S,) have been computed in Refs.
01180 = o xx T, 2.23 [2,3] and are given in Ref.1]:
1 PRE RE 1o _TCr wz

p1<1so>=§[wxx*(—§o v - 55| Xw}, FA(1S0) = - ad(2m)| 1+ -5 Ce

(2.25 199 1372 c 8 Jas -

e 2 |O g @9

Ogl( 331) = lr/fTU'TaX' XTO'Ta‘//a (2.29

le it t whereN.=3 is the number of colori:,:=(N§—l)/(2Nc)
Og("So) = ¥ Taxx Ta, (2.20 =4/3, and C,=N.. The contribution of ordera§ to
G4(*S,) has been computed in Refd.,5].% It is

Og(*P;) = (,/;T( - '—B) Tax: X*( - '—B) T, (2.28
2 2 1 4’7TC|: 2
Gy('So)=— 55 (2.9

1la \_ 1 )2 t i )2
Qi1("Sy=¢ —5P) xx'| —3D] & (2.2)
We note that, to leading order i, [G1(*So)1/[F1(1So)]
= —4/3. Hence, the first relativistic correction is sizable in

) 1 i\4 Pi\4 the case of they.. The contributions of ordew? and order
Q1( lSo)=§[ IIITXXT( —5D] ¢+ VA ED) X)(Tl//}, a?d to Fg(3S,) andFg(1Sy) have been computed by Petrelli
1 o - o TNy a 13
Q¥(*So)=5[¢'xx'(B-gE+gE-D)y—y'(D-gE F( 351>=T“5(“){1+f T
< 2
+gE-B)xx"yl, (2.2h e N P
+ 18 + 3IogZ 7 Ca 9 NeTe
where the subscript 1 or 8 indicates that the operator is a yu sf 73,67,
i i +2bglogs—| | +5ag| — —+ =7
color singlet or a color octet, the superscript labels the three 0¥om s 4 36 )’
dimension-10 operatorsg; is the Pauli-spinor field that anni-
hilates a heavy quarky' is the Pauli-spinor field that anni- (2.53
hilates a heavy antiquarkD#=*+igA* is the gauge-
covariant derivative A is the SU(3)-matrix-valued gauge 5
field, g is the QCD coupling constanE'=G®%, whereG*” 1o\ 2 s (_ m
=g"A"— 9"A*+ig[A*,A"] is the gluon field strength, and Fol "So)=2mBrag(u)| 1+ 7| =5+ 7] Cr
the o' are Pauli matrices. The operatffr is defined by
- T . 122 17 , 16
x'Dy=x"(Dy) — (Dx)T4. The relative signs of the terms in 5 227 |CamgNiTE

each of these operatotand, in particularQ f) are fixed by

the requirements of Hermiticity and charge-conjugation in- n

variance. + 2bologﬁ“ , (2.5b
The matrix element o3 does not appear in Eq2.1)

because, as we show in Appendix A, it can be eliminated in

favor of Q1 and Q7 through the use of the equations of wherey is the QCD renormalization scaley is the number

motion. From the velocity scaling rules in R¢l], we find

that, in théS, state, the operatap,(1S;) has a matrix ele-

ment of relative Qrdevo, the operatof, ( lSO) has a matrix 1Short-distance coefficients can be extracted from the results in

element of relative ordep? the operatorOg(°S;) has @ Ref. [5] by first making the substitution W2, (1/4m?)(1

matrix element of relative ordev®, and the operators —&/m), where —¢ is the binding energy, and then making the

Og(*So), Og(*P1), Q1(*Sy), Q1(*Sp), andQ}(*Sp) have identification e/m—(*So|Py(So)| *So)/[MA( *So| O1(1Sy)| o)

matrix elements of relative order*. ~ (35| P(3S)| 3S)/[M2(3S,| 04(3S))| 3S)) 1.
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of light-quark flavors, BFZ(N§—4)/(4NC)=5/12, Te
=1/2, andby=(11/6)Ca— (2/3)Tgn¢. The contribution of
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with the short-distance coefficientd1(1S,) and H2(1Sy)
cannot be distinguished from each other in the Born-level

order a§ to Fg('P;) can be deduced from the results in decay of on-shell quarks. Consequently, if one uses on-shell

Appendix A2 of Ref[1]:

7N

S

Fg('Py)= a (2.6)

matching between NRQCD and full QCD to compute the
short-distance coefficients in Born-level decay processes,
one can compute onlHi(1Sy)+H2(Sy), not the indi-
vidual coefficients. It is the quantityl1( 1Sp) +H3(*S,) that
we compute in this paper.

Through relative ordev?, the decay rate for &S, state

Owing to energy conservation, the operators associateihto light hadrons is

Fi(3Sy) Gi(%sy) Fa('So)
I(3S;—LH)= T<351|01( SISy + T<381|7?1( ’s)[%sy) + 7 (°S1|0g(*S0)[ *sy)
Fg(®S)) Fs(°P)) H1(3S))
e (%81 0g(°sy)| 381>+J§12 - (381 0g(°Py)|%s) + " (®s|Q1(%s)|%sy)
HI(’Sy)
s (’s]Qi(®sp|’sy). 2.7
m
|
The operatorOg(1S,) is defined in Eq(2.2d, and the op- ) 3 i_\4
erator Og(*S;) is defined in Eq(2.20. The remaining op- <Q1(*S1)=5 ylox-x"o| - P ¥
erators in Eq(2.7) are defined by
i<_> 4
+t//T0( - —D) X'XTUlﬂ} (2.89
O:.(°s)=y¢lox-x" o, (2.89
Pi(°S >=3[¢Tax-x*a(—i—5 it 3038) = S vy o B 5
U™=)=3 2 Qi(°s)=5[¢'axx" o(D-gE+gE-D)y
iL)2 o o
<—§D) X'XTUI//}, (2.8b —y'o(D-gE+gE-D)x- x"oy]. (2.8h
O 3po)zl¢f< _ '_fj, 0.) TaXXT( _ '_fj. U) T.s, (289 The operatoiQ 3( S;) does not appear in Eq.7) because,
3 2 2 as we show in Appendix A, it can be eliminated in favor of
01(3s,) and ©2(%S,) through the use of the equations of
. ) ] motion. From the velocity-scaling rules in R¢f], we find
i o i ; 3 3 ;
3p.y—_ *(——Dx Tov- T(——Dx )T that, in the °S; §tate, the operato®,(°S;) has a matrix
Os("P) =5 4| = 5DX e |Tax- x| = 5DX o |Tat), element of relative ordev®, the operatorP,(3S,) has a
(2.80  matrix element of relative order?, the operator®@g('S,)

04 ?Py)= w*( - '55%“) Taxx*( - '55’“«7”)Taw, (2.89

i)\2 i \2
——D> X'XTU(_§D> W,

5 (2.8f)

Q i( 351) = '/fTO'(

has a matrix element of relative ordef, and the operators
Og(S),  Os(°Pg), Os(°P1), Op(°P2), Qi(°Sy),
032(3s,)), andQ3(3s,) have matrix elements of relative or-
derv®.

The ordere® and ordere contributions to the short-
distance coefficienE(3S;) were computed by Mackenzie
and Lepagd4] and can be found in Refl], as can the
order«? contribution:
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(NZ-1)(NZ—4) (72-9) ,

F1(3S)= NE g @s(m)| 1+[~9.462)C+4.1317)Cp— 1161<2>nf]
o 13
+277Q2(2 Q?>a2 1—ZCF%S , 2.9

where Q is the electric charge of the heavy quark, and @eare the electric charges of the light quarks. The om&r-
contribution to the short-distance coefficig(3S,) is computed in Ref[5]:

5(197°-132)

G,(3s)=— 39 a;. (2.10

To leading order inv?, G;(3S,)/[m?F,(3S;)]=— (1972—132)[12(7?—9)]~ —5.32. Hence, the relativistic correction to
JIy decay is greater in magnitude than the leading contribution. This situation casts some doubt on the validity of the
expansion. We investigate this issue further in this paper by calculating corrections of relative brdée ordemﬁ and
orderaﬁ contributions to the short-distance coefficieRtg 1S,) andFg(3S;) are given in Eqs(2.5b and(2.53, respectively.

The ordera§ and ordera§ contributions to the short-distance coefficieRtg °P,) have been computed by Petratial.[10]:

. 5 as[[ 7 @ 463 35 17 8 29 2m

(2.113

Py =CaBrad| oo 2202 + 2 nBrad] - 2 +log 2.11

Fg(°P1)=CnBra? 524 o™ |t gNBras| —gtlog ). (2.11b
Fo(Pp) =T 2wy 14 28| —ace+ | 204 Loga— 22| ¢, 2y +8 B 29+| 2m
8(°P2)= 5 ag(p) o AP T a3t §09 75 |~A 009— Ny FCY 15 Ogm,

(2.119

whereu, is the NRQCD renormalization scale. The contributiorFg *P,) of 0rdera§ vanishes because Yang’s theorem
[11] forbids the decay of a spin-one particle into two equivalent massless vector paftiiciess. The contributions from
decay into a light quark-antiquark pair vanish because’hgstates are even under charge conjugation. Again, the individual
quantitiesH }( 33) andHi( 3S,) cannot be distinguished in processes in which the heavy quark and antiquark decay on shell.
We compute the quantitid 1( 3S;) + H1(3S,) in this paper.

Through relative-ordev?, the decay of &S, state into two photons is given by

1 i 2 Hl (l )
(8o ym= "2 oyl sy S re (sytvloyoly| - 3B witsy |+ A
m 2 m

><<1so|w*(——D)2x|0><0|x (——D) Y11So)+ ”mls") e{<1so|wx|0><0|x*(—i56)4wl 1So>}-
(2.12

The product of matrix elements Ré-Sy| " x|0)(0| xT(D- gE+gE- D) ¢/ 1S,)], which is of relative ordev*, does not appear

in Eqg. (2.12 because, as we show in Appendix A, it can be eliminated in favor of the products of matrix elements in the last
two terms of Eq(2.12 through the use of the equations of motion. From the velocity-scaling rules iff Befve find that,

in Eq. (2.12, the product of matrix elements in the first line is of relative ord®r the product of matrix elements in the
second line is of relative order®, and the products of matrix elements in the third and fourth lines are of relative wtder
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The ordera? and ordera®a, contributions to the short-distance coefficiént,( 1s,) are calculated in Ref§2,3,6| and are
given in Ref.[1]:

2
le \— 42 77 s
Fil7Sp)=2mQ%"| 1+ Z_5 CF?- (2.13
The ordere? contribution toG,,,( 1s,) is computed in Refd.1,5]:
8mQ*
G, (1S))=— 3 a?. (2.19

To leading order i, G,,,( 1SO)/[mZFW( 1S,)]=—4/3. Hence, the first relativistic correction to this process is substantial
for the 7. . In this paper, we compute the combination of short-distance coeffidieh]slso)Jr Hiy( 15).
Through relative ordep?, the rate for a3S, state to decay into a@"e™ pair is

__Fed®s) Ged °Sy) i)\2
Fsi—e’er)=— =0l oy °S)|*+ — —Re (*Si|yox|0)-(Olx"o| —5D | ISy
Hi(3S)) iL)2 i )2 Had(3Sy)
+ =% wa( - —D) X|0>'<0|XT0( - —D) ul3s) + —
m 2 2 mé
i<_, 4
XR%P&IWwIO%(OIx*a(—5D> Yl 389] (215
|
The product of matrix elements RES,|¢'ox|0) Ill. SPIN PROJECTORS
(0| x"a(D-gE+gE-D) 4| °S;)], which is of relative order In computing the quarkonium decay rates, we use the co-

v’ does not appear in Eq2.15 because, as we show in \ariant spin-projector methdd 2,13 to identify spin-singlet
Appgndlx A, it can be eliminated in favor of the products of 5q spin-triplet amplitudes. For purposes of the computa-
matrix elements in the last two terms of H.19 through  {jons in this paper, we need projection operators accurate at
the use of the equations of motion. In Eg.19), the product g5t through relative order*. In this section, we compute
of matrix elements in the first line is of relative ordet, the the required projectors to all orders in
product of matrix elements in the second line is of relative  The Dirac spinors, with the standard nonrelativistic nor-
orderv?, and the products of matrix elements in the third malization, may be written as
and fourth lines are of relative ordef. ’

The ordere? and ordera®a contributions to the short-

distance coefficienF ¢ 3S,) are calculated in Refd7,8] E+m §
and are given in Ref[1]. The ordera2a§ contribution is u(p)= VT p-o , (3.139
calculated in Ref[9]. Altogether, these contributions give E+m
27Q%a? ag(m
Fod 3S)) = ZrQe 1-4C¢ o )+ —117.46 (—-p)o
3 T [E+m 7
U( —-p)= — E+m ,
+0.8m+ 2207 (Zm) (aS)Z 2.16 °F "
AT L D B | =y I R (3.1
The Orderﬂ’z contribution tOny( lSo) is Computed in Refs. Whereé‘ and 7 are tWO_Component Pauli SpinorS, aﬁdp)
[1,5]: =m?+p?. We take the heavy quark and antiquark mo-
802 menta to be
o
Ged 3S))=— Q a?. (2.17
9 po=(1/2P+p, (3.29
To leading order inag, Ged 2S))/[M?F{3S;)]=—4/3. o
Hence, the first relativistic correction to this process is sub- pQ=(1/2)P—p, (3.2b
stantial for thed/ . In this paper, we compute the combina-
tion of short-distance coefficients. (3S;) +H.(3S,). respectively, where in the quarkonium rest frame,
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[,(P,p,©= 2 u(PA)v(~PA(3 N1 Nol1e)
1:42
p=(0p). (3.3
1 E+m(1+ a-p \1+ vy,
2 2E |7 E+m/ 2
Using Eq. (3.1, it is straightforward to express spin-
singlet and spin-triplet combinations of spinor bilinears in % a- 6(1_ a-p y
terms of Dirac matrices and to write them in a covariant E+m/’°
form. In the spin-singlet case, we have 1
=———|sP+m+p
— 2\2E(E+m) |2
o(P,p)=— > u(p,A)v(—p.A2){3 N131,[00) V2E( )
USRS P+2E é( 1 P ’ 36
X “P-m—p|. .
1 E+m/1+ a-p \1+ 7y, a-p 4B 12
2 2E |7 E+m/ 2 8|77 E+m)?0
Here, |1 €) is the rotationally invariant linear combination
3 1 P4 mt P+2E [le)=e|11)—€e"|1—1)—e5)10), with € =(1/2)(e;
_2\/§E(E+m) SrTm p AE *ie,). We have chosen the normalization so that the projec-
tor (3.6) corresponds in NRQCD to the projector /2.
1 The expression§3.4) and(3.6) are valid to all orders in.
X vs EP—m—p , (3.9

IV. RELATIVISTIC CORRECTIONS TO 'S, DECAYS

In this section we compute the short-distance coefficients

whereq; andy,, are Dirac matrices in the Dirac representa-that appear in the corrections through relative orderto
tion' V5= i ’)/071’)/2’)/3, and we have chosen the normalization SO quarkor“um decays Into two phOtOI’]S and into I|ght had-
so that the projectof3.4) corresponds in NRQCD to the fons(two gluons. )

projectorl/\/2, wherel is a unit Pauli matriX. We note that We begin with the case of decay into two photons. We

; ; ; ; ; take the definitions of the heavy quark and antiquark mo-
E(p) may be written in a Lorentz invariant fashion as menta given in Eq(3.2) and work in the quarkonium rest

5 frame, as defined in E43.3). We take the outgoing photon
E(p)=(1/2)P2. (39 momenta to be& andg, with polarization indicesx and v,
respectively. Consider first the diagram in which the quark
emits the photon with momentuka The spin-singlet ampli-
In the case of a spin-triplet state with polarizatigrwe have  tude corresponding to this diagram is

Aq(sing—yy)=—ie“Q“Tr| IIo(P,p)y ok ¥
Po-

. —iefQ? 1 T[ " M(EP+ . 1+, (EP— B ”
T2V2E(E+m) 2p0-k |7 20T Pl=5vs[3P—m=p
—ietQ? T[ (B mt p) ol e~ E p)} @.1)
= r m —E-m—p)|, .
2 2E(E+m) 2Pg K Y ky*( 5 Vsl

2In Eq. (3.4), the standard Clebsch-Gordan coefficients are appropriate if the spinors(® Hare related to each other through a unitary
transformation, which preserves the @WUalgebra, such as the charge-conjugation transformatienr-io,&. One such choice of spinors is
E=(3) or (9) andn=(9) or (;1), for \;=+1/2 and\,= + 1/2, respectively. On the other hand, a popular conventigr=ig3) or (3) and
77:((1)) or (é), for A y=*1/2 and\,=*=1/2, respectively. With this convention, the Clebsch-Gordan coefficients i(3F&4). must be
multiplied by an additional factor-{ 1)~ /22,
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where e is the electromagnetic coupling constarin the From Eq.(2.12, we find that the decay width for &S,

projector (1t y0)/2 in the last line, the term proportional to QQ state into two photons in NRQCD in Ordef and
1 gives a vanishing trace, while the term proportionaly§0  through relative ordes*

gives
Prrocd "So ¥ =2L(UMR)F,,(S,)
Aq(Sing— yy) = — 2Q? EE e”""okpplk. 4.2 (P2IMY) G (10) + (PO (1Sp)
.
+(pYme)H2 (1sy)], 4.7

Similarly, the diagram in which the antiquark emits the pho-

ton with momentuntk yields an amplitude where the factor two on the right side of E@.7) comes

from the spin factor for normalized heavy-quark states.
Comparing powers op?/m? in Egs. (4.6) and (4.7), we

A,(sing— yy)=e?Q? \/T Eupvoka' (4.3  obtain the short-distance coefficients at leading orderdn
2E ok
PQ F,(1Sy)=27Q%?2, (4.89
Adding A,(sing— yy) and A,(sing—yy), we obtain the 8
complete amplitude for'S, charmonium decay into two G (150):__7TQ40[2, (4.8b
photons: 3
A(sing—> '}")’) — eZQZ GVp/.LOk yy( lSO) +H yy( lSO) - Q4 2 (48©
VE
Our results forF . ('Sp) andG,,,('Sp) confirm those given
1 N 1 (4.4 in Refs. [1-3,6 and [1], respectively. Our result for
—p-k E2+p-k/ ' HY (1Sp) +H? (1Sy) is new.

At leading order inas, the decay of aS, QQ state to
We project out th&swave part of the amplitude by averaging light hadrons proceeds through an annihilation into two glu-
over the angles of: ons. Hence, we may obtain the decay width fot% QQ
state into light hadrons by multiplying the width into two
photons[Eq. (4.6)] by a color factorCg/2 timesa?/(a?Q%):

"ok,

1 (1
A(*Sp— w)=§J71d(cosﬁ)(—e2Q
( 1 1 ) F(lso—>LH)=
+
E?—|p||k|cosé E2+|pl||k|cosh

7TC,:m2a§ 2 E+|p|
2E2p2  E—|p|

4.9

From Eq.(2.1), we find that the decay width for &, QQ
E+|p| 45 state into two photons in NRQCD in orde£ and through
n , . i 4
p \/§E2|p| E—|p| relative order

r 1Sy—LH) =2N [ (U/m?)F(*
where we have use#?=E2. Multiplying the expression el o ) ol JF1("S0)
(4.5) by its complex conjugate, by the two-body phase space +(p?M*)G1(1Sy) + (pYMEYHI(1Sy)
1/(87), and by a factor 1/2! for two identical particles in the

— e2Q26vp,uOk

— 47176 201
final state, we obtain the decay width fot &, QQ state into +(PmHHI(S)], (4.10
two photons: where the factor R, on the right side of Eq(4.10 comes
from the spin and color factors for normalized heavy-quark
e B Trm2Q4a2| LE+|p| 46 states. The matrix elements of the color-octet operators do
("So—yy)= E2p? n E—|p| 48 1ot contribute to Eq(4.10 in order «2. Comparing Egs.

(4.9 and(4.10, we obtain the short-distance coefficients at

Here, and in succeeding computations of the decay widths dgading order inas:
two-particle states, we suppress a factor of the inverse vol-

ume that is associated with the normalization of the initial Fy( 130):Ea§, (4.113
state. N
47TC|:
_ _ N _ (150)——Ta§, (4.11h
3In computing the short-distance coefficients for electromagnetic c
decay processes, we suppress the trivial color factors, which ulti- 687C
; F
r’\r;gt(glc):/Dcancel when one matches decay rates in full QCD and Hi( lSo)+H (150)_ ag (4.110
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Our result forF,(1Sy) is in agreement with that given in 8
Refs.[1-3], and our result foG(1Sp) is in agreement with Ged S1) =~ ?Qzaz. (5.5
that given in Ref[1]. Our result forHI(1Sy) + H2(1Sy) is
new. 58
Hée( 3Sl)+ Hée( le)IHQzaz- (5.50

V. RELATIVISTIC CORRECTIONS TO 3S, DECAY
TO e*e” Our result for F.(3S;) agrees with that given in Refs.
[1,7,8], and our result foG.« 3S,) agrees with that given in

Next we turn to the case of the decay of'§, quarko- Ref. [1]. Our result forHée( 381)+H§e( 35,) is new.

nium state into ae* e~ pair. Again, we work in the quarko-
nium rest frame defined in Eq3.3). The amplitude for a
quark and antiquark in a spin-triplet state with the momenta V!- RELATIVISTIC CORRECTIONS TO  °S; DECAY TO
given in Eq.(3.2) to decay into a virtual photon with polar- LIGHT HADRONS

ization indexu is given by

A(trip— y*)=ieQTr[II,(P,p,€)y,]

—ieQy2| el

In the decay of a heavy-quark—antiquark state, diagrams
in which only two of the final-state gluons attach to the
heavy-quark line have a common heavy-quark color factor.
Hence,(Abelian) charge-conjugation symmetry forbids such
diagrams in the decay of &S, state. Furthermore, color

E(E+ m) conservation forbids diagrams in which only one of the final-

(5.9

We can project out th&wave part of the amplitude by av- Nd order inas, a °S; heavy-quark—antiquark state decays
eraging over the angles
ging gles ot in which all three gluons attach to the heavy-quark line.

(Since no triple-gluon vertices appear, there are no ghost

== TE€ contributions)

1
A(3S,—y*)== f d(cos&)leQ\/— E(E+m)

lle

In order to obtain the decay rate into ahe™ pair, we mul-
tiply the expressior{5.2) by its complex conjugate with in-
dex v, by a photon-propagator factngW/k2 by a
complex-conjugated photon-propagator faaigy, /k?, and
by twice the imaginary part Qf the*e -pair contr|2but|on to One can see from power-counting arguments, that,
the photon’s vacuum polarization, namelg,tk“—k.,K,)  through relative order?, in the Coulomb gauge, a gluon
X(—2/3)a. Herek is the virtual photon’s momentum. The hat interacts with a quark or an antiquark can yield an IR
result is divergence only if the interactions are of the typ&D- Ay
47Q2a? (2 2 or x'D-Ay. (The zp_TB- oy and x'B- oy interactions have
—2( ) , (5.3 the correct dimensions to produce an IR divergence, but the
3E 3 3E factors of B bring in powers of the gluon momentum that
protect against an IR divergeng&he factor ofD translates
into a factor of the incoming quark or antiquark momentum.

) (5.2 ics allow one of the final-state gluons to have zero energy.
37 3E Hence, the possibility arises that the decay rate contains an
infrared (IR) divergence. Simple power counting arguments
show that an IR divergence can arise only if the soft gluon
attaches to an incomingn-shel) heavy-quark or heavy-

interaction of this soft gluon with the heavy quark.

r(3s,»ete )=

where we have usekl e=0, e-€* =—1, andk?=4E?.
From Eq.(2.15, we see that, in NRQCD through relative

orderv”, the decay width for &S, QQ state into are”e”  qrthogonal to the gluon propagator in the Coulomb gauge.
pair 1s Therefore, the interactions of the gluon yield two factors of
3 oo 2 3 the incoming quark or antiquark momentum in the squared

I'nrocd "S1—e7e ) =2[(1Um9)Fd °S;) amplitude. Two additional factors of the incoming quark or

+(PPIM*) Ged 3S)) + (P M) H e 3Sy) antiquark momentum are required in order to have a nonzero
overlap with an incoming-wave state. Hence, an IR diver-
+(p4/m6)H§e( 33)]. (5.9 gence in the decay rate must be associated with at least four

factors of the incoming quark or antiquark momentum. That
The factor two on the right side of E¢6.4) comes from the s, an IR divergence can first appear in relative ordér

spin factor for normalized heavy-quark states. Because the soft gluon in B-A interaction changes the
Comparing powers op?/m? in Egs. (5.3 and (5.4, we  incoming Swave color-singlet quark-antiquark state into a
obtain the short-distance coefficients at leading orderdn  P-wave color-octet quark-antiquark state, we expect that the
IR divergence will be absorbed into matrix elements of the

(3s ):Z_WQz 2 (5.53 P-wave color-octet operators in E.7).

eet =1 ’ ' Now let us turn to the actual computation of the rate for a
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state gluons attaches to the heavy-quark line. Thus, in lead-

into three gluons, and the decay proceeds through diagrams

In this decay process, in contrast with the decay processes
that we have analyzed in the preceding sections, the kinemat-

antiquark leg. Therefore, one can use NRQCD to analyze the

Factors of the gluon momentum do not appear since they are
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33, QQ state to decay into three gluons. We present only the We expand the amplitude in a power seriepjrthrough
outlines of that calculation here. We used the symbolic maorderp®. The terms containing no powers pfyield a pure
nipulation programmATHEMATICA and the packageeyn- — Swave contribution. For the terms containing two powers of
cALc [14] to handle the tedious, but straightforward, detailsP, we extract theSwave contribution by making the replace-
of the algebra. ment

We regulate the anticipated IR divergence by computing 2
in D=4-2¢ dimensions. We work in the quarkonium rest PPy =P Ty (6.4
frame, assign the incoming quark and antiquark momenta
in Egs.(3.2) and(3.3), and take the outgoing gluon momenta
to beky, k,, andks. First we compute the sum of the six
Feynman diagrams for this process, _making use Qf the pro- PLP,P,Ps— p4-|-wpg_ (6.5
jector (3.6). Although we are working iD =4—2e¢ dimen-
sions, we can follow the approach of Rgt0] and simply  Here,
use theD-dimensional version of the spin-1 project&:.6).
As explained in Ref[10], we need not consider projectors —LH 6.6
for the higher-spin evanescent NRQCD operators that appear #* D—1 "#"’ '
in D dimensions because the contributions that contain an IR
pole in one loop do not mix the higher-spin operators with
the spin-1 operators. T/wprr:m[n Aot T e+ 1610,

At this point, we could square the amplitude, integrate (6.7)
over the phase space, and expand in powersioforder to
obtain the desired result. However, the amount of algebrand
would be greatly reduced if we could make the expansion in
powers ofp before carrying out the phase-space integration. M =—q + P.P, 6.9
Such a strategy is complicated by the fact that the phase Ky G 4E%(p)” '
space depends gnthrough the total energy of the incoming

QQ state, but we can make that dependence explicit by in-
troducing a rescaling of phase-space integration variables:

%or the terms containing four powers pf we extract the
Swave contribution by making the replacement

Next, we multiply the amplitude by its complex conjugate.
We evaluate the gluon polarization sums using the Feynman-
gauge expression

ki—kiE(p)/m. (6.2) e, =—g (6.9
n€v pv :
Then, the final-state phase space transforms as we evaluate the spin-triplet-state polarization sum using
d(D_l)ki *
L P- k €n€o =, 619
]'—i'[ ( 2(ki)o EI: I)

(O-1) and we divide byD —1 to obtain the average over the spin-
. (d ki) D( mP Y -)f(p) 6.2 triplet-state polarizations. Owing to the charge-conjugation
i 2(ki)o E(p) 4 ' invariance of the amplitude, only the part of the color factor
that is symmetric in the color indices survives. It is given by

where (N2—1)(N2—4)
abcqabc_ > C ¢
E(p) (D72)3/D 16ch d ——16N(2:—. (61])
fP)=|—~
Multiplying by this color factor and by (p), we obtain the
E(p)]? 5 E2(p) “squared matrix element” that must be integrated over the
I Tm T _el 09z +0(e?). (6.3 p=0 three-body phase space to obtain the decay rate. We

write the coefficients op®, p?, andp* in terms of the in-

All of the dependence op on the right side of Eq(6.2) is  variants
contained in the explicit factof(p). The remaining factors

correspond to the phase space evaluated aQdhreshold 5=2Ky-ka, (6.123
p=0. Therefore, after rescaling tikeaccording to Eq(6.1), t= 2K, kg (6.12b
we can obtain the necessary expansion in powerp b ’

expanding the amplitude, its complex conjugate, &) in U=2k, ks, (6.120

powers ofp beforecarrying out the phase-space integration.

Note that an IR pole ire first appears in the rate, excluding where, since we have sg=0 in these coefficients, the

the factorf(p), only in the relative-ordep®. Hence, we can  energy-momentum conservation relation now reads
drop the term proportional te on the right side of Eq(6.3),

which contributes an additional factor. ki +k,+kz=2m. (6.13

094011-9
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The expressions for these coefficients in four dimensions are In the case of the term proportional p8, we must first

given in Appendix B. separate the IR singular parts in the matrix element sqifared.
We re-write the coefficients qi®, p?, andp? in terms of ~ These are given by

the invariants

-~ p* (N2—1)(N2—4) 1287°a3

2P -k; R= 5 2 3
Xi_(2m)2 p=0. (6.14 m NE (3—2¢)
X[(3—2€)(1—€)—2(2—e)y(1—y)]u’®
It follows that
1 1 1
$=2m?(X1+ X, —X3), (6.153 X x_2+(1—xy)2+[1—x(1—y)]2 . (62D
_ 2 _ ~
1=2m*(X; =Xz X3), (6.15D  |ntegratingi1,, over the phase spa¢e.18 and multiplying
by 1/3! for three identical particles in the final state, we
U:2m2(_X1+X2+X3). (6150 O%;tain p
The D-dimensional three-body phase space for decay of a 4 N2 2 2¢
particle of massM is [10] ré=_ L waé 4_77
" ms N2 *e| M2
4o M2 (477)25 1
@~ 3\ M2 - TY1-€) (1-e)%(7-4
2(4m)3\M2] T'(2—2e) o 5¢ (1-€) (1-€)%(7—4e) (6.224

3 3 r2(2—2¢) (3-2¢)*
><.71'[1 (1—><i)fo|xi5(2—_2l xi). (6.16

Neglecting terms of ordet, we may write this expression as

2e

Thg phase space pt=0 is obtained by making the identifi- @ p* (N2—1)(N2—4) o 7 (47
cationM =2m. | T e S N [ e P v
It is convenient to make a further change of variables, so m NG M

that the limits of integration are independent of the integra- (l—eyT(1—¢) 44

tion variables. To this end, we write _
X T 2=2¢ 243 6220
X1=X, (6.17a
whereyg is Euler’s constant. After subtracting the IR singu-
Xp=1-Xxy, (6.17b  lar terms(6.21) from the integrand, we can carry out the
phase-space integration over the remainder With4. Mul-
Xz=1=x(1-y). (6.170 tiplying by 1/3! for three identical particles in the final state,
we obtain
This change of variables is particularly useful in analyzing
the infrared singularities, since it avoids the difficulty that, at @ p* (N2—1)(N2-4) J 3563 1609 ,
the singular points; =0, the range of integration in one of Ufinte= % > ag| — 2430+ 62807 |-
the variables; (i #j) vanishes. Now the phase space is Ne 623

M2 [4m\2¢ 1 _
d¢(3):2(477)3<w T(2-2¢) The complete decay width in full QCD of 3S, QQ state
into light hadrons through order* is then

X[x2(1—x)y(1—y)] xdxdy, (6.18
(38, —LH)=T@+T@+1@+T{ ., (6.29
wherex andy range from O to 1.
In the cases of the terms proportionalg® and p?, the
integrations over the_ phasg space are IR_fInIte, and we can, Ref. [10], an alternative method for dealing with the singular
carry out the integrations with =4. Multiplying by 1/3! for

: . N > . ! part was employed. The region of integration was partitioned into
three identical particles in the final state, we obtain

three regions that are related by interchange of the three gluon

momenta. Only the region containing the singularityxatO was
1 (N2-1)(N2-4) e cont s recion wasr
——

o= , 772—9)a3, (6.19 retained, and_ the contribution from this region was multiplied by_
m INg s three to obtain the complete result. The method that we present in
this paper has the advantage that the limits of integration are sim-
pz (N2— 1)(N2—4) pler, and hence, the integrals are evaluated more easily. Also, cer-
re=_- >-=¢ 2° (19772— 132 ag . tain terms that cancel between the singular and non-singular contri-
m* 108N¢ butions in the method of Refl10] never appear in the present

(6.20 method.

094011-10
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where the quantities on the right side are given in Egs. 5 , , p* 4(23+1)Cp u2¢
(6.19, (6.20, (6.22, and(6.23. ("SifOs(*PY*Spms=— 5~ 5.

To determine the short-distance coefficients, we match m ™ A
these results with the NRQCD expression for the decay

width (2.7), evaluated in the’'S; QQ state. Since we have X
computed the full QCD decay rate in ordef, we must
evaluate each contributing term in E@Q.7) with accuracy
a?. The coefficient$ (1Sy), Fg(°S;), andFg( °P;) are of
order a2. Therefore, we must evaluate the correspondinqm
matrix elements through orders. We evaluate the matrix
elements corresponding to the unknown coefficients
F1(3S), G1(3S)), H1(3S,), andH?(3S,) at ordera?.

(627

1
- +log(4m)— ye

where we have made the identificatiep= €.
Making use of these results for the matrix elements, we
d that the decay width in NRQCD in ordef is

I'nrocdl 38— LH) =2N [ (1/m?)F(3S))

The color-octet matrix elements’S;|Og(1S)| 3S;) and +(p?Im*) Gy ( 381)+(p4/m6)H§7( 1sy)
(35,|05(%S,)|3S,) have a vanishing contribution at order
a? in the color-singleQQ state. The orde contribution +(pYm®)HT (1Sy)]
comes from four diagrams in which a gluon connects an
initial-stateQ or Q with a final-stateQ or Q. The interaction + (p4/m6)J§l , CsFs(°Py), (6.283

of the gluon with theQ or 6 cannot be of the-A form,

since that interaction changes the orbital angular momentum,re the factor . in front of the square brackets comes
. . . . c

by one unit. Any other NRQCD interaction must involve at oy the color and spin factors for normalized heavy-quark

least one power of the gluon momentum. Hence, it is easy tQi4tas and

see, by simple power counting arguments, that the integra-
tion over the gluon momentum is ultraviol€tV) power 2 5
divergent. It therefore vanishes in dimensional regulariza- 2(Ne—1) w1l
ivergent. 9 Cy= — ——(2]+ 1) —ay = +log(4m) — ye|.
tion. 817N, Mif €

The color-octet matrix elements's;| Og( 3P;)|3S,) also (6.28H
have a vanishing contribution at ord@i in the color-singlet

QQ state. Again, the ordes: contribution comes from four The short-distance coe_fficient'se(3PJ)2 have been com-
diagrams in which a gluon connects an initial-st@t@r Q puted inD=4-2¢ dimensions in ordewg by Petrelliet al.

with a final-stateQ or Q. The contribution at leading order in 10}
v arises fromp- A interactions between the gluon and Qe A\ e Fl-e 1-e
or Q. A straightforward computation yields F8(3po):18ﬂBFa§<W> ’“461“(2 5e) 3=2¢"
—ZE€ — L€
3 se 3 p* 8(2J+1)Cr  (=dk (6.293
(°S1|Og(°Py)|°Sy) = e % o
m ° Fa(*P1)=0, (6.29H
(6.295

This integral has logarithmic IR and UV divergences. Since Fo(3P,) = 4mBra?| — < e
it is scale invariant, it vanishes in dimensional regularization. 8l T2) = AmBRAs| 2| M

It can be written as
['(1-€) 6—13e+4¢€?

X _ _
(°S1| Og(°Py)| 51>=FT7%
Ha It follows that
1
x[ —+|og(477)—74 (N2—1)(N2—4) 7 (L 26
y7
W z CJFS( SPJ):_%ag g( M )
1 J=0,12 N2 el Mpu,
—|—+log(4w)— ,
€R g( 77) YEH X(l—E’yE)F(l—E) _i (6 3@
(6.26 I'(2—2e¢) 15/’ :

where eyy and e are (4-D)/2, andu, is the NRQCD  where we have neglected terms of order

renormalization scale. We renormalize the expres$ton6) Using Eq.(6.30, we can compare the width in full QCD

in the modified minimal subtractionMS) scheme by sub- [Eq. (6.24] with the width in NRQCD[Eq. (6.28] to com-
tracting the contribution proportional to elf,+log(4m) pute the short-distance coefficients. As expected, the IR
—7ve. The renormalized matrix element is poles ine cancel, and we obtain
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TABLE |. Short-distance coefficients and estimates of sizes of TABLE Il. Short-distance coefficients and estimates of sizes of
corresponding matrix elements for the decay dfSy quarkonium  corresponding matrix elements for the decay 0fSg quarkonium

state to two photons. state to light hadrons.
Coefficient Value Matrix element Coefficient Value Matrix element
Fyy(1S0) 1 1 F1(*Sp) 1 1
G,,(*So) -1.33 v2 G1(1Sy) -1.33 v2
H}W( 1Sy + Hf/y( 1s,) 1.51 vt Fe(3S)) 0.75; v3(2Ny)
Fs('So) 1.88 v4(2N,)
Fg(1Py) 1.13 v*(2Ng)
171 21 4
. (Ng—l)(Ng—él) (77_2_9) . H1("Sp) +HI(*Sp) 151 v
Fi(°Sy)= 3 Qg
N2 18
(6.31a
(N2=1)(N2—4) (11 19 coefficients to the coefficient of the operator whose matrix
G 381)=%(———772) al, element is of leading order in. In the third column of each
Ne 18 216 (6.31b table, we use the velocity-scaling rulgk] to estimate the

size of the matrix element of the operator that is associated
with each coefficient, relative to the size of the matrix ele-
ment of leading order inv. In the case of the color-octet
operators, we adopt the approach of Hé&0], multiplying

the velocity-scaling estimate by a factor 1I§9 to account

for the relative spin and color normalizations of the color-
singlet and color-octet operators as we have defined them in
(6.319 this paper.

In the case of charmoniumy,?~0.3 andag(m,)~0.35.

(N2—1)(N2—4)
HI(38y) +HI(38y) =—— 5
C

833 1609 , 7 2m| |
972 129607 ' 8199, %

Our result forF,( 3S,;) agrees with that given in Rgi4], and  Then, we see from Tables I-IIl that the convergence ofithe
our result forG,(3S;) agrees with that given in Ref5]. Our  expansion is reasonable for th&, decays into two photons
result forHI(3S,) + H2(3S,) is new. and into light hadrons and for th&s, decay into light had-
rons.
VIl. DISCUSSION On the other hand, the coefficients in Table IV cast some

) . doubt on the convergence of theexpansion in the case of
_In this paper, we have computed short-distance coeffigyg 35 gecay into light hadrons. In the case of charmonium,
cients for the decays of &, heavy-quarkonium state to two all of the contributions of higher order in are larger in

photons and to light hadrons and the decays 88aheavy- magnitude than the order contribution, with the exception

guarkonium state to a lepton pair and to light hadrons. Spe- 103g )4+ H2(3 P ] )
cifically, we have computed the coefficients of the operatorsOf the Hy("Sy) + H3(S,) contribution. The color-octet co

whose matrix elements are of ordet and whose quantum efficients, other thaffe(°P,), are enhanced by/as, rela-
. q tive to F,(3S,), since the corresponding color-octet Fock
numbers are those of the quarkonium state.

i ; states can decay into two gluons or into light-quark pairs,
In our computation, we are able to obtain only the com- . o X
L 1, 2511 2, 2541 -~ rather than into three gluons. In addition to this enhance-
binations H Lo) +HX Ly), rather than the indi- oo s ome of the coefficients afl . are quite large. How-
vidual coefficientsH(2S*1L;) and H?(2S*1L;), because ’ sareq ge.

. (T 50 251 1 ever, one can, through a redefinition of the color-singlet op-
the corresponding operatorg,( L;) and Q%( L), . erators, incorporate the factors 12, which we have
have identical matrix elements for on-shell heavy quarks in : . : . i

. associated with the matrix elements, into the short-distance
the center-of-momentum frame. In order to obtain the values

S . : coefficients[10]. Then, aside from ther/ a5 enhancement,
of the individual coefficients, it would be necessary to con- v E (3P,) is especially large. In the case of the color-
sider matrix elements of the operato@!(?S*!L;) and Y el o P y arge.

= singlet coefficient 33,) is quite large in magnitude rela-
Q2(25*1L,) in which the heavyQQ interact with additional g Gu("S) s a g 9

guanta before reaching the annihilation vertex. Alternatively, _ . _ _
one could consider matrix elements of the operators TABLE I!I. Shortjdlstance coefficients and estimates of sizes of
Qs( ZS“LJ), which, as we have shown in Appendix A, are corresponding matn_x elements for the decay ofSa quarkonium
related to the operator@Q(2S*1L,) and Q2(2StiL,  Statetoalepton pai.
through the equations of motion.

In Tables I-1V, we show the numerical values of the

Coefficient Value Matrix element

short-distance coefficients that appear through ordefor  F_ (3s)) 1 1
the decays that we consider in this paper. For each coeffg, 3s)) -1.33 v?
cient, we take into account only the contribution that is leadH? (3s,)+ H2(3s)) 1.61 v?

ing in ag. In each case, we normalize the short-distance
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TABLE IV. Short-distance coefficients and estimates of sizes of corresponding matrix elements for the
decay of a®S; quarkonium state to light hadrons.

Coefficient Value Matrix element
F1(°Sy) 1 1
G,(3s) —5.32 v?
Fa(1Sy) 11.64m/ ag v3(2N,)
Fs(3S)) 4.66n; 7/ ag v (2N,)
Fgs(3Po) 34.937/ ay v4(2Ng)
Fe(3P,) 2.26-6.90n; +5.17log(2m/u,) v (2N,)
Fg(3P,) 9.3/ ag v (2N,)
H1(3S) +H3(3S) 7.62+1.79log(2 ) vt

tive to F1(3S;). However, the quantitid}(3S,) + H3(3S,) is  ries that relates the lattice and continuum matrix elements.
not significantly larger in magnitude tha®,(3S;), giving  According to the Gremm-Kapustin relati¢a7], for dimen-
some hope that the expansion may ultimately be well be- sionally regulated matrix elements, the matrix element of
haved. P1(3S,) is equal to the matrix element @, (3S;) times

The estimates of the sizes of the relativistic correctiongM —2m;,¢)/m, up to corrections of relative order. Here,
strongly suggest that, in order to carry out a meaningful phem is the quarkonium mass, ama,is the heavy-quark pole
nomenological analysis d&wave quarkonium decays into mass. The remaining unknown operator matrix elements
light hadrons, one would need to take into account contribugoyid, in principle, be determined in lattice numerical simu-
tions beyond leading order . (For a further discussion of |ations.
this point, see Ref[15].) All of the contributions listed in
Table 1V, except for that oFg(3P;), would be needed to
achieve a precision of better than 50%.

Unfortunately, most of the required matrix elements are
unknown. However, the number of unknown quantities can i , i .
be reduced drastically by making use of the heavy-quark spin & Wish to thank Eric Braaten and Jungil Lee for critical
symmetry and the vacuum-saturation approximafibh al- readllng.s of the manuscrllpt. We alszo thank Jungl-l Lee for
though the accuracy of these approximations is not alway§onfirming our result foHg( °Sy) + Heo(°S,). We wish to
sufficient to allow a calculation of the decay rates throughthank G. Peter Lepage for a number of illuminating discus-
relative order*. Owing to the heavy-quark spin symmetry, sions. This work was supported by the U.S. Department of
the matrix elements of0;(1S)), Pi('Sy), Og(3S;),  Energy, Division of High Energy Physics, under Contract
0s(1Sy), Q1(*Sp), and Q2(1Sy) in a s, state are equal to  No. W-31-109-ENG-38.
the matrix elements of0;(3S)), Pi(3S), Og(1Sy),
0g(%S)), Q1(3S,), and Q3(3%S)) in a 3S, state, respec-
tively, up to corrections of relative order. Also owing to APPENDIX A: RELATION BETWEEN THE OPERATORS

ACKNOWLEDGMENTS

the heavy-quark spin symmetry, the matrix elements of the OF ORDER v*
operatorsOg(3P;) in a S, state are equal to (2 1)/9
times the matrix element aPg(*P,) in a 'S; state, up to In this appendix, we demonstrate that the operators

corrections of relative order?. According to the vacuum- 01 ('Sy) [Eq. (2.2)] are related to each other by the equa-

saturation approximation, the matrix elements of the operag, s of motion. as are the operat(@éi(ssl) [Eq.(2.8)], the

tors for the eIectromagnenc decays are equal to the mat.”éacuum—saturated versions of tt ( 1Sy), and the vacuum-
elements of the color-singlet hadronic-decay operators with

the same quantum numbers, up to corrections of relative oRaturated versions of the;( °Sy). We assume that these
derv®. It also follows from the vacuum-saturation approxi- OPerators are integrated over all space-time, so that we can
mation that the matrix element @1(25*1S)) is equal to the  €MPIOY integration by parts in re-writing them.
square of the matrix element @%,(25*1S;) divided by the We begin by considering the operator
matrix element of©0,(25"1S;), up to corrections of order
v*. However, the matrix element o©?(2571S;) is not
known to be related to the others. .2
The matrix elements of;(3S,) in the J/y andY states ol(1s)= ¢T( _ '_‘*) XXT( —
are known from phenomenology. The matrix elements of ! 2
04(3S)) and Py(3S;) in the J/y and Y states have also
been computed on the latti¢&6], although the lattice deter-
minations of the matrix elements @,(3S,) are rather im-
precise, owing to large uncertainties in the perturbation seNow,

2
5 D) g, (A1)
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X(=iD)2y=xT(—id—gA+id—gA)(—id—gA+id—gA)y=xT2(—id—gA)2+2(id—gA)>—(id+id)*]y]
= x"T4m(ido—gAg) +4m(ido— gAg) — (i d+id)2]y=[4imay— (—id)%]x "y, (A2)

where we have used the equations of motion at leading orderinnthe third line. Furthermore, under integration by parts,
which is equivalent to energy-momentum conservation in momentum space,

[ (=iD)2x1[4imdo—(—i8)21x"y—{[ —4mido—(19)2 ¢ (—~iD)*xT}x" v (A3)
Let us focus on the firsQ bilinear on the right of Eq(A3). It is
[—4mido— (i 9)2][ ' (—iD)?x]= y'{—4m(i do+ gAg) (—iD)?— 4m(—iDB)%(i do—gAy) +4m[gA, (—iD)?]
—4m[idy,(—iD)?]—(id+id)*(—iD)?}x. (A4)
Then, using the equations of motion, we have
[—4mido—(i9)2][4'(—iD)2x]=y'{2(19—gA)*(—iD)?+2(~iD)*(—id—gA)*+4m[gAg,(—iD)?]
—4m[idg,(—iD)2]—(id+id)A(—iD)%x

=y {(—iD)*+4m[(—iDy),(—iD)2}x=y¢'[(—iD)*—8m(D-gE+gE-D)lx, (A5)

where, in arriving at the second equality, we have dropped L NP 2 o i 2 L
some terms proportional fD;,D;]= —2ige€;; By that are ("Solw (_ED) x10)(0lx (_§D> ¥ *So)
orderv? relative to the terms that we have retained. s

Thus, taking into account bot@Q bilinears, we have *Re{<lso|¢TX|0><O|XT( _ %5) o] 130)}

+(M/2)RE( S| y"x[0)
io|? . . (5 SR
2 150)%"”[( -59) —<m/2><D.gE+gE.D)}XXW,, % (0lx'(B- gE-+ g B) 4] *So)] (A9)
(A6) and

i.)\?2 iL)2
3|y (——D) 0)-(0|x" (——D) s
Carrying out this procedure symmetrically on the left and Csily'e 2 x|0)-{0lx"er 2 YI°Sy)
right QQ bilinears of @ }( 1S,), we conclude that, under the

i<_, 4
equations of motion and integration by parts, —>Re{<3sl|szaX|O>~<O|XTa( - ED) ¢|381>}

+(M2)RE (S, | ¢ ox|0)- (0| x (D gE
1,1 2,1 3/1
Q115 — Q3(1s)) +(M2) Q3('Sy). (A7) +gE-B)yls)]. (A10)

APPENDIX B: SQUARED MATRIX ELEMENTS FOR 3S;

A similar analysis in the spin-triplet case yields
DECAY INTO LIGHT HADRONS

In this appendix we give the expressions for the terms of
01(3s))— 02(3s))+(m2) Q3(3S)). (ag)  orderp®, p) andp in the square of the matrix element
for a 3S; QQ state to decay into light hadrofihree gluons
These terms are denoted By(?), M@, and M®), respec-
The vacuum-saturated versions of these relations, which atésely. The quantitym is the heavy-quark mass. The invari-
relevant to the electromagnetic decays are antss, t, andu are defined in Eq(6.12.
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(N2—1)(N2—4) 20487°%a?

- pz(Ng—l)(N§—4) 8192732

B p4(N§— 1)(N2—4) 10247°a2

Z 3 (16m?*s?— 8m?s3+ s*+ 16m?*st— 12m?s%t + 253t + 16m*t% — 12m?st?+ 3%t — 8m?t3
Cc

1
(42— s)2(4mP—1)4(s+1)2’

+2st+1%) (B1)

®(768m1%2 — 256mBs3 — 48mPs® + 24m*s® — 2m?s8+ 51 2m*%st— 128m8s?t

NZ 9
— 256m°s3t + 120m*s*t — 18m?s°t + sBt + 768m*%2 — 128mPst? — 256mPs?t? + 176m*s®t? — 37m?s*t?+ 3s5t2
—256m8t3— 256mPst3+ 176m*s?t3 — 44m2s3t3+ 5573 — 48m°t* + 120m?*st* — 37m?s?t* + 583t 4+ 24m*t°
1 .
m?(4m?—s)3(4m°—1t)3(s+1)%’

—18m?st°+3s%t°— 2m?t8+ stf) (B2

35 %(1966080n1°s2+ 1409024n'4s3 — 1445888n1%s* + 22323105 + 47104mBsP

N
—14080m°s’ +880m*s8+ 1310720n'%st+ 258867 2n'*s?t — 4034560n'%s%t + 1176576n%*t + 975361%s°t
—86848n°s8t + 12352m*s’t — 552m?sBt + 1966080n1% 2+ 2588672 *st? — 3047424n'°s%t? + 984064n%s3t?
+371456n8s*t? — 275264n°s°t% + 56032n*s°t? — 4688m2s t2 + 1556512+ 1409024n%3 — 4034560n s t3
+984064n1%?t3+ 52531 2n8s%>— 408960n5s*t3+ 108304n*s°t3 — 1245am2s8t3+ 620573 — 1445888n'2%*
+1176576n'%t*+ 371456n%s%t* — 408960n°s3t* + 128640n*s*t*— 18468n2s°t*+ 1240:%t* + 22323 n1%°
+97536m8st°— 275264n°s%t° + 108304n*s3t° — 18468n2s*t°+ 1550°t°+ 47104n°t°— 86848n°st®

+56032n*s2t® — 1245M%s3t8+ 1240:*t5— 1408amSt 7 + 12352n*st’ — 4688n2s?t” + 620s°%t 7 + 880m*t8

1

—552m%st®+ 155[52t8)m4

(4m?—s)4(4m?—t)*(s+1)*"

(B3)
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