
PHYSICAL REVIEW D 66, 094011 ~2002!
Order-v4 corrections to S-wave quarkonium decay
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~Received 11 June 2002; published 25 November 2002!

We compute corrections of relative orderv4 to the rates for the decays of1S0 heavy quarkonium into two
photons and into light hadrons and for the decays of3S1 heavy quarkonium into a lepton pair and into light
hadrons. In particular, we compute the coefficients of the decay operators that have the same quantum numbers
as the heavy quarkonium. We also confirm previous calculations of the order-v2 corrections to these rates. We
find that thev expansion converges well for the decays of1S0 heavy quarkonium and for the decay of3S1

heavy quarkonium into a lepton pair. Large higher-order-in-v corrections appear in the decay of3S1 heavy
quarkonium into light hadrons. However, we find that the series of coefficients of operators with3S1 quantum
numbers, which yields a large correction in orderv2, yields a smaller correction in orderv4.
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I. INTRODUCTION

A formalism for the first-principles calculation of heavy
quarkonium decay rates in quantum chromodynamics~QCD!
has been given in Ref.@1#. This formalism is based on th
effective field theory nonrelativistic quantum chromodyna
ics ~NRQCD!. In it, one can write the decay rate of a quark
nium stateH as

G~H !5(
n

Fn

mdn24
^HuOuH&, ~1.1!

whereFn is a perturbatively calculable short-distance co
ficient, m is the heavy-quark mass, theOn are four-fermion
NRQCD operators, anddn is the mass dimension ofOn . The
terms in the sum overn may be classified according to the
orders inv ~Ref. @1#!, wherev is the heavy-quark–antiquar
relative velocity. For charmonium,v2'0.3; for bottomo-
nium, v2'0.1.

We concern ourselves in this paper with the decay of1S0
quarkonium into light hadrons and the decays of3S1 quarko-
nium into lepton pairs and into light hadrons. The coe
cients of the operators of leading order inv and of relative
orderv2 have been computed previously@1–9#. Some of the
coefficients of the order-v2 operators are sufficiently large a
to cast doubt on the convergence of thev expansion for
charmonium and bottomonium. In particular, the order-v2

correction to the rate for the decay of3S1 quarkonium into
light hadrons is25.32̂ v2&, where^v2& is the ratio of the
expectation values of the order-v2 and order-v0 operators in
the quarkonium state. Hence, in the case of charmonium
order-v2 correction is more than 100%.

In this paper, we compute the short-distance coefficie
of the decay operators, through orderv4, that have the same
quantum numbers as the quarkonium. Our calculations c
firm previous results for the short-distance coefficients of
order-v2 operators. We find that thev expansion is well be-
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haved for the decays of1S0 quarkonium and for the decay o
3S1 quarkonium into lepton pairs. In the case of the decay
3S1 quarkonium into light hadrons, large coefficients are
sociated with some of the operators of higher order inv. For
the operators with3S1 quantum numbers, a large correctio
to the decay rate appears in orderv2, but the correction in
order v4 is considerably smaller. This suggests that thev
expansion for operators with a given quantum number m
converge well once one goes beyond the first nontrivial
der.

II. NRQCD DECAY RATES

In this section, we present the NRQCD factorization e
pressions for the rates of1S0 quarkonium~e.g. hc or hb)
decay to light hadrons~LH!, 3S1 quarkonium~e.g. J/c or
Y) decay to light hadrons,1S0 quarkonium decay to two
photons, and3S1 quarkonium decay toe1e2.

Through relative orderv4, the rate for the decay of a1S0
state into light hadrons is given by

G~ 1S0→LH!5
F1~ 1S0!

m2
^1S0uO1~ 1S0!u 1S0&

1
G1~1S0!

m4
^1S0uP1~ 1S0!u 1S0&

1
F8~ 3S1!

m2
^1S0uO8~ 3S1!u 1S0&

1
F8~ 1S0!

m2
^1S0uO8~ 1S0!u 1S0&

1
F8~ 1P1!

m4
^1S0uO8~ 1P1!u 1S0&

1
H1

1~ 1S0!

m6
^1S0uQ 1

1~1S0!u 1S0&

1
H1

2~1S0!

m6
^1S0uQ 1

2~1S0!u 1S0&. ~2.1!pi-
©2002 The American Physical Society11-1
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The operators appearing in Eq.~2.1! are defined by

O1~ 1S0!5c†xx†c, ~2.2a!

P1~ 1S0!5
1

2 Fc†xx†S 2
i

2
DI D 2

c1c†S 2
i

2
DI D 2

xx†cG ,
~2.2b!

O8~ 3S1!5c†sTax•x†sTac, ~2.2c!

O8~ 1S0!5c†Taxx†Tac, ~2.2d!

O8~ 1P1!5c†S 2
i

2
DI DTax•x†S 2

i

2
DI DTac, ~2.2e!

Q 1
1~ 1S0!5c†S 2

i

2
DI D 2

xx†S 2
i

2
DI D 2

c, ~2.2f!

Q 1
2~ 1S0!5

1

2 Fc†xx†S 2
i

2
DI D 4

c1c†S 2
i

2
DI D 4

xx†cG ,
~2.2g!

Q 1
3~ 1S0!5

1

2
@c†xx†~DI•gE1gE•DI !c2c†~DI•gE

1gE•DI !xx†c#, ~2.2h!

where the subscript 1 or 8 indicates that the operator
color singlet or a color octet, the superscript labels the th
dimension-10 operators,c is the Pauli-spinor field that anni
hilates a heavy quark,x† is the Pauli-spinor field that anni
hilates a heavy antiquark,Dm5]m1 igAm is the gauge-
covariant derivative,A is the SU(3)-matrix-valued gaug
field, g is the QCD coupling constant,Ei5G0i , whereGmn

5]mAn2]nAm1 ig@Am,An# is the gluon field strength, an
the s i are Pauli matrices. The operatorDI is defined by
x†DIc5x†(Dc)2(Dx)†c. The relative signs of the terms i
each of these operators~and, in particular,Q 1

3) are fixed by
the requirements of Hermiticity and charge-conjugation
variance.

The matrix element ofQ 1
3 does not appear in Eq.~2.1!

because, as we show in Appendix A, it can be eliminated
favor of Q 1

1 and Q 1
2 through the use of the equations

motion. From the velocity scaling rules in Ref.@1#, we find
that, in the1S0 state, the operatorO1(1S0) has a matrix ele-
ment of relative orderv0, the operatorP1( 1S0) has a matrix
element of relative orderv2, the operatorO8( 3S1) has a
matrix element of relative orderv3, and the operators
O8( 1S0), O8( 1P1), Q 1

1( 1S0), Q 1
2( 1S0), andQ 1

3( 1S0) have
matrix elements of relative orderv4.
09401
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The contributions of orderas
2 and orderas

3 to the short-
distance coefficientF1( 1S0) have been computed in Refs
@2,3# and are given in Ref.@1#:

F1~ 1S0!5
pCF

Nc
as

2~2m!H 11F S p2

4
25DCF

1S 199

18
2

13p2

24 DCA2
8

9
nf G as

p J , ~2.3!

whereNc53 is the number of colors,CF5(Nc
221)/(2Nc)

54/3, and CA5Nc . The contribution of orderas
2 to

G1( 1S0) has been computed in Refs.@1,5#.1 It is

G1~ 1S0!52
4pCF

3Nc
as

2 . ~2.4!

We note that, to leading order inas , @G1( 1S0)#/@F1( 1S0)#
524/3. Hence, the first relativistic correction is sizable
the case of thehc . The contributions of orderas

2 and order
as

3 to F8( 3S1) andF8( 1S0) have been computed by Petre
et al. @10#:

F8~ 3S1!5
pnf

3
as

2~m!H 11
as

p F2
13

4
CF

1S 133

18
1

2

3
log22

p2

4 DCA2
10

9
nfTF

12b0log
m

2mG J 15as
3S 2

73

4
1

67

36
p2D ,

~2.5a!

F8~ 1S0!52pBFas
2~m!H 11

as

p F S 251
p2

4 DCF

1S 122

9
2

17

24
p2DCA2

16

9
nfTF

12b0log
m

2mG J , ~2.5b!

wherem is the QCD renormalization scale,nf is the number

1Short-distance coefficients can be extracted from the result
Ref. @5# by first making the substitution 1/Mmeson

2 →(1/4m2)(1
2«/m), where 2« is the binding energy, and then making th
identification «/m→^ 1S0uP1( 1S0)u 1S0&/@m2^ 1S0uO1( 1S0)u 1S0&#
'^ 3S1uP1( 3S1)u 3S1&/@m2^ 3S1uO1( 3S1)u 3S1&#.
1-2
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of light-quark flavors, BF5(Nc
224)/(4Nc)55/12, TF

51/2, andb05(11/6)CA2(2/3)TFnf . The contribution of
order as

2 to F8( 1P1) can be deduced from the results
Appendix A 2 of Ref.@1#:

F8~ 1P1!5
pNc

6
as

2 . ~2.6!

Owing to energy conservation, the operators associa
09401
ed

with the short-distance coefficientsH1
1( 1S0) and H1

2( 1S0)
cannot be distinguished from each other in the Born-le
decay of on-shell quarks. Consequently, if one uses on-s
matching between NRQCD and full QCD to compute t
short-distance coefficients in Born-level decay process
one can compute onlyH1

1( 1S0)1H1
2( 1S0), not the indi-

vidual coefficients. It is the quantityH1
1( 1S0)1H1

2( 1S0) that
we compute in this paper.

Through relative orderv4, the decay rate for a3S1 state
into light hadrons is
G~ 3S1→LH!5
F1~ 3S1!

m2
^ 3S1uO1~ 3S1!u 3S1&1

G1~ 3S1!

m4
^ 3S1uP1~ 3S1!u 3S1&1

F8~ 1S0!

m2
^ 3S1uO8~ 1S0!u 3S1&

1
F8~ 3S1!

m2
^ 3S1uO8~ 3S1!u 3S1&1 (

J50,1,2

F8~ 3PJ!

m4
^ 3S1uO8~ 3PJ!u 3S1&1

H1
1~ 3S1!

m6
^ 3S1uQ 1

1~ 3S1!u 3S1&

1
H1

2~ 3S1!

m6
^ 3S1uQ 1

2~ 3S1!u 3S1&. ~2.7!
of
of

-

e

The operatorO8( 1S0) is defined in Eq.~2.2d!, and the op-
eratorO8( 3S1) is defined in Eq.~2.2c!. The remaining op-
erators in Eq.~2.7! are defined by

O1~ 3S1!5c†sx•x†sc, ~2.8a!

P1~ 3S1!5
1

2 Fc†sx•x†sS 2
i

2
DI D 2

c1c†s

S 2
i

2
DI D 2

x•x†scG , ~2.8b!

O8~ 3P0!5
1

3
c†S 2

i

2
DI•sDTaxx†S 2

i

2
DI•sDTac, ~2.8c!

O8~ 3P1!5
1

2
c†S 2

i

2
DI3sDTax•x†S 2

i

2
DI3sDTac,

~2.8d!

O8~ 3P2!5c†S 2
i

2
DJ ( is j )DTaxx†S 2

i

2
DJ ( is j )DTac, ~2.8e!

Q 1
1~ 3S1!5c†sS 2

i

2
DI D 2

x•x†sS 2
i

2
DI D 2

c, ~2.8f!
Q 1
2~ 3S1!5

1

2 Fc†sx•x†sS 2
i

2
DI D 4

c

1c†sS 2
i

2
DI D 4

x•x†scG , ~2.8g!

Q 1
3~ 3S1!5

1

2
@c†sxx†

•s~DI•gE1gE•DI !c

2c†s~DI•gE1gE•DI !x•x†sc#. ~2.8h!

The operatorQ 1
3( 3S1) does not appear in Eq.~2.7! because,

as we show in Appendix A, it can be eliminated in favor
Q 1

1( 3S1) andQ 1
2( 3S1) through the use of the equations

motion. From the velocity-scaling rules in Ref.@1#, we find
that, in the 3S1 state, the operatorO1( 3S1) has a matrix
element of relative orderv0, the operatorP1( 3S1) has a
matrix element of relative orderv2, the operatorO8( 1S0)
has a matrix element of relative orderv3, and the operators
O8( 3S1), O8( 3P0), O8( 3P1), O8( 3P2), Q 1

1( 3S1),
Q 1

2( 3S1), andQ 1
3( 3S1) have matrix elements of relative or

der v4.
The order-as

3 and order-as
4 contributions to the short-

distance coefficientF1( 3S1) were computed by Mackenzi
and Lepage@4# and can be found in Ref.@1#, as can the
order-a2 contribution:
1-3
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F1~ 3S1!5
~Nc

221!~Nc
224!

Nc
3

~p229!

18
as

3~m!H 11@29.46~2!CF14.13~17!CA21.161~2!nf #
as

p J
12pQ2S (

i 51

nf

Qi
2Da2F12

13

4
CF

as

p G , ~2.9!

where Q is the electric charge of the heavy quark, and theQi are the electric charges of the light quarks. The orderas
3

contribution to the short-distance coefficientG1( 3S1) is computed in Ref.@5#:

G1~ 3S1!52
5~19p22132!

729
as

3 . ~2.10!

To leading order inas
2 , G1( 3S1)/@m2F1( 3S1)#52(19p22132)/@12(p229)#'25.32. Hence, the relativistic correction t

J/c decay is greater in magnitude than the leading contribution. This situation casts some doubt on the validity ov
expansion. We investigate this issue further in this paper by calculating corrections of relative orderv4. The order-as

2 and
order-as

3 contributions to the short-distance coefficientsF8( 1S0) andF8( 3S1) are given in Eqs.~2.5b! and~2.5a!, respectively.
The order-as

2 and order-as
3 contributions to the short-distance coefficientsF8( 3PJ) have been computed by Petrelliet al. @10#:

F8~ 3P0!56BFpas
2~m!H 11

as

p F S 2
7

3
1

p2

4 DCF1S 463

81
1

35

27
log22

17

216
p2DCA12b0log

m

2mG J 1
8

9
nfBFas

3S 2
29

6
1 log

2m

mL
D ,

~2.11a!

F8~ 3P1!5CABFas
3S 1369

54
2

23

9
p2D1

8

9
nfBFas

3S 2
4

3
1 log

2m

mL
D , ~2.11b!

F8~ 3P2!5
8BFp

5
as

2~m!H 11
as

p F24CF1S 4955

431
1

7

9
log22

43

72
p2DCA12b0log

m

2mG J 1
8

9
nfBFas

3S 2
29

15
1 log

2m

mL
D ,

~2.11c!

wheremL is the NRQCD renormalization scale. The contribution toF8( 1P1) of orderas
2 vanishes because Yang’s theore

@11# forbids the decay of a spin-one particle into two equivalent massless vector particles~gluons!. The contributions from
decay into a light quark-antiquark pair vanish because the3PJ states are even under charge conjugation. Again, the indivi
quantitiesH1

1( 3S1) andH1
2( 3S1) cannot be distinguished in processes in which the heavy quark and antiquark decay on

We compute the quantityH1
1( 3S1)1H1

2( 3S1) in this paper.
Through relative-orderv4, the decay of a1S0 state into two photons is given by

G~ 1S0→gg!5
Fgg~1S0!

m2
u^0ux†cu 1S0&u21

Ggg~ 1S0!

m4
ReF ^ 1S0uc†xu0&^0ux†S 2

i

2
DI D 2

cu 1S0&G1
Hgg

1 ~ 1S0!

m6

3^ 1S0uc†S 2
i

2
DI D 2

xu0&^0ux†S 2
i

2
DI D 2

cu 1S0&1
Hgg

2 ~ 1S0!

m6
ReF ^ 1S0uc†xu0&^0ux†S 2

i

2
DI D 4

cu 1S0&G .
~2.12!

The product of matrix elements Re@^ 1S0uc†xu0&^0ux†(DI•gE1gE•DI)cu 1S0&#, which is of relative orderv4, does not appea
in Eq. ~2.12! because, as we show in Appendix A, it can be eliminated in favor of the products of matrix elements in t
two terms of Eq.~2.12! through the use of the equations of motion. From the velocity-scaling rules in Ref.@1#, we find that,
in Eq. ~2.12!, the product of matrix elements in the first line is of relative orderv0, the product of matrix elements in th
second line is of relative orderv2, and the products of matrix elements in the third and fourth lines are of relative ordev4.
094011-4
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The order-a2 and order-a2as contributions to the short-distance coefficientFgg( 1S0) are calculated in Refs.@2,3,6# and are
given in Ref.@1#:

Fgg~ 1S0!52pQ4a2F11S p2

4
25DCF

as

p G . ~2.13!

The order-a2 contribution toGgg( 1S0) is computed in Refs.@1,5#:

Ggg~ 1S0!52
8pQ4

3
a2. ~2.14!

To leading order inas , Ggg( 1S0)/@m2Fgg( 1S0)#524/3. Hence, the first relativistic correction to this process is substa
for the hc . In this paper, we compute the combination of short-distance coefficientsHgg

1 ( 1S0)1Hgg
2 ( 1S0).

Through relative orderv4, the rate for a3S1 state to decay into ane1e2 pair is

G~ 3S1→e1e2!5
Fee~

3S1!

m2
u^0ux†scu 3S1&u21

Gee~
3S1!

m4
ReF ^ 3S1uc†sxu0&•^0ux†sS 2

i

2
DI D 2

cu 3S1&G
1

Hee
1 ~ 3S1!

m6
^ 3S1uc†sS 2

i

2
DI D 2

xu0&•^0ux†sS 2
i

2
DI D 2

cu 3S1&1
Hee

2 ~ 3S1!

m6

3ReF ^ 3S1uc†sxu0&•^0ux†sS 2
i

2
DI D 4

cu 3S1&G . ~2.15!
n
of
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-
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co-

ta-
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The product of matrix elements Re@^ 3S1uc†sxu0&
•^0ux†s(DI•gE1gE•DI)cu 3S1&#, which is of relative order
v4, does not appear in Eq.~2.15! because, as we show i
Appendix A, it can be eliminated in favor of the products
matrix elements in the last two terms of Eq.~2.15! through
the use of the equations of motion. In Eq.~2.15!, the product
of matrix elements in the first line is of relative orderv0, the
product of matrix elements in the second line is of relat
order v2, and the products of matrix elements in the th
and fourth lines are of relative orderv4.

The order-a2 and order-a2as contributions to the short
distance coefficientFee(

3S1) are calculated in Refs.@7,8#
and are given in Ref.@1#. The order-a2as

2 contribution is
calculated in Ref.@9#. Altogether, these contributions give

Fee~
3S1!5

2pQ2a2

3 H 124CF

as~m!

p
1F2117.46

10.82nf1
140p2

27
lnS 2m

mL
D G S as

p D 2J . ~2.16!

The order-a2 contribution toGgg( 1S0) is computed in Refs.
@1,5#:

Gee~
3S1!52

8pQ2

9
a2. ~2.17!

To leading order inas , Gee(
3S1)/@m2Fee(

3S1)#524/3.
Hence, the first relativistic correction to this process is s
stantial for theJ/c. In this paper, we compute the combin
tion of short-distance coefficientsHee

1 ( 3S1)1Hee
1 ( 3S1).
09401
-

III. SPIN PROJECTORS

In computing the quarkonium decay rates, we use the
variant spin-projector method@12,13# to identify spin-singlet
and spin-triplet amplitudes. For purposes of the compu
tions in this paper, we need projection operators accurat
least through relative orderv4. In this section, we compute
the required projectors to all orders inv.

The Dirac spinors, with the standard nonrelativistic n
malization, may be written as

u~p!5AE1m

2E S j

p•s

E1m
jD , ~3.1a!

v~2p!5AE1m

2E S ~2p!•s

E1m
h

h
D ,

~3.1b!

wherej andh are two-component Pauli spinors, andE(p)
5Am21p2. We take the heavy quark and antiquark m
menta to be

pQ5~1/2!P1p, ~3.2a!

pQ̄5~1/2!P2p, ~3.2b!

respectively, where in the quarkonium rest frame,
1-5
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P5~2E~p!,0!, ~3.3a!

p5~0,p!. ~3.3b!

Using Eq. ~3.1!, it is straightforward to express spin
singlet and spin-triplet combinations of spinor bilinears
terms of Dirac matrices and to write them in a covaria
form. In the spin-singlet case, we have

P0~P,p!52 (
l1 ,l2

u~p,l1!v̄~2p,l2!^ 1
2 l1

1
2 l2u0 0&

5
1

A2

E1m

2E S 11
a•p

E1mD11g0

2
g5S 12

a•p

E1mDg0

5
1

2A2E~E1m!
S 1

2
P” 1m1p” D P” 12E

4E

3g5S 1

2
P” 2m2p” D , ~3.4!

wherea i andgm are Dirac matrices in the Dirac represen
tion, g55 ig0g1g2g3, and we have chosen the normalizati
so that the projector~3.4! corresponds in NRQCD to th
projectorI /A2, whereI is a unit Pauli matrix.2 We note that
E(p) may be written in a Lorentz invariant fashion as

E~p!5~1/2!AP2. ~3.5!

In the case of a spin-triplet state with polarizatione, we have
09401
t

-

P1~P,p,e!5 (
l1 ,l2

u~p,l1!v̄~2p,l2!^ 1
2 l1

1
2 l2u1 e&

5
1

A2

E1m

2E S 11
a•p

E1mD11g0

2

3a•eS 12
a•p

E1mDg0

5
21

2A2E~E1m!
S 1

2
P” 1m1p” D

3
P” 12E

4E
e” S 1

2
P” 2m2p” D . ~3.6!

Here, u1 e& is the rotationally invariant linear combinatio
u1 e&5e2u1 1&2e1u1 21&2e3u1 0&, with e65(1/A2)(e1
6 i e2). We have chosen the normalization so that the proj
tor ~3.6! corresponds in NRQCD to the projectors•e/A2.
The expressions~3.4! and ~3.6! are valid to all orders inv.

IV. RELATIVISTIC CORRECTIONS TO 1S0 DECAYS

In this section we compute the short-distance coefficie
that appear in the corrections through relative orderv4 to
1S0 quarkonium decays into two photons and into light ha
rons ~two gluons!.

We begin with the case of decay into two photons. W
take the definitions of the heavy quark and antiquark m
menta given in Eq.~3.2! and work in the quarkonium res
frame, as defined in Eq.~3.3!. We take the outgoing photon
momenta to bek and q, with polarization indicesm and n,
respectively. Consider first the diagram in which the qua
emits the photon with momentumk. The spin-singlet ampli-
tude corresponding to this diagram is
ry
s

A1~sing→gg!52 ie2Q2TrFP0~P,p!gn
p”Q2k”1m

22pQ•k
gmG

5
2 ie2Q2

2A2E~E1m!

1

2pQ•k
TrFgnk”gmS 1

2
P” 1m1p” D11g0

2
g5S 1

2
P” 2m2p” D G

5
2 ie2Q2

2A2E~E1m!

1

2pQ•k
TrFgnk”gm~E1m1p” !

11g0

2
g5~2E2m2p” !G , ~4.1!

2In Eq. ~3.4!, the standard Clebsch-Gordan coefficients are appropriate if the spinors in Eq.~3.1! are related to each other through a unita
transformation, which preserves the SU~2! algebra, such as the charge-conjugation transformationh52 is2j. One such choice of spinors i
j5( 0

1) or ( 1
0) andh5( 1

0) or ( 0
21), for l1561/2 andl2561/2, respectively. On the other hand, a popular convention isj5( 0

1) or ( 1
0) and

h5( 1
0) or ( 0

1), for l1561/2 andl2561/2, respectively. With this convention, the Clebsch-Gordan coefficients in Eq.~3.4! must be
multiplied by an additional factor (21)(21/21l2).
1-6
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where e is the electromagnetic coupling constant.3 In the
projector (11g0)/2 in the last line, the term proportional t
1 gives a vanishing trace, while the term proportional tog0
gives

A1~sing→gg!52e2Q2
m

A2E
enrm0kr

1

pQ•k
. ~4.2!

Similarly, the diagram in which the antiquark emits the ph
ton with momentumk yields an amplitude

A2~sing→gg!5e2Q2
m

A2E
emrn0kr

1

pQ̄•k
. ~4.3!

Adding A1(sing→gg) and A2(sing→gg), we obtain the
complete amplitude for1S0 charmonium decay into two
photons:

A~sing→gg!52e2Q2
m

A2E
enrm0kr

3S 1

E22p•k
1

1

E21p•k
D . ~4.4!

We project out theS-wave part of the amplitude by averagin
over the angles ofp:

A~ 1S0→gg!5
1

2E21

1

d~cosu!~2e2Q2!
m

A2E
enrm0kr

3S 1

E22upuukucosu
1

1

E21upuukucosu
D

52e2Q2enrm0kr

m

A2E2upu
ln

E1upu
E2upu

, ~4.5!

where we have usedk25E2. Multiplying the expression
~4.5! by its complex conjugate, by the two-body phase sp
1/(8p), and by a factor 1/2! for two identical particles in th
final state, we obtain the decay width for a1S0 QQ̄ state into
two photons:

G~ 1S0→gg!5
pm2Q4a2

E2p2
ln2

E1upu
E2upu

. ~4.6!

Here, and in succeeding computations of the decay width
two-particle states, we suppress a factor of the inverse
ume that is associated with the normalization of the ini
state.

3In computing the short-distance coefficients for electromagn
decay processes, we suppress the trivial color factors, which
mately cancel when one matches decay rates in full QCD
NRQCD.
09401
-

e

of
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From Eq.~2.12!, we find that the decay width for a1S0

QQ̄ state into two photons in NRQCD in orderas
0 and

through relative orderv4 is

GNRQCD~
1S0→gg!52@~1/m2!Fgg~ 1S0!

1~p2/m4!Ggg~ 1S0!1~p4/m6!Hgg
1 ~ 1S0!

1~p4/m6!Hgg
2 ~ 1S0!#, ~4.7!

where the factor two on the right side of Eq.~4.7! comes
from the spin factor for normalized heavy-quark states.

Comparing powers ofp2/m2 in Eqs. ~4.6! and ~4.7!, we
obtain the short-distance coefficients at leading order inas :

Fgg~ 1S0!52pQ4a2, ~4.8a!

Ggg~ 1S0!52
8p

3
Q4a2, ~4.8b!

Hgg
1 ~ 1S0!1Hgg

2 ~ 1S0!5
136p

45
Q4a2. ~4.8c!

Our results forFgg( 1S0) andGgg( 1S0) confirm those given
in Refs. @1–3,6# and @1#, respectively. Our result for
Hgg

1 ( 1S0)1Hgg
2 ( 1S0) is new.

At leading order inas , the decay of a1S0 QQ̄ state to
light hadrons proceeds through an annihilation into two g
ons. Hence, we may obtain the decay width for a1S0 QQ̄
state into light hadrons by multiplying the width into tw
photons@Eq. ~4.6!# by a color factorCF/2 timesas

2/(a2Q4):

G~ 1S0→LH!5
pCFm2as

2

2E2p2
ln2

E1upu
E2upu

. ~4.9!

From Eq.~2.1!, we find that the decay width for a1S0 QQ̄
state into two photons in NRQCD in orderas

2 and through
relative orderv4 is

GNRQCD~
1S0→LH!52Nc@~1/m2!F1~ 1S0!

1~p2/m4!G1~ 1S0!1~p4/m6!H1
1~ 1S0!

1~p4/m6!H1
2~ 1S0!#, ~4.10!

where the factor 2Nc on the right side of Eq.~4.10! comes
from the spin and color factors for normalized heavy-qua
states. The matrix elements of the color-octet operators
not contribute to Eq.~4.10! in order as

2 . Comparing Eqs.
~4.9! and ~4.10!, we obtain the short-distance coefficients
leading order inas :

F1~ 1S0!5
pCF

Nc
as

2 , ~4.11a!

G1~ 1S0!52
4pCF

3Nc
as

2 , ~4.11b!

H1
1~ 1S0!1H1

2~ 1S0!5
68pCF

45Nc
as

2 . ~4.11c!
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Our result forF1( 1S0) is in agreement with that given in
Refs.@1–3#, and our result forG1( 1S0) is in agreement with
that given in Ref.@1#. Our result forH1

1( 1S0)1H1
2( 1S0) is

new.

V. RELATIVISTIC CORRECTIONS TO 3S1 DECAY
TO e¿eÀ

Next we turn to the case of the decay of a3S1 quarko-
nium state into ane1e2 pair. Again, we work in the quarko
nium rest frame defined in Eq.~3.3!. The amplitude for a
quark and antiquark in a spin-triplet state with the mome
given in Eq.~3.2! to decay into a virtual photon with polar
ization indexm is given by

A~ trip→g* !5 ieQ Tr @P1~P,p,e!gm#

5 ieQA2F pmp•e

E~E1m!
1emG .

~5.1!

We can project out theS-wave part of the amplitude by av
eraging over the angles ofp:

A~ 3S1→g* !5
1

2E21

1

d~cosu! ieQA2F pmp•e

E~E1m!
1emG

5 ieQA2S 2

3
1

m

3ED em . ~5.2!

In order to obtain the decay rate into ane1e2 pair, we mul-
tiply the expression~5.2! by its complex conjugate with in
dex n, by a photon-propagator factor2 igmr /k2, by a
complex-conjugated photon-propagator factorigns /k2, and
by twice the imaginary part of thee1e2-pair contribution to
the photon’s vacuum polarization, namely, (grsk22krks)
3(22/3)a. Herek is the virtual photon’s momentum. Th
result is

G~ 3S1→e1e2!5
4pQ2a2

3E2 S 2

3
1

m

3ED 2

, ~5.3!

where we have usedk•e50, e•e* 521, andk254E2.
From Eq.~2.15!, we see that, in NRQCD through relativ

orderv4, the decay width for a3S1 QQ̄ state into ane1e2

pair is

GNRQCD~
3S1→e1e2!52@~1/m2!Fee~

3S1!

1~p2/m4!Gee~
3S1!1~p4/m6!Hee

1 ~ 3S1!

1~p4/m6!Hee
2 ~ 3S1!#. ~5.4!

The factor two on the right side of Eq.~5.4! comes from the
spin factor for normalized heavy-quark states.

Comparing powers ofp2/m2 in Eqs. ~5.3! and ~5.4!, we
obtain the short-distance coefficients at leading order inas :

Fee~
3S1!5

2p

3
Q2a2, ~5.5a!
09401
a

Gee~
3S1!52

8p

9
Q2a2, ~5.5b!

Hee
1 ~ 3S1!1Hee

2 ~ 3S1!5
58p

54
Q2a2. ~5.5c!

Our result for Fee(
3S1) agrees with that given in Refs

@1,7,8#, and our result forGee(
3S1) agrees with that given in

Ref. @1#. Our result forHee
1 ( 3S1)1Hee

2 ( 3S1) is new.

VI. RELATIVISTIC CORRECTIONS TO 3S1 DECAY TO
LIGHT HADRONS

In the decay of a heavy-quark–antiquark state, diagra
in which only two of the final-state gluons attach to th
heavy-quark line have a common heavy-quark color fac
Hence,~Abelian! charge-conjugation symmetry forbids suc
diagrams in the decay of a3S1 state. Furthermore, colo
conservation forbids diagrams in which only one of the fin
state gluons attaches to the heavy-quark line. Thus, in le
ing order inas , a 3S1 heavy-quark–antiquark state deca
into three gluons, and the decay proceeds through diagr
in which all three gluons attach to the heavy-quark lin
~Since no triple-gluon vertices appear, there are no gh
contributions.!

In this decay process, in contrast with the decay proces
that we have analyzed in the preceding sections, the kinem
ics allow one of the final-state gluons to have zero ene
Hence, the possibility arises that the decay rate contain
infrared ~IR! divergence. Simple power counting argumen
show that an IR divergence can arise only if the soft glu
attaches to an incoming~on-shell! heavy-quark or heavy-
antiquark leg. Therefore, one can use NRQCD to analyze
interaction of this soft gluon with the heavy quark.

One can see from power-counting arguments, th
through relative orderv4, in the Coulomb gauge, a gluo
that interacts with a quark or an antiquark can yield an
divergence only if the interactions are of the typec†D•Ac
or x†D•Ax. ~The c†B•sc and x†B•sx interactions have
the correct dimensions to produce an IR divergence, but
factors of B bring in powers of the gluon momentum th
protect against an IR divergence.! The factor ofD translates
into a factor of the incoming quark or antiquark momentu
Factors of the gluon momentum do not appear since they
orthogonal to the gluon propagator in the Coulomb gau
Therefore, the interactions of the gluon yield two factors
the incoming quark or antiquark momentum in the squa
amplitude. Two additional factors of the incoming quark
antiquark momentum are required in order to have a nonz
overlap with an incomingS-wave state. Hence, an IR dive
gence in the decay rate must be associated with at least
factors of the incoming quark or antiquark momentum. Th
is, an IR divergence can first appear in relative orderv4.
Because the soft gluon in aD•A interaction changes the
incoming S-wave color-singlet quark-antiquark state into
P-wave color-octet quark-antiquark state, we expect that
IR divergence will be absorbed into matrix elements of t
P-wave color-octet operators in Eq.~2.7!.

Now let us turn to the actual computation of the rate fo
1-8



th
a

ils

in
st
a
ta
ix
pr

rs
pe

I
ith

te

b
i

on
a
g
in
s

n
g

of
-

e.
an-

n-
ion
tor
by

he
We

ORDER-v4 CORRECTIONS TOS-WAVE QUARKONIUM DECAY PHYSICAL REVIEW D 66, 094011 ~2002!
3S1 QQ̄ state to decay into three gluons. We present only
outlines of that calculation here. We used the symbolic m
nipulation programMATHEMATICA and the packageFEYN-

CALC @14# to handle the tedious, but straightforward, deta
of the algebra.

We regulate the anticipated IR divergence by comput
in D5422e dimensions. We work in the quarkonium re
frame, assign the incoming quark and antiquark moment
in Eqs.~3.2! and~3.3!, and take the outgoing gluon momen
to be k1 , k2, andk3. First we compute the sum of the s
Feynman diagrams for this process, making use of the
jector ~3.6!. Although we are working inD5422e dimen-
sions, we can follow the approach of Ref.@10# and simply
use theD-dimensional version of the spin-1 projector~3.6!.
As explained in Ref.@10#, we need not consider projecto
for the higher-spin evanescent NRQCD operators that ap
in D dimensions because the contributions that contain an
pole in one loop do not mix the higher-spin operators w
the spin-1 operators.

At this point, we could square the amplitude, integra
over the phase space, and expand in powers ofp in order to
obtain the desired result. However, the amount of alge
would be greatly reduced if we could make the expansion
powers ofp before carrying out the phase-space integrati
Such a strategy is complicated by the fact that the ph
space depends onp through the total energy of the incomin
QQ̄ state, but we can make that dependence explicit by
troducing a rescaling of phase-space integration variable

ki→kiE~p!/m. ~6.1!

Then, the final-state phase space transforms as

)
i

S d(D21)ki

2~ki !0
D dDS P2(

i
ki D

→)
i

S d(D21)ki

2~ki !0
D dDS mP

E~p!
2(

i
ki D f ~p!, ~6.2!

where

f ~p!5FE~p!

m G (D22)3/D

5FE~p!

m G2F12
5

2
e log

E2~p!

m2 G1O~e2!. ~6.3!

All of the dependence onp on the right side of Eq.~6.2! is
contained in the explicit factorf (p). The remaining factors
correspond to the phase space evaluated at theQQ̄ threshold
p50. Therefore, after rescaling theki according to Eq.~6.1!,
we can obtain the necessary expansion in powers ofp by
expanding the amplitude, its complex conjugate, andf (p) in
powers ofp beforecarrying out the phase-space integratio
Note that an IR pole ine first appears in the rate, excludin
the factorf (p), only in the relative-orderv4. Hence, we can
drop the term proportional toe on the right side of Eq.~6.3!,
which contributes an additional factorv2.
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We expand the amplitude in a power series inp, through
orderp4. The terms containing no powers ofp yield a pure
S-wave contribution. For the terms containing two powers
p, we extract theS-wave contribution by making the replace
ment

pmpn→p2Tmn . ~6.4!

For the terms containing four powers ofp, we extract the
S-wave contribution by making the replacement

pmpnprps→p4Tmnrs . ~6.5!

Here,

Tmn5
1

D21
Pmn , ~6.6!

Tmnrs5
1

~D21!~D11!
@PmnPrs1PmrPns1PmsPnr#,

~6.7!

and

Pmn52gmn1
PmPn

4E2~p!
. ~6.8!

Next, we multiply the amplitude by its complex conjugat
We evaluate the gluon polarization sums using the Feynm
gauge expression

emen* 52gmn , ~6.9!

we evaluate the spin-triplet-state polarization sum using

emen* 5Pmn , ~6.10!

and we divide byD21 to obtain the average over the spi
triplet-state polarizations. Owing to the charge-conjugat
invariance of the amplitude, only the part of the color fac
that is symmetric in the color indices survives. It is given

1

16Nc
dabcdabc5

~Nc
221!~Nc

224!

16Nc
2 . ~6.11!

Multiplying by this color factor and byf (p), we obtain the
‘‘squared matrix element’’ that must be integrated over t
p50 three-body phase space to obtain the decay rate.
write the coefficients ofp0, p2, and p4 in terms of the in-
variants

s52k1•k2 , ~6.12a!

t52k1•k3 , ~6.12b!

u52k2•k3 , ~6.12c!

where, since we have setp50 in these coefficients, the
energy-momentum conservation relation now reads

k11k21k352m. ~6.13!
1-9
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The expressions for these coefficients in four dimensions
given in Appendix B.

We re-write the coefficients ofp0, p2, andp4 in terms of
the invariants

xi5
2P•ki

~2m!2 U
p50

. ~6.14!

It follows that

s52m2~x11x22x3!, ~6.15a!

t52m2~x12x21x3!, ~6.15b!

u52m2~2x11x21x3!. ~6.15c!

The D-dimensional three-body phase space for decay o
particle of massM is @10#

dF (3)5
M2

2~4p!3S 4p

M2D 2e 1

G~222e!

3)
i 51

3

~12xi !
2edxidS 22(

i 51

3

xi D . ~6.16!

The phase space atp50 is obtained by making the identifi
cationM52m.

It is convenient to make a further change of variables,
that the limits of integration are independent of the integ
tion variables. To this end, we write

x15x, ~6.17a!

x2512xy, ~6.17b!

x3512x~12y!. ~6.17c!

This change of variables is particularly useful in analyzi
the infrared singularities, since it avoids the difficulty that,
the singular pointsxi50, the range of integration in one o
the variablesxj ( iÞ j ) vanishes. Now the phase space is

dF (3)5
M2

2~4p!3S 4p

M2D 2e 1

G~222e!

3@x2~12x!y~12y!#2ex dx dy, ~6.18!

wherex andy range from 0 to 1.
In the cases of the terms proportional top0 and p2, the

integrations over the phase space are IR finite, and we
carry out the integrations withD54. Multiplying by 1/3! for
three identical particles in the final state, we obtain

G (0)5
1

m2

~Nc
221!~Nc

224!

9Nc
2 ~p229!as

3 , ~6.19!

G (2)52
p2

m4

~Nc
221!~Nc

224!

108Nc
2 ~19p22132!as

3 .

~6.20!
09401
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In the case of the term proportional top4, we must first
separate the IR singular parts in the matrix element squar4

These are given by

M̃IR5
p4

m8

~Nc
221!~Nc

224!

Nc
2

128p3as
3

~322e!3

3@~322e!~12e!22~22e!y~12y!#m6e

3S 1

x2 1
1

~12xy!2 1
1

@12x~12y!#2D . ~6.21!

IntegratingM̃IR over the phase space~6.18! and multiplying
by 1/3! for three identical particles in the final state, w
obtain

G IR
(4)52

p4

m6

~Nc
221!~Nc

224!

Nc
2

as
31

e S 4p

M2D 2e

3m6e
G2~12e!

G2~222e!

~12e!2~724e!

~322e!4 . ~6.22a!

Neglecting terms of ordere, we may write this expression a

G IR
(4)52

p4

m6

~Nc
221!~Nc

224!

Nc
2

as
3F 7

81e S 4p

M2D 2e

3m6e
~12egE!G~12e!

G~222e!
1

44

243G , ~6.22b!

wheregE is Euler’s constant. After subtracting the IR sing
lar terms ~6.21! from the integrand, we can carry out th
phase-space integration over the remainder withD54. Mul-
tiplying by 1/3! for three identical particles in the final stat
we obtain

Gfinite
(4) 5

p4

m6

~Nc
221!~Nc

224!

Nc
2

as
3F2

3563

2430
1

1609

6480
p2G .

~6.23!

The complete decay width in full QCD of a3S1 QQ̄ state
into light hadrons through orderv4 is then

G~ 3S1→LH!5G (0)1G (2)1G IR
(4)1Gfinite

(4) , ~6.24!

4In Ref. @10#, an alternative method for dealing with the singul
part was employed. The region of integration was partitioned i
three regions that are related by interchange of the three g
momenta. Only the region containing the singularity atx50 was
retained, and the contribution from this region was multiplied
three to obtain the complete result. The method that we prese
this paper has the advantage that the limits of integration are
pler, and hence, the integrals are evaluated more easily. Also,
tain terms that cancel between the singular and non-singular co
butions in the method of Ref.@10# never appear in the presen
method.
1-10
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where the quantities on the right side are given in E
~6.19!, ~6.20!, ~6.22!, and~6.23!.

To determine the short-distance coefficients, we ma
these results with the NRQCD expression for the de
width ~2.7!, evaluated in the3S1 QQ̄ state. Since we have
computed the full QCD decay rate in orderas

3 , we must
evaluate each contributing term in Eq.~2.7! with accuracy
as

3 . The coefficientsF8( 1S0), F8( 3S1), andF8( 3PJ) are of
order as

2 . Therefore, we must evaluate the correspond
matrix elements through orderas . We evaluate the matrix
elements corresponding to the unknown coefficie
F1( 3S1), G1( 3S1), H1

1( 3S1), andH1
2( 3S1) at orderas

0 .
The color-octet matrix elementŝ3S1uO8( 1S0)u 3S1& and

^ 3S1uO8( 3S1)u 3S1& have a vanishing contribution at orde
as

0 in the color-singletQQ̄ state. The order-as
1 contribution

comes from four diagrams in which a gluon connects
initial-stateQ or Q̄ with a final-stateQ or Q̄. The interaction
of the gluon with theQ or Q̄ cannot be of thep•A form,
since that interaction changes the orbital angular momen
by one unit. Any other NRQCD interaction must involve
least one power of the gluon momentum. Hence, it is eas
see, by simple power counting arguments, that the inte
tion over the gluon momentum is ultraviolet~UV! power
divergent. It therefore vanishes in dimensional regulari
tion.

The color-octet matrix elements^ 3S1uO8( 3PJ)u 3S1& also
have a vanishing contribution at orderas

0 in the color-singlet

QQ̄ state. Again, the order-as
1 contribution comes from four

diagrams in which a gluon connects an initial-stateQ or Q̄

with a final-stateQ or Q̄. The contribution at leading order i
v arises fromp•A interactions between the gluon and theQ

or Q̄. A straightforward computation yields

^ 3S1uO8~ 3PJ!u 3S1&5
p4

m2

8~2J11!CF

81p
asE

0

`dk

k
.

~6.25!

This integral has logarithmic IR and UV divergences. Sin
it is scale invariant, it vanishes in dimensional regularizati
It can be written as

^ 3S1uO8~ 3PJ!u 3S1&5
p4

m2

4~2J11!CF

81p

m2e

mL
2e

as

3H F 1

eUV
1 log~4p!2gEG

2F 1

e IR
1 log~4p!2gEG J ,

~6.26!

where eUV and e IR are (42D)/2, andmL is the NRQCD
renormalization scale. We renormalize the expression~6.26!
in the modified minimal subtraction (MS) scheme by sub
tracting the contribution proportional to 1/eUV1 log(4p)
2gE . The renormalized matrix element is
09401
.

h
y

g

s

n

m

to
a-

-

e
.

^ 3S1uO8~ 3PJ!u 3S1&MS̄52
p4

m2

4~2J11!CF

81p

m2e

mL
2e

as

3F1

e
1 log~4p!2gEG , ~6.27!

where we have made the identificatione IR5e.
Making use of these results for the matrix elements,

find that the decay width in NRQCD in orderas
3 is

GNRQCD~
3S1→LH!52Nc@~1/m2!F1~ 3S1!

1~p2/m4!G1~ 3S1!1~p4/m6!Hgg
1 ~ 1S0!

1~p4/m6!Hgg
2 ~ 1S0!#

1~p4/m6! (
J50,1,2

cJF8~ 3PJ!, ~6.28a!

where the factor 2Nc in front of the square brackets come
from the color and spin factors for normalized heavy-qua
states and

cJ52
2~Nc

221!

81pNc
~2J11!

m2e

mL
2e

asF1

e
1 log~4p!2gEG .

~6.28b!

The short-distance coefficientsF8( 3PJ) have been com-
puted inD5422e dimensions in orderas

2 by Petrelliet al.
@10#:

F8~ 3P0!518pBFas
2S 4p

M2D e

m4e
G~12e!

G~222e!

12e

322e
,

~6.29a!

F8~ 3P1!50, ~6.29b!

F8~ 3P2!54pBFas
2S 4p

M2D e

m4e

3
G~12e!

G~222e!

6213e14e2

~322e!~522e!
. ~6.29c!

It follows that

(
J50,1,2

cJF8~ 3PJ!52
~Nc

221!~Nc
224!

Nc
2

as
3F 7

81e S 4pm3

MmL
D 2e

3
~12egE!G~12e!

G~222e!
2

1

15G , ~6.30!

where we have neglected terms of ordere.
Using Eq.~6.30!, we can compare the width in full QCD

@Eq. ~6.24!# with the width in NRQCD@Eq. ~6.28!# to com-
pute the short-distance coefficients. As expected, the
poles ine cancel, and we obtain
1-11
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F1~ 3S1!5
~Nc

221!~Nc
224!

Nc
3

~p229!

18
as

3 ,
~6.31a!

G1~ 3S1!5
~Nc

221!~Nc
224!

Nc
3 S 11

18
2

19

216
p2Das

3 ,

~6.31b!

H1
1~ 3S1!1H1

2~ 3S1!5
~Nc

221!~Nc
224!

Nc
3

3S 2
833

972
1

1609

12960
p21

7

81
log

2m

mL
Das

3.

~6.31c!

Our result forF1( 3S1) agrees with that given in Ref.@4#, and
our result forG1( 3S1) agrees with that given in Ref.@5#. Our
result forH1

1( 3S1)1H1
2( 3S1) is new.

VII. DISCUSSION

In this paper, we have computed short-distance coe
cients for the decays of a1S0 heavy-quarkonium state to tw
photons and to light hadrons and the decays of a3S1 heavy-
quarkonium state to a lepton pair and to light hadrons. S
cifically, we have computed the coefficients of the operat
whose matrix elements are of orderv4 and whose quantum
numbers are those of the quarkonium state.

In our computation, we are able to obtain only the co
binations H1( 2S11LJ)1H2( 2S11LJ), rather than the indi-
vidual coefficientsH1( 2S11LJ) and H2( 2S11LJ), because
the corresponding operators,Q 1( 2S11LJ) andQ 2( 2S11LJ),
have identical matrix elements for on-shell heavy quarks
the center-of-momentum frame. In order to obtain the val
of the individual coefficients, it would be necessary to co
sider matrix elements of the operatorsQ 1( 2S11LJ) and
Q 2( 2S11LJ) in which the heavyQQ̄ interact with additional
quanta before reaching the annihilation vertex. Alternative
one could consider matrix elements of the operat
Q 3( 2S11LJ), which, as we have shown in Appendix A, a
related to the operatorsQ 1( 2S11LJ) and Q 2( 2S11LJ)
through the equations of motion.

In Tables I–IV, we show the numerical values of th
short-distance coefficients that appear through orderv4 for
the decays that we consider in this paper. For each co
cient, we take into account only the contribution that is lea
ing in as . In each case, we normalize the short-distan

TABLE I. Short-distance coefficients and estimates of sizes
corresponding matrix elements for the decay of a1S0 quarkonium
state to two photons.

Coefficient Value Matrix element

Fgg( 1S0) 1 1
Ggg( 1S0) 21.33 v2

Hgg
1 ( 1S0)1Hgg

2 ( 1S0) 1.51 v4
09401
-

e-
s

-

n
s
-

,
s

fi-
-
e

coefficients to the coefficient of the operator whose ma
element is of leading order inv. In the third column of each
table, we use the velocity-scaling rules@1# to estimate the
size of the matrix element of the operator that is associa
with each coefficient, relative to the size of the matrix e
ment of leading order inv. In the case of the color-octe
operators, we adopt the approach of Ref.@10#, multiplying
the velocity-scaling estimate by a factor 1/(2Nc) to account
for the relative spin and color normalizations of the colo
singlet and color-octet operators as we have defined them
this paper.

In the case of charmonium,v2'0.3 andas(mc)'0.35.
Then, we see from Tables I–III that the convergence of thv
expansion is reasonable for the1S0 decays into two photons
and into light hadrons and for the3S1 decay into light had-
rons.

On the other hand, the coefficients in Table IV cast so
doubt on the convergence of thev expansion in the case o
the 3S1 decay into light hadrons. In the case of charmoniu
all of the contributions of higher order inv are larger in
magnitude than the order-v0 contribution, with the exception
of the H1

1( 3S1)1H1
2( 3S1) contribution. The color-octet co

efficients, other thanF8( 3P1), are enhanced byp/as , rela-
tive to F1( 3S1), since the corresponding color-octet Fo
states can decay into two gluons or into light-quark pa
rather than into three gluons. In addition to this enhan
ment, some of the coefficients ofp/as are quite large. How-
ever, one can, through a redefinition of the color-singlet
erators, incorporate the factors 1/(2Nc), which we have
associated with the matrix elements, into the short-dista
coefficients@10#. Then, aside from thep/as enhancement,
only F8(3P0) is especially large. In the case of the colo
singlet coefficients,G1( 3S1) is quite large in magnitude rela

f TABLE II. Short-distance coefficients and estimates of sizes
corresponding matrix elements for the decay of a1S0 quarkonium
state to light hadrons.

Coefficient Value Matrix element

F1( 1S0) 1 1
G1( 1S0) 21.33 v2

F8( 3S1) 0.75nf v3/(2Nc)
F8( 1S0) 1.88 v4/(2Nc)
F8( 1P1) 1.13 v4/(2Nc)
H1

1( 1S0)1H1
2( 1S0) 1.51 v4

TABLE III. Short-distance coefficients and estimates of sizes
corresponding matrix elements for the decay of a3S1 quarkonium
state to a lepton pair.

Coefficient Value Matrix element

Fee(
3S1) 1 1

Gee(
3S1) 21.33 v2

Hee
1 ( 3S1)1Hee

2 ( 3S1) 1.61 v4
1-12
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TABLE IV. Short-distance coefficients and estimates of sizes of corresponding matrix elements f
decay of a3S1 quarkonium state to light hadrons.

Coefficient Value Matrix element

F1( 3S1) 1 1
G1( 3S1) 25.32 v2

F8( 1S0) 11.64p/as v3/(2Nc)
F8( 3S1) 4.66nfp/as v4/(2Nc)
F8( 3P0) 34.93p/as v4/(2Nc)
F8( 3P1) 2.2626.90nf15.17nf log(2m/mL) v4/(2Nc)
F8( 3P2) 9.31p/as v4/(2Nc)
H1

1( 3S1)1H1
2( 3S1) 7.6211.79log(2m/mL) v4
-
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tive to F1(3S1). However, the quantityH1
1(3S1)1H1

2(3S1) is
not significantly larger in magnitude thanG1(3S1), giving
some hope that thev expansion may ultimately be well be
haved.

The estimates of the sizes of the relativistic correctio
strongly suggest that, in order to carry out a meaningful p
nomenological analysis ofS-wave quarkonium decays int
light hadrons, one would need to take into account contri
tions beyond leading order inv. ~For a further discussion o
this point, see Ref.@15#.! All of the contributions listed in
Table IV, except for that ofF8( 3P1), would be needed to
achieve a precision of better than 50%.

Unfortunately, most of the required matrix elements a
unknown. However, the number of unknown quantities c
be reduced drastically by making use of the heavy-quark s
symmetry and the vacuum-saturation approximation@1#, al-
though the accuracy of these approximations is not alw
sufficient to allow a calculation of the decay rates throu
relative orderv4. Owing to the heavy-quark spin symmetr
the matrix elements ofO1( 1S0), P1( 1S0), O8( 3S1),
O8(1S0), Q 1

1(1S0), andQ 1
2(1S0) in a 1S0 state are equal to

the matrix elements ofO1( 3S1), P1( 3S1), O8( 1S0),
O8( 3S1), Q 1

1( 3S1), and Q 1
2( 3S1) in a 3S1 state, respec-

tively, up to corrections of relative orderv2. Also owing to
the heavy-quark spin symmetry, the matrix elements of
operatorsO8(3PJ) in a 3S1 state are equal to (2J11)/9
times the matrix element ofO8(1P1) in a 1S0 state, up to
corrections of relative orderv2. According to the vacuum-
saturation approximation, the matrix elements of the ope
tors for the electromagnetic decays are equal to the ma
elements of the color-singlet hadronic-decay operators w
the same quantum numbers, up to corrections of relative
der v4. It also follows from the vacuum-saturation approx
mation that the matrix element ofQ 1

1( 2S11SJ) is equal to the
square of the matrix element ofP1( 2S11SJ) divided by the
matrix element ofO1( 2S11SJ), up to corrections of orde
v4. However, the matrix element ofQ 1

2( 2S11SJ) is not
known to be related to the others.

The matrix elements ofO1( 3S1) in the J/c andY states
are known from phenomenology. The matrix elements
O1( 3S1) and P1( 3S1) in the J/c and Y states have also
been computed on the lattice@16#, although the lattice deter
minations of the matrix elements ofP1( 3S1) are rather im-
precise, owing to large uncertainties in the perturbation
09401
s
-

-

e
n
in

s
h

e

a-
ix
th
r-

f

e-

ries that relates the lattice and continuum matrix eleme
According to the Gremm-Kapustin relation@17#, for dimen-
sionally regulated matrix elements, the matrix element
P1( 3S1) is equal to the matrix element ofO1( 3S1) times
(M22mpole)/m, up to corrections of relative orderv2. Here,
M is the quarkonium mass, andmpole is the heavy-quark pole
mass. The remaining unknown operator matrix eleme
could, in principle, be determined in lattice numerical sim
lations.
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APPENDIX A: RELATION BETWEEN THE OPERATORS
OF ORDER v4

In this appendix, we demonstrate that the operat
Q 1

i ( 1S0) @Eq. ~2.2!# are related to each other by the equ
tions of motion, as are the operatorsQ 1

i ( 3S1) @Eq. ~2.8!#, the
vacuum-saturated versions of theQ 1

i ( 1S0), and the vacuum-
saturated versions of theQ 1

i ( 3S1). We assume that thes
operators are integrated over all space-time, so that we
employ integration by parts in re-writing them.

We begin by considering the operator

Q 1
1~ 1S0!5c†S 2

i

2
DI D 2

xx†S 2
i

2
DI D 2

c. ~A1!

Now,
1-13
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x†~2 iDI !2c5x†~2 i ­¢2gA1 i ­ª2gA!~2 i ­¢2gA1 i ­ª2gA!c5x†@2~2 i ­¢2gA!212~ i ­ª2gA!22~ i ­¢1 i ­ª !2#c]

5x†@4m~ i ]W02gA0!14m~ i ]Q02gA0!2~ i ­¢1 i ­ª !2#c5@4im]W02~2 i ­¢ !2#x†c, ~A2!

where we have used the equations of motion at leading order inv in the third line. Furthermore, under integration by par
which is equivalent to energy-momentum conservation in momentum space,

@c†~2 iDI !2x#@4im]W02~2 i ­¢ !2#x†c→$@24mi]W02~ i ­¢ !2#@c†~2 iDI !2x#%x†c. ~A3!

Let us focus on the firstQQ̄ bilinear on the right of Eq.~A3!. It is

@24mi]W02~ i ­¢ !2#@c†~2 iDI !2x#5c†$24m~ i ]Q01gA0!~2 iDI !224m~2 iDI !2~ i ]W02gA0!14m@gA0 ,~2 iDI !2#

24m@ i ]W0 ,~2 iDI !2#2~ i ­ª1 i ­¢ !2~2 iDI !2%x. ~A4!

Then, using the equations of motion, we have

@24mi]W02~ i ­¢ !2#@c†~2 iDI !2x#5c†$2~ i ­ª2gA!2~2 iDI !212~2 iDI !2~2 i ­¢2gA!214m@gA0 ,~2 iDI !2#

24m@ i ]W0 ,~2 iDI !2#2~ i ­ª1 i ­¢ !2~2 iDI !2%x

5c†$~2 iDI !414m@~2 iD 0!,~2 iDI !2#%x5c†@~2 iDI !428m~DI•gE1gE•DI !#x, ~A5!
pe

nd

e

a

of
t

i-
where, in arriving at the second equality, we have drop

some terms proportional to@DJ i ,DW j #522ige i jkBk that are
orderv2 relative to the terms that we have retained.

Thus, taking into account bothQQ̄ bilinears, we have

Q 1
1~ 1S0!→c†F S 2

i

2
DI D 4

2~m/2!~DI•gE1gE•DI !Gxx†c.

~A6!

Carrying out this procedure symmetrically on the left a

right QQ̄ bilinears ofQ 1
1( 1S0), we conclude that, under th

equations of motion and integration by parts,

Q 1
1~ 1S0!→Q 1

2~ 1S0!1~m/2!Q 1
3~ 1S0!. ~A7!

A similar analysis in the spin-triplet case yields

Q 1
1~ 3S1!→Q 1

2~ 3S1!1~m/2!Q 1
3~ 3S1!. ~A8!

The vacuum-saturated versions of these relations, which
relevant to the electromagnetic decays are
09401
d

re

^1S0uc†S 2
i

2
DI D 2

xu0&^0ux†S 2
i

2
DI D 2

cu 1S0&

→ReF ^1S0uc†xu0&^0ux†S 2
i

2
DI D 4

cu 1S0&G
1~m/2!Re@^ 1S0uc†xu0&

3^0ux†~DI•gE1gE•DI !cu 1S0&# ~A9!

and

^3S1uc†sS 2
i

2
DI D 2

xu0&•^0ux†sS 2
i

2
DI D 2

cu3S1&

→ReF ^3S1uc†sxu0&•^0ux†sS 2
i

2
DI D 4

cu3S1&G
1~m/2!Re@^ 3S1uc†sxu0&•^0ux†s~DI•gE

1gE•DI !cu 3S1&#. ~A10!

APPENDIX B: SQUARED MATRIX ELEMENTS FOR 3S1

DECAY INTO LIGHT HADRONS

In this appendix we give the expressions for the terms
orderp(0), p(2), andp(4) in the square of the matrix elemen
for a 3S1 QQ̄ state to decay into light hadrons~three gluons!.
These terms are denoted byM̃(0), M̃(2), andM̃(4), respec-
tively. The quantitym is the heavy-quark mass. The invar
antss, t, andu are defined in Eq.~6.12!.
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M̃(0)5
~Nc

221!~Nc
224!

Nc
2

2048p3as
3

3
~16m4s228m2s31s4116m4st212m2s2t12s3t116m4t2212m2st213s2t228m2t3

12st31t4!
1

~4m22s!2~4m22t !2~s1t !2 ; ~B1!

M̃(2)52p2
~Nc

221!~Nc
224!

Nc
2

8192p3as
3

9
~768m10s22256m8s3248m6s4124m4s522m2s61512m10st2128m8s2t

2256m6s3t1120m4s4t218m2s5t1s6t1768m10t22128m8st22256m6s2t21176m4s3t2237m2s4t213s5t2

2256m8t32256m6st31176m4s2t3244m2s3t315s4t3248m6t41120m4st4237m2s2t415s3t4124m4t5

218m2st513s2t522m2t61st6!
1

m2~4m22s!3~4m22t !3~s1t !3 ; ~B2!

M̃(4)5p4
~Nc

221!~Nc
224!

Nc
2

1024p3as
3

135
~1966080m16s211409024m14s321445888m12s41223232m10s5147104m8s6

214080m6s71880m4s811310720m16st12588672m14s2t24034560m12s3t11176576m10s4t197536m8s5t

286848m6s6t112352m4s7t2552m2s8t11966080m16t212588672m14st223047424m12s2t21984064m10s3t2

1371456m8s4t22275264m6s5t2156032m4s6t224688m2s7t21155s8t211409024m14t324034560m12st3

1984064m10s2t31525312m8s3t32408960m6s4t31108304m4s5t3212452m2s6t31620s7t321445888m12t4

11176576m10st41371456m8s2t42408960m6s3t41128640m4s4t4218468m2s5t411240s6t41223232m10t5

197536m8st52275264m6s2t51108304m4s3t5218468m2s4t511550s5t5147104m8t6286848m6st6

156032m4s2t6212452m2s3t611240s4t6214080m6t7112352m4st724688m2s2t71620s3t71880m4t8

2552m2st81155s2t8!
1

m4~4m22s!4~4m22t !4~s1t !4 . ~B3!
l.

t.

-

n.
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