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O„a2ln„mµ Õme…… corrections to the electron energy spectrum in muon decay
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The O(a2ln(mm /me)) corrections to the electron energy spectrum in muon decay are computed using the
perturbative fragmentation function approach. The magnitude of these corrections is comparable to the antici-
pated precision of the TWIST experiment where the Michel parameters will be extracted from the measure-
ment of the electron energy spectrum in muon decay.
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I. INTRODUCTION

Muon decay into an electron and a pair of neutrinos,m

→enmn̄e , is a classic process in particle physics. Althou
the high energy frontier has moved up from the energy sc
comparable to the muon mass, precision physics of mu
remains an interesting and inspiring source of informat
about the standard model~SM! and its possible extension
@1#.

Among very different experiments with the muons th
include the measurements of the muon anomalous mag
moment, the muon lifetime, them→eg branching ratio, and
the muon to electron conversion rate in muonic atoms,
focus here on the TWIST experiment@2,3#, where the elec-
tron energy spectrum in muon decays will be measured
determine the Michel parameters@4,5# with a precision of
;1024. To confront these measurements with the SM p
dictions and to look for the signs of new physics, one ne
an adequately accurate calculation of the electron ene
spectrum within the SM.

Calculations of the electron energy spectrum in muon
cay have a long and interesting history that dates back to
very early days of QED and the physics of weak interactio
~see e.g. Ref.@6# for a historical recollection!. In spite of the
tremendous progress in precision calculations, theO(a2) ra-
diative corrections to the muon lifetime have been compu
only recently@7#, and the calculation of similar corrections
the electron energy spectrum has not even been attem
One reason for this is that, in contrast to the total lifetim
the electron energy spectrum cannot be computed for van
ing electron mass since terms enhanced by the large l
rithm ln(mm /me) are present. These terms, excluding the o
that are related to the on-shell definition of the fine-struct
constant commonly used in QED, cancel in the total r
rendering this calculation somewhat simpler.

At order O(a2), corrections to the electron energy spe
trum contain double-logarithmicO„ln2(mm

2/me
2)… and single-
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logarithmicO„ln(mm
2/me

2)… terms and it is the purpose of thi
paper to present the calculation of those. The doub
logarithmic terms were computed recently in Ref.@8#. It was
pointed out there that the single-logarithmicO„ln(mm

2/me
2)…

terms are required to match the precision of the TWIST
periment. Motivated by these considerations, we decided
perform this calculation. To accomplish this, we make use
the perturbative fragmentation function approach borrow
from QCD studies of heavy quark fragmentation ine1e2

collisions.

II. PRELIMINARIES

According to the QCD factorization theorems@9#, the dif-
ferential cross section for producing a particle of a given ty
with a certain fraction of the initial energy can be written
a convolution of the hard scattering cross section compu
with massless partons and the fragmentation function
describes the probability that a massless parton of a g
type fragments to the observed physical particle in the fi
state. If we consider the process in which an energetic he
quark ~i.e. mQ@LQCD) is produced and its energy is me
sured, we can identify themassivequark with the observed
physical particle in the final state. It has been shown in Q
that in this case the perturbative fragmentation function
be defined and that this function absorbs all the terms that
singular in the limit of the vanishing heavy quark mass@10–
12#. It is clear that these considerations should be applica
to QED as well.

Applying this idea to muon decay, we can write the fo
mula for the electron energy spectrum in the following wa

dG

dx
~x,mm ,me!

5 (
j 5e,g

E
x

1dz

z

dĜ j

dz
~z,mm ,m f !Dj S x

z
,m f ,meD .

~1!

Herez52E/mm is the fraction of energy carried away by
parton j, x is the same quantity for the observed physic
massive electron,dĜ j /dz is the energy distribution of the

s:
©2002 The American Physical Society03-1
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massless parton of typej computed in the modified minima
subtraction (MS) scheme,Dj is the fragmentation function
of the partonj fragmenting into the massive electron, andm f
is the factorization scale. Note that terms suppressed by
ratio of the electron mass to the muon mass,me

2/mm
2 , cannot

be described by Eq.~1!. However, since these terms a
known, for both the Born and theO(a) corrected electron
energy spectrum@13,14#, Eq. ~1! is quite adequate for the
anticipated level of experimental precision.

As mentioned above, the partonic decay ratedĜ j /dz has
to be computed in theMS scheme. This requirement goe
beyond the standard ultraviolet renormalization, sin
dĜ j /dz contains collinear singularities. These singularit
are removed fromdĜ j /dz by conventional renormalization
in the MS scheme, and the associated large collinear lo
rithms are absorbed into the fragmentation functionDj .

The perturbative expansion for the energy distribution
the massless partons is

1

G0

dĜ j

dz
~z,mm ,m f !5Aj

(0)~z!1
ā~m f !

2p
Âj

(1)~mm ,m f ,z!

1S ā~m f !

2p
D 2

Âj
(2)~mm ,m f ,z!, ~2!

where G05GF
2mm

5 /(96p3), Aj
(0)(z)5z2(322z)d je , ā(m f)

is theMS renormalized fine structure constant, and terms
order O(a3) and higher have been neglected. TheMS fine
structure constant will later be converted into the on-sh
fine structure constanta'1/137.036.

Before giving the explicit expressions for the coefficien
Âj

(1) , we would like to describe a simple idea, previous
used in a number of QCD studies, that allows us to comp
the a2ln(mm /me) enhanced terms without an explicit two
loop calculation. SincedĜ j /dz is computed for massles
partons, it contains two energy scales, the muon massmm
and the factorization scalem f . Therefore, the only loga
rithms that arise are of the form ln(mm /mf). By choosing
m f;mm , we effectively eliminate the large logarithms fro
the coefficientsÂj

(1) , and move all the large logarithms t
the fragmentation functionDj . Since the fragmentation
function is process-independent and satisfies the Dokshi
Gribov-Lipatov-Altarelli-Parisi ~DGLAP! evolution equa-
tion, results from previous QCD studies can be employed
compute the large logarithmic corrections to the electron
ergy spectrum at orderO(a2).

Consider the fragmentation functionDj (x,m f ,me) which
describes the probability that a massless partonj converts
into a physical electron of massme . This function satisfies
the DGLAP evolution equation:

dDi~x,m f ,me!

d ln m f
2

5(
j
E

x

1dz

z
Pji „z,ā~m f !…Dj S x

z
,m f ,meD .

~3!

Here Pji is the time-like splitting function which, to the or
der we work to, can be written as
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Pji „x,ā~m f !…5
ā~m f !

2p
Pji

(0)~x!1S ā~m f !

2p
D 2

Pji
(1)~x!1O~ ā3!.

~4!

Equation ~3! can be solved as a power series inā if the
initial condition for the functionDj at the scalem0 is pro-
vided. This initial condition can be obtained from QCD stu
ies of heavy quark fragmentation@10#; when generalized to
QED, they imply that the fragmentation of a massless el
tron into a physical electron is described by

D e
ini~x,m0 ,me!

5d~12x!1
ā~m0!

2p
d1~x,m0 ,me!1O~a2!,

d1~x,m0 ,me!

[d1~x!5F11x2

12x S ln
m0

2

me
2
22 ln~12x!21D G

1

. ~5!

Similarly, the function that describes photon fragmentat
into physical electron is

D g
ini~x,m0 ,me!5

ā~m0!

2p
„x21~12x!2

…ln
m0

2

me
2

1O~a2!.

~6!

As we will show in the next section, theO(a2) terms in the
initial conditions for the fragmentation functions are n
needed for our purposes since our scale choicem0;me guar-
antees that no large logarithms appear in the initial condit
for Dj . Also, since the fragmentation function does not co
tain large logarithms at the lowest orderO(a0), the second
order coefficient indĜ j /dz is not needed as well. On th
other hand, theO(a) coefficients indĜ j /dz have to be
known exactly. They are

Âe
(1)~z!5S 2z2~2z23!lnF z

12zG12z1
8

3
z31

5

6
24z2D

3 lnS mm
2

m f
2 D 12z2~2z23!„4z224Li2~z!

12 ln2z23 lnz ln~12z!2 ln2~12z!…

1S 5

3
22z213z21

34

3
z3D ln~12z!

1S 5

3
14z22z226z3D

3 ln z1
5

6
2

23

3
z2

3

2
z21

7

3
z3, ~7!
3-2
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Âg
(1)~z!5S ln

mm
2

m f
2

1 ln~12z!D S 1

z
2

5

3
12z22z21

2

3
z3D

1 ln zS 2

z
2

10

3
14zD2

1

z
1

1

3
1

35

12
z22z22

1

4
z3.

~8!

Having made these preliminary remarks, we can now de
the fragmentation function and use it to calculate the elec
energy spectrum in muon decay.

III. THE FRAGMENTATION FUNCTION

In this section we compute the fragmentation functio
For this purpose, we have to solve the DGLAP equation~3!
in a way consistent with the initial conditions. When solvin
this equation perturbatively, we express the running fi
structure constant in theMS scheme in terms of the fin
structure constant defined in the on-shell scheme, the s
dard renormalization scheme for QED. To orderO(a2), the
well known relation between theMS and on-shell coupling
constants is

ā~m f !5a1
a2

3p
ln

m f
2

me
2

. ~9!

Solving Eq.~3! iteratively, we obtain

De~x,m f ,me!5d~12x!1
a

2p
„LPee

(0)~x!1d1~x,m0 ,me!…

1S a

2p D 2S L2F1

2
Pee

(0)
^ Pee

(0)~x!1
1

3
Pee

(0)~x!

1
1

2
Pge

(0)
^ Peg

(0)~x!G1L@Pee
(0)

^ d1~x!

1Pee
(1)~x!# D1O~a2L0,a3!, ~10!

Dg~x,m f ,me!5
a

2p
LPeg

(0)~x!1O~a2!, ~11!

whereL5 ln(mf
2/m0

2) and the convolution operation is define
in a standard way:

A^ B~x!5E
0

1

dzE
0

1

dz8d~x2zz8!A~z!B~z8!

5E
x

1dz

z
A~z!BS x

zD . ~12!

The leading order expressions for the splitting functions u
in Eqs.~10!,~11! are

Pee
(0)~x!5F11x2

12x G
1

, Pge
(0)~x!5

11~12x!2

x
,
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Peg
(0)~x!5x21~12x!2. ~13!

At the next-to-leading order the time-like splitting function
have been derived for QCD in Refs.@15–18#; by choosing
appropriate color structures, they can be translated to QE
a straightforward way. Since, experimentally, one will pro
ably distinguish between events with one or more electr
in the final state, we decided to split the corresponding s
ond order functionPee

(1)(x) into four parts, in the same wa
as in Ref.@19#:

Pee
(1)~x!5Pee

(1,g)~x!1Pee
(1,NS)~x!1Pee

(1,S)~x!1Pee
(1,int)~x!.

~14!

HerePee
(1,g)(x) is determined by the set of Feynman diagra

with only photonic corrections~i.e. no additional electrons in
the final state or closed electron loops in virtual correction!;
Pee

(1,NS)(x) describes corrections due to non-singlet real a
virtual e1e2 pairs;Pee

(1,S)(x) contains the contribution of the
singlete1e2 pair andPee

(1,int)(x) describes the interference o
the singlet and the non-singlet pairs. These functions can
written as

Pee
(1,g)~x!5d~12x!S 3

8
23z216z3D1

11x2

12x

3„2 lnx ln~12x!22 ln2x22Li2~12x!…

1
1

2
~11x!ln2x12x ln x23x12, ~15!

Pee
(1,NS)~x!5d~12x!S 2

4

3
z22

1

6D2
20

9 F 1

12xG
1

2
2

3

11x2

12x
ln x2

2

9
1

22

9
x, ~16!

Pee
(1,S)~x!5~11x!ln2x1S 2529x2

8

3
x2D ln x282

20

9x

14x1
56

9
x2, ~17!

Pee
(1,int)~x!5

11x2

12x S 2Li2~12x!1
3

2
ln xD2

7

2
~11x!ln x

2718x, ~18!

where we have used

zn[(
k51

`
1

kn
, z25

p2

6
,

Li 2~x![2E
0

x

dz
ln~12z!

z
. ~19!

Finally, we give the explicit formulas for various convolu
tions which appear in Eq.~10!:
3-3
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Pee
(0)

^ Pee
(0)~x!5d~12x!S 9

4
24z2D1F 1

12x
„618

3 ln~12x!…G
1

2
4

12x
ln x1~11x!@3 lnx

24 ln~12x!#2x25, ~20!

Pge
(0)

^ Peg
(0)~x!5

12x

3x
~417x14x2!12~11x!ln x, ~21!

Pee
(0)

^ d1~x!5Pee
(0)

^ Pee
(0)~x!S ln

m0
2

me
2

21D 1d~12x!

3S 21

4
28z3D1F 1

12x
„718z226 ln~12x!

212 ln2~12x!…G
1

1
8

12x
ln x ln~12x!

1~11x!@6 ln2~12x!26 lnx ln~12x!

22Li2~12x!24z2#12x ln x1~72x!

3 ln~12x!2
11

2
2

3

2
x. ~22!

Using these results in Eqs.~10!,~11!, we obtain explicit ex-
pressions for the fragmentation functionsDe,g(x,m f ,me).

IV. THE ELECTRON ENERGY SPECTRUM

To obtain the electron energy spectrum we have to c
volute the fragmentation functions in Eqs.~10!,~11! with
dĜ j /dz. All the necessary ingredients to do that can
found in the previous sections. Before presenting our res
for the electron energy spectrum, we note that the dep
dence on the factorization scale cancels explicitly in the fi
result, except for the terms that are not enhanced by
large logarithm and therefore beyond the scope of this pa

We split the final result into four pieces: the pure photo
09300
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e
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radiative corrections, the non-singlet pair radiative corr
tions, the singlet pair radiative corrections, and the corr
tions due to the interference of the singlet and the non-sin
pairs. With this separation, we can write the electron ene
spectrum as

1

G0

dG

dx
5D (g)1D (NS)1D (S)1D (int). ~23!

We begin with the photonic corrections. Computing the co
volutions, we arrive at the following result:

D (g)5 f 0~x!1
a

2p
f 1~x!1S a

2p D 2F1

2
f 2

(0,g)~x!ln2S mm
2

me
2 D

1 f 2
(1,g)~x!lnS mm

2

me
2 D 1•••G , ~24!

where ellipses represent both theO(a2) terms without loga-
rithmic enhancement and terms of higher order in the exp
sion in the fine structure constant. TheO(a0) energy spec-
trum is given byf 0(x)5x2(322x). The O(a) correction,
f 1(x), was calculated in Ref.@13#. The coefficient of the
double-logarithmic term is

f 2
(0,g)~x!54x2~322x!F1

2
ln2x1 ln2~12x!22 lnx ln~12x!

2Li2~12x!2z2G1S 10

3
18x216x21

32

3
x3D

3 ln~12x!1S 2
5

6
22x18x22

32

3
x3D ln x1

11

36

1
17

6
x1

8

3
x22

32

9
x3, ~25!

and is therefore in agreement with the recent results in R
@8#. The coefficient of the single-logarithmic term for th
pure photonic corrections, one of the new results of this
per, is
f 2
(1,g)~x!52x2~322x!„22Li3~x!22S1,2~x!12Li2~x!ln~12x!12Li2~x!ln x15 lnx ln2~12x!25 ln2x ln~12x!12 ln3x

22z2ln~12x!22z2ln x17z3…1Li2~x!S 10

3
114x240x21

92

3
x3D1 ln x ln~12x!S 25

3
132x254x21

92

3
x3D

1 ln2~12x!~212x24x218x3!1 ln2xS 2
25

12
25x122x22

70

3
x3D1 ln~12x!S 2

17

3
2

53

3
x1

64

3
x2212x3D

1 ln xS 2
3

4
1

37

6
x1

4

3
x21

44

9
x3D1z2S 2

10

3
22x135x22

98

3
x3D1

211

216
2

287

12
x1

83

3
x22

559

54
x3, ~26!
3-4
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where

Li3~x![E
0

x

dz
Li2~z!

z
,

S1,2~x![
1

2E0

x

dz
ln2~12z!

z
. ~27!

The correction arising from non-singlet electron-positr
pairs, including the effects of the running coupling consta
is

D (NS)5S a

2p D 2F1

3
f 2

(0,NS)~x!ln2S mm
2

me
2 D

1 f 2
(1,NS)~x!lnS mm

2

me
2 D 1•••G , ~28!

with

f 2
(0,NS)~x!52x2~322x!ln

12x

x
1

5

6
12x24x21

8

3
x3,

~29!

f 2
(1,NS)~x!52x2~322x!S 22Li2~12x!2

2

3
ln x ln~12x!

1
2

3
ln2~12x!2 ln2x2

2

3
z2D1 ln~12x!

3S 10

9
2

4

3
x2

46

3
x2112x3D1 ln xS 5

9
1

4

3
x

18x22
76

9
x3D2

11

6
2

19

3
x1

100

9
x22

64

9
x3.

~30!

Next, we present the result for the singlet pair correcti
Writing

D (S)5S a

2p D 2F1

2
f 2

(0,S)~x!ln2S mm
2

me
2 D

1 f 2
(1,S)~x!lnS mm

2

me
2 D 1•••G , ~31!

we obtain

f 2
(0,S)~x!5

2

3x
1

17

9
13x2

14

3
x22

8

9
x31S 5

3
14x14x2D ln x,

~32!
09300
t,
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f 2
(1,S)~x!5@Li2~12x!1 ln x ln~12x!#S 5

3
14x14x2D

1 ln2xS 5

2
16x14x2D1 ln~12x!S 17

9
1

2

3x
13x

2
14

3
x22

8

9
x3D1 ln xS 8

9
1

4

3x
2

5

6
x2

19

3
x2D

2
1

3x
2

67

9
1

43

18
x1

77

18
x21

10

9
x3. ~33!

Finally, for the interference term we find

D (int)5S a

2p D 2F f 2
(1,int)~x!lnS mm

2

me
2 D 1•••G , ~34!

where

f 2
(1,int)~x!52x2~322x!„2Li3~12x!24S1,2~12x!

22Li2~12x!ln x…1Li2~12x!S 5

3
14x

226x21
52

3
x3D1 ln2xS 29x21

26

3
x3D

1 ln xS 2
5

3
2

5

3
x2

28

3
x2D2

62

9
1

41

3
x

2
55

3
x21

104

9
x3. ~35!

V. CONCLUSIONS

By applying techniques of perturbative QCD to QED, w
have computed theO(a2) corrections to the electron energ
spectrum in unpolarized muon decay, keeping all the te
enhanced by logarithms of the muon to electron mass ra
The double logarithmicO„a2(ln2mm

2/me
2)… corrections are in

agreement with the recent results of Ref.@8#. The single
logarithmicO(a2ln(mm

2/me
2)) corrections, the new result pre

sented in this paper, are important to match the precis
requirements of the TWIST experiment. To illustrate the s
nificance of the single logarithmic terms, we plot in Fig.
both the double and the singleO(a2) logarithmic correc-
tions, defined as

FIG. 1. Double and single logarithmic corrections as a funct
of x.
3-5



re

-

he

ec
in

ex

e

er-
m

ult
is

the
e-
he
her-

hat
ts
an

on of
rgy

in

ci-
d by
are
is

A. ARBUZOV AND K. MELNIKOV PHYSICAL REVIEW D 66, 093003 ~2002!
d2
(0,tot)~x!5

1

f 0~x! S a

2p D 2F1

2
f 2

(0,g)~x!1
1

3
f 2

(0,NS)~x!

1
1

2
f 2

(0,S)~x!G ln2S mm
2

me
2 D ,

d2
(1,tot)~x!5

1

f 0~x! S a

2p D 2

@ f 2
(1,g)~x!1 f 2

(1,NS)~x!

1 f 2
(1,S)~x!1 f 2

(1,int)~x!# lnS mm
2

me
2 D . ~36!

As follows from Fig. 1, theO„a2ln(mm
2/me

2)… corrections
computed in this paper are required for the theoretical p
diction at the precision level 1024. Moreover, within the
acceptance region of the TWIST experiment, 0.3&x&0.98,
the magnitude of theO„a2ln(mm /me)… corrections is compa
rable to the magnitude of theO„a2ln2(mm /me)… terms. It is
interesting to note that the double-logaritihmic and t
single-logarithmic corrections have opposite signs.

Since the leading and the sub-leading logarithmic corr
tions tend to interfere destructively and since the sub-lead
corrections are larger than the precision of the TWIST
periment, the full calculation of theO(a2) corrections to the
electron energy spectrum becomes very desirable. It se
a
a

D

09300
-

-
g
-

ms

that without such a calculation the intrinsic theory unc
tainty in the SM prediction for the electron energy spectru
cannot be pushed below a few31024.

A complete calculation of theO(a2) corrections to the
electron energy spectrum in muon decay is a very diffic
task and it is unclear if it is currently possible. However, it
possible to extend our analysis to further improve on
theory prediction. First of all, by using the techniques d
scribed in this paper, it is straightforward to compute t
electron energy spectrum in polarized muon decay. Furt
more, theO„a3ln3(mm

2/me
2)… corrections can be obtained from

the DGLAP equation. The resummation of corrections t
are singular in the limitx→1 can also be performed and i
influence on the theoretical prediction for the spectrum c
be studied. These analyses, as well as a detailed discussi
the present theoretical uncertainty in the electron ene
spectrum in polarized muon decay, are presented
Ref. @20#.
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