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Gauged fermionic Q-balls
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We present a new model for a nontopological solitbiTS) that contains fermions, scalar particles and a
gauge field. Using a variational approach, we estimate the energy of the localized configuration, showing that
it can be the lowest energy state of the system for a wide range of parameters.
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I. INTRODUCTION IIl. THE NTS
The study of solitons and nontopological solitons Consider the Lagrangian
(NTSs has a rich history. They have been proposed as 1 _
building blocks for stars and black hold4,2], and as £=(DM¢)(D"“¢)*—ZF“VFMV—U(|¢|)+i¢7”DM¢
dark matter candidatd8—5]. The first models for an NTS
in 3+1 dimensions were found by Lee and Wick, and by ||\ —
Friedberg, Lee and Sirlif6,7]. The latter NTS contained one N m( 1- F_) v, @
real scalar field to set up a false vacuum in which a second,
complex scalar field was massless, allowing the NTS tovhere ¢ is the complex scalar field) ,=d,—ieA, is the
be the lowest energy state for the system under certaik/(1) covariant derivativeF,, is the field tensor, and
conditions. U(|¢|) is the potential for the scalar fieldy is the
Coleman and collaborators extended this work to4-component spinok) is the Dirac adjoint spinory* are the
simpler objects dubbedQ-balls, which contained a four covariant Dirac matricesn is a positive constant, and
single complex scalar field that possessed a conserved_ is a constant chosen such that when=F _ the fermi-
global symmetry[8,9]. More recent work has extended ons are massless within the NTS. We can express the com-
NTSs to contain fermiond10] and gauge fieldg11]. plex scalar field as two real fields using= (f/\/2)exp(6),
Finally, work has been done by Kusenko extendingto get
NTSs to some supersymmetric field theories, where the
corresponding false vacuum is set up in the superpotential £:Ea fa“f+£f2(o7 O—eA )Z—U(f)—EF (=
[4,5] 2 M 2 M o 4 KV
In this paper we present a new model for an NTS contain- f
ing mutually _mteractmg fermlons, scalar particles, a_md a +igyH(d,—ieA,) p— m(l_F_) b 2)
U(1) gauge field. The fermions have a Yukawa coupling to -

the scalars, and both carry a conserved global charge. Thwe assume the ground state will be spherically symmetric,

model is thus closer to more realistic theories of particle;y il have no magnetic field and hence no electric cur-
physics that fit in or are inspired by extensions of the

oS rents. Therefore, we may choose a gauge whare
standard model. We note that recently a fermio@iball =A,(r). The boundary condition is thal,(r)—0 asr

model was proposed by Anagnostopoulos et [@2]. _—o0, In addition, we make the assumption that the scalar
However, the approach adopted in the present manuscrigk|q oscillates in time with a regular frequency and hence

is quite different, as we explicitly splve the Dirac gq_ua_ltion, 0= wt, wherew is a positive constarftl1]. The Lagrangian
as opposed to modeling the fermions as a relativistic 9agen becomes

from the outset, and include the Yukawa coupling to the

scalar field. Our results, nevertheless, agree with the general 1 1 1
conclusions of Ref.[12], as we show that, indeed, it L=47-rf rzdr{——f’2+ —g'?+ - f2g%—U(f)
is possible to obtain NTSs which are the lowest energy state 2 2€? 2

in the system for a wide range of parameters. In addition, ;

there is an opportunity to extend our work to bring it in 00, _ i
line with the nuclear bag model, as the expression derived oy le-gy m(l F_) Pty
below for the energy approximates some models used in

nuclear physics. Throughout we work in natural units wherewhereg=w—eAy(r). The Euler-Lagrange equations fmrf
h=c=1. and ¢ are

)
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2 — =ih(r)Qim, 14
9"+ g’ +[e*yy y—e?*?g]=0, @ $r= I 1
where(),, is a spherical spinor and the indicgs,m are the
. 2., ) ducf)y 1 — quantum numbers of total angular momentum, orbital angu-
fi4 o+ 9" —g— g myy=0, (5 Jar momentum, and the component of angular momentum,

respectively. In the spherically-symmetric ground state we
havel=0 and soj=1+1/2=1/2, and the spherical spinor

f
iy*(d,—ieA,)y— m( 1= |¥=0, (6)  for this case simplifies tp13]
where it is understood that the only nonvanishing component Yoo 1/1
of A, is Ap. The conserved currents and charges are given Q2yo2™ o/ Naxlol (15
by
TR _j(p*D p— pD ,P*), (77  and we see that indeed our wave function is spherically sym-
. . . metric. The equations fdn(r) become/13]
Q:f J3°a'afd3x=4wf rédrf?g,  (8) dh h
P W+(1+K)7_0’ (16)
rmion__
TSN gy, 9
| [E—Vi(r)]h=0, (17)
N=f jéerm'ond3x=4wf r2dryty. (10)

wherex=— (I +1) so herex=—1 [13]. The solution to Eq.

(16) is then simplyh=cons=B. However, we notice a

Ill. TAKING CARE OF THE FERMIONS problem with Eq.(17); namely, ifV¢(r) is nonconstant then

Wét demands thah=0 sinceE must be a constant, and the

equation must be sastified for allHow are we to get around

{his problem? We can approximate the fermionic energy in-
ide the NTS as constant by taking the expectation value of

To proceed, we could take one of two approaches.
could use the Fermi gas approach a$li@,12. Or we could
attempt to solve the equations of motion directly. We attemp
the second method here. We begin with the Dirac equatio o PR
for the fermion field. We can writey in terms of two, the fermionic potential inside it. Then we can wrie=(E)

2-component, spin-1/2 spinors in the chiral representation ag ¢ Y/(f)) and Eq.(17) may be approximately satisfied in-
P sp! SPINOrS | ! pres ! éside the NTS. Before doing this we note thahiis constant,

bR the expression for the conserved charge B4) becomes
1//=( ) (1))  simply
b
where ¢g() is a right (left)-handed spinor. It is easier to N B’R® 18)
proceed if we switch to the non-covariant representation of 3’
the Dirac equation. Multiplying bys~*=(»°) * on the left
and using that/=Ba', we get the equation whereR is the radius of the ball. We then get that
Oy .
|E=(—|a-V+,8M +Vi(r))y, (12

R 3N (R
<Vf>:477fo t/f*aav(r)dfrzdr:?fo rlw—g(r)]dr,

whereV;(r)=eAy(r) is the potential for the fermions, and (19

M= (1—f/F_)m is the mass of the fermion. Following Lee

et al. we will assume thaf(r)=const=F _=F inside the \yherec, is the third Pauli spin matrix, and our approximate
NTS [11]. We will also assume that is of the simple form  gg|ution is
Y(r,t)=y(r)exp(—iEt) whereE is the energy of a single

fermion. We therefore get the new equation

Eg=(—ia V+V(r))y. (13)

1 <3N> vz
P(rit)=—==| —| exp—it(Vy))d(R—r)
We desireys to be spherically symmetric in the ground state. V8| R

Since ¢ and ¢, must have opposite parity under spatial

reflection, they cannot both be symmetric. Therefore, we (20
must choose one of them to equal zero, and conventions of a

right-handed coordinate system dictate that it is the leftwhere #(R—r) is the step function.

handed component that must be zero. We can now expand in We can now use Eq20) in Eg. (4). The solution forg(r)

terms of an angular part and a radial part by writjdg] is

o O - P
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[w—e?’Q/4wR]R sinheFr)/r sinheFR)
+ylylF?, r<R,
w—e’Ql4mr, >R,

g(r)=

(21)

whereR is the radius of the soliton. We can now substitute

for f?g in Eq. (8) to get

R
eZQ:j Amdr[(g'r?) +e?r?yTy]. (22)
0
Using our solution fog(r), Eq. (21), we get
e’Q X eN tanh(x)
0= - , (23
47R|x—tanhx)| 47R(x—tanhx))

wherex=eFR

IV. ESTIMATING THE GAUGED FERMIONIC  Q-BALL
ENERGY

The gauge invariant energy can be written as
E:47Tf 2dr| = ’2+ig’2+ }f292+ U(F)+igy ap
2 292 2 :

+E;, (24)

where Eg is the relativistic Fermi energy given b
= (37/4)(3/2m)?¥N¥3R). Ignoring surface term&(R?),
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second term is the vacuum volume energy of the bag. The
third term is the Fermi energy. The fourth term is the Cou-
lomb repulsion of the scalar particles. The fifth and six terms
represent the interactions of the fermions with the scalars and
gauge fields, which may significantly alter the NTS’s energy.

If we minimize this expression with respect Fowe ob-
tain, writing R>=y,

anuEry -y 2 o S
- Siciz(Q—N>=o. (29
The formal solution to this equation is given by
1 3B /3 27mn
z=co{§arcco£ﬂ\/;) + | (29
n=0,£1,%2 ...
z=yla, a=\(4A3),
C1N4/3 eZQ
R CAET =TSR
29 (Q—N). (31

B: - -
32m?F2U(F)

performing some partial integrations, and using our solution

for ¢ we get, forr<R,

1 4
EszQ+§wR3U(F)+EF. (25

We can use Eq23) to get
22
&
87R
e’QN
87R

X 4/3

X—tanhx

CyN

E R

4
+§7TR3U(F)+

tanhx

x—tanhx|’ (26

whereC,=37/4(3/2)?%. The next step is to minimize this
expression with respect to the various parameters at fiked
andQ. We examine the case of smalland expand to order
e®, where the Laurent series are given Ri(x—tanhx)
~3/x?+6/5 and tanix/(x—tanhx)~3/x*+1/5. We then get
an approximate form foE to O(e®) of

3Q? 4 . CiN*®  3e’Q?
Sgopeme T3TRUFIT ——+ o5
30N  e’QN

 8mF?R®  40mR’ @0

Unfortunately, since we must minimize the energy with re-
spect to botiR andF the details of selecting the correct root
(or even if a positive real root exigtdepend on the nature of
U(F). Hence, it is not possible to write down a general
procedure for selecting a root. Once a suitable potential has
been chosen however, the solution follows in a straightfor-
ward manner. To illustrate this, we solve for the potential

(32

We choose\ =0.444, u=.25, e=.1, Q=10000, andM,,

=2 [we must choosa?>3/16 to insure that) (f)>0 for all
f+#0], wherex andM , have dimensions of mas#/(, is the
mass of the fermions in the true vacuumhe energy scale is
set byF, which has dimensions of mass. We first solve the
problem with no fermions present, which is identical to the
scenario considered iri1]. This gives us an idea of a pos-
sible range of values fdR andF (based on this analysis, we
setF =0.48 throughoytto search for fermionic NTSs. Writ-
ing the energy of the free scalars and fermionsEag,
=uQ+M,N, the NTS is stable whenevéiyrs/Efee<1.

In Fig. 1, we show the ratidyTs/Efqee @s a function of
increasing fermion number, for several values of the radius.
From a more detailed analysis we can show that, for the
parameters used in Fig. 1, the condition for the existence of

These terms now have an easy physical interpretation. ThETSs is satisfied for 33 R=<111. Clearly, the same sort of
first term is the zero-point energy of the scalar particles. Theange search can be performed for any set of parameters.
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FIG. 1. Ratio of NTS energy to the energy of free fermions and  FIG. 2. Ratio of NTS energy to the energy of free fermions and
scalars as a function of fermionic chamyeThe labels indicate the ~Scalars as a function of radid& The labels indicate the different
different values of the NTS radius. values of the fermionic chargs.

In Fig. 2 we show the rati&yts/Efee @s a function of the . .
NTS radius for different values of the fermionic chage ~ HeNce: if we scaleU(F) in such a way thatR°U (F)
Clearly, there is a wide range of values fdrwherein the =~ =CONSK 3Eqee, Our NTS can be stable at arbitrarily large
NTS is the preferred energy configuration. For large radiiradii. Physically, we have obtained a state of matter with
(larger than the range of values displayed in the figutee  Scalar particles and fermions uniform throughout. We thus
NTS energy is independent df, as can be easily seen from see that it is possible to form a NTS out of gauged fermions
Eq. (27). and scalar particles, which can be the preferred energy state

We conclude with a few remarks about our NTS. First, weof the system for a wide range of parameters. It would be
see that if we use a potential that satisfies Coleman’s condinteresting to investigate the solutions to the set of coupled
tion [8] min[2U/|¢?]<u? (u is the mass of the free scalar equations numerically, obtaining a more detailed analysis of
particleg, in order to set up a false vacuum where the fermi-the allowed parameter space.
ons can be massless, then we can always find parameters
whereEyTs<Efee- Second, we see that the presence of both
fermions and the gauge field increases the energy and the
radius of the NTS, while the attractive Yukawa coupling be- ACKNOWLEDGMENTS
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