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Gauged fermionic Q-balls
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We present a new model for a nontopological soliton~NTS! that contains fermions, scalar particles and a
gauge field. Using a variational approach, we estimate the energy of the localized configuration, showing that
it can be the lowest energy state of the system for a wide range of parameters.
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I. INTRODUCTION

The study of solitons and nontopological solito
~NTSs! has a rich history. They have been proposed
building blocks for stars and black holes@1,2#, and as
dark matter candidates@3–5#. The first models for an NTS
in 311 dimensions were found by Lee and Wick, and
Friedberg, Lee and Sirlin@6,7#. The latter NTS contained on
real scalar field to set up a false vacuum in which a seco
complex scalar field was massless, allowing the NTS
be the lowest energy state for the system under cer
conditions.

Coleman and collaborators extended this work
simpler objects dubbedQ-balls, which contained a
single complex scalar field that possessed a conse
global symmetry @8,9#. More recent work has extende
NTSs to contain fermions@10# and gauge fields@11#.
Finally, work has been done by Kusenko extendi
NTSs to some supersymmetric field theories, where
corresponding false vacuum is set up in the superpote
@4,5#.

In this paper we present a new model for an NTS conta
ing mutually interacting fermions, scalar particles, and
U(1) gauge field. The fermions have a Yukawa coupling
the scalars, and both carry a conserved global charge.
model is thus closer to more realistic theories of parti
physics that fit in or are inspired by extensions of t
standard model. We note that recently a fermionicQ-ball
model was proposed by Anagnostopoulos et al.@12#.
However, the approach adopted in the present manus
is quite different, as we explicitly solve the Dirac equatio
as opposed to modeling the fermions as a relativistic
from the outset, and include the Yukawa coupling to t
scalar field. Our results, nevertheless, agree with the gen
conclusions of Ref.@12#, as we show that, indeed,
is possible to obtain NTSs which are the lowest energy s
in the system for a wide range of parameters. In additi
there is an opportunity to extend our work to bring it
line with the nuclear bag model, as the expression deri
below for the energy approximates some models used
nuclear physics. Throughout we work in natural units wh
\5c51.
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II. THE NTS

Consider the Lagrangian

L5~Dmf!~Dmf!* 2
1

4
FmnFmn2U~ ufu!1 i c̄gmDmc

2mS 12
ufu
F2

D c̄c, ~1!

wheref is the complex scalar field,Dm5]m2 ieAm is the
U(1) covariant derivative,Fmn is the field tensor, and
U(ufu) is the potential for the scalar field.c is the
4-component spinor,c̄ is the Dirac adjoint spinor,gm are the
four covariant Dirac matrices,m is a positive constant, and
F2 is a constant chosen such that whenufu5F2 the fermi-
ons are massless within the NTS. We can express the c
plex scalar field as two real fields usingf5( f /A2)exp(iu),
to get

L5
1

2
]m f ]m f 1

1

2
f 2~]mu2eAm!22U~ f !2

1

4
FmnFmn

1 i c̄gm~]m2 ieAm!c2mS 12
f

F2
D c̄c. ~2!

We assume the ground state will be spherically symmet
and will have no magnetic field and hence no electric c
rents. Therefore, we may choose a gauge whereAm
5A0(r ). The boundary condition is thatA0(r )→0 as r
→`. In addition, we make the assumption that the sca
field oscillates in time with a regular frequency and hen
u5vt, wherev is a positive constant@11#. The Lagrangian
then becomes

L54pE r 2drF2
1

2
f 821

1

2e2
g821

1

2
f 2g22U~ f !

1c̄g0~v2g!c2mS 12
f

F2
D c̄c1 i c̄gm]mcG , ~3!

whereg[v2eA0(r ). The Euler-Lagrange equations forg, f
andc are
©2002 The American Physical Society01-1
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g91
2

r
g81@e2c̄g0c2e2f 2g#50, ~4!

f 91
2

r
f 81 f g22

dU~ f !

d f
1

1

F2
mc̄c50, ~5!

igm~]m2 ieAm!c2mS 12
f

F2
Dc50, ~6!

where it is understood that the only nonvanishing compon
of Am is A0. The conserved currents and charges are gi
by

J m
scalar52 i ~f* Dmf2fDmf* !, ~7!

Q5E J 0
scalard3x54pE r 2dr f 2g, ~8!

J m
f ermion5c̄gmc, ~9!

N5E J 0
f ermiond3x54pE r 2drc†c. ~10!

III. TAKING CARE OF THE FERMIONS

To proceed, we could take one of two approaches.
could use the Fermi gas approach as in@10,12#. Or we could
attempt to solve the equations of motion directly. We attem
the second method here. We begin with the Dirac equa
for the fermion field. We can writec in terms of two,
2-component, spin-1/2 spinors in the chiral representatio

c5S fR

fL
D , ~11!

where fR(L) is a right ~left!-handed spinor. It is easier t
proceed if we switch to the non-covariant representation
the Dirac equation. Multiplying byb21[(g0)21 on the left
and using thatg i[ba i , we get the equation

i
]c

]t
5„2 i a•¹1bM1Vf~r !…c, ~12!

whereVf(r )5eA0(r ) is the potential for the fermions, an
M5(12 f /F2)m is the mass of the fermion. Following Le
et al. we will assume thatf (r )5const5F2[F inside the
NTS @11#. We will also assume thatc is of the simple form
c(r ,t)5c(r )exp(2iEt) where E is the energy of a single
fermion. We therefore get the new equation

Ec5„2 i a•¹1Vf~r !…c. ~13!

We desirec to be spherically symmetric in the ground sta
Since fR and fL must have opposite parity under spat
reflection, they cannot both be symmetric. Therefore,
must choose one of them to equal zero, and conventions
right-handed coordinate system dictate that it is the l
handed component that must be zero. We can now expan
terms of an angular part and a radial part by writing@13#
08770
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fR5 ih~r !V j lm , ~14!

whereV j lm is a spherical spinor and the indicesj ,l ,m are the
quantum numbers of total angular momentum, orbital an
lar momentum, and thez component of angular momentum
respectively. In the spherically-symmetric ground state
have l 50 and soj 5 l 11/251/2, and the spherical spino
for this case simplifies to@13#

V (1/2)0(1/2)5S Y00

0 D 5A 1

4pS 1

0D , ~15!

and we see that indeed our wave function is spherically s
metric. The equations forh(r ) become@13#

dh

dr
1~11k!

h

r
50, ~16!

@E2Vf~r !#h50, ~17!

wherek[2( l 11) so herek521 @13#. The solution to Eq.
~16! is then simply h5const[B. However, we notice a
problem with Eq.~17!; namely, ifVf(r ) is nonconstant then
it demands thath50 sinceE must be a constant, and th
equation must be sastified for allr. How are we to get around
this problem? We can approximate the fermionic energy
side the NTS as constant by taking the expectation valu
the fermionic potential inside it. Then we can writeE'^E&
5^Vf(r )& and Eq.~17! may be approximately satisfied in
side the NTS. Before doing this we note that ifh is constant,
the expression for the conserved charge Eq.~10! becomes
simply

N5
B2R3

3
, ~18!

whereR is the radius of the ball. We then get that

^Vf&54pE
0

R

c†s3V~r !cr 2dr5
3N

R3 E0

R

r 2@v2g~r !#dr,

~19!

wheres3 is the third Pauli spin matrix, and our approxima
solution is

c~r ,t !5
1

A8p
S 3N

R3 D 1/2

exp~2 i t ^Vf&!u~R2r !S 1

1

0

0

D ,

~20!

whereu(R2r ) is the step function.
We can now use Eq.~20! in Eq. ~4!. The solution forg(r )

is
1-2
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g~r !5H @v2e2Q/4pR#R sinh~eFr!/r sinh~eFR!

1c†c/F2, r<R,

v2e2Q/4pr , r .R,
~21!

whereR is the radius of the soliton. We can now substitu
for f 2g in Eq. ~8! to get

e2Q5E
0

R

4pdr@~g8r 2!81e2r 2c†c#. ~22!

Using our solution forg(r ), Eq. ~21!, we get

v5
e2Q

4pR F x

x2tanh~x!G2
e2N tanh~x!

4pR„x2tanh~x!…
, ~23!

wherex[eFR.

IV. ESTIMATING THE GAUGED FERMIONIC Q-BALL
ENERGY

The gauge invariant energy can be written as

E54pE r 2drF1

2
f 821

1

2e2
g821

1

2
f 2g21U~ f !1 i c̄g i] icG

1EF , ~24!

where EF is the relativistic Fermi energy given byEF
5(3p/4)(3/2p)2/3(N4/3/R). Ignoring surface termsO(R2),
performing some partial integrations, and using our solut
for c we get, forr<R,

E<
1

2
vQ1

4

3
pR3U~F !1EF . ~25!

We can use Eq.~23! to get

E<
e2Q2

8pR F x

x2tanhxG1
4

3
pR3U~F !1

C1N4/3

R

2
e2QN

8pR F tanhx

x2tanhxG , ~26!

whereC1[3p/4(3/2p)2/3. The next step is to minimize thi
expression with respect to the various parameters at fixeN
andQ. We examine the case of smalle and expand to orde
e3, where the Laurent series are given byx/(x2tanhx)
'3/x216/5 and tanhx/(x2tanhx)'3/x211/5. We then get
an approximate form forE to O(e3) of

E<
3Q2

8pF2R3
1

4

3
pR3U~F !1

C1N4/3

R
1

3e2Q2

20pR

2
3QN

8pF2R3
2

e2QN

40pR
. ~27!

These terms now have an easy physical interpretation.
first term is the zero-point energy of the scalar particles. T
08770
n

he
e

second term is the vacuum volume energy of the bag.
third term is the Fermi energy. The fourth term is the Co
lomb repulsion of the scalar particles. The fifth and six ter
represent the interactions of the fermions with the scalars
gauge fields, which may significantly alter the NTS’s ener

If we minimize this expression with respect toR we ob-
tain, writing R2[y,

4pU~F !y32yS 3e2Q2

20p
1C1N4/32

e2QN

40p D
2

9Q

8pF2
~Q2N!50. ~28!

The formal solution to this equation is given by

z5cosF1

3
arccosS 3B

2A
A3

AD 1
2pn

3 G , ~29!

n50,61,62 . . .

z[y/a, a[A~4A/3!,

A5
C1N4/3

4pU~F !
1

e2Q

160p2U~F !
~6Q2N!, ~30!

B5
9Q

32p2F2U~F !
~Q2N!. ~31!

Unfortunately, since we must minimize the energy with r
spect to bothR andF the details of selecting the correct ro
~or even if a positive real root exists! depend on the nature o
U(F). Hence, it is not possible to write down a gene
procedure for selecting a root. Once a suitable potential
been chosen however, the solution follows in a straightf
ward manner. To illustrate this, we solve for the potential

U~ f !5
l2f 6

6m2
2

f 4

4
1

m2f 2

2
. ~32!

We choosel50.444, m5.25, e5.1, Q510000, andMc
52 @we must choosel2.3/16 to insure thatU( f ).0 for all
f Þ0], wherem andMc have dimensions of mass (Mc is the
mass of the fermions in the true vacuum!. The energy scale is
set byF, which has dimensions of mass. We first solve t
problem with no fermions present, which is identical to t
scenario considered in@11#. This gives us an idea of a pos
sible range of values forR andF ~based on this analysis, w
setF50.48 throughout! to search for fermionic NTSs. Writ-
ing the energy of the free scalars and fermions asEfree
5mQ1McN, the NTS is stable wheneverENTS/Efree,1.
In Fig. 1, we show the ratioENTS/Efree as a function of
increasing fermion number, for several values of the rad
From a more detailed analysis we can show that, for
parameters used in Fig. 1, the condition for the existence
NTSs is satisfied for 35&R&111. Clearly, the same sort o
range search can be performed for any set of parameter
1-3
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In Fig. 2 we show the ratioENTS/Efree as a function of the
NTS radius for different values of the fermionic chargeN.
Clearly, there is a wide range of values forN wherein the
NTS is the preferred energy configuration. For large ra
~larger than the range of values displayed in the figure!, the
NTS energy is independent ofN, as can be easily seen from
Eq. ~27!.

We conclude with a few remarks about our NTS. First,
see that if we use a potential that satisfies Coleman’s co
tion @8# min@2U/uf2u#,m2 (m is the mass of the free scala
particles!, in order to set up a false vacuum where the ferm
ons can be massless, then we can always find param
whereENTS,Efree. Second, we see that the presence of b
fermions and the gauge field increases the energy and
radius of the NTS, while the attractive Yukawa coupling b
tween the fermions and scalars decreases both in relatio
the ungauged scalarQ-balls studied by Coleman and co
laborators@8,9#. Third, we note that the asymptotic form o
the energy is

lim
R→`

E→4

3
pR3U~F !. ~33!

FIG. 1. Ratio of NTS energy to the energy of free fermions a
scalars as a function of fermionic chargeN. The labels indicate the
different values of the NTS radius.
s.
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Hence, if we scaleU(F) in such a way thatR3U(F)
5const, 3

4 Efree, our NTS can be stable at arbitrarily larg
radii. Physically, we have obtained a state of matter w
scalar particles and fermions uniform throughout. We th
see that it is possible to form a NTS out of gauged fermio
and scalar particles, which can be the preferred energy s
of the system for a wide range of parameters. It would
interesting to investigate the solutions to the set of coup
equations numerically, obtaining a more detailed analysis
the allowed parameter space.
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