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AdSÕCFT equivalence transformation
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We show that any conformal field theory ind-dimensional Minkowski space, in a phase with spontaneously
broken conformal symmetry and with the dilaton among its fields, can be rewritten in terms of the static gauge
(d21)-brane on AdS(d11) by means of an invertible change of variables. This nonlinear holographic trans-
formation maps the Minkowski space coordinates onto the brane worldvolume ones and the dilaton onto the
transverse AdS brane coordinate. One of the consequences of the existence of this map is that any (d21
1m)-brane worldvolume action on AdS(d11)3Xm ~with Xm standing for the sphereSm or more complicated
curved manifold! admits an equivalent description in Minkowski space as a nonlinear and higher-derivative
extension of some conventional conformal field theory action, with the conformal group being realized in a
standard way. The holographic transformation explicitly relates the standard realization of the conformal group
to its field-dependent nonlinear realization as the isometry group of the brane AdS(d11) background. Some
possible implications of this transformation, in particular for the study of the quantum effective action ofN
54 super-Yang-Mills theory in the context of AdS/CFT correspondence, are briefly discussed.
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I. INTRODUCTION

The cornerstone of AdS conformal field theory~CFT! cor-
respondence@1–4# is the hypothesis that the isometry grou
of an AdSn3Sm background in which some type IIB strin
theory and related supergravity live is identical to the st
dard conformal group~times the group of internalR symme-
try! of the appropriate conformal field theory defined on t
(n21)-dimensional Minkowski space considered as
boundary of AdSn . The full supersymmetric version of thi
correspondence deals with the bulk and boundary rea
tions of superconformal groups, including conformal a
R-symmetry groups as bosonic subgroups.

It was shown in@1,5–7# that the invariance group of th
worldvolume action of some probe brane in an AdSn3Sm

background~e.g., a D3-brane in AdS53S5) can be realized
as a field-dependent modification of the standard~super!con-
formal transformations of the worldvolume. In@8# it was
demonstrated that such a realization of the AdS isom
corresponds to the choice of the special ‘‘solvable subgro
parametrization of the AdS background. In the spirit of t
AdS/CFT correspondence~and some other hypotheses
similar nature!, the AdS superbrane worldvolume actions a
expected to appear as the result of summing up leading
subleading terms in the low-energy quantum effective
tions of the corresponding Minkowski space~super!confor-
mal field theories in the phase with spontaneously bro
~super!conformal symmetry~e.g., the AdS53S5 D3-brane
action@9# and some of its modifications should be recove
in this way from the effective action ofN54 super-Yang-
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Mills ~SYM! theory in the Coulomb branch@10,11,1,12#!. In
this connection it was suggested in@13,14# that the modified
~super!conformal transformations could be understood a
quantum deformation of the standard~super!conformal trans-
formations of the classical field theory. The idea that t
quantum effective action should be invariant just under
modified ~super!conformal transformations was further a
vanced in@15#.

In the present paper we take a different viewpoint on
interplay between the standard and modified~super!confor-
mal transformations. We show that any conformal fie
theory in d5(p11)-dimensional Minkowski space in th
phase with spontaneously broken conformal symmetry,
containing among its fields a Goldstone field~dilaton! asso-
ciated with the broken scale generator, even at the class
level can be brought, by an invertible change of variabl
into the form in which it respects invariance just under t
above-mentioned field-dependent conformal transformatio
This change of variables essentially includes a fie
dependent change of the Minkowski space-time coordina
ym (m50,1, . . . ,p) and maps them on the worldsheet coo
dinatesxm of the corresponding codimension-one brane
AdS(d11) , while the dilaton is mapped on the brane tran
verse coordinate which completesxm to AdS(d11) in the
solvable subgroup parametrization. Using this map betw
the conformal and AdS bases~it can naturally be called a
‘‘holographic map’’!, one can rewrite any conformal fiel
theory containing the dilaton in terms of the variables of t
corresponding AdS brane in a static gauge, and vice ve
The AdS images of the minimal conformally invaria
Lagrangians~i.e. those containing terms with no more tha
two derivatives! prove to necessarily include non-minim
terms composed out of the extrinsic curvatures of the bra
On the other hand, the conformal field theory image of
minimal brane Nambu-Goto action is a non-polynomial a
©2002 The American Physical Society01-1
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higher-derivative extension of the minimal Minkowski spa
conformal actions.

In this paper we restrict our study to the bosonic ca
only, having in mind to extend it to the full superconform
case in a forthcoming publication. We start with recalli
basic facts about the standard nonlinear realization of c
formal group SO(2,p11) in (p11)-dimensional
Minkowski space. Then we rewrite the algebra ofSO(2,p
11) in the solvable-subgroup basis of@8# as the AdS(p12)
group algebra and show how to reproduce the static-ga
Nambu-Goto action of scalarp-brane in AdS(p12) back-
ground by applying to this group the nonlinear realizatio
techniques along the lines of Refs.@16–19#. The AdS(p12)
isometry group in the second nonlinear realization acts
as the field-modified conformal transformations of Re
@5–7#. Comparing two nonlinear realizations ofSO(2,p
11), the standard one and the one suitable to AdS bra
we establish the explicit relation between the coset par
eters in both realizations. Finally, we give examples of va
ous invariants in both bases, including the conformal ba
form of the Nambu-Goto action, and discuss some poss
implications of the relationship found.

II. STANDARD NONLINEAR REALIZATION OF
CONFORMAL GROUP IN d DIMENSIONS

The algebra of the conformal groupSO(2,d) of d5(p
11)-dimensional Minkowski space has the following form

@Mmn ,M rs#52d [m
[r M n]

s] ,

@Pm ,M nr#52hm[nPr] ,

@Km ,M nr#52hm[nKr] ,
~2.1!

@Pm ,Kn#52~2hmnD12Mmn!,

@D,Pm#5Pm ,

@D,Km#52Km ,

where

A[mn][
1

2
~Amn2Anm! ~2.2!

and hmn5diag(12 . . . 2). In what follows this standard
basis of conformal algebra will be called ‘‘conformal’’ t
distinguish it from the ‘‘AdS basis’’ to be specified below.

The standard nonlinear realization of the conformal gro
~see, e.g.@20#! corresponds to choosing the Lorentz gro
SO(1,p)}Mmn as the stability~linearization! subgroup and
so it is defined as left shifts of the following coset eleme

g5eymPmeFDeVmKm. ~2.3!

The left shifts with parametersam, bm and c related to the
generatorsPm , Km and D induce the familiar conforma
transformations of the coset coordinates
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dym5am1cym12~yb!ym2y2 bm, dF5c12yb,
~2.4!

dVm5eFbm12~Vb!ym22~yV!bm.

We define the left-covariant Cartan 1-forms as follows

g21dg5e2FdymPm1~dF22e2FVmdym!D

24e2FVmdynMmn1@dVm2VmdF

1e2F~2VndynVm2V2dym!#Km . ~2.5!

The vector Goldstone fieldVm(x) is redundant as it can b
covariantly expressed through the only essential one, dila
F(x), by imposing the covariant inverse Higgs constra
@21#

vD50⇒Vm5
1

2
eF]m

y F. ~2.6!

The remaining 1-forms associated with the coset genera
then read

vP
m5e2Fdym, vK

m5dVm2e2FV2dym. ~2.7!

The covariant derivative ofVm is defined by the relation

vK
m5vP

n D nVm⇒D nVm

5eF]nVm2V2dn
m

5
1

2
e2FF]n]mF1]nF]mF2

1

2
~]F]F!dn

mG . ~2.8!

The covariant derivative of some non-Goldstone~‘‘matter’’ !
field Ca(y), wherea is an index of the Lorentz group rep
resentation, is defined by

dCa24e2FVmdyn~Mmn!b
aCb

5vP
mD mCa⇒nD mCa

5eF]mCa14Vn~Mmn!b
aCb. ~2.9!

Whenym is transformed according to Eq.~2.4!, the fieldCa,
as well as the covariant derivatives~2.8! and ~2.9!, undergo
an induced Lorentz rotation with respect to their Loren
indices, e.g.,

dCa~y!5Ca 8~y8!2Ca~y!5bmn~Mmn!b
aCb~y!,

~2.10!
bmn524y[mbn] .

The conformally invariant measure of integration ov
$ym% is defined as the exterior product ofd 1-formsvP

m

S15E m~y!5E d(p11)ye2(p11)F. ~2.11!

It can be treated as the conformally invariant potential
dilaton.

The covariant kinetic term ofF can be constructed as
1-2
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SF
kin5E d(p11)ye2(p11)FD mVm

5
1

4
~p21!E d(p11)y e(12p)F]F]F ~2.12!

@while passing to the final form of Eq.~2.12!, we integrated
by parts#. For the special cased52 (p51) the Lagrangian
in Eq. ~2.12! is reduced to a full derivative. In this case on
can still define the non-tensor kinetic term which is invaria
under Eq.~2.4! up to a shift by full derivative

SF
kin(2)5

1

2E d2y]F]F. ~2.13!

Conformally invariant Lagrangians of matter fieldsCa

are obtained by replacing ordinary derivatives by the cov
ant ones~2.9! and promotingd(p11)y to the conformally
invariant measure~2.11!. E.g., the standard Maxwell field
strength can be covariantized as

F̃mn5DmÃn2DnÃm5e2FFmn , ~2.14!

whereÃm is transformed according to the generic law~2.10!
and its covariant derivative is defined by~2.9!. It is related in
the following way to the ordinary Maxwell vector potenti
Am having the same conformal transformation law as
partial derivative]m and the standard gauge transformati
law

Ãm5e2FAm , Fmn5]mAn2]nAm . ~2.15!

The conformally invariant action ofAm then reads

SM
(c)52

1

4E d(p11)ye(32p)FFmnFmn . ~2.16!

At d54 (p53) it coincides with the standard Maxwell ac
tion which is conformal in its own right only in this dimen
sion.

This formalism of nonlinear realizations of conform
symmetry is universal in the following sense. In any theo
in which conformal symmetry is spontaneously broken, it
always possible to make a field redefinition which splits
full set of scalar fields of the theory into the dilatonF with
the transformation law~2.4! and the subset of fields whic
are scalars of weight zero under conformal transformatio
For instance, let us consider the free action ofN massless
scalar fieldsf I , I 51, . . . ,N (pÞ1):

S5E d(p11)y]f I]f I . ~2.17!

It is invariant under Eq.~2.4! ~up to a shift of the Lagrangian
by a full derivative! if f I are transformed with the appropr
ate weight

df I5
1

2
~12p!~c12yb!f I , dufu5

1

2
~12p!~c1yb!ufu.

~2.18!
08600
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If some field develops a non-zero vacuum value,^f I 0&5v
Þ0 @e.g. due to the presence of some conformally invari
potential term which should be added to Eq.~2.17!#, the
conformal symmetry is spontaneously broken and one
perform the equivalence field redefinition

f I5
ufu
v

f̂ I , f̂ If̂ I5v2, df̂ I50 ~2.19!

ufu5v1f̃1 . . . 5ve(1/2)(12p)F, f I 0[f̃1v. ~2.20!

Then the action~2.17!, up to an overall coefficient and su
face terms, can be rewritten as

S5E ddye(12p)FF1

4
~12p!2]F]F1]f̂ I]f̂ I G .

~2.21!

The first term coincides with the universal dilaton acti
~2.12! while the second term is the action of a nonline
sigma model of the internal symmetry group realized on
indicesI.

An example of the system admitting such a field redefi
tion is supplied, e.g., by the scalar fields sector ofN54,d
54 SYM action in the Coulomb branch. Consider, e.g., t
simplest case ofSU(2) gauge group. When some scalar fie
valued in the Cartan subalgebrau(1) acquires a non-zero
expectation value~which is a solution of classical equation
of motion for the full action including the conformally in
variant quartic potential of the scalar fields!, the gauge group
gets broken toU(1) and there remain 6 scalar massle
fields in the theory which form a vector of theR-symmetry
group SO(6);SU(4). The norm of this vector is just the
dilaton associated with the spontaneous breaking of con
mal symmetrySO(2,4). The remaining 5 independent field
appear as the solution of the algebraic constraint in~2.19!
and parametrize the internal sphereS5;SO(6)/SO(5).
Thus the set of 6 massless bosonic fields ofSU(2)N54
SYM theory in the Coulomb branch naturally splits into th
SO(6) invariant dilaton sector and the sector of a nonline
sigma model onS5.

In the special case ofd52 (p51) the fieldf I is a scalar
of the conformal weight zero, so no redefinition like~2.19!,
~2.20! is needed. The kinetic and potential terms of dilat
~2.13!,~2.11! can be independently added, if necessary.
example of such ad52 system, which, likeN54 SYM is
conformal~and superconformal! both on classical and quan
tum levels, is provided by theN5(4,4) supersymmetric
SU(2) Wess-Zumino-Witten~WZW! sigma model@22#. Its
bosonic sector includes four scalar fields, one of which i
dilaton and the three remaining ones possess zero confo
weight and parametrize the cosetS3;SU(2)
3SU(2)/SU(2). Theconformally invariant bosonic action
is a sum of free action of the dilaton and standardSU(2)
WZW action @23#.
1-3
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III. THE ADS NONLINEAR REALIZATION

In the AdS basis we introduce the following generator

K̂m5mKm2
1

2m
Pm , D̂5mD, ~3.1!

where m will be identified with the inverse radius of AdS
space.

The same conformal algebra~2.1! in the AdS basis~3.1!
reads

@K̂m ,K̂n#524Mmn , @Pm ,K̂n#52~2hmnD̂12mMmn!,
~3.2!

@D̂,Pm#5mPm ,@D̂,K̂m#52~Pm1mK̂m!

@commutators with the Lorentz generatorsMmn are of the
same form as in Eq.~2.1!#.

The basic difference of Eq.~3.2! from Eq.~2.1! is that the
generators (K̂m,Mmn) generate the semi-simple subgro
SO(1,d) of SO(2,d), while the subgroup (Km,Mmn) has the
structure of a semi-direct product. As a result, in the co
element~2.3! rewritten in the new basis

g5exmPmeqD̂eLmK̂m, ~3.3!

the coordinatesxm and q(x) are parameters of the cos
manifold SO(2,d)/SO(1,d) which is none other than
AdS(d11) . This parametrization of AdS(d11) was called in
@8# ‘‘the solvable subgroup parametrization,’’ since the ge
eratorsPm and D̂ with which the AdS(d11) coordinates are
associated as the coset parameters constitute the ma
solvable subgroup ofSO(2,d). One more convenience of th
basis~3.2! with the manifestly included dimensionful param
eter m is that one can perform the contractionm50 in Eq.
~3.2!, which takes it just into the (d11)-dimensional Poin-
caré group ISO(1,d), with the set (Pm ,D̂) becoming the
generators of (d11) translations. In this limitxm and
(1/A2)q are recognized as the coordinates
(d11)-dimensional Minkowski space, the standardR5`
limiting case of AdS(d11) . This confirms the interpretation
of the parameterm as the inverse AdS(d11) radius.

In the new basis the Cartan forms~2.5! read

g21dg5F e2mqS dxm1
lmlndxn

12
l2

2
D 2

lmdq

12
l2

2
GPm

1

11
l2

2

12
l2

2
F dq22

e2mqlmdxm

11
l2

2
G D̂1

1

12
l2

2

@dlm

2mlmdq2me2mq~l2dxm22lmlndxn!#K̂m

1vM
mnMmn , ~3.4!

where
08600
t
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al

f

lm5

tanhAL2

2

AL2

2

Lm ~3.5!

and the new basis form ofvM
mn524e2FV [myn] can be

found using the explicit relation between the parameters
the coset elements~2.3! and~3.3! which will be given in the
next section.

The inverse Higgs constraint~2.6! is rewritten in the AdS
basis as

v D̂50⇒ lm

11
l2

2

5
1

2
emq]mq,

~3.6!

lm5emq
]mq

11A12
1

2
e2mq~]q]q!

.

On the surface of this covariant constraint the remain
coset space Cartan forms are given by the expressions:

vP
m5e2mqS dn

m2
lmln

11
l2

2
D dxn[En

mdxn5e2mqÊn
mdxn,

~3.7!

v K̂
m

5
1

12
l2

2

~dlm2ml2vP
m!.

The covariant derivative, with the Lorentz connection p
omitted, is defined by

dxm]m5vP
mDm⇒Dm

5emqS dm
n 1

lmln

12
l2

2
D ]n

[~E21!m
n ]n

5emq~Ê21!m
n ]n . ~3.8!

The covariant derivative of theSO(1,d11)/SO(1,d) Gold-
stone fieldlm is defined by the formula analogous to E
~2.8!,

v K̂
n

5vP
mD mln,

~3.9!

D mln5
1

12
l2

2
F emqS dm

r 1
lmlr

12
l2

2
D ]rln2ml2dm

n G .
1-4
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It is straightforward to find the transformation laws
xm, q(x) andlm(x) under the left shifts of Eq.~3.3!

dxm5am1cxm12~xb!xm2x2bm1
1

2m2 e2mqbm,

~3.10!

dq5
1

m
~c12xb!,

dlm5
1

m S 11
l2

2 DemqÊn
mbn12~lb!xm22~xl!bm,

~3.11!

where all group parameters are the same as in Eq.~2.4!. It is
easy to check that Eqs.~3.10! are perfectly consistent with
the inverse Higgs expression~3.6! for lm(x).

The transformations ofxm and q(x) are just the field-
dependent conformal transformations which were discus
in @1,5–7# in connection with the AdS branes and we
shown in@8# to naturally arise as the AdS isometries in t
above solvable-subgroup parametrization of AdS groups
see how this interpretation is recovered in the present
proach, let us first write the AdS(d11) metric

ds25vP
mvPm5e22mqdxmhmndxn2dq2. ~3.12!

The change of variables~we assumepÞ1)

e22mq5S U

RD 4/(p21) 2

~p21!2
, R5

1

m
, ~3.13!

brings Eq.~3.12! ~up to a factor! and transformation rules
~3.10! into the form

ds25S U

RD 4/(p21)

dxmhmndxn2S R

U D 2

dU2, ~3.14!

dxm5am1cxm12~xb!xm2x2bm

1
1

4
~p21!2

R2(p11)/(p21)

U4/p21
bm,

~3.15!

dU52
1

2
~p21!~c12xb!U,

which coincide with those given, e.g. in@5# ~up to a rescaling
of xm and a different choice of the signature of Minkows
metric!.

The simplest invariant of the nonlinear realization cons
ered is again the covariant volume ofx space obtained as th
integral of the wedge product of (p11) 1-formsvP

m . The
difference from Eq.~2.11! is that this invariant is basically
the static-gauge Nambu-Goto~NG! action for p-brane in
AdS(p12)
08600
ed

o
p-

-

SNG52E d(p11)x@detE2e2(p11)mq#

5E d(p11)xe2(p11)mqS 12

12
l2

2

11
l2

2

D
52E d(p11)xe2(p11)mq

3FA12
1

2
e2mq~]q]q!21G , ~3.16!

where we used the relations

detE5e2(p11)mqdetÊ,
~3.17!

detÊ5

12
l2

2

11
l2

2

5A12
1

2
e2mq~]q]q!

and subtracted 1 to obey the standard requirement of abs
of the vacuum energy~corresponding toq5const) @1#. Note
that the subtracted term

S25E d(p11)xe2(p11)mq ~3.18!

is invariant under Eq.~3.10! ~up to a shift of the integrand by
a full derivative! on its own. In most interesting cases it is
part of some WZ~or CS! term in a static gauge. The actio
~3.16! is universal, in the sense that it describes the rad
~pure AdS! part of any AdSn3Sm (n1m22)-brane action
corresponding to ‘‘freezing’’~setting equal to constants! all
other fields on the brane~e.g., the gauge fields and angul
S5 fields in the case of AdS53S5 D3-brane! and also to
neglecting some further possible WZ-type terms on the br
worldvolume. Actually, this universality extends to th
branes on AdSn3Xm where Xm can stand for some
m-dimensional curved manifold different from the sphe
e.g. one of the manifolds considered in@24# while analyzing
the AdS/CFT correspondence for a generalN54 SYM
theory in the Coulomb branch.

The minimal covariant actions of various ‘‘matter’’ field
are obtained via replacing the ordinary derivatives by
covariant ones and inserting detE into the integration mea-
sure. E.g., the covariant kinetic term of some scalar fi
f(x) is given by

Sf5E d(p11)x detÊe(p21)mqĜmn]mf]nf, ~3.19!

where
1-5
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Ĝmn5hvr~Ê21!v
m~Ê21!r

n

5hmn1e2mq
2

12
1

2
e2mq~]q]q!

]mq]nq ~3.20!

is the inverse of the induced metric

Ĝmn5hvrEm
vEn

r5hmn2
1

2
e2mq]mq]nq ~3.21!

~with the factorse62mq detached!.
As the last topic of this section, let us clarify the geom

ric meaning of the covariant derivative~3.9! which plays an
important role in our construction. We will show that it is th
tangent-space projection of the first extrinsic curvature of
brane. For simplicity, we shall consider the limiting casem
50 in Eqs.~3.9! and~3.6! which corresponds to thep brane
in the flat (p12)-dimensional Minkowski background. Th
generalization to the AdS case is straightforward.

One defines the extrinsic curvature by the relation~see,
e.g.,@25–27#!

¹m]nXAnA5Kmn , ~3.22!

where XA are target brane coordinates,XA5(xm,
2(1/A2)q) in the considered static gauge,hAB5(hmn ,
21), nA5(nm ,n) is a normal to the brane worldsheet

]mXAnA50, nAnA5nmnm2n2521 ~3.23!

and

¹m]nXA5~]m]n2Gmn
r ]r!XA. ~3.24!

The induced metricGmn in the static gauge and its invers
Gmn are given by Eqs.~3.21!,~3.20! with m50. We find

Gmn
r 5GrvGmnv ,

~3.25!

Gmnv5
1

2
~]mGnv1]nGmv2]vGmn!

52
1

2
]m]nq]vq,

and

¹m]nq5
1

12
1

2
~]q]q!

]m]nq,

~3.26!

¹m]nxr5
1

2

1

12
1

2
~]q]q!

]m]nq]rq.
08600
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Further, the orthogonality condition~3.23! in the static gauge
is reduced to1

nm1
1

A2
]mqA11nnnn50⇒nm52

1

A2

]mq

A12
1

2
~]q]q!

.

~3.27!

After substituting all this into the definition~3.22!, we obtain

Kmn5
1

A2

1

A12
1

2
~]q]q!

]m]nq ~3.28!

and

Dmln5
1

A2
~E21!m

r ~E21!n
vKrv . ~3.29!

IV. AN EQUIVALENCE RELATION BETWEEN CFT
AND ADS BASES

In both nonlinear realizations described above we d
with the same coset manifoldSO(2,d)/SO(1,d21), in
which the coset parameters are divided into the space-
coordinates and Goldstone fields in two different ways.
the first realization the coordinatesym parametrize the
d-dimensional Minkowski space considered as a cose
SO(2,d) identified with the corresponding conformal group2

All other parameters are Goldstone fields, the essential
being dilatonF(y) associated with the spontaneous break
of scale invariance. In the second realization the space-t
coordinatesxm on their own do not constitute a coset man
fold of SO(2,d) and therefore do not form a closed set und
the left action of this group. However, together with th
Goldstone field q(x) they parametrize the cose
SO(2,d)/SO(1,d);AdS(d11) and this extended set is close
under the action ofSO(2,d). These coset parameters admi
clear interpretation as the worldvolume (xm) and transverse
~q! coordinates of the (d21)-brane evolving in AdS(d11) .

Apart from this essential difference in the interpretatio
the fact that both these realizations~with the vector Gold-
stone fieldsVm andlm included! are in fact defined on the
same full coset ofSO(2,d), viz. SO(2,d)/SO(1,d21), sug-
gests the existence of a relation between these two diffe
coset parametrizations. This relation can be straightforwa
extracted from a comparison of Eqs.~2.3! and ~3.3!

1Actually, this condition is another form of the inverse Higgs co
straint ~3.6! at m50, with nm being related via a field redefinition
to the Goldstone fieldlm .

2To be more rigorous, it is the compactified Minkowski spa
which can be treated as a coset manifold of the conformal grou
1-6
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ym5xm2
emq

2m
lm, F5mq1 lnS 12

l2

2 D , Vm5mlm.

~4.1!

We see that it is invertible at any finite non-zerom51/R. It
is straightforward to check that the Minkowski space conf
mal transformations~2.4! are mapped by Eq.~4.1! on the
field-dependent ones~3.10! and vice versa. Since this chang
of variables maps the geometric objects living in t
AdS(d11) bulk on those defined on its Minkowski boundar
it seems natural to name it ‘‘holographic transformation.’’
is important to emphasize that this holographic transform
tion essentially involves the Goldstone fieldlm ~or Vm)
which basically becomes the derivative ofq(x) @or F(y)]
after imposing the covariant constraint~3.6! @or its conformal
basis counterpart~2.6!#. However, for the existence of ma
~4.1! it does not matter whether Eqs.~3.6! or ~2.6! are im-
posed or not; the only necessary condition is the presenc
vector parametersVm(y) andlm(x) in both cosets. In othe
words, Eq.~4.1! could not be guessed solely on the fram
work of the pure AdS(d11) geometry, i.e. by dealing with the
AdS coordinatesxm andq alone; it can be defined only whe
considering extended coset manifolds$ym,F,Vm% and
$xm,q,lm%. Another characteristic feature of the map~4.1! is
that it is well defined only for non-zero and finite values
AdS radiusR51/m.

Using the holographic transformation, any conformal fie
theory in Minkowski space with a dilaton among its bas
fields can be projected onto the variables of the AdS br
and vice versa. To find the precise form of variousSO(2,d)
invariants in two bases, the conformal and AdS ones, le
first define the transition matrix

]yn

]xm
[A m

n 5dm
n 2

lmln

11
l2

2

2
emq

2m
]mln5S 12

l2

2 D Êm
r Tr

n ,

~4.2!

where

Tr
n5dr

n2
1

2m
D rln, ~4.3!

the matrixÊn
m is defined by~3.7! andD rln is the covariant

derivative ofln defined in Eq.~3.9! ~it is an extrinsic curva-
ture of the brane!. We then have the following general fo
mula for the Jacobian of the change of space-time coo
nates in Eq.~4.1!:

J[detA5S 12
l2

2 D p11

detÊ detT. ~4.4!

Making the change of variables~4.1! in the invariant di-
laton Lagrangians~2.11! and~2.12!, we obtain, respectively
08600
-

-

of

-

e

s

i-

S15E d(p11)ye2(p11)F

5E d(p11)x e2(p11)mqdetÊ detT

5E d(p11)xe2(p11)mqA12
1

2
e2mq~]q]q!detT,

~4.5!

SF
kin5E d(p11)ye2(p11)FD mVm

5
1

2E d(p11)ye(12p)FFhF1
1

2
~12p!~]F]F!G

5mE d(p11)xe2m(p11)qdetÊ@detT~T21Dl!m
m#

5mE d(p11)xe2m(p11)qA12
1

2
e2mq~]q]q!

3@detT~T21Dl!m
m#. ~4.6!

We observe a surprising fact that the AdS image of
potential term of dilaton contains the NG part of the Ad
p-brane action~3.16! modified by the higher-derivative co
variants collected in det@ I 2(1/2m)Dl#512(1/2m)D mlm

1 . . . . As we saw,D mln is basically the extrinsic curva
ture of thep-brane. So already the simplest conformal inva
ant in Minkowski space proves to produce, on the AdS si
a rather complicated action which is the standardp-brane
action in AdS(p12) plus corrections composed out of the e
trinsic curvature tensor. The leading~with two derivatives!
term in the right hand side~rhs! of Eq. ~4.5! comes both from
the NG square root and the terms;]mlm,l2 in D mlm @see
Eqs.~3.9! and ~3.6!#

S15E d4xe2(p11)mqF12
1

8
~p11!e2mq~]q]q!1 . . . G .

~4.7!

Note that in the flat casem50 the extrinsic curvature term
are capable of producing only higher-order~in fields and
derivatives! corrections to the minimal NGp-brane action
@as follows from the expression~3.9! at m50]. On the other
hand, the AdS image of the kinetic term of dilaton, Eq.~4.6!,
starts with the correct kinetic term ofq:

SF
kin5

m2

4 E d4x@e2(p21)mq~p21!~]q]q!1 . . . #.

~4.8!

Note, however, that it comes solely from the extrinsic curv
ture term, not from the NG square root. The latter is alwa
multiplied by degrees of the extrinsic curvature in Eq.~4.6!.

A way to elude this paradox of generating kinetic term
from the pure potential ones via the change of variab
could be to start from the reasonable field theory action
1-7
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the CFT side, having from the beginning both kinetic a
potential dilaton terms, i.e. from the action

S5SF
kin1gS1 , ~4.9!

whereg is a coupling constant. To the second order in]mq it
is

S5E d4xS ge2(p11)mq1
1

4 Fm2~p21!

2
1

2
g~p11!G~]q]q!1 . . . D , ~4.10!

and we observe that the holographic transformation~4.1!
merely renormalizes the coefficient before the kinetic te
Nevertheless, the paradox still persists because one can
eliminate the kinetic term ofq by choosing g52m2(p
21)/(p11). Then on the CFT side we still have the qu
reasonable field theory, while on the AdS side we get
action admitting no standard weak-field expansion. Th
observations suggest that the map~4.1! is not the standard
equivalence transformation preserving the canonical st
ture of the given theory. This peculiarity of Eq.~4.1! is mani-
fested, first, in that the essential part of Eq.~4.1! is a non-
linear field-dependent transformation of the space-ti
coordinate starting with a derivative ofq and, second, in tha
the relation betweenF andq contains a shift by the kinetic
term of q, F5mq2 1

8 (]q]q)1 . . . . Note that for the con-
formal actions containing no potential terms of dilaton t
relations~4.1! can be still treated as setting a genuine equi
lence map, since they always take the kinetic term ofF into
that of q ~up to rescaling bym) plus some terms of highe
order in q and its derivatives. The same remains true wh
bringing the minimal AdS brane action~3.16! with vanishing
vacuum energy into the conformal basis~see the next sec
tion!.

In the speciald52(p51) case the conformally invarian
kinetic term of F is given by the non-tensor Lagrangia
~2.13!. Its AdS image is also of non-tensor form, in contr
distinction to the manifestly invariant term~4.6! for dÞ2

SF
kin(2)5E d2y~]F]F!

54m2E d2x
e22mql2

S 12
l2

2 D 2detA

54m2E d2xe22mq l2detÊ detT. ~4.11!

It is not easy to check the invariance of Eq.~4.11! under the
transformations~3.10!. For proving that~4.11! is indeed in-
variant, up to a shift of the Lagrangian by a full derivativ
one needs to use the explicit form of detA for this case
08600
.
lly

n
e

c-

e

-

n

detA5
1

2
@~Tr A!22Tr A 2!]

5

12
l2

2

11
l2

2
F 12

emq]mlm

2m
2

emqlmln]mln

2mS 12
l2

2 D G
1

e2mq

8m2
@~]mlm!22]mln]nlm#. ~4.12!

The AdS images of the conformally invariant kinet
terms of ‘‘matter’’ fields can be obtained by making the va
able change~4.1! in the corresponding actions. For instanc
for a scalar fieldC(y) we find

Sc5E d(p11)ye(p21)F]mC]mC

5E d(p11)x detEL~q,C!,

L~q,C!5detThmn~T21!m
v~T21!n

tDvCDtC

5Gmn]mC]nC1O~Dl!, ~4.13!

DmC5~E21!m
n ]nC, Gmn5hrt~E21!r

m~E21!t
n .

We see that this expression differs from the minimal cova
antization~3.19! by couplings to the brane extrinsic curva
tures.

The change~4.1! brings the conformal Maxwell action
~2.16! into the form

SM52
1

4E d(p11)x detEH mnHmn , ~4.14!

where

Hmn5~T21!m
r ~T21!n

vFrv , Fmn5~E21!m
r ~E21!n

vF̂rv ,
~4.15!

F̂rv5]r
xÂv2]v

x Âr , Âm5A m
n An .

Once again, a difference from the minimal invariant L
grangian;F mnFmn5GmnGvlF̂mvF̂nl is the presence of ex
tra couplings with the extrinsic curvature.

It is instructive to give howÂn and F̂mn are transformed
under Eq.~3.10!. Their transformation laws follow from the
property thatAm is transformed under the conformal grou
as the derivative]m

y , while the matrixA n
m5]ym/]xn as

dA n
m52~yb2xb!A n

m12A n
r~brym2yrbm!

22S bnxr2xnbr1
1

4m2 ]ne2mqbrDA r
m .

~4.16!

Then
1-8
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dÂm52~c12xb!Âm

22S bmxr2xmbr1
1

4m2 ]me2mqbrD Âr ,

~4.17!

or

d* Âm5Âm8 ~x!2Âm~x!

5dc* Âm2
1

2m2 e2mqbrF̂rm2
1

2m2 ]m~e2mqbrÂr!,

~4.18!

wheredc* denotes the conventional conformal~including no
q-dependent terms! part of the complete variation. The tran
formation of F̂mn is of standard form

dF̂mn52~]mdxr!F̂rn2~]ndxr!F̂mr .

V. ADS BRANE ACTIONS IN THE CONFORMAL BASIS

In the previous section we have found how the simpl
conformally invariant Lagrangians in Minkowski space lo
after passing to the AdS basis. It is of interest also to
what the AdS brane action~3.16! looks like in the conformal
basis, with the conventionally realized spontaneously bro
conformal symmetry. The helpful relations are

D mVn5m~T21!m
vD vln, ~T21!m

n 5dm
n 1

1

2m2D mVn,

~5.1!

whereD mVn was defined in Eq.~2.8!.
We start with the ‘‘potential’’ term ofq, Eq. ~3.18!. Mak-

ing in Eq.~3.18! the change of variables inverse to Eq.~4.1!,
we find

S25E d(p11)ye2(p11)F

11
1

8m2 e2F~]F]F!

12
1

8m2 e2F~]F]F!

3detS I 1
1

2m2DV D . ~5.2!

For the pure NG part of the action~3.16! we obtain the rather
simple expression

S5E d(p11)ye2(p11)FdetS I 1
1

2m2DV D . ~5.3!

Then the full brane action~3.16! takes the form
08600
t

e

n

SNG5
1

4m2E d(p11)ye(12p)F
~]F]F!

12
1

8m2 e2F~]F]F!

3detS I 1
1

2m2DV D . ~5.4!

Thus we have found an equivalent representation of
static-gauge action~3.16! of the p-brane in AdS(p12) as a
non-linear extension of the conformally invariant dilaton a
tion in (p11)-dimensional Minkowski space. Note that th
conformal image of the brane action is nonlinear and n
polynomial; however, it is a rational function ofF and its
derivatives. We also note that, despite the simplicity of
standard conformal transformations~2.4!, it is rather tricky
to directly check that Eqs.~5.4! or ~5.2! are indeed invariant
under them. The difficulty originates from the property th
the Lagrangian densities in Eqs.~5.4!,~5.2!, like their AdS
images~3.16!,~3.18!, are not tensors; they are shifted by
full derivative under Eq.~2.4! @as distinct from the Lagrang
ian in Eq. ~5.3! which is manifestly invariant#. Though the
conformal variation ofSNG ~5.4! can easily be found

dcSNG5
1

m2E d(p11)ye(12p)F
bm]mF

F12
1

8m2 e2F~]F]F!G2

3detS I 1
1

2m2DV D , ~5.5!

it is far from obvious that the integrand in Eq.~5.5! is a full
derivative. To see this, one should demonstrate that the va
tional derivative of Eq.~5.5! is identically vanishing,

d

dF~y!
~dcSNG!50.

The proof makes use of the explicit expressions~2.8! and
~2.6! and is somewhat tiresome, though straightforward. N
tice the crucial importance of terms with two derivatives
F coming from the determinant in Eq.~5.5!. As a simpler
exercise, one can directly check that Eq.~5.5! is reduced to a
full derivative in the first order in 1/m2 @since transforma-
tions ~2.4! do not includem2, each term in the expansion o
Eq. ~5.4! in powers of 1/m2 should be invariant separately#.
It would hardly be possible to guess such a non-tensor c
formal invariant, staying solely in the framework of the sta
dard nonlinear realization of conformal group.

Our last example will be the conformal field theory ima
of the full bosonic part of the D3-brane on AdS53S5. Ne-
glecting the ‘‘magnetic’’ part of the Chern-Simons term, th
action in the static gauge can be written as~see, e.g.@28#!
1-9
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S552CE d4x
uXu4

R4 FA2detS hmn2
R4

uXu4
]mXi]nXi1

R2

uXu2
F̂mnD 21G , ~5.6!

wherei 51, . . . ,6,uXu5AXiXi , C is some positive renormalization constant, the precise form of which is of no interest
present context, and the signs are adjusted in accordance with our choice of the Minkowski metrichmn5diag(1222).

First we rewrite Eq.~5.6! in our notation, using the field redefinition

R

uXu
5

1

A2
emq, m5

1

R
, ~5.7!

which is the particularp53 case of the redefinition~3.13!. We obtain

S5524CE d4xe24mqF ~detÊ!A2detS hmn1
1

2
Fmn2

1

2
D mX̃iD nX̃i D21G , ~5.8!

whereDm andFmn were defined in Eqs.~3.8!,~4.15! and X̃i parametrize the sphereS5,

X̃i X̃i5R2.

For constantX̃i and Âm the action~5.8! is reduced to the pure AdS(d11) action ~3.16! with d54.
Now, making in Eq.~5.8! the change of variables inverse to Eq.~4.1!, we obtain the conformal basis form of the AdS5

3S5 action

S554CE d4ye24FdetS I 1
1

2m2DV D H 11
1

8m2 e2F~]F]F!

12
1

8m2 e2F~]F]F!

2A2detFhmn1
1

2
e2FTm

r Tn
v~Frv2]rỸi]vỸi !GJ ,

~5.9!
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Ỹi~y![X̃i
„x~y!…5

R

uYu
Yi ,

~5.10!
R

uYu
5

1

A2
eF

1

12
1

8m2 e2F~]F]F!

.

Thus we have succeeded in equivalently rewriting the eff
tive bosonic action of the D3-brane in the AdS53S5 back-
ground ~5.6! or ~5.8! as a conformally invariant nonlinea
action of the coupled system of the following set of fields
4-dimensional Minkowski space$ym%: dilatonF(y), five in-
dependent scalar fieldsỸi(y),Ỹi Ỹi5R2, parametrizing the
sphere S5, and an Abelian gauge fieldAm(y). For Ỹi andAm
we still have a version of the Dirac-Born-Infeld action pr
moted to a conformally invariant one due to couplings to
dilaton F(y). It also includes extra conformal couplings
the curvatureD mVn

„through the common factor det@ I
1(1/2m2)DV# and the matricesTm

r in the determinant unde
the square root…. The dilatonF(y) itself, with all other fields
neglected, is described by the nonlinear higher-derivative
tion ~5.4!. The crucial difference between Eq.~5.6! @or Eq.
~5.8!# and ~5.9! is that the latter involves fields having sta
08600
c-

e

c-

dard transformation properties under the conformal gro
SO(2,4), while in Eq.~5.6! the latter is realized as the grou
of isometry of AdS5, with transformations depending onuXu.
The groupSO(6) has the same realization in both represe
tations as the isometry group of 5-sphere S5.

VI. DISCUSSION

In this paper we have found a new kind of holograph
relation between field theories possessing spontaneously
ken conformal symmetry ind-dimensional Minkowski space
and the codimension-(n11) branes in AdS(d11)3Xn type
backgrounds in the static gauge~with the sphere Sn as a
particular case ofXn). This relation takes place already at th
classical level and transforms the dilaton Goldstone field
sociated with the spontaneous breaking of scale invaria
into the transverse~or radial! brane coordinate completin
the d-dimensional brane worldvolume to the full AdS(d11)
manifold. It does not touch theXn-valued part of transverse
coordinates which are described by a kind of nonlinear sig
model action in both representations. The conformally
variant minimal actions in Minkowski space, including th
dilaton, are transformed into the highly nonlinear actio
given on the AdS brane worldvolume and involving, as th
essential part, couplings to the extrinsic curvature of
brane. Conversely, the standard worldvolume AdS brane
1-10
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fective actions prove to be equivalent to some no
polynomial conformally invariant actions in the Minkows
space. This map is one to one~at least, classically! for the
conformal actions containing no dilaton potential and
brane actions with the vanishing vacuum energy. The g
metric origin of this map can be revealed most clearly with
the nonlinear realization description of AdS branes@19#
which generalizes the analogous description of branes in
flat backgrounds@16–18#. In particular, it turns out that the
standard realization of the conformal group in t
Minkowski space and its transverse brane coordina
dependent realization as the AdS(d11) isometry group in the
solvable-subgroup parametrization of AdS(d11) are simply
two alternative ways of presenting symmetry of the sa
system.

As the most interesting subjects for further study we m
tion the generalization of the above relationship to the c
of AdS superbranes and, respectively, superconformal s
metries, as well as the understanding of how it can be p
moted to the quantum case.

Since the appropriate framework for the bosonic cas
provided by nonlinear realizations of conformal groups,
expect that the generalization to the supersymmetry case
be fulfilled most naturally within the PBGS~partial breaking
of global supersymmetry! approach to superbranes~see@29#
and references therein!. In the given context the PBGS ap
proach amounts to describing AdS superbranes in term
superfield nonlinear realizations of the appropriate superc
formal group, with half of the supersymmetries~special con-
formal supersymmetries! being nonlinearly realized and th
rest providing manifest linear invariances of the correspo
ing actions. The superanalog of the map~4.1! should relate
different coset superspaces of superconformal groups: t
where these groups are realized in the standard way, i.e.
the superspace coordinates transforming through themse
without any mixing with the Goldstone superfields~see, e.g.
@30,31#!, and those where the transformation laws of sup
space coordinates essentially involve the Goldstone su
fields, like the modified bosonic transformations~3.10!. The
second type of realizations should be relevant to the PB
superbrane actions with superextensions of AdS3S mani-
folds as the target supermanifolds for which the appropr
superconformal groups define superisometries. An exam
of the worldvolume superfield PBGS action for AdS sup
branes, that of the AdS4 supermembrane, was recently co
structed in @19#. The relevant Goldstone superfield
dependent realization of the corresponding superisom
groupOSp(1u4) (N51,d53 superconformal group! on the
N51,d53 worldvolume superspace coordinates was exp
itly found.

As for generalizing the map~4.1! to the quantum case
one should first understand how to treat the field depende
of the change of space-time coordinates in Eq.~4.1! in this
case. Since the fieldsq andF will no longer commute with
their derivatives, it seems that the transformed coordina
should also be non-commuting. To keep Eq.~4.1! invertible,
for consistency one should require both coordinate sets$ym%
and $xn% to be non-commuting. This could provide a lin
with the non-commutative geometry.
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We shall finish with a few further comments on the po
sible implications of the holographic map~4.1!. In the AdS/
CFT context the actions of standard conformal field theor
are usually treated as theR→0 ~or low-velocity! approxima-
tion of the AdS brane effective worldvolume actions. F
instance, theU(1) part of theN54 SU(2) SYM action in
the Coulomb branch can be recovered as theR→0 limit of
the Abelian D3-brane action on AdS53S5. Indeed, for the
bosonic part of the latter, Eq.~5.6!, we have

S5;E d4xF1

2
]mXi]mXi2

1

4
F̂mnF̂mn1O~R!G .

In this limit the field-dependent conformal transformatio
~3.10!,~3.15! are reduced to the standard ones which
characteristic of the field theory actions@in Eq. ~3.10! one
needs to rescaleq→Rq to approach this limit in an unam
biguous way#.

The existence of the holographic map~4.1! suggests a
different view of the relationship between the conformal fie
theory actions and the worldvolume actions of AdS sup
branes. As we saw, any conformal field theory action in
branch with spontaneously broken conformal symmetry,
ter singling out the dilaton field, can be rewritten in terms
the AdS brane variables, with the field-modified conform
transformations defining the relevant symmetry. This re
tionship exists at any finite and non-vanishing AdS rad
R51/m. We observed, however, that the AdS images of c
formal field theory dilaton actions do not coincide with th
standard NG type brane actions, but are given by the exp
sions of the types~4.5!,~4.6! which essentially include pow
ers of extrinsic curvature of the brane.3 Besides, the AdS
images of other fields do not appear under the square roo
e.g. in the standard AdS53S5 D3-brane action~5.6!, but
have the form ~4.13!,~4.14! where all nonlinearities are
solely due to the AdS brane transverse coordinateq(x) and
its derivatives. It is interesting to further explore this surpr
ing ‘‘brane’’ representation of~super!conformal field theo-
ries, especially in the quantum domain, and to better und
stand the role of couplings to extrinsic curvature which a
unavoidable in this representation. In this connection, let
recall that a string with ‘‘rigidity,’’ i.e. with extrinsic curva-
ture terms added to the action, was considered as a cand
for the QCD string@25# ~see also@26,27#!. We also notice
that the higher-derivative corrections to the minimal wor
volume superbrane actions arek-invariant extensions of the
extrinsic curvature terms~see@33# and references therein!.

Besides addressing the obvious problem of study
AdS53S5 brane representation of the fullN54,d54 SYM
action~both in the component and superfield approaches!, it
would be instructive to investigate analogous representat

3An interesting exception@32# is thed51 case of conformal me-
chanics where Eq.~4.6! coincides, up to a full derivative, with the
d51 case of Eq.~3.16!.
1-11
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of the actions of some superconformal theories in lower
mensions, e.g. the action of theN5(4,4),d52 WZW sigma
model@22# which was mentioned at the end of Sec. II. Sin
its bosonic sector in the standard~conformal! basis includes
the dilaton and theS3;SU(2)3SU(2)/SU(2) coset fields,
it should admit a representation in terms of variables of
perstring on AdS33S3.

One more possible implication of the holographic Ad
CFT map is as follows. As was already mentioned,
worldvolume action of some probe superbrane in the Adn
3Sm type background~obtained as a solution of the appr
priate supergravity! is expected to be recovered on the CF
side as a sum of the leading~and subleading! terms in the
loop expansion of the low-energy quantum effective act
of the related~super!conformal field theory taken in a phas
with spontaneously broken~super!conformal symmetry
@10,11,1#. If the quantum field theory is arranged to respe
non-anomalous rigid symmetries of the classical theory,
reasonable to assume that there exists a formulation o
quantum effective action~e.g., in the appropriate backgroun
field formalism! such that it is still invariant under the stan
dard conformal group. Then for checking the above m
tioned ‘‘supergravity-CFT’’ correspondence one is led
compare the quantum effective action just with the conf
mal basis form of the corresponding superbrane worldv
ume action, i.e. with expressions like~5.4!,~5.9!. In the con-
text of the correspondence between the Coulomb branc
. B
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of

N54 SYM theory and Abelian D3-branes on AdS53S5 this
reasoning implies that the scalar field sector of theN54
SYM quantum effective action should be of the form~5.9!
rather than~5.6! or ~5.8!. The latter expressions are to b
recovered only after performing the holographic transform
tion ~4.1!. As a rule, the correspondence discussed is chec
for the gauge field sector only, by setting scalar fields to
constants@12#. From Eqs.~5.9! and ~5.10! it is seen that in
this approximationF5mq, and Eq.~5.9! actually coincides
with Eqs.~5.8! or ~5.6!. It would be of interest to explore the
structure of the scalar field sector of the low-energyN54
SYM effective action beyond this constant field approxim
tion and compare it with Eq.~5.9!.4
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