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We show that any conformal field theory dadimensional Minkowski space, in a phase with spontaneously
broken conformal symmetry and with the dilaton among its fields, can be rewritten in terms of the static gauge
(d—1)-brane on Adg& ) by means of an invertible change of variables. This nonlinear holographic trans-
formation maps the Minkowski space coordinates onto the brane worldvolume ones and the dilaton onto the
transverse AdS brane coordinate. One of the consequences of the existence of this map is tatlany (
+m)-brane worldvolume action on A¢§ 1)X X™ (with X™ standing for the spher®™ or more complicated
curved manifolgl admits an equivalent description in Minkowski space as a nonlinear and higher-derivative
extension of some conventional conformal field theory action, with the conformal group being realized in a
standard way. The holographic transformation explicitly relates the standard realization of the conformal group
to its field-dependent nonlinear realization as the isometry group of the brang.Ag8ackground. Some
possible implications of this transformation, in particular for the study of the quantum effective actign of
=4 super-Yang-Mills theory in the context of AdS/CFT correspondence, are briefly discussed.
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I. INTRODUCTION Mills (SYM) theory in the Coulomb brandi0,11,1,12). In
this connection it was suggested[itB,14] that the modified
The cornerstone of AdS conformal field thedGFT) cor- (supejconformal transformations could be understood as a
respondencgl—4] is the hypothesis that the isometry group quantum deformation of the standdetipejconformal trans-
of an AdS,x S™ background in which some type IIB string formations of the classical field theory. The idea that the
theory and related supergravity live is identical to the stanquantum effective action should be invariant just under the
dard conformal grougtimes the group of internd® symme-  modified (supejconformal transformations was further ad-
try) of the appropriate conformal field theory defined on thevanced in[15].
(n—1)-dimensional Minkowski space considered as a In the present paper we take a different viewpoint on the
boundary of Ad§. The full supersymmetric version of this interplay between the standard and modifisdpejconfor-
correspondence deals with the bulk and boundary realizanal transformations. We show that any conformal field
tions of superconformal groups, including conformal andtheory in d=(p+ 1)-dimensional Minkowski space in the
R-symmetry groups as bosonic subgroups. phase with spontaneously broken conformal symmetry, i.e.
It was shown in[1,5—7] that the invariance group of the containing among its fields a Goldstone figttilaton) asso-
worldvolume action of some probe brane in an AdS™  ciated with the broken scale generator, even at the classical
background(e.g., a D3-brane in AdS<S°) can be realized level can be brought, by an invertible change of variables,
as a field-dependent modification of the standargejcon-  into the form in which it respects invariance just under the
formal transformations of the worldvolume. [8] it was  above-mentioned field-dependent conformal transformations.
demonstrated that such a realization of the AdS isometriThis change of variables essentially includes a field-
corresponds to the choice of the special “solvable subgrouptependent change of the Minkowski space-time coordinates
parametrization of the AdS background. In the spirit of they# (u=0,1, ... p) and maps them on the worldsheet coor-
AdS/CFT correspondencéand some other hypotheses of dinatesx* of the corresponding codimension-one brane in
similar nature, the AdS superbrane worldvolume actions areAdS 4.1, while the dilaton is mapped on the brane trans-
expected to appear as the result of summing up leading angkrse coordinate which completed to AdSyq. 1 in the
subleading terms in the low-energy quantum effective acsolvable subgroup parametrization. Using this map between
tions of the corresponding Minkowski spatgpeiconfor-  the conformal and AdS baséi can naturally be called a
mal field theories in the phase with spontaneously brokerholographic map”), one can rewrite any conformal field
(supejconformal symmetry(e.g., the AdSxS® D3-brane theory containing the dilaton in terms of the variables of the
action[9] and some of its modifications should be recoveredcorresponding AdS brane in a static gauge, and vice versa.
in this way from the effective action ok'=4 super-Yang- The AdS images of the minimal conformally invariant
Lagrangiangi.e. those containing terms with no more than
two derivative$ prove to necessarily include non-minimal

*Email address: bellucci@Inf.infn.it terms composed out of the extrinsic curvatures of the brane.
"Email address: eivanov@thsund.jinr.ru On the other hand, the conformal field theory image of the
*Email address: krivonos@thsund.jinr.ru minimal brane Nambu-Goto action is a non-polynomial and
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higher-derivative extension of the minimal Minkowski space
conformal actions.

In this paper we restrict our study to the bosonic case
only, having in mind to extend it to the full superconformal
case in a forthcoming publication. We start with recalling We define the left-covariant Cartan 1-forms as follows:
basic facts about the standard nonlinear realization of con-
formal group SQO(2p+1) in (p+1)-dimensional
Minkowski space. Then we rewrite the algebra®®(2,p
+1) in the solvable-subgroup basis [@] as the Adg, . »)
group algebra and show how to reproduce the static-gauge (2.5
Nambu-Goto action of scalgp-brane in Adg,,,) back-
ground by applying to this group the nonlinear realizationsThe vector Goldstone fiel€2#(x) is redundant as it can be
techniques along the lines of Refd6-19. The AdS, 7 covariantly expressed through the only essential one, dilaton
isometry group in the second nonlinear realization acts jus®(x), by imposing the covariant inverse Higgs constraint
as the field-modified conformal transformations of Refs.[21]
[5—7]. Comparing two nonlinear realizations &O(2,p
+1), the standard one and the one suitable to AdS branes,
we establish the explicit relation between the coset param-
eters in both realizations. Finally, we give examples of vari-
ous invariants in both bases, including the conformal basidhe remaining 1-forms associated with the coset generators
form of the Nambu-Goto action, and discuss some possiblthen read
implications of the relationship found.

SyF=ar+cy*+2(yb)y*—y?b*, sb=c+2yb,
(2.9
5O#=e®b*+2(Qb)y*—2(yQ)b*.

g 'dg=e *dy*P,+(d®—2e *Q ,dy*)D
—4e"PQrdy' M, +[dOQF— O dD
+e ?(20,dy" Q- Q2dy*) K, .

1 (]
wp=0=0,=>e"3®. (2.6

2

wb=e"Pdy*, wl=dQ*—e P02y~

(2.7)

Il. STANDARD NONLINEAR REALIZATION OF The covariant derivative of)* is defined by the relation

CONFORMAL GROUP IN d DIMENSIONS

The algebra of the conformal groupO(2,d) of d=(p
+1)-dimensional Minkowski space has the following form

wk=wpD Q*=D O
=e®9,0r— Q025"
(M., MP7]=28,M 7, 1, 1

=56 9,0" 0+, DD S (9PID) 5| (2.9
[Py My1==7u0Pps

[K,ulep]: - 77/L[VK[)] ’

The covariant derivative of some non-Goldstdfwmatter”)
field ¥2(y), wherea is an index of the Lorentz group rep-

(2.1  resentation, is defined by
[P;LIKv]:Z(_nMVD+2MMV)1
dwe—4e *Qrdy"(M,,,)pwP°
[D,P.I=P,,
=wpD ,Vé=nD V?
[D.Ku1==K,, — e, W+ 40" (M,,,)2Wb, 2.9
where ' . , a
Wheny* is transformed according to E(.4), the field¥?,
1 as well as the covariant derivativé3.8) and (2.9), undergo
A[W]EE(AW_ A, (2.2 an induced Lorentz rotation with respect to their Lorentz
indices, e.g.,
and_ ny=diag(+—...—). In yvhat follows this standard 5\I’a(y)=\1’a’(y’)—\I’a(y)=,[>’””(MW)"5‘\Ifb(y),
basis of conformal algebra will be called “conformal” to (2.10
distinguish it from the “AdS basis” to be specified below. BH=—aylrp?, '

The standard nonlinear realization of the conformal group
(see, e.g[20]) corresponds to choosing the Lorentz group  The conformally invariant measure of integration over
SQA(1,p)=M,, as the stability(linearization subgroup and {y*} is defined as the exterior product dfl-forms w#
so it is defined as left shifts of the following coset element:

y'PuePDelK, (2.3

g=e
The left shifts with parametera”, b* andc related to the
generatorsP,,, K, and D induce the familiar conformal
transformations of the coset coordinates

Sﬁf M(Y):J dP+bye-(PHIP, (2.10)

It can be treated as the conformally invariant potential of
dilaton.
The covariant kinetic term of can be constructed as
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ki (05 Do (pt 1) If some field develops a non-zero vacuum val(i!o)=v
S :J dPrHye P D, O* #0 [e.g. due to the presence of some conformally invariant
potential term which should be added to HE.17)], the
1 _ conformal symmetry is spontaneously broken and one can
= (p— (p+1)y gl1-p)@ . -
- 4(p 1)f dPy €7 P00s0 (212 perform the equivalence field redefinition
[while passing to the final form of E¢2.12, we integrated 4]
by partg. For the special cas@#=2 (p=1) the Lagrangian = A A a—02 s3'=0 21
in Eq. (2.12 is reduced to a full derivative. In this case one ¢ v ¢, $ o =v, 54 (219
can still define the non-tensor kinetic term which is invariant

under Eq.(2.4) up to a shift by full derivative _ _
|pl=v+d+ ...=veIAPP  glo="+y (2.20

. 1
sg,'”@):E f d2yadad. (2.13
Then the action(2.17), up to an overall coefficient and sur-

Conformally invariant Lagrangians of matter fields?  face terms, can be rewritten as
are obtained by replacing ordinary derivatives by the covari-
ant ones(2.9) and promotingd®*Yy to the conformally 1
invariant measuré¢2.11). E.g., the standard Maxwell field S:f ddye(l—P)d’[_(l_p)2(7<p(9q)+(9(?,|(9(}5| )
strength can be covariantized as 4 (2.20

= _o % K 20

F.=D,A,—DA,=e"F,,, (2.149

~ . i i The first term coincides with the universal dilaton action
whereA,, is transformed according to the generic 110 (5 15 while the second term is the action of a nonlinear

and its coyariant derivative is_ defined 8.9). It is related in_ sigma model of the internal symmetry group realized on the
the following way to the ordinary Maxwell vector potential ;jices|.

A, having the same conformal transformation law as the  ap example of the system admitting such a field redefini-
partial derivatived,, and the standard gauge transformationjs is supplied, e.g., by the scalar fields sector\6f 4,d
law =4 SYM action in the Coulomb branch. Consider, e.g., the
simplest case dbU(2) gauge group. When some scalar field
valued in the Cartan subalgebug1) acquires a non-zero
expectation valuéwhich is a solution of classical equations
of motion for the full action including the conformally in-
1 variant quartic potential of the scalar fieJdthe gauge group
S(Ncu):_zf dPryeB=PPpurpE (2.16  gets broken toU(1) and there remain 6 scalar massless
fields in the theory which form a vector of thesymmetry
Atd=4 (p=3) it coincides with the standard Maxwell ac- 9"0UP SQ(6)~SU(4). Thenorm of this vector is just the
tion which is conformal in its own right only in this dimen- dilaton associated with the spontaneous breaking of confor-
sion. mal symmetrySO(2,4). The remaining 5 independent fields
This formalism of nonlinear realizations of conformal @PPear as the solution of the algebraic constraint2id9
symmetry is universal in the following sense. In any theory@Nd parametrize the intemal sphe@~S0Q(6)/SQ(5).
in which conformal symmetry is spontaneously broken, it isThus the set of 6 massless bosonic fieldsSaj(2)N=4
always possible to make a field redefinition which splits theSYM theory in the Coulomb branch naturally splits into the
full set of scalar fields of the theory into the dilatdnwith ~ SX(6) invariant dilaton sector and the sector of a nonlinear
the transformation law2.4) and the subset of fields which Sigma model or&”. _ _
are scalars of weight zero under conformal transformations. !N the special case af=2 (p=1) the fieldg' is a scalar

For instance, let us consider the free actionNbfnassless Of the conformal weight zero, so no redefinition lik2 19,
scalar fieldsg', 1=1, ... N (p#1): (2.20 is needed. The kinetic and potential terms of dilaton

(2.13,(2.11) can be independently added, if necessary. An
3 (04 D 1 2 4l example of such @=2 system, which, likeV=4 SYM is
S—f d ydg' i (2.17 conformal(and superconformaboth on classical and quan-
tum levels, is provided by theV=(4,4) supersymmetric
It is invariant under Eq(2.4) (up to a shift of the Lagrangian SU(2) Wess-Zumino-WittefWZW) sigma model[22]. Its
by a full derivative if ¢' are transformed with the appropri- bosonic sector includes four scalar fields, one of which is a
ate weight dilaton and the three remaining ones possess zero conformal
L 1 weight and parametrize the cosetS*~SU(2)
It | ot X SU(2)/SU(2). Theconformally invariant bosonic action
0¢ =3 (1=p)(ct2yb) ¢, o= 7 P)(c+yb)[4]. is a sum of free action of the dilaton and stand&d(2)
(2.18 WZW action[23].

. —
A,=e*A,, F,=d,A,—~dA,. (219

"

The conformally invariant action oA, then reads
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IIl. THE ADS NONLINEAR REALIZATION /Az
In the AdS basis we introduce the following generators: tanh 2
N =—re—e—A* (3.5
. 1 . A?
KM:mKﬂ—ﬁPM, D=mD, (3. o>

wherem will be identified with the inverse radius of AdS and the new basis form obf’=—4e *Ql#y"l can be

space. found using the explicit relation between the parameters of
The same conformal algebfa.1) in the AdS basig3.1)  the coset elemeni®.3) and(3.3) which will be given in the
reads next section.
o A A The inverse Higgs constraif2.6) is rewritten in the AdS
[K,.K,]J=—4M,,, [P,.K,]=2(—7»,,D+2mM,,), basis as
A L A (3.2
[D,P,J=mP,,[D,K,] (P,+mK,) 05=0= 7\,;\ zzemqa#q,
[commutators with the Lorentz generatdvs,, are of the 1+ >
same form as in Eq2.1)].
The basic difference of E¢3.2) from Eq.(2.1) is that the (3.6

generators K“-MW) generate the semi-simple subgroup 9,9
SQ(1d) of SO(2,d), while the subgroupK*,M ,,) has the 1
structure of a semi-direct product. As a result, in the coset 1+\/1- Eezmq(aq&Q)

element(2.3) rewritten in the new basis

—aMma
\,=€

On the surface of this covariant constraint the remaining

— aXMP gD AXK ] ;
g=e" wetre = (3'3) coset space Cartan forms are given by the expressions:

the coordinatesx* and q(x) are parameters of the coset .

manifold SO(2d)/SO(1d) which is none other than  u_q-ma gu_ M) i puge g omogugye,
AdSy1y. This parametrization of Adg, ;) was called in A

[8] “the solvable subgroup parametrization,” since the gen- 2

eratorsP,, and D with which the Ad%y4 1) coordinates are (3.7
associated as the coset parameters constitute the maximal 1

solvable subgroup ddO(2,d). One more convenience of the w’éz N2 (dN“—mN2wh).

basis(3.2) with the manifestly included dimensionful param- 1— —

eterm is that one can perform the contraction=0 in Eg. 2

(3.2), which takes it just into thed+ 1)-dimensional Poin-
care group 1SO(1,d), with the set P#,f)) becoming the
generators of ¢+1) translations. In this limitx* and
(1/2)q are recognized as the coordinates of
(d+1)-dimensional Minkowski space, the standdRe:

The covariant derivative, with the Lorentz connection part
omitted, is defined by

dxtd,= “"SDM$DM

limiting case of Ad%;,1). This confirms the interpretation ANV
of the parametem as the inverse Adg, ;) radius. =eMd 5;+L2 d,
In the new basis the Cartan forn.5) read 1— }‘_
2
- - AANLAXY\ AMdg _(p-1y»
g ldg=| e ™I dx*+ 2| T P, =(E")u9,
=) =7 =e"™(E Y, (3.9
14 >\_2 The covariant derivative of th8O(1,d+1)/SO(1,d) Gold-
2 e M dx* | . 1 ; stone field\* is defined by the formula analogous to Eq.
+ ) nz| da—2 n 2 |Pt . xzLdh (2.8),
2 2 2 wEZwﬁDM)\”,
—mA#dg—me MINZdx - 21N ,dxX") K, (3.9
v 1 A NP
toy'M,,, (3.4 D N'=——| ™| &+~ | N - mhs |
where 1= 2 1= 2
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It is straightforward to find the transformation laws of " Coa1
x#, q(x) and\“(x) under the left shifts of Eq3.3) Sne="— J dP*Dx[detE—e (P*1)mq]
1 \?
OXH=at+ cxt+ 2(xb)x* — x2b* + -— e MIpH, 1-5
2m =J P+ Dye-(pr1mal 4 _
(3.10 1. A\
8q= ! +2xb 2
9= (c+2x )s
. \2 :__J.dm+nxe—m+nmq
ONH=—| 1+ —|eMIE D"+ 2(\b)x*—2(x\)b*,
m 2 1
(3.1) X \/1— Eezmq(aqﬁq)— 1], (3.19
where all group parameters are the same as iHE4. It is .
easy to check that Eqé3.10 are perfectly consistent with Where we used the relations
the inverse Higgs expressid8.6) for N*(x). A
The transformations ok* and q(x) are just the field- detE=e~ (PTMAgetE,
dependent conformal transformations which were discussed (3.17
in [1,5-7 in connection with the AdS branes and were A2
shown in[8] to naturally arise as the AdS isometries in the 1— —
above solvable-subgroup parametrization of AdS groups. To e 2 _ _ l 2mq
o s e . detE= >=1\/1— =ze“"%9q4q)
see how this interpretation is recovered in the present ap- N 2
proach, let us first write the AqQg, 1) metric 1+ 2

ds*=wpwp, =€ *"%dx*7,,dx"~dq®.  (38.12  and subtracted 1 to obey the standard requirement of absence
of the vacuum energgcorresponding t@= const)[1]. Note

The change of variablesve assume# 1) that the subtracted term
4l(p—1)
e—zmq:(ﬂ) 2 gl S,= f d(P+ g e (P+1ma (3.18
R (p-1?  m-

is invariant under Eq.3.10 (up to a shift of the integrand by

a full derivative on its own. In most interesting cases it is a
part of some WZor CS term in a static gauge. The action
(3.16 is universal, in the sense that it describes the radial

brings Eq.(3.12 (up to a factor and transformation rules
(3.10 into the form

ds2— E e l)dxﬂﬂ dx”—(E) ZdUZ (3.14 (pure AdS part of any Ad§XS™ (n+m—2)-brane action
R wy U ' ' corresponding to “freezing’(setting equal to constantsll
other fields on the brane.g., the gauge fields and angular
SxP=ak + Cxt+ 2(xb) X — x2ok S° fields in the case of AdS<S® D3-brang and also to
neglecting some further possible WZ-type terms on the brane
1 R2(p+1)/(p—1) worldvolume. Actually, this universality extends to the
+ Z(p—l)zwb“, branes on Ad$xX™ where X" can stand for some

m-dimensional curved manifold different from the sphere,
(3.19  e.g. one of the manifolds considered[4] while analyzing
1 the AdS/CFT correspondence for a generd=4 SYM
dU=—3(p~1)(c+2xb)U, theory in the Coulomb branch.

The minimal covariant actions of various “matter” fields
are obtained via replacing the ordinary derivatives by the
covariant ones and inserting detinto the integration mea-
sure. E.g., the covariant kinetic term of some scalar field

which coincide with those given, e.g.[if] (up to a rescaling

of x* and a different choice of the signature of Minkowski

metric). L2
The simplest invariant of the nonlinear realization consid—¢(x) is given by

ered is again the covariant volumeo$§pace obtained as the

integral of the wedge product op(t1) 1-formswf. The s :J d(P+ Dy detEeP-DMaGur g $9,6, (3.19

difference from Eq.(2.11) is that this invariant is basically ¢ prmv

the static-gauge Nambu-GotdNG) action for p-brane in

AdSp; 2y where
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Further, the orthogonality conditiai3.23 in the static gauge

é,u,V: wp E_l M E_l v
7P (E")L(E77), is reduced tb

=yt +e?Md a*qd’q  (3.20 . ;
1- 5e2™(590q) g aTF i, =0mn, = - ———9
G RN
_ _ _ _ 1=2(9940)
is the inverse of the induced metric
(3.27
~ _ OEp 1 2mq . . .. .. .
Gpv=1wpE By = 74— 5€77%9,09,0 (32D After substituting all this into the definitio8.22), we obtain
(with the factorse™2™d detacheil 1 1
As the last topic of this section, let us clarify the geomet- Ky=—=—F—4,9.1 (3.28
ric meaning of the covariant derivativ8.9) which plays an \/E /l_E 900
important role in our construction. We will show that it is the (999q)
tangent-space projection of the first extrinsic curvature of the
brane. For simplicity, we shall consider the limiting case and
=0 in Egs.(3.9) and(3.6) which corresponds to thebrane
in the flat (p+2)-dimensional Minkowski background. The
generalization to the AdS case is straightforward. 1
One defines the extrinsic curvature by the relatisee, DN, =—=(E"HUE HIK,, (3.29

e.g.,[25-27)
V,3,X*a=K (3.22

where XA are target brane coordinatesX®=(x*,
—(1/4/2)q) in the considered static gaugeag= (7,

—1), np=(n,,n) is a normal to the brane worldsheet
9,X"na=0, n®np=n*n,—n?=—1 (3.23
and
A_ A
V.3, X"=(3,9,—T,d,) X" (3.29

The induced metrics
G*¥ are given by Eqs(3.21),(3.20 with m=0. We find

Ffw:GP“TWw,
(3.25
1
Fvazi(aﬂevw+ aVGMw_awG,uv)
1
== Eﬁﬁyqﬁwq,
and
V,.9,9= d,0,4,
1- E(ﬁqﬁfﬁ
(3.26
1 1
Vﬂayx”=§ d,,0,99°q.
1- 5((9q3Q)

«v N the static gauge and its inverse

SN

IV. AN EQUIVALENCE RELATION BETWEEN CFT
AND ADS BASES

In both nonlinear realizations described above we deal
with the same coset manifol&6Q(2,d)/SO(1,d—-1), in
which the coset parameters are divided into the space-time
coordinates and Goldstone fields in two different ways. In
the first realization the coordinateg* parametrize the
d-dimensional Minkowski space considered as a coset of
SO(2,d) identified with the corresponding conformal gratp.
All other parameters are Goldstone fields, the essential one
being dilaton® (y) associated with the spontaneous breaking
of scale invariance. In the second realization the space-time
coordinates<* on their own do not constitute a coset mani-
fold of SO(2,d) and therefore do not form a closed set under
the left action of this group. However, together with the
Goldstone field q(x) they parametrize the coset
SO(2,d)/SO(1,d)~AdSy+ 1) and this extended set is closed
under the action 08 O(2,d). These coset parameters admit a
clear interpretation as the worldvolume*) and transverse
(q) coordinates of thed— 1)-brane evolving in Ad§. ;).

Apart from this essential difference in the interpretation,
the fact that both these realizatiofsith the vector Gold-
stone fieldX2,, and\ , included are in fact defined on the
same full coset 080(2,d), viz. SO(2,d)/SO(1,d—1), sug-
gests the existence of a relation between these two different
coset parametrizations. This relation can be straightforwardly
extracted from a comparison of Eq&.3) and (3.3

Actually, this condition is another form of the inverse Higgs con-
straint(3.6) at m=0, with n, being related via a field redefinition
to the Goldstone field ,

2To be more rlgorous it is the compactified Minkowski space
which can be treated as a coset manifold of the conformal group.
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mq
yH=xH— m)\“, ®=mqg+In

2
1—}\—), QF=mr*H, 81=J dP+lye= (P 1)@

2
4.1

zf d(P*x e~ (PT1MagetE detT
We see that it is invertible at any finite non-zerme= 1/R. It
is straightforward to check that the Minkowski space confor- 1
mal transformationg2.4) are mapped by Eq4.1) on the :J d(p“)xe‘(p“)mq\/l—Eezmq(&qaq)detT,
field-dependent ong8.10 and vice versa. Since this change

of variables maps the geometric objects living in the 4.9

AdSy+ 1y bulk on those defined on its Minkowski boundary, .

it seems natural to name it “holographic transformation.” It S‘fp'”zf dPrye-(P+Dep O

is important to emphasize that this holographic transforma-

tion essentially involves the Goldstone field* (or () 1 1

which basically becomes the derivative @fx) [or ®(y)] = Ef dPTDyelt=P® O + 7(1=p)(9PiP)

after imposing the covariant constrai3t6) [or its conformal

basis counterparf2.6)]. However, for the existence of map

(4.1) it does not matter whether Eq&.6) or (2.6) are im- =mf d(P* Lxe” P+ DadetE detT(T™ DN )%]

posed or not; the only necessary condition is the presence of

vector parameter@#(y) andA#(x) in both cosets. In other 1

words, Eq.(4.1) could not be guessed solely on the frame- :mf d(P+lxe=m(p+1)d \/1_ ~ e ggaq)

work of the pure Adg; 1) geometry, i.e. by dealing with the 2

AdS coordinates* andq alone; it can be defined only when 1 “

considering extended coset manifoldy”,®,(,} and X [detT(T"DM)]- 4.6

1x*,0,\ .. Another characteristic feature of the mpl) is We observe a surprising fact that the AdS image of the

that it |s_well defined only for non-zero and finite values of potential term of dilaton contains the NG part of the AdS

AdS radiusR=1/m. _ __p-brane action(3.16 modified by the higher-derivative co-
Using the holographic transformation, any conformal fieldy 5riants collected in dpt— (1/2m)DA]=1—(1/2m)D ,\*

theory in Minkowski space with a dilaton among its basic As we sawD ,\" is basically the extrinsic curva-
ce “

fields can be projected onto the variables of the AdS brang,re of thep-brane. So already the simplest conformal invari-

and vice versa. To find the precise form of vari@®&(2.d)  ant in Minkowski space proves to produce, on the AdS side,
invariants in two bases, the conformal and AdS ones, let u§ rather complicated action which is the standpfbrane

first define the transition matrix action in AdS, ») plus corrections composed out of the ex-
trinsic curvature tensor. The leadirigith two derivative$
ay” ANV eMmd A2 term in the right hand sidehs) of Eq. (4.5 comes both from
AV _ gV o v_ - v 2
#=A#— T T_maﬂ)\ _(1— 7) EZTP, the NG square root and the termsj, \*,\“ in D ,\* [see
X 140 Egs.(3.9 and(3.6)]
2
4.2 1
42 Sl=f d*xe~(PT1Mq 1 — g(p+ 1)e®™%(9qaq)+ . .. |.
where 4.7
1 Note that in the flat case=0 the extrinsic curvature terms
T'=8,—5—D,\", 4.3 are capable of producing only higher-ord@n fields and
2m derivatives corrections to the minimal NG-brane action

[as follows from the expressidi3.9) at m=0]. On the other
hand, the AdS image of the kinetic term of dilaton, E46),

the matrixE* is defined by(3.7) andD ,\" is the covariant ) e
H M3.7 ’ starts with the correct kinetic term of

derivative ofA” defined in Eq(3.9) (it is an extrinsic curva-
ture of the brane We then have the following general for- m?
mula for the Jacobian of the change of space-time coordi- S'(‘I,'“=TJ' d*x[e” P=DMAp—1)(aqaq)+ .. .].

nates in Eq(4.1): (4.9

2yp+tl Note, however, that it comes solely from the extrinsic curva-
JEdetAZ(l— 7) detE detT. (4.4 ture term, not from the NG square root. The latter is always
multiplied by degrees of the extrinsic curvature in E46).
A way to elude this paradox of generating kinetic terms
Making the change of variablgd.1) in the invariant di- from the pure potential ones via the change of variables
laton Lagrangian$2.11) and(2.12), we obtain, respectively, could be to start from the reasonable field theory action on
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the CFT side, having from the beginning both kinetic and
potential dilaton terms, i.e. from the action
S=gKin

+ S, 4.9

wherevy is a coupling constant. To the second orde# ji it
is

1
Szf d4x<ye(p+1)mq+z m?(p—1)

1
~ 5P+ D) (4.10

(9g0q) + )

and we observe that the holographic transformatiéri)
merely renormalizes the coefficient before the kinetic term

Nevertheless, the paradox still persists because one can fully

eliminate the kinetic term ofg by choosing y=2m?(p
—1)/(p+1). Then on the CFT side we still have the quite

reasonable field theory, while on the AdS side we get an

PHYSICAL REVIEW D66, 086001 (2002

1
detA= E[(TrA)2—Tr,42)]

N2
720 emgar emanran,
i 1 N ) 2m| 1 N
+ ? m| 1-— ?
e2mq

+ w[(aﬂv)z—a#x”ayv]. (4.12

The AdS images of the conformally invariant kinetic
terms of “matter” fields can be obtained by making the vari-
able chang€4.1) in the corresponding actions. For instance,
for a scalar field¥ (y) we find

S,= f d(p+l)ye(p_1)q)aﬂ\llaM\Ir

_ f 4+ Uy detEL(q, W),

action admitting no standard weak-field expansion. These

observations suggest that the m@pl) is not the standard

equivalence transformation preserving the canonical struc-

ture of the given theory. This peculiarity of E@.1) is mani-
fested, first, in that the essential part of £4.1) is a non-

linear field-dependent transformation of the space-time

coordinate starting with a derivative gfand, second, in that
the relation betweed andq contains a shift by the kinetic
term ofg, ®=mq—3(Jqdq)+ ... . Note that for the con-
formal actions containing no potential terms of dilaton the
relations(4.1) can be still treated as setting a genuine equiva
lence map, since they always take the kinetic terrahto
that of q (up to rescaling bym) plus some terms of higher

order inq and its derivatives. The same remains true when

bringing the minimal AdS brane actidB.16) with vanishing
vacuum energy into the conformal bassee the next sec-
tion).

In the speciad=2(p=1) case the conformally invariant
kinetic term of ® is given by the non-tensor Lagrangian
(2.13. Its AdS image is also of non-tensor form, in contra-
distinction to the manifestly invariant terd.6) for d+ 2

sgj”<2>=j d2y(adad)

5 5 efzmq)\z
=4m d X—)\Tzdet./l

=7

=4m2J d2xe 2MI)\2detE detT.  (4.11)

It is not easy to check the invariance of £4.11) under the
transformationg3.10. For proving that(4.11) is indeed in-
variant, up to a shift of the Lagrangian by a full derivative,
one needs to use the explicit form of défor this case

£(q,¥)=detT»**(T"Ho(T"H;D,¥D,¥

=G*"9,¥3,W+O(D\), 4.13

— —1\v v_ -1 —1\v
DY =(E )29, ¥, GF'= " (E-HHE LY,

We see that this expression differs from the minimal covari-
antization(3.19 by couplings to the brane extrinsic curva-
tures.

The change(4.1) brings the conformal Maxwell action
(2.16 into the form

1 (p+1) v
SM:_Z d x detEH*"H,,,, (4.19
where
A A A A (4.1
pr:a;Aw—aZAp, AM=A;AV.

Once again, a difference from the minimal invariant La-
grangian~ F*'F,,=GF' G E , F,, is the presence of ex-
tra couplings with the extrinsic curvature.

It is instructive to give howA, andF ,, are transformed
under Eq.(3.10. Their transformation laws follow from the
property thatA , is transformed under the conformal group
as the derivative?),, while the matrix A% = ay*/x” as

SAN=2(yb—xb) Ay +2A0(b,y*—y,b*)

1
—2| b, XP—x,bP+

_ 2manp M
4m2¢9,,e b? ] AL

(4.16
Then
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SA,=—(c+2xb)A, (9P D)

1

SNG:WJ d(p+1)ye(1_p)q) 1

R 1- =——=e?®(9Dod)

—2| b, xP—x,bP+ W&Mezmqb” A, 8m?
1

(.17 xde( 4 _ZmZDQ)' (5.4

or

Thus we have found an equivalent representation of the

A=A (x)—A,(x) static-gauge actiori3.16 of the p-brane in Ad$,.,) as a
non-linear extension of the conformally invariant dilaton ac-
—5A — 1 zezmqbplg _ 1 ) (€2MIpPA ), tion in (p+1)-dimensional Minkowski space. Note that the
©H 2m PR 2me K r conformal image of the brane action is nonlinear and non-

(4.18 polynomial; however, it is a rational function dd and its
derivatives. We also note that, despite the simplicity of the

where 57 denotes the conventional conforntaicluding no standard conformal transformatiof.4), it IS rathgr trlqky
g-dependent termgart of the complete variation. The trans- to directly check thgt_ Eqd5 '4). or (5.2) are indeed invariant

i . under them. The difficulty originates from the property that
formation ofF,, is of standard form the Lagrangian densities in Eq&.4),(5.2), like their AdS
images(3.16),(3.18, are not tensors; they are shifted by a
full derivative under Eq(2.4) [as distinct from the Lagrang-
ian in Eqg. (5.3 which is manifestly invariant Though the
conformal variation ofSyg (5.4) can easily be found

OF 4= —(9,0xX")F ,,—(3,0xP)F ,, .

V. ADS BRANE ACTIONS IN THE CONFORMAL BASIS

In the previous section we have found how the simplest

conformally invariant Lagrangians in Minkowski space look 1 (p+1) a(1— )@ b#9,®
after passing to the AdS basis. It is of interest also to see 5cSNG:m7f d ye 2
what the AdS brane actiof3.16 looks like in the conformal 1- Wez‘b(adb(@)
basis, with the conventionally realized spontaneously broken
conformal symmetry. The helpful relations are 1

xde(l+WDQ>, (5.5

1
v__ -1\ v —1\v _ gqv v
D, Q"=m(T D\, (T )M_5M+WDMQ , N . _ . .
(5.1) it is far from obvious that the integrand in EG.5) is a full
' derivative. To see this, one should demonstrate that the varia-
whereD Q" was defined in Eq(2.9). tional derivative of Eq(5.5) is identically vanishing,

We start with the “potential” term ofy, Eq. (3.18. Mak-
ing in Eqg.(3.18 the change of variables inverse to E4.1),
we find 1)

m( 6cSne) =0.

1
e?® (9D D)

1+ am?2

The proof makes use of the explicit expressi¢@s3) and

(2.6) and is somewhat tiresome, though straightforward. No-

tice the crucial importance of terms with two derivatives on

@ coming from the determinant in E@5.5). As a simpler

exercise, one can directly check that Eg}5) is reduced to a

full derivative in the first order in t? [since transforma-

tions (2.4) do not includem?, each term in the expansion of

For the pure NG part of the actidB.16 we obtain the rather Eq. (5.4) in powers of 1m? should be invariant separatély

simple expression It would hardly be possible to guess such a non-tensor con-
formal invariant, staying solely in the framework of the stan-
dard nonlinear realization of conformal group.

DQ) ' (5.3 Our last example will be the conformal field theory image
of the full bosonic part of the D3-brane on AgSS°. Ne-
glecting the “magnetic” part of the Chern-Simons term, the

Then the full brane actiofB.16) takes the form action in the static gauge can be written(ase, e.g[28])

Szz J d(p+1)ye7(p+1)q)

1
e??(9dod)

1= 8m?

. (5.2

1
xde{ |+ W’DQ

1

= (p+1)y g (p+1)® R
S fd ye de<l+ZmZ
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S cfd4 IXI* \/ d R4axiaxi+ Rzﬁ 1 (5.6
= X— —ae v 4 v T o uv| T ’ .
R )
wherei=1, ...,6,|X|=yX X', Cis some positive renormalization constant, the precise form of which is of no interest in the
present context, and the signs are adjusted in accordance with our choice of the Minkowskinpgtritiag(+ — — —).
First we rewrite Eq(5.6) in our notation, using the field redefinition
R 1 ma 1 5.7
R— _e . m= -, .
X[ 2 R
which is the particulap=3 case of the redefinitio8.13. We obtain
_ d4 —4mq d = d 1 1 i i
Ss=—4C | d*xe (detk) \/ —det 7,,+ 57,,~ 5D, XD X' | -1|, (5.8

whereD,, and F,,, were defined in Eqg3.8),(4.15 andX' parametrize the sphe&®,

XX =R2,

For constaniX andAM the action(5.8) is reduced to the pure A¢§ ;) action(3.16 with d=4.
Now, making in Eq.(5.8) the change of variables inverse to E4.1), we obtain the conformal basis form of the AdS
X S° action

1
1+ S—mzez‘l)(a@a@)

_ 4y, o 4D 1 1 oo i Vi
S=4C | dye *det I+ 5 DO ] —\/ ~det 7, + 52 TITUF,,~3,Y'9,Y)
20
—=——e"7(dP D)
8m?

(5.9

where dard transformation properties under the conformal group
SQ(2,4), while in Eq.(5.6) the latter is realized as the group
Ti(y) =X (x(y)) = EY‘ of isometry of AdS;, with transformations depending 0X].
Y| " The groupSQ(6) has the same realization in both represen-
(5.10 tations as the isometry group of 5-sphefe S

R 1 1
ST =—=¢€ :
Y[ V2~ 8;26243(6@(@) V1. DISCUSSION

In this paper we have found a new kind of holographic

. . s relation between field theories possessing spontaneously bro-
Thus we have succeeded in equivalently rewriting the effec—ken conformal symmetry id-dimensional Minkowski space
tive bosonic action of the D3-brane in the AgSS® back- y Y P

. . . N
ground (5.6) or (5.8 as a conformally invariant nonlinear and the codimensioma(t 1) branes in Adg.1)xX" type

. . X ._backgrounds in the static gaudgeith the sphere Sas a
action of the coupled system of the following set of fields in . n . )
4-dimensional Minkowski spadg}: dilaton(y), five in- particular case oK"). This relation takes place already at the

PO o classical level and transforms the dilaton Goldstone field as-
dependent scalar fieldg'(y),Y'Y'=R", parametrizing the gqciated with the spontaneous breaking of scale invariance
sphere & and an Abelian gauge fiell,(y). ForY' andA, into the transverse¢or radia) brane coordinate completing
we still have a version of the Dirac-Born-Infeld action pro- the d-dimensional brane worldvolume to the full AQS)
moted to a conformally invariant one due to couplings to themanifold. It does not touch th¥"-valued part of transverse
dilaton ®(y). It also includes extra conformal couplings to coordinates which are described by a kind of nonlinear sigma
the curvatureD ,Q" (through the common factor dét model action in both representations. The conformally in-
+(1/2m?)DQ ] and the matrice$?, in the determinant under variant minimal actions in Minkowski space, including the
the square rook The dilaton® (y) itself, with all other fields  dilaton, are transformed into the highly nonlinear actions
neglected, is described by the nonlinear higher-derivative agyiven on the AdS brane worldvolume and involving, as their
tion (5.4). The crucial difference between E(p.6) [or Eq.  essential part, couplings to the extrinsic curvature of the
(5.89] and (5.9 is that the latter involves fields having stan- brane. Conversely, the standard worldvolume AdS brane ef-
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fective actions prove to be equivalent to some non- We shall finish with a few further comments on the pos-
polynomial conformally invariant actions in the Minkowski sible implications of the holographic mdg.1). In the AdS/
space. This map is one to offet least, classicallyfor the = CFT context the actions of standard conformal field theories
conformal actions containing no dilaton potential and forare usually treated as tfie— 0 (or low-velocity) approxima-
brane actions with the vanishing vacuum energy. The gecion of the AdS brane effective worldvolume actions. For
metric origin of this map can be revealed most clearly withininstance, theJ(1) part of theN=4 SU(2) SYM action in

the nonlinear realization description of AdS brand®] the Coulomb branch can be recovered asRhe0 limit of
which generalizes the analogous description of branes in thgie Abelian D3-brane action on A¢g8S°. Indeed, for the

flat background$16-18. In particular, it turns out that the posonic part of the latter, E5.6), we have
standard realization of the conformal group in the

Minkowski space and its transverse brane coordinate-

dependent realization as the AdS,) isometry group in the

solvable-subgroup parametrization of AgS,y are simply S5~ f d*x
two alternative ways of presenting symmetry of the same

system.

As the most interesting subjects for further study we men- o i d ‘ | ¢ .
tion the generalization of the above relationship to the casd! this limit the field-dependent conformal transformations

of AdS superbranes and, respectively, superconformal syn{3-10.(3.19 are reduced to the standard ones which are
metries, as well as the understanding of how it can be procharacteristic of the field theory actiofis Eq. (3.10 one
moted to the quantum case. needs to rescalg— Rq to approach this limit in an unam-

Since the appropriate framework for the bosonic case i®iguous way.
provided by nonlinear realizations of conformal groups, we The existence of the holographic ma4.1) suggests a
expect that the generalization to the supersymmetry case califferent view of the relationship between the conformal field
be fulfilled most naturally within the PBG®artial breaking theory actions and the worldvolume actions of AdS super-
of global supersymmetjyapproach to superbranésee[29]  branes. As we saw, any conformal field theory action in the
and references therginin the given context the PBGS ap- branch with spontaneously broken conformal symmetry, af-
proach amounts to describing AdS superbranes in terms aér singling out the dilaton field, can be rewritten in terms of
superfield nonlinear realizations of the appropriate supercorthe AdS brane variables, with the field-modified conformal
formal group, with half of the supersymmetrigspecial con- transformations defining the relevant symmetry. This rela-
formal supersymmetri¢deing nonlinearly realized and the tionship exists at any finite and non-vanishing AdS radius
rest providing manifest linear invariances of the correspondR=1/m. We observed, however, that the AdS images of con-
ing actions. The superanalog of the m@pl) should relate  formal field theory dilaton actions do not coincide with the
different coset superspaces of superconformal groups: thosgandard NG type brane actions, but are given by the expres-
where these groups are realized in the standard way, i.e. witkions of the type$4.5),(4.6) which essentially include pow-
the superspace coordinates transforming through themselvess of extrinsic curvature of the braheBesides, the AdS
without any mixing with the Goldstone superfielg®e, e.g. images of other fields do not appear under the square root as,
[30,31)), and those where the transformation laws of supere.g. in the standard Ad& S® D3-brane action(5.6), but
space coordinates essentially involve the Goldstone supekave the form(4.13,(4.14 where all nonlinearities are
fields, like the modified bosonic transformatiof®10. The  solely due to the AdS brane transverse coordimgte and
second type of realizations should be relevant to the PBGSis derivatives. It is interesting to further explore this surpris-
superbrane actions with superextensions of X&mani- ing “brane” representation ofsupeyconformal field theo-
folds as the target supermanifolds for which the appropriateies, especially in the quantum domain, and to better under-
superconformal groups define superisometries. An examplstand the role of couplings to extrinsic curvature which are
of the worldvolume superfield PBGS action for AdS super-unavoidable in this representation. In this connection, let us
branes, that of the AdSsupermembrane, was recently con-recall that a string with “rigidity,” i.e. with extrinsic curva-
structed in [19]. The relevant Goldstone superfield- ture terms added to the action, was considered as a candidate
dependent realization of the corresponding superisometrfor the QCD string[25] (see alsd26,27])). We also notice
groupOSp(1]4) (N=1,d=3 superconformal groymn the  that the higher-derivative corrections to the minimal world-
N=1,d=3 worldvolume superspace coordinates was explicvolume superbrane actions akeinvariant extensions of the
itly found. extrinsic curvature termé&see[33] and references thergin

As for generalizing the map4.1) to the quantum case, Besides addressing the obvious problem of studying
one should first understand how to treat the field dependencgdS; x S° brane representation of the ful=4,d=4 SYM
of the change of space-time coordinates in Egl) in this  action(both in the component and superfield approagties
case. Since the fieldgand® will no longer commute with  would be instructive to investigate analogous representations
their derivatives, it seems that the transformed coordinates
should also be non-commuting. To keep E41) invertible,

i D
59"X19,X' = ZF#F,+O(R) .

for consistency one should require both coordinate ggts 3An interesting exceptiofi32] is thed=1 case of conformal me-
and {x”} to be non-commuting. This could provide a link chanics where Eq4.6) coincides, up to a full derivative, with the
with the non-commutative geometry. d=1 case of Eq(3.16.
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of the actions of some superconformal theories in lower dizAN’=4 SYM theory and Abelian D3-branes on Ag8S° this
mensions, e.g. the action of thé=(4,4) d=2 WZW sigma  reasoning implies that the scalar field sector of ke 4
model[22] which was mentioned at the end of Sec. II. SinceSYM quantum effective action should be of the fo(f9)
its bosonic sector in the standajcbnforma) basis includes rather than(5.6) or (5.8). The latter expressions are to be
the dilaton and th&3~SU(2)x SU(2)/SU(2) coset fields, recovered only after performing the holographic tra_msforma-
it should admit a representation in terms of variables of sution (4.1). As a rule, the correspondence discussed is checked
perstring on Ad$x S°. for the gauge field sector only, by setting _scalar fields to be
One more possible implication of the holographic Ads/constantd12]. From Egs.(5.9 and(5.10 it is seen that in
CFT map is as follows. As was already mentioned, theniS approximatiortb=mg, and Eq.(5.9) actually coincides
worldvolume action of some probe superbrane in the rAdSWlth Eqgs.(5.8) or (5.6). It yvould be of interest to explore the
x 8™ type backgroundobtained as a solution of the appro- structure Of the spalar field sector of the Io_w-energy 4.
priate supergravityis expected to be recovered on the CFTS.YNI effective action peyond th'f constant field appraxima-
side as a sum of the leadifgnd subleadingterms in the tion and compare it with E¢5.9).
loop expansion of the low-energy quantum effective action
of the related'supejconformal field theory taken in a phase
with spontaneously broken(supejconformal symmetry We are grateful to Paolo Pasti, Dmitri Sorokin and Mario
[10,11,1. If the quantum field theory is arranged to respectTonin for useful discussions. This work was partially sup-
non-anomalous rigid symmetries of the classical theory, it iported by the Fondo Affari Internazionali Convenzione Par-
reasonable to assume that there exists a formulation of itscellare INFN-JINR, the European Community’s Human Po-
quantum effective actiofe.qg., in the appropriate background tential Programme under contract HPRN-CT-2000-00131
field formalism such that it is still invariant under the stan- Quantum Spacetime, INTAS grant No. 00-00254, grant DFG
dard conformal group. Then for checking the above men436 RUS 113/669 as well as RFBR-CNRS grant No. 01-02-
tioned “supergravity-CFT” correspondence one is led t022005.
compare the quantum effective action just with the confor-
mal basis form of the corresponding superbrane worldvol——
ume action, i.e. with expressions likB.4),(5.9). In the con- 4One should restore the omitted “magnetic” 5-form Chern-
text of the correspondence between the Coulomb branch &imons term in Eq(5.9) while checking this.
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