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Rotational symmetry breaking in multimatrix models
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We consider a class of multimatrix models with an action whic®{®) invariant, whereD is the number
of NXN Hermitian matricesX,,, u=1,...,D. The action is a function of all the elementary symmetric
functions of the matrixT,,=Tr(X,X,)/N. We address the issue of whether @ED) symmetry is spontane-
ously broken when the sia¢ of the matrices goes to infinity. The phase diagram in the space of the parameters
of the model reveals the existence of a critical boundary wher©{iz) symmetry is maximally broken.
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[. INTRODUCTION grals. The precise domain of existence of all the Yang-Mills
integrals with and without supersymmetry and for all the
Over the past twenty years several multimatrix modelsgauge groups, has been rigorously determined5é-59
have been considered for the description of a wide range dfafter numerical and analytical studies for small gauge
physical systems, from statistical physics to QCD or quangroups in[64—68, and for large gauge groups [69—75).
tum gravity[1—-4]. Although an analytic solution is generally The existence of such flat directions affects not only the con-
not as easy to achieve as for the single-matrix models, gergence properties of the super Yang-Mills integrals, but
remarkable number of successes and results have been aliso the behavior of all the correlation functions and of the
tained so faf5]. A general feature of one-matrix models is spectral density asymptotics. During the past few years it has
that they possess an internal global symmetry under somgeen claimed that the “rotational®(D) symmetry(where
gauge grouge.g. U(N) invariance, whereN is the size of D is the number of matricgsnight be spontaneously broken
the matri¥ which determines much of the universal behaviorin the largeN limit [76]. This issue has been analyzed in a
in the largeN limit. This global symmetry is present also in series of analytical and numerical studigg9—-74,77—81
all the most relevant multimatrix model$sing model on  and a possible mechanism for having such a spontaneous
random lattice[6,7], the Q-state Potts modgl8—13], chain  symmetry breaking has been proposed7i—79.
of matrices[14—19, models for coloring probleri20-24, The basic idea relies on the fact that these integrals con-
vertex models[25-29, the meander mod€]30,31], the tain fermionic degrees of freedofhe. matrices with Grass-
O(n) model and some generalizations of(82—-41, and  mannian entrigsin such a way that the action is a complex
several other$42—50; the list is not complete However, number in general. However the action is a real number for
they do not usually have any further symmetry, except folower-dimensional “degenerate” configurationge. when
the O(n) model and its generalizations where the whole sethe matrices are linearly dependeritherefore, when sum-
of matrices transform as @(n) vector. The symmetry of ming over all possible configurations in the partition function
these models is thed (N) X O(n). Recently a new class of the rapid oscillations of the complex action might enhance
multimatrix models have been introduced in the frameworkiower dimensional configurations in the larlyeimit. In or-
of superstring theory and M theory and the two main repreder to shed light on this mechanism, a class of simplified
sentatives are the so-called Ishibashi-Kawai-Kitazawafermionic multimatrix models having a complex actiand
Tsuchiya (IKKT) model [51-53 and the Banks-Fischler- the sameO(D)XU(N) symmetry has been studied iv9].
Shenker-SusskinBFSS model[54]. They are proposed to In that case, the symmetry breaking actually occurs, and it is
be a nonperturbative definition of type IIB superstring theoryshown to be a consequence of the fact that the action is
and M theory, respectively. In particular the IKKT model is complex. Also, the results if80] give indications of a spon-
just one element of a bigger class of matrix models, calledaneous symmetry breaking in the IKKT model. However,
super Yang-Mills integral¢for an introduction seg55-58).  the actual mechanism for having such a behavibicon-
The latter are characterized by carrying sevésapejsym-  firmed) remains an open question.
metries and they are obtained from the complete dimensional In this paper we address the question of whetheoma-
reduction ofD-dimensionalSU(N) super Yang-Mills theo- plexaction is necessary if there is to be a spontaneous break-
ries. These integrals also might provide an effective tool foring of theO(D) symmetry at largél. The action of the super
the calculation of the bulk Witten index of a supersymmetricYang-Mills integrals is complex in general but it also has flat
guantum mechanics theof$9—-63. directions. These two features have a quite different origin.
One consequence of having several symmetries is the efhe former is a consequence of the particular choice of the
istence of flat directions in the action of the model. They arestructure of the spinors together with the signature of the
potential sources of divergences when evaluating the inteD-dimensional “space-time” in consideration. The latter
arises because the action is made up of commutators or loga-
rithms of fermionic determinantgor Pfaffiang (which are
*Email address: vernizzi@thphys.ox.ac.uk there ultimately as a consequence of having an highly sym-
"Email address: j.wheaterl@physics.ox.ac.uk metric theory. Since it happens that along the flat directions
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the action becomeseal, it is not clear whether the sponta- gsee that ip(MHX;LZQWxV whereQ e O(D), thenT trans-
neous symmetry breaking is a consequence of the compleXsms 45T/ =QTQT. A straightforward consequence is that
ity of the action, or its flathess properties. A definite answery|| the eigenvalues, of T are O(D) invariant quantities.

to this question would be given by a complete analytic S.Olu'l\/loreover, the matrice§X,} are linearly dependent iff some
tion of real-action models such as the super Yang-Mills inte-, “ are iden-

Lin four di . its b . . D) i of the eigenvalues, of the correlation matrix,,,
gral in four dimensions, or its bosonic versicat anyD) in __tically zero! More precisely, a good indicator of the degree
which the fermions are suppressed. However only numeric

. . X f nondegeneracy of the matricgX,} is r(T)=rank(T),
tsrllmtutlﬁtlons are avall?ble so far. Thetresgjlts[il_?] 599%13“ i.e. the number of nonzero eigenvalues of the matriXhe
b a _er$ IS n&ipqntaneoluzbsyn:r:;]e rZD rea mg\;{m 'a.lﬁ)url%ost general action which ©(D) invariant and is a func-
inct)zgrall(l: thzrr]g-halssb:ane(ra]gsrgrﬁe d(i): Fﬂ@e7 4 wshueaﬁ:ar ?hnegr-e i; S tion of the variables « Only can be expressed in terms of the
symmetry breaking or not, and about which is the most reli elementary symmetric functiors, of the variablesit,,}, k

able order parameter to use in that cdke a review see '=0,...D. We recall here that th&th order elementary
(83.84) P symmetric function of the variableft,} is defined as the

We decide then to focus our attention on building up aproducts ofk distinct variables,,

multimatrix model with a real positive semidefinite action
made of standard Hermitian matricgbosonic”), but which Ck= E t b, -ty (2.2
allow a wide class of possible “degenerate” configurations. A N
In this paper, we shall introduce a multimatrix model sharing
the sameO(D) X U(N) symmetries, but with real positive
weights and without any Grassmannian degrees of freedo
This action allows many degenerate configurations and w
will find that they can affect the symmetry of the model at — —~ D D-1, ..
large N. This fact is an indication that the exact mechanism C(z)=dellpxp+2T)=Cpz "+ Cp1z" "+ +CO('2 3
which could be at the origin of a possible spontaneous sym- '
metry breaking of rotational symmetries in super Yang-MillsAll the c, are non-negative, as the matrik is positive
integrals deserves further studies. semidefinite. In particular one has

The paper is organized as follows: in Sec. Il we define our
multimatrix model. It is based on all the elementary symmet- 1 D
ric functions of the eigenvalues of the two-point correlation Ci=trT= N 2 Tr(Xi),
matrix, and it is manifestyO(D) invariant at finiteN. The wot
model contains a number of coupling constants which con-
trol the role of the various elementary symmetric functions cD=de<
and the interaction among them. We study the behavior of
the model in the space of such parameters. In particular we o
solve the model in the simple and illuminating case whereVhere we use the symbol “Tr” and “tr” to indicate the trace
only two basic elementary symmetric functions are involved 0Ver NXN andD x D matrices, respectively. .
i.e. the trace and the determinant. This case is simple enough The partition function we consider in this paper is
for carrying explicit calculations at largd by means of a b
saddle-point method. In Sec. lll we consider the more gen- P 7NTr2 2 P N2
eral case where all the elementary symmetric functions are Zla]= 1_:[1 dX,e =1 ”kll (™™, (24
present. There we show how the model is stable under such .

a generalization and that tH@(D) symmetry of the system \yhere o, are real parameters. Equatié®.4) is manifestly
holds everywhere except on a critical boundary where thgy(p) invariant. This symmetry is not to be confused with
symmetry is maximally broken. Finally, Sec. IV is devoted t0 ¢ usualU(N) “internal” symmetry, which still holds for
our discussions and conclusions. For the sake of completgris model. In factZ] «] is invariant undeX ,— UX U, for
ness, the Appendix contains the calculation of a Jacobian wg;, 1, with U e U(N). The region of existeMnce ofléhis’model
make use of in Sec. Il. as a function of the real parametarg will be determined
later in this section. Here we just emphasize that the argu-
. THE MODEL ment of the matrix integrals is always real and positive
Let us consider a set dixX N Hermitian matricegX,,}, semidefinite. Moreover, another feature of E.4) is the

(we omit the explicitt,, dependence afy). It is well known
rTt.hat thec, can be obtained from the expansion of the char-
gcteristic polynomial of the matriX

1

NTrXMX,,),

w=1,...D. The corresponding two-point correlation ma- existence of “flat directions.” They correspond to configura-
trix tions where the matricefX,} are linearly dependent, i.e.
1
Tuw= NTr(XuXv) 2.0 IA short proof: if{X,} are linearly dependent, thehsy, not all

zero such thak , 7,X,=0. Thereforex,T,,»,=0, i.e. T has a
is aD XD real symmetric positive semidefinite matrix, with zero eigenvalue. On the other hand, ¥,T,,7,=0, then
eigenvaluest;=---=tp=0. From the definition(2.1) we tr[(E#x#nﬂ)z]=Euvyn#Twmzo which impliesX X, 7,=0.
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such that some of the symmetric functionysare identically and the Jacobian of the transformation is proportional to
zero. The convergence properties of the intedgall) for det(-r)(szDfl)IZI The partition function now has the proper
large values of the entries of the matrices are mainly guarform for the study of the largeN limit by means of the
anteed by the presence of the Gaussian weight, but not congaddle-pointLaplacé method for the asymptotic expansions
pletely. In fact, the flat directions contain nonintegrable sin-of multidimensional integrals. According to this method, the
gularities (with some analogy to the case of the Yang-Mills main contribution to the integral comes from a small neigh-
integrals[56-58) when some of the parametesg are 00 porhood of the critical points, i.e. global minimum points in
negative. An exact bound in the space of the paramétgs  this case, of the actiofwe drop 1N? subleading terms

for the existence of Eq(2.4) is presented in Eq(3.5). At

finite N the average eigenvalués,) of the matrixT are all ST,a,A]=tr TA—a,logtrT—aplog detT, (2.9
equal, because of tH@(D) invariance of Eq(2.4). However

at largeN this may no Ionger be the case, and our aim is tOWhereEDzaDJr 1/2. The minima of the functioBcan be at
see whether th®(D) rotational symmetry of the model can he poundary of the integration region or at the interior of it.
be spontaneously broken whéf—cc. In this context, we |, the [atter case the necessary stationarity conditions for

define also thalimensionality dof a configuration of matri- having a minimum arésaddle-point equations
ces{X,} as the number of nonvanishing eigenvalues of the

average correlation matriT). Of course, at finiteN one
always hasd=D. A possible way for probindd(D) sym-
metry breaking is to introduce an explicit symmetry breaking Tuzv
term before taking the large limit. We do this by modifying

. . . - 2
the Gaussian weight in Eq. (24 e N1 for all 1<v<p<D. Note that multiplying Eq(2.9) by T
—e NEATX) - where the variables ©N;<A,<---  and taking the trace gives fFA\)=a;+Dap. Since
<\p maximally break thed(D) symmetry of the modelin  tr(TA)=0 we have to look for solutions of E¢2.9) in the

analogy to[79]). After taking the largeN limit, we shall  region of the parameters plafe; ,ap}
remove the symmetry breaking term by taking the limjt

Ouv ~ 4
S[T’a'A]:)\MaﬂV_altr_T_ ap(T )V,LLZO'

(2.9

—1, V. If (t,)—0 for different directionsu then there is a,;=—Dap. (2.10
spontaneous symmetry breaking of 8€D) symmetry.

We start with the simple case where,=az=---  The condition(2.10 is actually a bound on the domain of
=ap-1=0. The partition function reads existence of the model at lardé In fact as we have already

announced, the integral in E€2.7) exists only when the

parametersy, satisfy suitable constraints, and Eg.10 is

one of them. Namely, the integrand function in E2}.7) does

not have singularities in the integration region, except per-

x(detT)“DNZ. (2.5  haps at the integration boundaries. At large values of the

) ) ) . entries of T the integrand function is regular and integrable

It is convenient to introduce the matrix=26,,\,,, SO that  for any value ofa,, being bounded by the exponential fac-

the partition function can be written asZ[a,A]  tor. However, the behavior close to the origin can give non-

=[TI},_,dX,exp(~N’S;) where the action is integrable singularities. This fact is evident when passing to

. _ T .
ST a,Al=tr (AT)— arglog tr T— aplog detT. (2.6) the eigenvalue$t, } of T=0tO". It yields

D D
ZHaAl= | T1 dx,e N2 X rT)sn’
u=1

D
The actionS, depends on all the matrice§, only through * 2 T
the matrix'l?oit isF')[herefore natural to ch:r?ée th)(/e integrgation ZlaA]~ Jo }_:[1 dt,[A(D)] fO(D)dO e Moo
measure from the multimatrix variabl¢X,} to the single-
matrix {T,,}. When N?=D we have(see the Appendix for
detailg X

D aN?
t

) apN?+(N>~D—-1)/2

Z[aaA]:CN,Df daT

T=0

D
x| 11 t, , (2.11
pu=1

% e—NZS[T,a,A] +[(N2=D—1)/2]log(detT)

where A(t) is the Vandermonde determinam5<v(tM
—t,), Jom) is the integral oveD XD orthogonal matrices,
with Haar measuréO, t is a diagonal matrix with diagonal
elementst,, ... tp and “~" means “up to af(irrelevanj
2.7 proportionality constont." From E_o[2.1])_we see that, first,

in order to have an integrable singularity at each of tBe (
where the integral is over all th® XD real symmetric —1)-dimensional boundaries where only dne-0, it has to
positive-definite matrices, the measured¥=II,-,dT,, be

NDNZIZW(DIA)(ZNZ— D+1)

CN,D:

NZ2—k+1

)
2DINN-D2IT ] F(
k=1 2
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1
e EM Apz—1

v>0
0| =i \%o&
v<0 -D

o] = —DdD

) ) FIG. 2. Graphical representation of the RHS of E216) as a
FIG. 1. Phase diagram of the model in E@.5). The shaded  nction of x=tr T/a,. The circles indicate all the solutions. The

region is where the partition function is divergent. The wiggle line yj5ck circles indicate the acceptable solutions.

is the region where the model is one-dimensional. In the remaining

region the model maintains the flld(D) dimensionality. This system of algebraic equations can be solved easily.

N2—D—1 First, by summing Eq(2.15 over u we get an equation for

apN?+ ———> 1. 212 X=UTay,
_ L a - 1 trT
At large N this condition simplifies toap= ap+1/2=0. === , X=—o., (2.19
Secondly, by rewriting the integral in E¢R.11) from Carte- ap A1 AX—1 a1
sian coordinates into multidimensional spherical coordinates,
one has that the radial integration exists if and only if For any given realy andA Eg.(2.16) is a rational algebraic
equation withD solutions in the variable. All the solutions
D(D-1) ) N>’-D-1 ) are real. In fact, by writing the real and imaginary partxof
(D-D+——F—+Nay+|————+Nap =x'+ix" and using the fact thag,A R, it yields x”"=0.
Among suchD real solutions, we have to pick up the ones
XD>-1. (213 that maket, =0 becausd has to be a positive semidefinite

matrix. From Eq.(2.15 we obtain that
Note that there are no contributions from the integral over

the orthogonal group: in fact it is finite and regulaitjsince T 1
it is an integral over a compact domain of an analytic func- X= —>)\— for «;>0,
tion in its variables. At largeN the condition(2.13 is satis- @ M
fied by ay+ (3 + ap)D=0 which is precisely Eq(2.10. In
; : . tr7 1
summary, the region of existence of the model at laxge X=—<— for a,<0 (2.17)
a; Ap 1

D={a}:a;+Dap=0 and ap=0}, (2.14
which is satisfied by only one solution in each case. Namely,
and it is depicted in Fig. 1. We point out that the model atfor @;>0 is >0 and the solution is the largest possible one
large N is well defined and finite also on the boundaries of(the one greater thanX{) whereas fora; <0 is y<0 and
D, ie. B={ap=0,a;>0} and By={ay=-Dap,ap the solution is the one with<<O (see Fig. 2
=0}. For any given poin{a,,ap>0} in the interior of the
parameter spac®, if we remove the symmetry breaking

If ap>0 then we see immediately that the global mm'materms by taking 1V s, then the(unique solution of Eq.

of Sin Eq. (2.8 cannot be on the boundary of the integration i _ ~ ) ]
region. Otherwise the matri¥ would have at least a zero (2.16 is x=1+D/y, i.e. trT=a;+apD. Inserting this
eigenvalue, that is d@t=0, and there Eq(2.8) givesS—  Value in Eq.(2.19 we read that in thg larg® limit all the

+ . Therefore, in this case the critical points must be in theeigenvalues are equal {b,)=«,/D+ ap . Hence, we con-
interior of the integration region. Let us then solve E29)  clude that in the region insid® with ap#0 the model has

for ap>0. It is straightforward to see that any matfix ~ a phase with dimensionality=D and theO(D) symmetry
which is a solution of Eq(2.9) has to be diagonal. Defining is preserved, as expected. In such a phase, the free energy

T=46,,t, Eq.(2.9 reads F=—(1/IN?)logZ reads(with all X ,= 1)
-1 ~ ~ ~
_7 o - F=(ay+Dap)[1-log(a;+Dap)]+DaplogD.
t, aD(AM trT) , p=1,...D. (2.15 (218
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On the boundarys, of D wherea;=— Dap the solution of B PF _ ’
Egs. (2.19 and (2.16 gives T=0. However, it would be X'U«V_(g)\lu(;)\y == N¥t,t)conn-
wrong to conclude that the dimensionalityds-0 there, be- A=t (2.21)

cause actually in the limitep— — a; /D one hasT—0 with
d—D. That means that there is no spontaneous symmetri) the broken phasg;, we get from Eqs(2.20 and(2.21)
breaking on the boundar,. B L

Let us consider now the final case of the bound&sy (t)=a18,0, Xu=~a161,01,, (222

whereap— 0™ first and\ ,— 1 for all u afterwards. In such  which is of course consistent with E(R.19. The computa-

a limit one must considetr; >0 in order to stay within the tion of the same quantities in the un-broken phase requires

regionD, Eq. (2.14, and thereforey— +.% According to  the knowledge of an expression of the free energy as a func-

Eq. (2.16 and Fig. 2, this fact may occur only when tion of A, [i.e. Eq.(2.18 is not useful for that A general

—1/\4. From Eq.(2.15 we have analytic expression seems not so easy to get since it needs
the analytic solutions of the algebraic equati@?16 in a
closed form, which is known to be an impossible task when

lim trT=ﬂ and tﬂzﬂgﬂl. (2.19  the degree of the equation is large. However, we can proceed
wp—0* Ay Ay as follows. We already know the pattern of symmetry break-
ing from Eq.(2.19. Hence we can restrict to the case where
N1<A,=---=\p without losing in generality. In this case,

In other words, only one eigenvalue of the maffis not  gq. (2.16 is a second order algebraic equation which can be
zero in this limit. Removing the symmetry breaking term by go|yed explicitly. We obtain then the free energy, its first and

settingh,—1 leads to a dimensionality=1, actually(t,)  second derivatives with respect &g, and in the limit\,
=a;6,;. That concludes our proof that the model in Eq. 1 they are

(2.5 has a maximal spontaneous symmetry breaking of
O(D) symmetry whenevesp—0™.

It is interesting to notice that we could have had consid-
ered directly the casepy=0 (and not just the limitap

a;  ~
<t#>:B+CYD,

—07), because there the model at lagés well defined. In 1 (e s
~ - . ym e =< ta
fact, letap=0 from the very beginning in Eq2.8). Then, X apD?\ D D
as the\ ,'s are all different each othe§ cannot have any ~ _
minima in the interior of the integration domafin other —a;(D—1)—apD? if u=v,
words, Eq.(2.9) do not admit any solutiojn Hence, the glo- X @y if . (2.23

bal minimum must be on the boundaries of the integration

region, where somg, is equal to zero. Analyzing by INSPeC- Note that the susceptibility is divergent asliap when

tions all the hyperplanes which constitute the integration- . . R .
boundary, one ?(r?dsahat the global minimum is a pointgon theaD_’O' The singular behavior of the susceptibility is again a

line t,=tz=---=tp,t;>0 and it is precisely att; signal of a criticality atrp =0, where the rotational symme-
= a;/\,. Substituting this value in Eq2.8) gives the free 1Y is actually maximally broken down to one dimension.

energy for the phasty Ill. GENERALIZATION

a; Let us consider now the more general case E44)
F= al( 1- |097\—>- (220 where all the symmetric functions are allowghd not only
! ¢, andcp, i.e. the trace and the determinant, respectively
Again introducing the symmetry breaking term ,,
This expressior(for A=1) matches continuously with the =\,8,,, 0<N1<\,<---<\p, and following the same

v

free energy in the unbroken phase, E218 for ap—0™*. path of reasoning as in the previous paragraph, we have
By taking derivatives of the free energies with respect fo

we can compute_ the correlation functions, in p_articular the Zla,A]1=Cy Df dT e—NZSN[T,a,A]’ 3.1)
average of the eigenvalues, and the susceptibility “Jr=0

e where the generalized action at finleis now
aJ
<t/.L> = m - ’ D

~ D+1
1 S\[T,a,AJ=tr TA— D, alogc,+
=1 2N?

Iog CD )

(3.2
2In principle it would be possible to take the same limit with - . . . .
<0 but then one necessarily would end up in the origin of theand ay= ay+ 5 dp. Let us first determine the region of the

coordinatesy; = ap=0 where the system is purely Gaussian. parameter spac{a"&k} where the partition function Eq3.1)

085024-5



GRAZIANO VERNIZZI AND JOHN F. WHEATER PHYSICAL REVIEW D66, 085024 (2002

exists. To that aim it is worthwhile to pass to the eigenvalues_)\v)-rwzo, i.e. T is diagonal. Thus, letting =é8,,t,, the

ty,tz, ... tp of T in the integral(3.1), as we did in Eq.  saddle-point equations are equivalent to the following system
(2.11), thus obtaining éD-dimensional integral. The condi- of nonlinear algebraic equations:

tion which prevents there being a singularity at the point

where all thet,’s are zero is D
A=, ;iﬁ =1 D (3.9
(D 1)+D(D_1)+N2 §k~ DO+D)) e e, KT '
2 = 2N?

(3.3y  The case where the absolute minima of the ac8are in-
stead on the boundary of the integration region can occur

as one can see by passing to high-dimensional polagyy if some parameters, are identically zero. In fact, if all
coordinates.More generally, the integrand function does not ~ . .
the parameterg, are different from zero, then the action is

have singularities on thp-dimensional hyperplanes where o . .
D—p of the variableg,'s are zero if and only if positively divergent Wh'en at least ong is zero, and thus
m there cannot be any minima on the boundary.

(D—p)(D-p—1) D For the moment, let us restrict the discussion to the case
(D—p—1)+ 5 NZ(kE+l (k—p)ay where all the parameters, are strictly positive. We call
=P D" CD such a region of the parameter space. It is straight-
(D—p)(D+1) forward then to show that i®® * the system in Eq(3.8) has
- >-1, (3.4) only one real positive solutiorfthat is a set of{t;
2N? >0, ...tp>0} which satisfies Eq(3.8)], and it is actually

o . _ the single global minimum of Eq3.6). In fact, the linear
for 0<p<D—1. In the largeN limit, the conditions in EQ.  compination tTA =X ,\ ,t, and all the elementary symmet-

(3.4) relax to ric functionsc, are r‘ﬁullltiliibnear k-affine) functions in the
D variablest,, ... tp, as one can directly see from the defi-
> (k-p)a=0, p=0,...D—1. (3.5  Nition (2.2). As such they are convex functions. Also the
k=p+1 function —log(x) is convex forx>0, and therefore the ac-

_ tion Sin Eq. (3.6) is a convex function, being a finite linear
In particular note thatvp=0. We callD the region in the combination with positive coefficients of convex functions.
parameter spacy,} which is determined by the conditions Moreover, we show tha$ is also bounded from below. In
in Eq. (3.5, and from now on we shall consider only values fact, we can prove it by using the following inequality:

of the parameter@k} which belong taD. Obviously, this is

a natural generalization of the analogous region obtained in O _ b _

Eq. (2.14. kZl alogc,= kZl Kaylogc; . (3.9
The generalized action E¢3.2) at largeN reads - -

b The proof of the inequality3.9) is by induction. FoD =1 it
9T,a,A]=trTA— 2 alogey, (3.6 is an identity. Let us suppose that E&.9) is valid for D
k=1 —1. Therefore we have

and in the same limit the main contribution to the partition
function (3.1 comes from the global minima o Such ~ ~
minima can be in the interior of the integration region or on kzl alogey= kzl kaylogc,
the boundaries of it. In the former case, the saddle-point

D D-1

equations are ~ Cp Cp-1 ©C
+ aplog c c o
L ST aAl=N,8 L 0 T
P , O, = - ay— =VU.
o, BV =1 e 0Ty, D-1

~ ~ c,\P
(3.7 <> Kkagogc,+ aDIog(C—l)
k=1 0
Any matrix T which is a solution of Eq(3.7) must be diag-
onal. In fact, taking the commutator of E¢3.7) with T ~
yields[A,T]=0 becausél commutes with any other func- :g‘l kaylogey, (3.10
tion of T. Writing the commutator in components reads, (

D

where we used repeatedly Newton’s inequalitieﬁ

3The first term of Eq(3.3) is the contribution from the radial part = Ck—1Ck+1 for 1<k$D:1' in the form ¢y, /cy
of the polar measure, the second is from the Vandermonde, and the Cx/Cx—1, and the fact thatv, is positive inD. By apply-
remaining terms are from the action. The integral over the orthogoing the inequality(3.9) to the effective action Eq3.6) we
nal group does not generate any singularity. get
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b because all the terms in the sum are non-negative and
S[T,a,A]>>\1C1—k21 kaylogce,, (81D 't ch_,/cp=1. Thereforeap hasto go to zero fort,—0.
Note that this condition means that wheg>0 there cannot
because ﬂ-AZMEz:ltﬂ_ Since the function ax D€ any spontaneous symmetry breaking at all, since none of
—blog®)=h{1—log(b/a)] for any a,b,x real and positive, the eigenvalues is vanishing. In other words, if there is a

we finally obtain a lower bound for the action phase transition, it must be on the plamg=0.
(3) The minimat , are in general monotonic with respect

A to u. Subtracting two equations of the syst€¢&8) gives
S[T,a,A]>A(1—Iog—), (3.12 H g d ystems) g
= D o(m)
- = ~ G2
~ N,— N, =(t,—t , 3.1
where A=3P_.ka, is positive inD, as follows from Eq. wmh= #)k; @K Cy (3.16

(3.5 with p=0.* o

All the above shows that whefay} e Dt the actionSis ~ and then the orderingy;<\,<---<\p implies t;>t,
continuous, lower bounded and convex in the integration re=. .. >t_D. On the other hand, from E¢3.16) follows also
gion. From the additional observation that the action is Iin-t_M:t_V if and only if A\ ,=\, i.e. when the symmetry break-
early divergent when ant, is large and logarithmically di- jng terms are removed. We deduce that at any point of the
vergent when anyt, is close to zero we conclude that regionD *, the dimensionality of the systemds=D and the

necessarily the action has one and only one global minimunbrigina| O(D) symmetry is fully preserved. In this case we
and it must be in the regioh,>0, Vu. We call such a gptain (with all N,=1)

minimum t={t,, ... tp}, t,>0.

The largeN limit of the model is controlled by the behav-
ior of t as a function ofx, . In the following we enumerate
a series of properties af To that aim is worthwhile to recall

A
(tp->25’

two useful properties of the elementary symmetric functions o 1/(D
[90—92. First, thek-th order symmetric functiole, can al- 7::«4(1_|09A)_gl alog okl k] | (3.17
ways be decomposed as the sum ¢f alependent part and
at,-independent part: with AEEE=1ksz.
ckztﬂc(k’i)ﬁ e, (3.13 (4) Let us consider now the limiéx,—0, while keeping

all the othera, - fixed. In this limit the free energy has to
where we definecc{")=c,|, _o, i.e. thek-th elementary be continuous either there is a symmetry breaking or is not.
“

symmetric function oft,,t,, ... tp} omittingt, . Note that Its limiting value is given by Eq(3.17) just with ap set to
d,C=c{™; . Second, the following equality holds: zero everywhere, i.e.
D / , D-1 5 1 D
21 tMCﬁM)ZCkH, k=0,...D—1. (3.14 Fp=A'(1-log A )_kgl aylog ﬁ L (3.18
=
Let us see now what consequences these properties have With A’ =32~ kay. If there is symmetry breaking them,
1. —0 (it is the smallest eigenvaludut no othert,, can go to
(1) The solutiont of Eq. (3.9 is upper bounded by zero. This is because if there are at least two,,tp—0

thencp_;—0 and Eq.(3.8) would be inconsistent in the

o T (¥, D limit (LHS is finite whereas RHS is infiniteThe free energy
t,\,= > Mc <> a, Vu=1,...D, for a (D — 1)-dimensional broken phaseith «p=0) would
k=1 k k=1 be
because from Eq3.13 ckzt#c,(ji)l. Fp-1=A'(1-logA")
(2) The solutiont of Eqg. (3.9 is lower bounded by D-1 1 D_1
_ B - > adlog ( ) . (319
12 e @ = T p-pkl K
tu=r > ——=— (3.15
k=t k " In generalFp<JFp_4 with the equality only forD=2, or
D>2 anda,=- - - =ap_;=0. We conclude that there is not
“Note that the lower bound in E43.12) is actually valid every- ~Spontaneous symm~etry brealfing wheg—0, unless for
where inD, and not only fo{a,} e D+ as our proof does not rely D=2, orD>2 anda,=---=ap_1=0 (which is actually
on such a restrictive hypothesis. the case we considered in Seg. Il
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It remains to consider the “wedge” regioR/D " of the  a model relies in its interesting features: first, it is manifestly

phase space, where some of theare negative. In this case O(D)>xSU(N) invariant, and it allows the study of the issue
the actionSis no longer a convex function, but it still pos- of the spontaneous symmetry breakingXfD) symmetry in
sible to prove that it has only one global minimum. Thethe largeN limit. Secondly, the action of the model is real,
proof goes as follows. First of al§is still lower bounded by positive definite and it does not contain any Grassmann vari-
the same bound as in E(8.12, and it is divergent towards ables. This is most useful for understanding what we can
+ at the boundaries of the integration region, hence it musactually expect from a model without a complex action or

have at least one local minimum. SecondlySihas more
than one local minimum then the system of equatihg)

would have multiple solutiongﬂ for a set of values of the

parameterga,}. We know already that whefw,} is in D *
the solution is unique, therefore there must exists a valu

{a;} of the parameters where multiple solutions merge tog

rapidly fluctuating potentials. Understanding the effect of a
complex action, which is a notoriously difficult problem, re-
quires also realizing first what could happen when it is not
there. Third, it allows a number of possible “degenerate con-
%igurations” in the matrix integration measure and our aim is
o understand their role in a scenario of spontaneous symme-
ry breaking. Finally, the model is considerably simple and

gether into the unique one. This implies that the JacobiaRan pe solved analytically, being the interaction among the

detdt(a)/da has to be singular or zero for that particular
value ofa’. However we show now that this is not possible.

In fact, let us write the system of equatiof®8) in the more
compact form:

A=G[t(a)] - a (3.20

where N=(\y,...\p), Gultl=ci/c, and «
=(ay, ....ap). Equation(3.20 implicitly defines the vec-
tor functiont(a) as a function ofa. We take the total de-
rivative of the component of Eq. (3.20 with respect tow;
and compute the determinant with respect to the indexes
of the obtained expression. One has

;vt)o] a)'udet,i ot (a)

(GIt(

det, (—1)PdetG[t(a)].

(3.21

The first determinant on the LHS of E@.21) is regular and

not zero at{a’'}, otherwise Eq(3.8) would not admit any
implicit solution but we know it must exidgtbecause of the
existence of a global minimum The determinant on the
RHS is deG=A(t)/H}3:1c]-, where A(t) is the Vander-

a;

matrices only through th®(D) “spatial” symmetry and not
through the SUY) “internal” symmetry (for which there is
just a Gaussian weightWe introduced a number of param-
eters which allows to tune the relative weight of the elemen-
tary symmetric functions of the model, and then we focused
our attention on the phases of the model in the space of the
parameters wheN is large. This has been done in two steps:
first in Sec. Il by studying in full detail a simple case where
only two symmetric functions are “switched or(the trace
and the determinaptand afterwards in Sec. Il by consider-
ing the more general case where all the symmetric functions
are present at the same time. In both cases we found that the
O(D) symmetry is broken only in the limi&p— —1/2 for
D=2 or forD>2 anda,=---=ap_;=0. In these cases
the dimensionality of the model collapses down to one di-
mension.

The qualitative explanation of such a behavior is simple.
Degenerate configurations of the matrices such that the cor-
relation functionT ,, has zero eigenvalues, dominate the ma-
trix integration in the largeN limit, when the parameters of
the model are tuned to a critical value. In particular the pa-
rameterap (which is coupled to the determinant, i.e. the
elementary symmetric function most sensitive to “degener-
ate” configurationg is to be tuned to the critical valuep,

1/2 for compensating an analogous “centrifugal” term

monde determinant. This expression is finite and it zero °n|¥:oming from the Jacobiafsee the AppendixAt that precise

if at least two eigenvalues, ,t, are equal each other and
then, by means of Ed3.8), it must be\ , =\, which is not

value of ap 1/2, the measure collapse down to one di-
mensional configurations, quite independently from the pres-

possible by hypothesis. This ends the proof that for anynce of other symmetric functions but the trace. This is most

given {Zyk} in the “wedge” regions the action has only one
local minimum in the interior ofD, which is then also a

evident from the explicit solutions in Sec. Il.
The symmetry breaking mechanism of the model in this

global one. The qualitative behavior of this critical point as apaper is therefore due to the existence of directions in the

function of the parametera goes as for the case P .
After removing the symmetry breaking terms—1, the

matrix integral along which the measure is identically zero.
These directions are where the matrices are linearly depen-

critical point becomes completely symmetric in its variablesdent, with different degree of degeneracy. We learned also

and it corresponds to an unbroken phase WiflD) symme-
try.
IV. DISCUSSION AND CONCLUSIONS

In this paper we have introduced a multimatrix model
where the Hermitian matrices, are interacting through all

that the reality of the action does not seem to stop a generic
Hermitian multimatrix models wittD(D) X SU(N) symme-

try from having a spontaneous symmetry breaking>¢D)
symmetry whernN is large. Of course this does not prevent
other real-action multimatrix models having different pat-
terns of spontaneous symmetry breaking, nor does not say
anything about the role played by a possible complex term in

the elementary symmetric functions of the correlation matrixthe action. For all these reasons our findings do not contra-

T,,=Tr(X,X,)/N. The main reason for the choice of such

dict the analysis 0f69—74,77,82,8B It would be interesting
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to carry out the analysis contained in this paper to an ex-

D D
tended version of the model where the coupling constants D= II dx,II ¢
are allowed to be complex numbers. The action would be wot “=p
complex then, and a different pattern of symmetry breakin
seems to be possible.

There are extensions of the model where the matrices a
not Hermitian but real symmetric or symplectic. The only

1

gI'he Jacobian)(T) can be evaluated by using the integral
Ir(gpresentation of thé function

changes are in slightly different factors in the Jacolisee > > dQgp
the Appendix and they do not affect the largé results of I = }_:[l dxﬂal;[[; 2
this paper which still would hold in those generalized cases. .

We conclude by observing that the reason why we can solve X @' PapTap™ (NI XoXp)
this multimatrix model is that the interaction among the ma- T
trices is only through the correlation matfix,, . For the rest -7 f do €

the matrices are actually not interacting with the full internal N.D de(iQ)Nz/z

SU(N) symmetry group, the interaction being just a Gauss-
ian factor. In fact adding a quartic or higher order term to the
action (i.e. terms like TiX,X,X,X, and Trx2X2) would
probably change drastically this scenario, but it would also
be more difficult to solve, as happens for multimatrix models
like the Yang-Mills integrals. where in the last equation we performed the Gaussian inte-
gral over the matriceX,, and we collected the elements
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. S ; S =0. We change the matrix variableQ —W where W
for his interest in this project and for motivating it. We also — 000 and we havalW=dQ, det(W)=det(Q) and
acknowledge J. Nishimura for collaborating at an early stage '
of this work. The work of G.V. is supported by the EU net-

NDN2/27T(D/2)(N2— D-1)

EN,D = (A2)

2DIN(N-1)/2+1]

itr Wt
work on “Discrete Random Geometries,” grant HPRN-CT- o '
1999-00161. I =Cuo | AW w2
APPENDIX irw
_7 N2-D-1)/2
For the sake of readability, in this appendix we compute _CN,D(detT)( ) J- dW[detiW]Nz’z (A3)

the Jacobian of the transformation in Eg.7). It is a well-

known result which has appeared several times in the "tera\ivhere in the last equation we apolv the transformation
ture, e.g.[85—89. The technique we use here is similar to q PPl

the one in[85]. The integral in Eq(2.4) is of the form W= W, IV, The remainingT-in_depe_ndent integral is
completely  factorized and it is equal to

D . .
20 7POFIAP_ T ((N2—k+1)/2). Finally we obtain
1= | T dX,f(T[X]) (A1) el ( )2 Y
wot NDN2/2_(D/4)(2N?~D+1)
wheref is a real function and thel(N)-invariant integration I(T)= D NZ— K+ 1
measure for each  Hermitian matrix is dX 2DINN-D2TT F(—
=M ,dX; 1T~ ;dReX;;dImX;; as usual. First, by inserting k=1 2
the definition Eq.(2.1) of the matrixT in the formula(Al) (N2-D—1)/2
by means of Dira@ functions, we can equivalently write X (detT) ' (A4)
sz dT f(T)J(T) The results in this appendix are valid fd*=D, which is
T=0 ’ fine for the largeN analysis of this paper.
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