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Rotational symmetry breaking in multimatrix models
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We consider a class of multimatrix models with an action which isO(D) invariant, whereD is the number
of N3N Hermitian matricesXm , m51, . . . ,D. The action is a function of all the elementary symmetric
functions of the matrixTmn5Tr(XmXn)/N. We address the issue of whether theO(D) symmetry is spontane-
ously broken when the sizeN of the matrices goes to infinity. The phase diagram in the space of the parameters
of the model reveals the existence of a critical boundary where theO(D) symmetry is maximally broken.
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I. INTRODUCTION

Over the past twenty years several multimatrix mod
have been considered for the description of a wide rang
physical systems, from statistical physics to QCD or qu
tum gravity@1–4#. Although an analytic solution is generall
not as easy to achieve as for the single-matrix model
remarkable number of successes and results have bee
tained so far@5#. A general feature of one-matrix models
that they possess an internal global symmetry under s
gauge group@e.g. U(N) invariance, whereN is the size of
the matrix# which determines much of the universal behav
in the largeN limit. This global symmetry is present also i
all the most relevant multimatrix models~Ising model on
random lattice@6,7#, the Q-state Potts model@8–13#, chain
of matrices@14–19#, models for coloring problem@20–24#,
vertex models@25–29#, the meander model@30,31#, the
O(n) model and some generalizations of it@32–41#, and
several others@42–50#; the list is not complete!. However,
they do not usually have any further symmetry, except
the O(n) model and its generalizations where the whole
of matrices transform as aO(n) vector. The symmetry of
these models is thenU(N)3O(n). Recently a new class o
multimatrix models have been introduced in the framew
of superstring theory and M theory and the two main rep
sentatives are the so-called Ishibashi-Kawai-Kitazaw
Tsuchiya ~IKKT ! model @51–53# and the Banks-Fischler
Shenker-Susskind~BFSS! model @54#. They are proposed to
be a nonperturbative definition of type IIB superstring theo
and M theory, respectively. In particular the IKKT model
just one element of a bigger class of matrix models, ca
super Yang-Mills integrals~for an introduction see@55–58#!.
The latter are characterized by carrying several~super!sym-
metries and they are obtained from the complete dimensi
reduction ofD-dimensionalSU(N) super Yang-Mills theo-
ries. These integrals also might provide an effective tool
the calculation of the bulk Witten index of a supersymmet
quantum mechanics theory@59–63#.

One consequence of having several symmetries is the
istence of flat directions in the action of the model. They
potential sources of divergences when evaluating the i
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grals. The precise domain of existence of all the Yang-M
integrals with and without supersymmetry and for all t
gauge groups, has been rigorously determined in@56–58#
~after numerical and analytical studies for small gau
groups in@64–68#, and for large gauge groups in@69–75#!.
The existence of such flat directions affects not only the c
vergence properties of the super Yang-Mills integrals,
also the behavior of all the correlation functions and of t
spectral density asymptotics. During the past few years it
been claimed that the ‘‘rotational’’O(D) symmetry~where
D is the number of matrices! might be spontaneously broke
in the largeN limit @76#. This issue has been analyzed in
series of analytical and numerical studies@69–74,77–81#
and a possible mechanism for having such a spontane
symmetry breaking has been proposed in@77–79#.

The basic idea relies on the fact that these integrals c
tain fermionic degrees of freedom~i.e. matrices with Grass
mannian entries! in such a way that the action is a comple
number in general. However the action is a real number
lower-dimensional ‘‘degenerate’’ configurations~i.e. when
the matrices are linearly dependent!. Therefore, when sum
ming over all possible configurations in the partition functi
the rapid oscillations of the complex action might enhan
lower dimensional configurations in the largeN limit. In or-
der to shed light on this mechanism, a class of simplifi
fermionic multimatrix models having a complex action@and
the sameO(D)3U(N) symmetry# has been studied in@79#.
In that case, the symmetry breaking actually occurs, and
shown to be a consequence of the fact that the actio
complex. Also, the results in@80# give indications of a spon-
taneous symmetry breaking in the IKKT model. Howev
the actual mechanism for having such a behavior~if con-
firmed! remains an open question.

In this paper we address the question of whether acom-
plexaction is necessary if there is to be a spontaneous br
ing of theO(D) symmetry at largeN. The action of the supe
Yang-Mills integrals is complex in general but it also has fl
directions. These two features have a quite different orig
The former is a consequence of the particular choice of
structure of the spinors together with the signature of
D-dimensional ‘‘space-time’’ in consideration. The latt
arises because the action is made up of commutators or l
rithms of fermionic determinants~or Pfaffians! ~which are
there ultimately as a consequence of having an highly s
metric theory!. Since it happens that along the flat directio
©2002 The American Physical Society24-1
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the action becomesreal, it is not clear whether the sponta
neous symmetry breaking is a consequence of the comp
ity of the action, or its flatness properties. A definite answ
to this question would be given by a complete analytic so
tion of real-action models such as the super Yang-Mills in
gral in four dimensions, or its bosonic version~at anyD) in
which the fermions are suppressed. However only numer
simulations are available so far. The results of@82# suggest
that there is no spontaneous symmetry breaking in the p
bosonic Yang-Mills integral. About the 4D super Yang-Mil
integral there has been some dispute@72,74# whether there is
symmetry breaking or not, and about which is the most r
able order parameter to use in that case~for a review see
@83,84#!.

We decide then to focus our attention on building up
multimatrix model with a real positive semidefinite actio
made of standard Hermitian matrices~‘‘bosonic’’ !, but which
allow a wide class of possible ‘‘degenerate’’ configuration
In this paper, we shall introduce a multimatrix model shar
the sameO(D)3U(N) symmetries, but with real positive
weights and without any Grassmannian degrees of freed
This action allows many degenerate configurations and
will find that they can affect the symmetry of the model
largeN. This fact is an indication that the exact mechani
which could be at the origin of a possible spontaneous s
metry breaking of rotational symmetries in super Yang-M
integrals deserves further studies.

The paper is organized as follows: in Sec. II we define
multimatrix model. It is based on all the elementary symm
ric functions of the eigenvalues of the two-point correlati
matrix, and it is manifestlyO(D) invariant at finiteN. The
model contains a number of coupling constants which c
trol the role of the various elementary symmetric functio
and the interaction among them. We study the behavio
the model in the space of such parameters. In particular
solve the model in the simple and illuminating case wh
only two basic elementary symmetric functions are involv
i.e. the trace and the determinant. This case is simple eno
for carrying explicit calculations at largeN by means of a
saddle-point method. In Sec. III we consider the more g
eral case where all the elementary symmetric functions
present. There we show how the model is stable under s
a generalization and that theO(D) symmetry of the system
holds everywhere except on a critical boundary where
symmetry is maximally broken. Finally, Sec. IV is devoted
our discussions and conclusions. For the sake of comp
ness, the Appendix contains the calculation of a Jacobian
make use of in Sec. II.

II. THE MODEL

Let us consider a set ofN3N Hermitian matrices$Xm%,
m51, . . . ,D. The corresponding two-point correlation m
trix

Tmn[
1

N
Tr ~XmXn! ~2.1!

is a D3D real symmetric positive semidefinite matrix, wit
eigenvaluest1>•••>tD>0. From the definition~2.1! we
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see that ifXm→Xm8 5QmnXn whereQPO(D), thenT trans-
forms asT85QTQT. A straightforward consequence is th
all the eigenvaluestm of T are O(D) invariant quantities.
Moreover, the matrices$Xm% are linearly dependent iff som
of the eigenvaluestm of the correlation matrixTmn are iden-
tically zero.1 More precisely, a good indicator of the degre
of nondegeneracy of the matrices$Xm% is r (T)[rank(T),
i.e. the number of nonzero eigenvalues of the matrixT. The
most general action which isO(D) invariant and is a func-
tion of the variablestm only can be expressed in terms of th
elementary symmetric functionsck of the variables$tm%, k
50, . . . ,D. We recall here that thek-th order elementary
symmetric function of the variables$tm% is defined as the
products ofk distinct variablestm

ck5 (
m1,m2,•••,mk

tm1
tm2

. . . tmk
~2.2!

~we omit the explicittm dependence ofck). It is well known
that theck can be obtained from the expansion of the ch
acteristic polynomial of the matrixT

C~z![det~ID3D1zT!5cDzD1cD21zD211•••1c0 .
~2.3!

All the ck are non-negative, as the matrixT is positive
semidefinite. In particular one has

c15tr T5
1

N (
m51

D

Tr ~Xm
2 !,

cD5detS 1

N
Tr XmXnD ,

where we use the symbol ‘‘Tr’’ and ‘‘tr’’ to indicate the trac
over N3N andD3D matrices, respectively.

The partition function we consider in this paper is

Z@a#5E )
m51

D

dXme2N Tr (
m51

D

Xm
2

)
k51

D

~ck!
akN2

, ~2.4!

whereak are real parameters. Equation~2.4! is manifestly
O(D) invariant. This symmetry is not to be confused wi
the usualU(N) ‘‘internal’’ symmetry, which still holds for
this model. In factZ@a# is invariant underXm→UXmU†, for
all m, with UPU(N). The region of existence of this mode
as a function of the real parametersak will be determined
later in this section. Here we just emphasize that the ar
ment of the matrix integrals is always real and positi
semidefinite. Moreover, another feature of Eq.~2.4! is the
existence of ‘‘flat directions.’’ They correspond to configur
tions where the matrices$Xm% are linearly dependent, i.e

1A short proof: if $Xm% are linearly dependent, then'hm not all
zero such that(mhmXm50. Therefore(nTmnhn50, i.e. T has a
zero eigenvalue. On the other hand, if(nTmnhn50, then
tr @((mXmhm)2#5(m,nhmTmnhn50 which implies(mXmhm50.
4-2
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such that some of the symmetric functionsck are identically
zero. The convergence properties of the integral~2.4! for
large values of the entries of the matrices are mainly gu
anteed by the presence of the Gaussian weight, but not c
pletely. In fact, the flat directions contain nonintegrable s
gularities~with some analogy to the case of the Yang-Mi
integrals@56–58#! when some of the parametersak are too
negative. An exact bound in the space of the parameters$ak%
for the existence of Eq.~2.4! is presented in Eq.~3.5!. At
finite N the average eigenvalues^tm& of the matrixT are all
equal, because of theO(D) invariance of Eq.~2.4!. However
at largeN this may no longer be the case, and our aim is
see whether theO(D) rotational symmetry of the model ca
be spontaneously broken whenN→`. In this context, we
define also thedimensionality dof a configuration of matri-
ces$Xm% as the number of nonvanishing eigenvalues of
average correlation matrix̂T&. Of course, at finiteN one
always hasd5D. A possible way for probingO(D) sym-
metry breaking is to introduce an explicit symmetry break
term before taking the largeN limit. We do this by modifying

the Gaussian weight in Eq. ~2.4! e2N(mTr (Xm
2 )

→e2N(mlmTr (Xm
2 ), where the variables 0,l1,l2,•••

,lD maximally break theO(D) symmetry of the model~in
analogy to@79#!. After taking the largeN limit, we shall
remove the symmetry breaking term by taking the limitlm
→1, ;m. If ^tm&→0 for different directionsm then there is
spontaneous symmetry breaking of theO(D) symmetry.

We start with the simple case wherea25a35•••

5aD2150. The partition function reads

Z@a,L#5E )
m51

D

dXme2N Tr (
m51

D

lmXm
2
~ tr T!a1N2

3~detT!aDN2
. ~2.5!

It is convenient to introduce the matrixL5dmnlm , so that
the partition function can be written asZ@a,L#
5*)m51

D dXmexp(2N2S0) where the action is

S0@T,a,L#5tr ~LT!2a1log trT2aDlog detT. ~2.6!

The actionS0 depends on all the matricesXm only through
the matrixT: it is therefore natural to change the integrati
measure from the multimatrix variables$Xm% to the single-
matrix $Tmn%. WhenN2>D we have~see the Appendix for
details!

Z@a,L#5CN,DE
T>0

dT

3e2N2S[T,a,L] 1[(N22D21)/2]log(detT),

CN,D5
NDN2/2p (D/4)(2N22D11)

2D[N(N21)/2])
k51

D

GS N22k11

2 D ,

~2.7!

where the integral is over all theD3D real symmetric
positive-definite matrices, the measure isdT5)m>ndTmn
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and the Jacobian of the transformation is proportional
det(T)(N22D21)/2. The partition function now has the prope
form for the study of the largeN limit by means of the
saddle-point~Laplace! method for the asymptotic expansion
of multidimensional integrals. According to this method, t
main contribution to the integral comes from a small neig
borhood of the critical points, i.e. global minimum points
this case, of the action~we drop 1/N2 subleading terms!

S@T,a,L#[tr T L2a1log trT2ãDlog detT, ~2.8!

whereãD[aD11/2. The minima of the functionScan be at
the boundary of the integration region or at the interior of
In the latter case the necessary stationarity conditions
having a minimum are~saddle-point equations!

]

]Tm>n

S@T,a,L#5lmdmn2a1

dmn

tr T
2ãD~T21!nm50,

~2.9!

for all 1<n<m<D. Note that multiplying Eq.~2.9! by T

and taking the trace gives tr (TL)5a11DãD . Since
tr (TL)>0 we have to look for solutions of Eq.~2.9! in the
region of the parameters plane$a1 ,ãD%

a1>2DãD . ~2.10!

The condition~2.10! is actually a bound on the domain o
existence of the model at largeN. In fact as we have alread
announced, the integral in Eq.~2.7! exists only when the
parametersak satisfy suitable constraints, and Eq.~2.10! is
one of them. Namely, the integrand function in Eq.~2.7! does
not have singularities in the integration region, except p
haps at the integration boundaries. At large values of
entries ofT the integrand function is regular and integrab
for any value ofak , being bounded by the exponential fa
tor. However, the behavior close to the origin can give no
integrable singularities. This fact is evident when passing
the eigenvalues$tm% of T5OtOT. It yields

Z@a,L#;E
0

`

)
m51

D

dtmuD~ t !u E
O(D)

dO e2N2tr OtOTL

3S (
m51

D

tmD a1N2

3S )
m51

D

tmD aDN21(N22D21)/2

, ~2.11!

where D(t) is the Vandermonde determinant)m,n
D (tm

2tn), *O(D) is the integral overD3D orthogonal matrices,
with Haar measuredO, t is a diagonal matrix with diagona
elementst1 , . . . ,tD and ‘‘; ’’ means ‘‘up to a ~irrelevant!
proportionality constant.’’ From Eq.~2.11! we see that, first,
in order to have an integrable singularity at each of theD
21)-dimensional boundaries where only onetm50, it has to
be
4-3
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aDN21
N22D21

2
.21. ~2.12!

At large N this condition simplifies toãD5aD11/2>0.
Secondly, by rewriting the integral in Eq.~2.11! from Carte-
sian coordinates into multidimensional spherical coordina
one has that the radial integration exists if and only if

~D21!1
D~D21!

2
1N2a11S N22D21

2
1N2aDD

3D.21. ~2.13!

Note that there are no contributions from the integral o
the orthogonal group: in fact it is finite and regular int, since
it is an integral over a compact domain of an analytic fun
tion in its variables. At largeN the condition~2.13! is satis-

fied by a11( 1
2 1aD)D>0 which is precisely Eq.~2.10!. In

summary, the region of existence of the model at largeN is

D[$$ak%:a11DãD>0 and ãD>0%, ~2.14!

and it is depicted in Fig. 1. We point out that the model
large N is well defined and finite also on the boundaries
D, i.e. B1[$ãD50,a1.0% and B0[$a152DãD ,ãD
>0%.

If ãD.0 then we see immediately that the global minim
of S in Eq. ~2.8! cannot be on the boundary of the integrati
region. Otherwise the matrixT would have at least a zer
eigenvalue, that is detT50, and there Eq.~2.8! gives S→
1`. Therefore, in this case the critical points must be in
interior of the integration region. Let us then solve Eq.~2.9!
for ãD.0. It is straightforward to see that any matrixT
which is a solution of Eq.~2.9! has to be diagonal. Defining
T5dmntm Eq. ~2.9! reads

tm5ãDS lm2
a1

tr TD 21

, m51, . . . ,D. ~2.15!

FIG. 1. Phase diagram of the model in Eq.~2.5!. The shaded
region is where the partition function is divergent. The wiggle li
is the region where the model is one-dimensional. In the remain
region the model maintains the fullO(D) dimensionality.
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This system of algebraic equations can be solved ea
First, by summing Eq.~2.15! over m we get an equation for
x[tr T/a1,

g[
a1

ãD

5 (
m51

D
1

lmx21
, x[

tr T

a1
. ~2.16!

For any given realg andL Eq. ~2.16! is a rational algebraic
equation withD solutions in the variablex. All the solutions
are real. In fact, by writing the real and imaginary part ofx
5x81 ix9 and using the fact thatg,LPR, it yields x950.
Among suchD real solutions, we have to pick up the on
that maketm>0 becauseT has to be a positive semidefinit
matrix. From Eq.~2.15! we obtain that

x5
tr T

a1
.

1

l1
for a1.0,

x5
tr T

a1
,

1

lD
for a1,0, ~2.17!

which is satisfied by only one solution in each case. Nam
for a1.0 is g.0 and the solution is the largest possible o
~the one greater than 1/l1) whereas fora1,0 is g,0 and
the solution is the one withx,0 ~see Fig. 2!.

For any given point$a1 ,aD.0% in the interior of the
parameter spaceD, if we remove the symmetry breakin
terms by takinglm→1 ;m, then the~unique! solution of Eq.
~2.16! is x511D/g, i.e. trT5a11ãDD. Inserting this
value in Eq.~2.15! we read that in the largeN limit all the
eigenvalues are equal to^tm&5a1 /D1ãD . Hence, we con-
clude that in the region insideD with ãDÞ0 the model has
a phase with dimensionalityd5D and theO(D) symmetry
is preserved, as expected. In such a phase, the free en
F52(1/N2)logZ reads~with all lm51)

F5~a11DãD!@12 log~a11DãD!#1DãDlogD.
~2.18!

g

FIG. 2. Graphical representation of the RHS of Eq.~2.16! as a
function of x5tr T/a1. The circles indicate all the solutions. Th
black circles indicate the acceptable solutions.
4-4
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On the boundaryB0 of D wherea152DãD the solution of
Eqs. ~2.15! and ~2.16! gives T50. However, it would be
wrong to conclude that the dimensionality isd50 there, be-
cause actually in the limitãD→2a1 /D one hasT→0 with
d→D. That means that there is no spontaneous symm
breaking on the boundaryB0.

Let us consider now the final case of the boundaryB1

whereãD→01 first andlm→1 for all m afterwards. In such
a limit one must considera1.0 in order to stay within the
regionD, Eq. ~2.14!, and thereforeg→1`.2 According to
Eq. ~2.16! and Fig. 2, this fact may occur only whenx
→1/l1. From Eq.~2.15! we have

lim
ãD→01

tr T5
a1

l1
and tm5

a1

l1
dm1 . ~2.19!

In other words, only one eigenvalue of the matrixT is not
zero in this limit. Removing the symmetry breaking term
settingl1→1 leads to a dimensionalityd51, actually^tm&
5a1dm1. That concludes our proof that the model in E
~2.5! has a maximal spontaneous symmetry breaking
O(D) symmetry wheneverãD→01.

It is interesting to notice that we could have had cons
ered directly the caseãD50 ~and not just the limitãD
→01), because there the model at largeN is well defined. In
fact, let ãD50 from the very beginning in Eq.~2.8!. Then,
as thelm’s are all different each other,S cannot have any
minima in the interior of the integration domain@in other
words, Eq.~2.9! do not admit any solution#. Hence, the glo-
bal minimum must be on the boundaries of the integrat
region, where sometm is equal to zero. Analyzing by inspec
tions all the hyperplanes which constitute the integrat
boundary, one finds that the global minimum is a point on
line t25t35•••5tD ,t1.0 and it is precisely at t1
5a1 /l1. Substituting this value in Eq.~2.8! gives the free
energy for the phaseB1

F5a1S 12 log
a1

l1
D . ~2.20!

This expression~for l51) matches continuously with th
free energy in the unbroken phase, Eq.~2.18! for ãD→01.
By taking derivatives of the free energies with respect tolm
we can compute the correlation functions, in particular
average of the eigenvalues, and the susceptibility

^tm&5
]F
]lm

U
l51

,

2In principle it would be possible to take the same limit witha1

,0 but then one necessarily would end up in the origin of

coordinatesa15ãD50 where the system is purely Gaussian.
08502
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xmn5
]2F

]lm]ln
U

l51

52N2^tmtn&conn.

~2.21!

In the broken phaseB1, we get from Eqs.~2.20! and ~2.21!

^tm&5a1dm1 , xmn52a1d1md1n , ~2.22!

which is of course consistent with Eq.~2.19!. The computa-
tion of the same quantities in the un-broken phase requ
the knowledge of an expression of the free energy as a fu
tion of lm @i.e. Eq. ~2.18! is not useful for that#. A general
analytic expression seems not so easy to get since it n
the analytic solutions of the algebraic equation~2.16! in a
closed form, which is known to be an impossible task wh
the degree of the equation is large. However, we can proc
as follows. We already know the pattern of symmetry bre
ing from Eq.~2.19!. Hence we can restrict to the case whe
l1,l25•••5lD without losing in generality. In this case
Eq. ~2.16! is a second order algebraic equation which can
solved explicitly. We obtain then the free energy, its first a
second derivatives with respect tolm and in the limit lm
→1 they are

^tm&5
a1

D
1ãD ,

xmn5
1

ãDD2 S a1

D
1ãDD

3H 2a1~D21!2ãDD2 if m5n,

a1 if mÞn.
~2.23!

Note that the susceptibility is divergent as;1/ãD when
ãD→0. The singular behavior of the susceptibility is again
signal of a criticality atãD50, where the rotational symme
try is actually maximally broken down to one dimension.

III. GENERALIZATION

Let us consider now the more general case Eq.~2.4!
where all the symmetric functions are allowed~and not only
c1 andcD , i.e. the trace and the determinant, respective!.
Again introducing the symmetry breaking termLmn

5lmdmn , 0,l1,l2,•••,lD , and following the same
path of reasoning as in the previous paragraph, we have

Z@a,L#5CN,DE
T>0

dT e2N2SN[T,a,L] , ~3.1!

where the generalized action at finiteN is now

SN@T,a,L#[tr TL2 (
k51

D

ãklogck1
D11

2N2
logcD ,

~3.2!

and ãk[ak1 1
2 dkD . Let us first determine the region of th

parameter space$ãk% where the partition function Eq.~3.1!
e

4-5
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exists. To that aim it is worthwhile to pass to the eigenvalu
t1 ,t2 , . . . ,tD of T in the integral~3.1!, as we did in Eq.
~2.11!, thus obtaining aD-dimensional integral. The condi
tion which prevents there being a singularity at the po
where all thetm’s are zero is

~D21!1
D~D21!

2
1N2S (

k51

D

kãk2
D~D11!

2N2 D .21

~3.3!

as one can see by passing to high-dimensional p
coordinates.3 More generally, the integrand function does n
have singularities on thep-dimensional hyperplanes wher
D2p of the variablestm’s are zero if and only if

~D2p21!1
~D2p!~D2p21!

2
1N2S (

k5p11

D

~k2p!ãk

2
~D2p!~D11!

2N2 D .21, ~3.4!

for 0<p<D21. In the largeN limit, the conditions in Eq.
~3.4! relax to

(
k5p11

D

~k2p!ãk>0, p50, . . . ,D21. ~3.5!

In particular note thatãD>0. We callD the region in the
parameter space$ãk% which is determined by the condition
in Eq. ~3.5!, and from now on we shall consider only valu
of the parameters$ãk% which belong toD. Obviously, this is
a natural generalization of the analogous region obtaine
Eq. ~2.14!.

The generalized action Eq.~3.2! at largeN reads

S@T,a,L#[tr TL2 (
k51

D

ãklogck , ~3.6!

and in the same limit the main contribution to the partiti
function ~3.1! comes from the global minima ofS. Such
minima can be in the interior of the integration region or
the boundaries of it. In the former case, the saddle-p
equations are

]

]Tm>n

S@T,a,L#5lmdmn2 (
k51

D

ãk

1

ck

]ck

]Tm>n
50.

~3.7!

Any matrix T which is a solution of Eq.~3.7! must be diag-
onal. In fact, taking the commutator of Eq.~3.7! with T
yields @L,T#50 becauseT commutes with any other func
tion of T. Writing the commutator in components reads (lm

3The first term of Eq.~3.3! is the contribution from the radial par
of the polar measure, the second is from the Vandermonde, an
remaining terms are from the action. The integral over the ortho
nal group does not generate any singularity.
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2ln)Tmn50, i.e. T is diagonal. Thus, lettingT5dmntm , the
saddle-point equations are equivalent to the following sys
of nonlinear algebraic equations:

lm5 (
k51

D

ãk

1

ck

]ck

]tm
, m51, . . . ,D. ~3.8!

The case where the absolute minima of the actionS are in-
stead on the boundary of the integration region can oc
only if some parametersãk are identically zero. In fact, if all
the parametersãk are different from zero, then the action
positively divergent when at least onetm is zero, and thus
there cannot be any minima on the boundary.

For the moment, let us restrict the discussion to the c
where all the parametersãk are strictly positive. We call
D 1,D such a region of the parameter space. It is straig
forward then to show that inD 1 the system in Eq.~3.8! has
only one real positive solution@that is a set of $t1
.0, . . .tD.0% which satisfies Eq.~3.8!#, and it is actually
the single global minimum of Eq.~3.6!. In fact, the linear
combination trTL5(mlmtm and all the elementary symme
ric functions ck are multilinear (k-affine! functions in the
variablest1 , . . . ,tD , as one can directly see from the de
nition ~2.2!. As such they are convex functions. Also th
function 2 log(x) is convex forx.0, and therefore the ac
tion S in Eq. ~3.6! is a convex function, being a finite linea
combination with positive coefficients of convex function
Moreover, we show thatS is also bounded from below. In
fact, we can prove it by using the following inequality:

(
k51

D

ãklogck<(
k51

D

kãklogc1 . ~3.9!

The proof of the inequality~3.9! is by induction. ForD51 it
is an identity. Let us suppose that Eq.~3.9! is valid for D
21. Therefore we have

(
k51

D

ãklogck< (
k51

D21

kãklogc1

1ãDlogS cD

cD21

cD21

cD22
•••

c1

c0
D

< (
k51

D21

kãklogc11ãDlogS c1

c0
D D

5 (
k51

D

kãklogc1 , ~3.10!

where we used repeatedly Newton’s inequalitiesck
2

>ck21ck11 for 1<k<D21, in the form ck11 /ck

<ck /ck21, and the fact thatãD is positive inD. By apply-
ing the inequality~3.9! to the effective action Eq.~3.6! we
get

the
-

4-6
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S@T,a,L#>l1c12 (
k51

D

kãklogc1 , ~3.11!

because trTL>l1(m51
D tm . Since the function ax

2b log(x)>b@12log(b/a)# for any a,b,x real and positive,
we finally obtain a lower bound for the action

S@T,a,L#>A S 12 log
A
l1

D , ~3.12!

whereA[(k51
D kãk is positive inD, as follows from Eq.

~3.5! with p50.4

All the above shows that when$ãk%PD 1 the actionS is
continuous, lower bounded and convex in the integration
gion. From the additional observation that the action is l
early divergent when anytm is large and logarithmically di-
vergent when anytm is close to zero we conclude tha
necessarily the action has one and only one global minim
and it must be in the regiontm.0, ;m. We call such a
minimum t̄[$ t̄ 1 , . . . ,t̄ D%, t̄ m.0.

The largeN limit of the model is controlled by the behav
ior of t̄ as a function ofãk . In the following we enumerate
a series of properties oft̄ . To that aim is worthwhile to recal
two useful properties of the elementary symmetric functio
@90–92#. First, thek-th order symmetric functionck can al-
ways be decomposed as the sum of atm-dependent part and
a tm-independent part:

ck5tmck21
(m) 1ck

(m) , ~3.13!

where we definedck
(m)[cku tm50, i.e. the k-th elementary

symmetric function of$t1 ,t2 , . . . ,tD% omitting tm . Note that
]mck5ck21

(m) . Second, the following equality holds:

(
m51

D

tmck
(m)5ck11 , k50, . . . ,D21. ~3.14!

Let us see now what consequences these properties ha
t̄ .

~1! The solutiont̄ of Eq. ~3.8! is upper bounded by

t̄ mlm5 (
k51

D

ãk

t̄ mck21
(m)

ck
<(

k51

D

ãk , ;m51, . . . ,D,

because from Eq.~3.13! ck>tmck21
(m) .

~2! The solutiont̄ of Eq. ~3.8! is lower bounded by

t̄ m5
1

lm
(
k51

D

ãk

t̄ mck21
(m)

ck
>

ãD

lm
~3.15!

4Note that the lower bound in Eq.~3.12! is actually valid every-

where inD, and not only for$ãk%PD 1 as our proof does not rely
on such a restrictive hypothesis.
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because all the terms in the sum are non-negative
t̄ mcD21

m /cD51. ThereforeãD has to go to zero fortm→0.

Note that this condition means that whenãD.0 there cannot
be any spontaneous symmetry breaking at all, since non
the eigenvalues is vanishing. In other words, if there is
phase transition, it must be on the planeãD50.

~3! The minimat̄ m are in general monotonic with respe
to m. Subtracting two equations of the system~3.8! gives

lm2ln5~ t̄ n2 t̄ m!(
k52

D

ãk

ck22
(m,n)

ck
, ~3.16!

and then the orderingl1,l2,•••,lD implies t̄ 1. t̄ 2

.•••. t̄ D . On the other hand, from Eq.~3.16! follows also
t̄ m5 t̄ n if and only if lm5ln i.e. when the symmetry break
ing terms are removed. We deduce that at any point of
regionD 1, the dimensionality of the system isd5D and the
original O(D) symmetry is fully preserved. In this case w
obtain ~with all lm51)

^tm&5
A
D

,

F5A~12 logA!2 (
k51

D

ãklogF 1

Dk S D

k D G , ~3.17!

with A[(k51
D kãk .

~4! Let us consider now the limitãD→0, while keeping
all the otherãk,D fixed. In this limit the free energy has t
be continuous either there is a symmetry breaking or is n
Its limiting value is given by Eq.~3.17! just with ãD set to
zero everywhere, i.e.

FD5A8~12 logA8!2 (
k51

D21

ãklogF 1

Dk S D

k D G , ~3.18!

with A8[(k51
D21kãk . If there is symmetry breaking thent̄ D

→0 ~it is the smallest eigenvalue! but no othert̄ m can go to
zero. This is because if there are at least twot̄ D21 , t̄ D→0
then cD21→0 and Eq.~3.8! would be inconsistent in the
limit ~LHS is finite whereas RHS is infinite!. The free energy
for a (D21)-dimensional broken phase~with aD50) would
be

FD215A8~12 logA8!

2 (
k51

D21

ãklogF 1

~D21!k S D21

k D G . ~3.19!

In generalFD<FD21 with the equality only forD52, or
D.2 andã25•••5ãD2150. We conclude that there is no
spontaneous symmetry breaking whenãD→0, unless for
D52, or D.2 and ã25•••5ãD2150 ~which is actually
the case we considered in Sec. II!.
4-7
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It remains to consider the ‘‘wedge’’ regionD/D 1 of the
phase space, where some of theãk are negative. In this cas
the actionS is no longer a convex function, but it still pos
sible to prove that it has only one global minimum. T
proof goes as follows. First of all,S is still lower bounded by
the same bound as in Eq.~3.12!, and it is divergent towards
1` at the boundaries of the integration region, hence it m
have at least one local minimum. Secondly, ifS has more
than one local minimum then the system of equations~3.8!
would have multiple solutionst̄ m for a set of values of the
parameters$ãk%. We know already that when$ãk% is in D 1

the solution is unique, therefore there must exists a va

$ãk8% of the parameters where multiple solutions merge
gether into the unique one. This implies that the Jacob
det] t̄ (ã)/]ã has to be singular or zero for that particul
value ofã8. However we show now that this is not possib
In fact, let us write the system of equations~3.8! in the more
compact form:

l5G@ t~ ã !#•ã ~3.20!

where l5(l1 , . . . ,lD), Gmk@ t#[ck21
(m) /ck and ã

5(ã1 , . . . ,ãD). Equation~3.20! implicitly defines the vec-
tor function t(ã) as a function ofã. We take the total de-
rivative of the componentm of Eq. ~3.20! with respect toã i
and compute the determinant with respect to the indexesm,i
of the obtained expression. One has

detms

„G@ t~ ã !#•ã…m
]ts

dets i

]ts~ã !

]ã i

5~21!DdetG@ t~ ã !#.

~3.21!

The first determinant on the LHS of Eq.~3.21! is regular and
not zero at$ã8%, otherwise Eq.~3.8! would not admit any
implicit solution but we know it must exist~because of the
existence of a global minimum!. The determinant on the
RHS is detG5D(t)/) j 51

D cj , where D(t) is the Vander-
monde determinant. This expression is finite and it zero o
if at least two eigenvaluestm ,tn are equal each other an
then, by means of Eq.~3.8!, it must belm5ln which is not
possible by hypothesis. This ends the proof that for a
given $ãk% in the ‘‘wedge’’ regions the action has only on
local minimum in the interior ofD, which is then also a
global one. The qualitative behavior of this critical point as
function of the parametersã goes as for the case inD 1.
After removing the symmetry breaking termsl→1, the
critical point becomes completely symmetric in its variab
and it corresponds to an unbroken phase withO(D) symme-
try.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have introduced a multimatrix mod
where the Hermitian matricesXm are interacting through al
the elementary symmetric functions of the correlation ma
Tmn5Tr (XmXn)/N. The main reason for the choice of suc
08502
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a model relies in its interesting features: first, it is manifes
O(D)3SU(N) invariant, and it allows the study of the issu
of the spontaneous symmetry breaking ofO(D) symmetry in
the large-N limit. Secondly, the action of the model is rea
positive definite and it does not contain any Grassmann v
ables. This is most useful for understanding what we c
actually expect from a model without a complex action
rapidly fluctuating potentials. Understanding the effect o
complex action, which is a notoriously difficult problem, r
quires also realizing first what could happen when it is n
there. Third, it allows a number of possible ‘‘degenerate c
figurations’’ in the matrix integration measure and our aim
to understand their role in a scenario of spontaneous sym
try breaking. Finally, the model is considerably simple a
can be solved analytically, being the interaction among
matrices only through theO(D) ‘‘spatial’’ symmetry and not
through the SU(N) ‘‘internal’’ symmetry ~for which there is
just a Gaussian weight!. We introduced a number of param
eters which allows to tune the relative weight of the elem
tary symmetric functions of the model, and then we focus
our attention on the phases of the model in the space of
parameters whenN is large. This has been done in two step
first in Sec. II by studying in full detail a simple case whe
only two symmetric functions are ‘‘switched on’’~the trace
and the determinant!, and afterwards in Sec. III by conside
ing the more general case where all the symmetric functi
are present at the same time. In both cases we found tha
O(D) symmetry is broken only in the limitaD→21/2 for
D52 or for D.2 anda25•••5aD2150. In these cases
the dimensionality of the model collapses down to one
mension.

The qualitative explanation of such a behavior is simp
Degenerate configurations of the matrices such that the
relation functionTmn has zero eigenvalues, dominate the m
trix integration in the largeN limit, when the parameters o
the model are tuned to a critical value. In particular the p
rameteraD ~which is coupled to the determinant, i.e. th
elementary symmetric function most sensitive to ‘‘degen
ate’’ configurations! is to be tuned to the critical valueaD
521/2 for compensating an analogous ‘‘centrifugal’’ ter
coming from the Jacobian~see the Appendix!. At that precise
value of aD521/2, the measure collapse down to one
mensional configurations, quite independently from the pr
ence of other symmetric functions but the trace. This is m
evident from the explicit solutions in Sec. II.

The symmetry breaking mechanism of the model in t
paper is therefore due to the existence of directions in
matrix integral along which the measure is identically ze
These directions are where the matrices are linearly dep
dent, with different degree of degeneracy. We learned a
that the reality of the action does not seem to stop a gen
Hermitian multimatrix models withO(D)3SU(N) symme-
try from having a spontaneous symmetry breaking ofO(D)
symmetry whenN is large. Of course this does not preve
other real-action multimatrix models having different pa
terns of spontaneous symmetry breaking, nor does not
anything about the role played by a possible complex term
the action. For all these reasons our findings do not con
dict the analysis of@69–74,77,82,83#. It would be interesting
4-8
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to carry out the analysis contained in this paper to an
tended version of the model where the coupling constanã
are allowed to be complex numbers. The action would
complex then, and a different pattern of symmetry break
seems to be possible.

There are extensions of the model where the matrices
not Hermitian but real symmetric or symplectic. The on
changes are in slightly different factors in the Jacobian~see
the Appendix! and they do not affect the largeN results of
this paper which still would hold in those generalized cas
We conclude by observing that the reason why we can s
this multimatrix model is that the interaction among the m
trices is only through the correlation matrixTmn . For the rest
the matrices are actually not interacting with the full intern
SU(N) symmetry group, the interaction being just a Gau
ian factor. In fact adding a quartic or higher order term to
action ~i.e. terms like TrXmXnXmXn and TrXm

2 Xn
2) would

probably change drastically this scenario, but it would a
be more difficult to solve, as happens for multimatrix mod
like the Yang-Mills integrals.
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APPENDIX

For the sake of readability, in this appendix we comp
the Jacobian of the transformation in Eq.~2.7!. It is a well-
known result which has appeared several times in the lit
ture, e.g.@85–89#. The technique we use here is similar
the one in@85#. The integral in Eq.~2.4! is of the form

I[E )
m51

D

dXm f ~T@X# ! ~A1!

wheref is a real function and theU(N)-invariant integration
measure for each Hermitian matrix is dX
5) i 51

N dXii ) i . jdReXi j dImXi j as usual. First, by inserting
the definition Eq.~2.1! of the matrixT in the formula~A1!
by means of Diracd functions, we can equivalently write

I 5E
T>0

dT f~T!J~T!,
c

e

08502
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J~T![E )
m51

D

dXm )
a>b

D

dS Tab2
1

N
Tr XaXbD .

The JacobianJ(T) can be evaluated by using the integr
representation of thed function

J~T!5E )
m51

D

dXm )
a>b

D E dVab

2p

3eiVab„Tab2(1/N)Tr XaXb…

5 C̃N,DE dV
ei tr VT

det~ iV!N2/2

C̃N,D5
NDN2/2p (D/2)(N22D21)

2D[N(N21)/211]
, ~A2!

where in the last equation we performed the Gaussian i
gral over the matricesXm , and we collected the elemen
Vmn into a real symmetric matrixV ~giving an additional
factor from the measure!. The real-symmetric matrixT can
be diagonalized by an orthogonal matrixO, i.e. T5OtOT

where t is a diagonal matrix, with diagonal elementstm
>0. We change the matrix variablesV→W where W
5OTVO and we havedW5dV, det(iW)5det(iV) and

J~T!5 C̃N,DE dW
ei tr Wt

det~ iW!N2/2

5 C̃N,D~detT!(N22D21)/2E dW
ei tr W

@detiW#N2/2
~A3!

where in the last equation we apply the transformat
Wmn→Wmn /Atmtn. The remainingT-independent integral is
completely factorized and it is equal t
2DpD(D13)/4/)k51

D G„(N22k11)/2…. Finally we obtain

J~T!5
NDN2/2p (D/4)(2N22D11)

2D[N(N21)/2])
k51

D

GS N22k11

2 D
3~detT!(N22D21)/2. ~A4!

The results in this appendix are valid forN2>D, which is
fine for the largeN analysis of this paper.
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