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Polar perturbations of self-gravitating supermassive global monopoles

Hiroshi Watabe* and Takashi Torii†

Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
~Received 13 June 2002; published 29 October 2002!

Spontaneous global symmetry breaking ofO(3) scalar field gives rise to point-like topological defects,
global monopoles. By taking into account self-gravity, the qualitative feature of the global monopole solutions
depends on the vacuum expectation valuev of the scalar field. Whenv,A1/8p, there are global monopole
solutions which have a deficit solid angle defined at infinity. WhenA1/8p<v,A3/8p, there are global
monopole solutions with the cosmological horizon, which we call the supermassive global monopole. When
v>A3/8p, there is no nontrivial solution. It was shown that all of these solutions are stable against the
spherical perturbations. In addition to the global monopole solutions, the de Sitter solutions exist for any value
of v. They are stable against the spherical perturbations whenv<A3/8p, while unstable forv.A3/8p. We
study polar perturbations of these solutions and find that all self-gravitating global monopoles are stable even
against polar perturbations, independently of the existence of the cosmological horizon, while the de Sitter
solutions are always unstable.
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I. INTRODUCTION

Phase transitions in the early universe are caused by
symmetry breaking leading to a manifold of degener
vacua with nontrivial topology and giving rise to topologic
defects. The defects are classified by the topology of
vacua such into domain walls, cosmic strings and mo
poles. If the gauge field is involved in the spontaneous sy
metry breaking, the defects are gauged. On the other h
when the symmetry is global, the emerging defects are ca
global defects.

In this paper, we shed light on global monopoles. A
though energy of the gauge monopoles is finite, the glo
monopoles have divergent energy because of the long ta
the field. This divergence has to be removed by cutting of
a certain distance. This procedure is not necessarily artifi
because another defect which may exist near the original
cancels the divergence. This secondary defect is not only
monopole, but also can be a domain wall or a cosmic str

Global monopoles have been an interesting subject in
mology. They were thought of as the seeds of structure
mation or inflation. By taking into account the self-gravity
the global monopoles, it can give rise to a deficit solid an
@1#, which would affect cosmological data. It, however, m
be counteracted when the universe has a cosmological
stant.

Vilenkin and Linde independently pointed out that top
logical defects can cause inflation@2,3#. When the vacuum
expectation value~VEV! is larger than a certain critica
value, the scalar field stays on the top of the potential a
global symmetry breaking. In this case, the space would
pand exponentially with time. This inflation model is calle
topological inflation. Topological inflation does not suff
from the initial value problem, unlike the new or hybrid in
flation. Sakai et al.@4# found the critical vacuum expectatio
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value ~VEV! is 0.33M P numerically.
Recently new types of the self-gravitating global mon

pole solutions were discovered numerically@5#. As the VEV
of the O(3) scalar fieldv increases, the deficit solid angl
also gets large and it becomes 4p when v5vcriªA1/8p.
Beyond this critical value there is no ordinary monopole s
lution, but there appears a new type of solution in the para
eter rangevcri,v,vmaxªA3/8p. This has a cosmologica
horizon atr 5Rc and gives a natural cutoff scale. The a
pearance of the new solution is similar to the supermas
string solution@6#, which has a deficit angle larger than 2p.
In this sense, we will call this solution the supermass
global monopole in contrast to the ordinary global monopo

From gravitational theoretical interest, the black ho
counterpart of the global monopole is also discussed. Mai
investigated the scalar hair of the black holes in the sa
system and showed their existence domains as a functio
the radius of the event horizon@7#. Nucamendi and Sudarsk
discussed the definition of the Arnowitt-Deser-Misn
~ADM ! mass in spacetime with deficit solid angle and fou
that it becomes negative for small black holes@8#.

One of the most important issues of these kinds of i
lated objects is stability. In the ordinary monopole case wi
out gravity, if Derrick’s no-go theorem@9# could be applied,
they would be unstable towards radial rescaling of the fi
configuration. This is, however, not the case due to the
verging energy of the solutions. It was demonstrated that
ordinary monopole solutions are stable against spherical
turbations. As for the non-spherical perturbations, there w
some debate. Goldhaber@10# investigated the polar perturba
tions and found that the energy functional is the same fo
as that of the sine-Gordon equation under some conditio
Hence there would be a zero mode leading a north-poin
teardrop shape for the monopole mass density and the
would be untied. Rhie and Bennett@11#, however, pointed
out that such instability is just the artificial fixing of th
monopole core. If the monopole is free to move, which is
natural situation of the isolated system, the monopole can
become a teardrop shape and is stable. This was actu
©2002 The American Physical Society19-1
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confirmed by numerical simulations@12,13#. Bennett and
Rhie @14# also pointed out by numerical calculation with 2
code that a monopole and antimonopole pair would colla
to a string through the unwinding process when these c
are artificiality fixed. If these cores of the pair are free
move, such an unwinding process does not occur.

It is expected that the self-gravitating global monopo
with v,vcri ~i.e., without cosmological horizon! have the
same stability properties as a non-gravitating one. Stab
may change, however, for the supermassive monopole s
tions (v.vcri), because the domain of communication, th
is, the boundary condition, is different due to the cosmolo
cal horizon. Maison and Liebling investigated the spheri
perturbations of the supermassive monopole solution@15#.
They make use of de Sitter solutions, which are trivial so
tions such that the scalar field stays at the top of the pote
barrier and exists for any value of the VEV of the sca
field. By their analysis the stability change of the de Sit
solutions occurs atv5vmax, beyond which the solutions ar
stable, while unstable below that. And the supermass
monopole solutions emerge just at this value if the VE
decreases from a larger value. This kind of behavior can
seen in a variety of systems in nature and explained by u
catastrophe theory. The supermassive monopole solution
herit the stability from the de Sitter solution withv.vmax.
As a result, they are stable against the spherical perturba
even if they have a cosmological horizon.

Then, are the supermassive monopole solutions re
stable? We have to examine this question carefully. Thi
because the polar perturbation pushes the scalar field
figuration of the de Sitter solution to one direction in t
internal space from the top of the potential barrier. In t
anti–de Sitter background, such a solution can be stable e
in the tachyonic situation if the effective mass of the sca
field satisfies the Breitenlohner-Freedman bound@16#. In the
de Sitter case, however, it is easy to imagine the scalar
rolls down to its VEV, i.e., the solution is unstable. Henc
the supermassive monopole solutions may be unst
against the polar perturbations. To settle this issue is the m
purpose of this paper.

This paper is organized as follows. In Sec. II we revie
the static solutions and their spherical stability. In Sec.
we show the instability of the de Sitter solution against
polar perturbations. In Sec. IV, we formulate the polar p
turbations of theO(3) scalar field. In Sec. V, we show th
stability of the self-gravitating global monopoles. Throug
out this paper, we use the units\5c5G51.

II. STATIC SOLUTIONS

In this section, we briefly review the self-gravitating gl
bal monopole solutions@1,15#. The theory of a scalar field
with spontaneously broken internalO(3) symmetry, mini-
mally coupled to gravity, is described by the action

S5E d4xA2gF R

16p
2

1

2
]mFa]mFa2

l

4
~FaFa2v2!2G ,

~1!
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where R is the Ricci scalar of the spacetime andFa (a
51,2,3) is the triplet scalar field.l and v are the self-
coupling constant and the VEV of the scalar field, resp
tively. The energy momentum tensor is

Tmn5]mFa]nFa2gmnF1

2
]rFa]rFa1

l

4
~F22v2!2G .

~2!

For the static solution with unit winding number, we ado
the so-called hedgehog ansatz

Fa5h~r !
xa

r
, ~3!

wherexa are the Cartesian coordinates.
We shall consider the static spherically symmetric spa

time and adopt a Schwarzschild type metric

ds252 f ~r !e22d(r )dt21
1

f ~r !
dr21r 2~du21sin2udf2!,

~4!

where

f ~r !512
2m~r !

r
. ~5!

Under theseAnsätze, we get these field equations

m854pr 2F1

2
f h8 21

h2

r 2
1

l

4
~h22v2!2G , ~6!

d8524prh8 2, ~7!

1

r 2e2d
@r 2e2d f h8#82

2h

r 2
5l~h22v2!h, ~8!

where a prime denotes a derivative with respect to the ra
coordinate.

These equations are integrated with suitable bound
conditions. At the center the spacetime should be regular
expanding these equations, we findh8(0) can be regarded a
a free parameter, which is determined by the other bound
condition atr→` ~for the ordinary global monopole case! or
r 5Rc ~for the supermassive global monopole case!. For the
ordinary global monopole solution the spacetime approac
asymptotically flat spacetime~which implies that the curva-
ture vanishes! with deficit solid anglea

f→12a2
2M

r
1OS 1

r 2D , ~9!

d→OS 1

r 4D , ~10!

h→v1OS 1

r 2D . ~11!
9-2
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On the other hand, we impose the existence of the reg
cosmological horizon atr 5Rc for the supermassive globa
monopole.

There is a trivial de Sitter solutionh(r )[0, f (r )51
2r 2/Rc

2 , andd(r )[0. This solution has a cosmological ho
rizon at r 5Rc5A3/Le f f, where the effective cosmologica
constant isLe f fª2plv4. These solutions exist for an
value ofv.

The ordinary global monopole solutions exist for 0,v
,vcri . The configuration of the scalar field is shown in F
1 (v50.15). We setl50.1 ~which is adopted in Ref.@5#!
without loss of generality throughout this paper sincel can
be scaled out by introducing new variablesr̄ªl1/2vr , m̄

ªl1/2vm andF̄a
ªFa/v. The deficit solid anglea becomes

large asa54p(8pv2), anda54p for v5vcri , which im-
plies the disappearance of the asymptotic region.

Beyond the critical value the supermassive global mo
pole solutions appear forvcri,v,vmax @5#. This has a cos-
mological horizon. If A2/8p,v,vmax, the scalar field
shows the oscillating behavior approaching its VEV beyo
the cosmological horizon~see Fig. 1!. Asymptotically it be-
comes the de Sitter spacetime@15#. At v5vmax the solution
coincides continuously~at least in the domain of the commu
nications! with the de Sitter solution. This can be seen in t
behavior of the parameterh8(0) as shown in Fig. 2.

Maison and Liebling investigated the stability of the
Sitter solutions against spherical~both in spacetime and in
internal space! perturbations and found that stability chang
at v5vmax. By this result they expected that the stable pro
erty of the de Sitter solution withv.vmax is transferred to
the supermassive global monopole solutions. This kind
study was performed by using catastrophe theory and app
for the black hole spacetimes@17,18#. However, are the su

FIG. 1. The field configurations~above! and the metric function
f (r ) ~below! of the global monopole solutions forv50.15 ~dashed
line!, 0.25~solid line!, 0.30~dot-dashed line! and 0.34~dotted line!.
The solutions except forv50.15 have a cosmological horizon. Th
solutions forv.A2/8p'0.28 show oscillating behavior.
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permassive global monopoles really stable even for the n
spherical perturbations? The O~3! field which constructs the
de Sitter solution is always on the top of the Mexican h
potential, which seems unstable. It is easily imagined that
scalar field rolls down to their VEV by just pushing it in on
direction in the internal space. We investigate this problem
the next section.

III. INSTABILITY OF de SITTER SOLUTIONS

Now, we investigate time dependent perturbations of
de Sitter solutions which are non-spherical in the inter
space. We perturb one component of theO(3) scalar field

F1~ t,r ![F2~ t,r ![0, F3~ t,r !5eistz~r !. ~12!

Note that the metric functions are not affected by this pert
bation since the back reaction is second order, and we
consider the de Sitter spacetime as a background. If the
turbation equation allows a solution with imaginarys, the
mode function evolves exponentially with time. That ind
cates instability of the de Sitter solution.

The perturbation equation is written as

1

r 2
@r 2f z8#1lv2z52 f 21s2z. ~13!

Adopting the tortoise coordinater * ,

dr

dr*
5 f , ~14!

and a new variablez̄5r z, we can rewrite it in the Schro¨-
dinger equation,

FIG. 2. The diagram ofv versush8 at r 50. The solid and the
dashed line represent the monopole and the de Sitter solutions
spectively. The stability here means against the spherical pertu
tions. This figure says that the monopole solutions and de S
solution withv,vmax are stable against the spherical perturbatio
vmax is the bifurcation point which connects the stable de Sitter,
global monopole, and the unstable de Sitter solutions.
9-3
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HIROSHI WATABE AND TAKASHI TORII PHYSICAL REVIEW D 66, 085019 ~2002!
2
d2z̄

dr
*
2

1U~r !z̄5s2z̄. ~15!

U(r ) is the potential function of the linear equation

U~r !52 f lv2S 11
4

3
pv2D . ~16!

The potential function never becomes positive inside the c
mological horizon. This is exactly the same form as E
~37!–~39! in Ref. @19# in the de Sitter case. In that paper
was shown that these equations always have at lease
negative eigenmode for any value ofl and v. Hence, it is
concluded that all the de Sitter solutions which we consi
here are unstable.

IV. POLAR PERTURBATION OF THE SCALAR FIELD

Since the de Sitter solutions have polar instabilities,
self-gravitating global monopoles may inherit them. Hen
we study the polar perturbation of the global monopoles
general relativity carefully in this section and the followin
section.

The polar deformation of theO(3) scalar field was pro-
posed by Goldhaber@10#. He introduced a new coordinat
yª ln tan(u/2) to discuss the invariance of the energy und
the deformation. Achu´carro and Urrestilla improved his no
tation @13#,

F15H~ t,r ,u!sinū~ t,r ,u!cosf,

F25H~ t,r ,u!sinū~ t,r ,u!sinf,

F35H~ t,r ,u!cosū~ t,r ,u!, ~17!

and

tan~ ū/2!5ey1j(t,r ,u). ~18!

ū is the polar component ofFa and H(t,r ,u)5h(r )
1dh(t,r ,u). When j50, i.e., ū5u and dh5dh(t,r ) the
global monopole is spherically symmetric, while it becom
a ‘‘string’’ when j→`. The energy of the static globa
monopole is expressed with a new coordinatey,

E5E drdydf~r11r2!, ~19!

where

r15
H2

2 Fsin2ū1S ]ū

]y
D 2

1
r 2

cosh2y
S ]ū

]r
D 2G , ~20!

r25
1

2 S ]H

]y D 2

1
r 2

2cosh2y
F S ]H

]r D 2

1
1

2
~H22v2!2G .

~21!
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In the far region from the monopole core, the terms]H/]r
and ]H/]y can be disregarded. Goldhaber pointed out t
the first two terms inr1 are in the same form as the energy
a sine-Gordon soliton, which implies that the energy is
variant under translation of coordinatey ~or j). Thus, he
concluded that the global monopoles have instability if th
is a deviation in whichH5v and ]ū/]r 50 are held. Rhie
and Bennett proved, however, that such a collapse does
occur, if the monopole core is free to move@11#.

We assumej anddh are small. Therefore we take

ū5u1j sinu. ~22!

Now we have two perturbative functionsj anddh for the
O(3) scalar field. The simplest polar perturbation assum
that dh50 andj is independent ofu. However, this is in-
consistent. In a non-relativistic case, such perturbation m
vanish through a perturbation equation. Ifj has u depen-
dence, we will get

]uj12j cotu50. ~23!

The solution of this equation isj}(sinu)22, which is un-
physical becausej violates the perturbative approximatio
around the axis.

The same feature appears in the case that onlydh is con-
sidered. Consequently, we can conclude that perturba
only with eitherj or dh does not occur when the self-gravit
is set to zero. We will find that this is true also in the se
gravitating case.

Now, we assumej is independent ofu. Since we will
examine thel 51 Legendre type perturbation below, we ta
dh5h(r )cosueist. The perturbed scalar field is

F15~h1h cosueist!sinu cosf1hjeist sinu cosu cosf,

F25~h1h cosueist!sinu sinf1hjeist sinu cosu sinf,

F35~h1h cosueist!cosu2hjeist sin2u. ~24!

Let us consider the combination

p~r !5hj1h, q~r !5hj ~25!

in Eq. ~24!. Puttingp(r )[0, we recover the polar perturba
tion of the de Sitter solution

F1[F2[0, F352q~r !eist ~26!

which is discussed in Sec. III.

V. POLAR PERTURBATION OF THE GLOBAL
MONOPOLE

Achúcarro and Urrestilla studied stability of the glob
monopoles against polar perturbation with all orders@13# and
found that the global monopoles are stable. Here we ext
their analysis to the self-gravitating cases.

For the global monopole solutions, the matter field is no
zero. So the first order perturbations of the matter fi
9-4
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couple to 0-th order to create the metric perturbations, wh
can be described as

ds252 f e22dedndt21
1

f
edm2dr21r 2edm3du2

1r 2sin2uedcdf2. ~27!

The valuables in the metric can be separated@20#,

dn5( Nl~ t,r !Pl~cosu!, ~28!

dm25( Ll~ t,r !Pl~cosu!, ~29!

dm35( @Tl~ t,r !Pl~cosu!

1Sl~ t,r !Pl ,u,u~cosu!#, ~30!

dc5( @Tl~ t,r !Pl~cosu!

1Sl~ t,r !Pl ,u~cosu!cotu#, ~31!

where Pl is a Legendre polynomial. Now we consider th
simplest casel 51 and drop the suffixl. For the higher order
Legendre polynomials, the eigenvalues2 is expected to be
larger than that forl 51. Thus, the perturbed metric can b
written in the form

ds252@ f 1B~r !eist cosu#e22ddt2

1
1

f
@11L~r !eistcosu#dr2

1r 2@11T~r !eistcosu#~du21sin2udf2!. ~32!

Here, we introduced a new variableB(r )ªN(r ) f (r ) for
convenience, re-definedTªT2S and assumed harmoni
time dependence.

The energy momentum tensor is

Tt
t5 T

~0!

t
t1F2 f h8h81

f h82

2
L2

2h

r 2
~hj1h!1

h2

r 2
T

2lh~h22v2!hGcosueist, ~33!

Tr
r5 T

~0!

r
r1F f h8h82

f h82

2
L2

2h

r 2
~hj1h!1

h2

r 2
T

2lh~h22v2!hGcosueist, ~34!

Tt
r5 is f h8h cosueist, ~35!
08501
h
Tt

u5 is
h2

r 2
j sinueist, ~36!

where T
(0)

t
t and T

(0)

r
r are non-perturbed components. We d

played only the first order perturbation. Thus, we can get
perturbation equations

L1T516ph2j, ~37!

f ~2rT81L2rTd82T!1
1

2
f 8rT58pr f h8h, ~38!

f r 2T92~ f rL !81
1

2
f 8T8r 213 f rT82L

54p@22 f r 2h8h81 f r 2h82L12h2T

24h~hj1h!22r 2lh~h22v2!h#, ~39!

f r 2T92 f rL 82L12 f rT822 f rd8L1r 2f d8T82
r 2s2e2d

f
T

2B8r 1
B

f
1

Br f 8

f
58pr 2f h8~h8L12h8!, ~40!

from the Einstein equation, and

s2he2d

f
j1 f ~hj!91S 2

r
f 1 f 82d8 f D ~hj!82

2h12hj

r 2

1
hL

2r 2
2

1

2

hB

f r 2
5lh~h22v2!j, ~41!

s2e2d

f
h1 f h91S 2

r
f 1 f 82d8 f Dh81 f h8T82F2h

r 2
1lh~h2

2v2!GL2
4hj14h22hT

r 2
2

f h8L8

2
1

1

2
h8B8

2
h8 f 8B

2 f
5l~3h22v2!h, ~42!

from the equation of the scalar field.
The boundary conditions atr 50 are obtained by impos

ing regularity. By Taylor expansion aroundr 50, we find

j5j1r 1O~r 3!, ~43!

h5
h1

4
~8j12B1!r 21O~r 4!, ~44!

B5B1r 2
1

6 S m31
24

5
ph1

2DB1r 31O~r 5!, ~45!
9-5
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T5
2

5
ph1

2B1r 31O~r 5!, ~46!

L5S 16pj12
2

5
pB1Dh1

2r 31O~r 5!, ~47!

whereFn represents the n-th order derivative coefficient oF
at r 50. We assumed all values atr 50 are 0, for the elimi-
nation of trivial translations mode in whichh52h8cosu
andhj5h/r @13#. This assumption is not, however, an ar

FIG. 3. The eigenmodes ofh andhj/v for s50.1 ~solid line!
and 0.001~dashed line! whenv50.25. We can see the oscillatin
behavior. These are continuous modes.

FIG. 4. The diagram of the shooting parameterB1 versuss2

whenv50.15. The background global monopole solution does
have a cosmological horizon. We can sees2 converges to positive
constant for largeB1. The horizontal line is minimum eigenvalu
sminª2lv2 in the non-self-gravitating case. The asymptotic va
of s2 for the self-gravitating case is smaller than that of the n
self-gravitating case.
08501
ficial fixing of the core, but only coordinate transformatio
The values ofh1 andm3 are given by the static solutions i
Sec. II. j1 and B1 cannot be determined by this regulari
condition. Among these,j1 is arbitrary because of the free
dom of the constant multiplication in the linear theory. Hen
there are two parametersB1 and s2 in this system, which
should be adjusted to obtain the regular normalizable eig
modes. If there is no solution, we cannot find an appropr
set ofB1 ands2.

By these boundary conditions we solve Eqs.~37!–~42!
numerically. Figure 3 is the typical solution of the superma

t

-

FIG. 5. Diagram of the shooting parameterB1 versuss2 when
v50.25, which corresponds to the case of the supermassive g
monopoles. We can see thats2 is continuously decreasing to 0, bu
there is no zero mode as seen in Fig. 6.

FIG. 6. ‘‘Zero modes’’ of the supermassive global monopole
We can see that the ‘‘zero modes’’ are positive and have no z
point. This indicates the stability of the supermassive monopoles
v5A3/8p'0.345, the supermassive global monopole coincid
with the de Sitter solution, which is unstable. This figure shows t
the ‘‘zero modes’’ would have zero point asv→vmax.
9-6
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sive case. We can find the oscillating behavior for the po
tive eigenvalues2. These are the continuum modes.

If we neglect self-gravity, the perturbation equations b
come quite simple. In this case it is easy to observe that
potential function is nonzero constant asymptotically to
finity. Hence there is a minimum value of the eigenval
smin

2 52lv2.0 for the continuous modes. When se
gravity is taken into account, the situation does not cha
seriously for the ordinary global monopole solution. The e
istence of the minimum eigenvalue is seen in Fig. 4.
though smin

2 decreases continuously for largeB1, it con-
verges to a positive constant which is smaller than that of
non-self-gravitating case.

For the supermassive global monopole, however, the f
of the potential function is qualitatively different due to th
existence of the cosmological horizon. It vanishes at the
rizon without bottom up, and hence the continuous mo
exist for the infinitesimally small eigenvalue as seen
Fig. 5.

Figure 6 shows the ‘‘zero modes’’ (s250), which di-
verge and are non-normalizable, for several values ofv. We
cannot find a real zero-mode solution for any value ofB1
while there exists a solution for non-zero positives2. When
a negative eigenmode exists in this kind of linear pertur
tion analysis, the perturbed functions have at least one
point for s250 in general. In our case, ‘‘zero modes’’ a
positive everywhere. This indicates that the self-gravitat
supermassive global monopoles are stable against the
perturbations as well as the spherical perturbations. Av
approaches its maximum valuevmax, the ‘‘zero modes’’ be-
come small. It is expected that it has zero whenv5vmax.
This behavior is consistent with the instability of the de S
ter solution discussed in Sec. III.
e
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VI. DISCUSSION

We investigated the polar stability of the self-gravitatin
supermassive global monopoles and de Sitter solutions in
Einstein-O(3) scalar system by the linear perturbatio
method@13#. Although the de Sitter solutions always have
least one unstable mode for any value of the VEV of t
scalar field, the supermassive global monopole solutions
not. This implies that the supermassive global monopoles
stable against polar perturbations. We also find that the m
mum eigenvalue is infinitesimal for the supermassive glo
monopoles while it becomes non-zero finite for the ordina
self-gravitating global monopoles and non-gravitating cou
terparts. This is due to the different boundary conditions
the cosmological horizon.

Our analysis can be extended to the black hole solu
inside of the monopole, i.e., the black hole solution w
O(3) scalar hair. Such solution was discovered a decade
@21,18# and its supermassive counterpart was recently
covered by Maison and Liebling@15#. It was reported that
these solutions are stable against spherical perturbati
This result is notable because this scalar hair can be a ph
cal hair. Hence we should check whether or not this hai
stable also against polar perturbations. It should be no
however, that even if this hair is absolutely stable, it does
mean the violation of the black hole no-hair conjecture, b
cause such conjecture is implicitly assumed in t
asymptotic flatness. Some attempts to extend the conjec
to asymptotically non-flat spacetime were discussed in R
@22,23#.
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