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Polar perturbations of self-gravitating supermassive global monopoles
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Spontaneous global symmetry breaking@f3) scalar field gives rise to point-like topological defects,
global monopoles. By taking into account self-gravity, the qualitative feature of the global monopole solutions
depends on the vacuum expectation valuef the scalar field. When </1/87, there are global monopole
solutions which have a deficit solid angle defined at infinity. WR@8m<uv < \/3/8m, there are global
monopole solutions with the cosmological horizon, which we call the supermassive global monopole. When
v=+/3/8m, there is no nontrivial solution. It was shown that all of these solutions are stable against the
spherical perturbations. In addition to the global monopole solutions, the de Sitter solutions exist for any value
of v. They are stable against the spherical perturbations wiveq3/8=, while unstable fow > J3/8m. We
study polar perturbations of these solutions and find that all self-gravitating global monopoles are stable even
against polar perturbations, independently of the existence of the cosmological horizon, while the de Sitter
solutions are always unstable.
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I. INTRODUCTION value (VEV) is 0.33 p numerically.
Recently new types of the self-gravitating global mono-
Phase transitions in the early universe are caused by thgole solutions were discovered numericdly. As the VEV
symmetry breaking leading to a manifold of degenerateof the O(3) scalar fieldv increases, the deficit solid angle
vacua with nontrivial topology and giving rise to topological also gets large and it becomesr4vhenv =v:=1/8m7.
defects. The defects are classified by the topology of th&eyond this critical value there is no ordinary monopole so-
vacua such into domain walls, cosmic strings and monotution, but there appears a new type of solution in the param-
poles. If the gauge field is involved in the spontaneous symeter rangev ;i <<v <v max=V3/87. This has a cosmological
metry breaking, the defects are gauged. On the other hantiprizon atr=R; and gives a natural cutoff scale. The ap-
when the symmetry is global, the emerging defects are calledearance of the new solution is similar to the supermassive
global defects. string solution6], which has a deficit angle larger thaar2
In this paper, we shed light on global monopoles. Al-In this sense, we will call this solution the supermassive
though energy of the gauge monopoles is finite, the globaglobal monopole in contrast to the ordinary global monopole.
monopoles have divergent energy because of the long tail of From gravitational theoretical interest, the black hole
the field. This divergence has to be removed by cutting off atounterpart of the global monopole is also discussed. Maison
a certain distance. This procedure is not necessarily artificialnvestigated the scalar hair of the black holes in the same
because another defect which may exist near the original orgystem and showed their existence domains as a function of
cancels the divergence. This secondary defect is not only thiae radius of the event horizdi@]. Nucamendi and Sudarsky
monopole, but also can be a domain wall or a cosmic stringdiscussed the definition of the Arnowitt-Deser-Misner
Global monopoles have been an interesting subject in cosADM) mass in spacetime with deficit solid angle and found
mology. They were thought of as the seeds of structure forthat it becomes negative for small black ho[8%
mation or inflation. By taking into account the self-gravity of  One of the most important issues of these kinds of iso-
the global monopoles, it can give rise to a deficit solid angldated objects is stability. In the ordinary monopole case with-
[1], which would affect cosmological data. It, however, mayout gravity, if Derrick’s no-go theorer®] could be applied,
be counteracted when the universe has a cosmological cothey would be unstable towards radial rescaling of the field
stant. configuration. This is, however, not the case due to the di-
Vilenkin and Linde independently pointed out that topo- verging energy of the solutions. It was demonstrated that the
logical defects can cause inflati¢8,3]. When the vacuum ordinary monopole solutions are stable against spherical per-
expectation valugVEV) is larger than a certain critical turbations. As for the non-spherical perturbations, there was
value, the scalar field stays on the top of the potential aftesome debate. GoldhabielO] investigated the polar perturba-
global symmetry breaking. In this case, the space would extions and found that the energy functional is the same form
pand exponentially with time. This inflation model is called as that of the sine-Gordon equation under some conditions.
topological inflation. Topological inflation does not suffer Hence there would be a zero mode leading a north-pointing
from the initial value problem, unlike the new or hybrid in- teardrop shape for the monopole mass density and the knot
flation. Sakai et all4] found the critical vacuum expectation would be untied. Rhie and Benngtt1], however, pointed
out that such instability is just the artificial fixing of the
monopole core. If the monopole is free to move, which is the
*Email address: watabe@gravity.phys.waseda.ac.jp natural situation of the isolated system, the monopole cannot
TEmail address: torii@gravity.phys.waseda.ac.jp become a teardrop shape and is stable. This was actually
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confirmed by numerical simulationsl2,13. Bennett and where R is the Ricci scalar of the spacetime addf (a
Rhie[14] also pointed out by numerical calculation with 2D =1,2,3) is the triplet scalar field\ and v are the self-
code that a monopole and antimonopole pair would collapseoupling constant and the VEV of the scalar field, respec-
to a string through the unwinding process when these coresvely. The energy momentum tensor is

are artificiality fixed. If these cores of the pair are free to 1 \
move, such an unwinding process does not occur. _ a- ra a-pra 2 22

It is expected that theg spelf-gravitating global monopoles Tur= 0,270,050y, 59,707+ Z(P7=v5)7).
with v<v,; (i.e., without cosmological horizorhave the (2
same stability properties as a non-gravitating one. Stability . . . o
may change, however, for the supermassive monopole solf:or the static solution with unit winding number, we adopt
tions (v>v.,), because the domain of communication, thattNe So-called hedgehog ansatz
is, the boundary condition, is different due to the cosmologi- @
cal horizon. Maison and Liebling investigated the spherical d3=h(r)—,
perturbations of the supermassive monopole soluftis. r
e e by ifherex’ re the Canesian coodnates.
barrier and exists for any value of the VEV of the scalar,. We shall consider the static spherically symmetric space-
field. By their analysis the stability change of the de Sittertlme and adopt a Schwarzschild type metric
solutions occurs at =v 5y, beyond which the solutions are 1
stable, while unstable below that. And the supermassive ds*=—f(r)e 2°(0dt?+ mdr2+ r2(de?+sirfod¢?),
monopole solutions emerge just at this value if the VEV 4)
decreases from a larger value. This kind of behavior can be
seen in a variety of systems in nature and explained by usinghere
catastrophe theory. The supermassive monopole solutions in-
herit the stability from the de Sitter solution With>v 4. 2m(r)
As a result, they are stable against the spherical perturbations fr)=1- :
even if they have a cosmological horizon. )

Then, are the supermassive monopole solutions really Under theseAnsaze we get these field equations
stable? We have to examine this question carefully. This is
because the polar perturbation pushes the scalar field con-
figuration of the de Sitter solution to one direction in the
internal space from the top of the potential barrier. In the
anti—de Sitter background, such a solution can be stable even 8'=—4zmrh’?2, 7
in the tachyonic situation if the effective mass of the scalar
field satisfies the Breitenlohner-Freedman bolt®]. In the 1
de Sitter case, however, it is easy to imagine the scalar field
rolls down to its VEV, i.e., the solution is unstable. Hence,
the supermassive monopole solutions may be unstable . - . .
against the polar perturbations. To settle this issue is the mai‘f’fhere a prime denotes a derivative with respect to the radial

: coordinate.
purpose of this paper. . . . .
This paper is organized as follows. In Sec. Il we review The_se equations are mtegrateq with suitable boundary
the static solutions and their spherical stability. In Sec. Ill conditions. At the center the spacetime should be regular. By

we show the instability of the de Sitter solution against theexpanding these equations, we find(0) can be regarded as

polar perturbations. In Sec. IV, we formulate the polar per—a free parameter, which is determined by the other boundary

turbations of theO(3) scalar field. In Sec. V, we show the condition atr < (for the ordinary global monopole caser

stability of the self-gravitating global monopoles. Through—r:.RC (for the supermassive glpbal monopolg gager the
out this paper, we use the unfts=c=G=1. ordinary global monopole solution the spacetime approaches

asymptotically flat spacetim@vhich implies that the curva-
ture vanisheswith deficit solid anglex

()

®

1 h?
I'n/:47TI'2 th’2+r—2+z(h2—vz)2 B (6)

2h
slr7e T = =M =ud)h, ®)

Il. STATIC SOLUTIONS

2M 1
In this section, we briefly review the self-gravitating glo- fol-a-—+0 —2) : 9
bal monopole solution§l,15]. The theory of a scalar field r
with spontaneously broken intern@(3) symmetry, mini-
mally coupled to gravity, is described by the action 50| =], (10)
r
R 1 A
S:f d*x\— [———a O DA— —(DAP2—p?)?|, 1
976m 2% 7 ) " h—v+0| = |. (11
r
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dashed line represent the monopole and the de Sitter solutions, re-
spectively. The stability here means against the spherical perturba-
tions. This figure says that the monopole solutions and de Sitter
solution withv <uv .4 are stable against the spherical perturbations.
Umax IS the bifurcation point which connects the stable de Sitter, the
global monopole, and the unstable de Sitter solutions.

FIG. 1. The field configuration@bove and the metric function
f(r) (below of the global monopole solutions for=0.15(dashed
line), 0.25(solid ling), 0.30(dot-dashed lineand 0.34(dotted ling.
The solutions except far=0.15 have a cosmological horizon. The
solutions forv > +/2/87~0.28 show oscillating behavior.

On the other hand, we impose the existence of the regulgsermassive global monopoles really stable even for the non-
cosmological horizon at=R; for the supermassive global spherical perturbations? The(®) field which constructs the
monopole. de Sitter solution is always on the top of the Mexican hat
There is a trivial de Sitter solutiom(r)=0, f(r)=1  potential, which seems unstable. It is easily imagined that the
—r?/R2, ands(r)=0. This solution has a cosmological ho- scalar field rolls down to their VEV by just pushing it in one
rizon atr=R.=3/A.¢;, Where the effective cosmological direction in the internal space. We investigate this problem in
constant isAq¢:=2mA\v*. These solutions exist for any the next section.
value ofv.
The ordinary global monopole solutions exist fox0 1. INSTABILITY OF de SITTER SOLUTIONS
<uvgi- The configuration of the scalar field is shown in Fig.
1 (v=0.15). We set\ =0.1 (which is adopted in Refl5])
without loss of generality throughout this paper sincean

be scaled out by introducing new variables=\Y%r, m

Now, we investigate time dependent perturbations of the
de Sitter solutions which are non-spherical in the internal
space. We perturb one component of @€3) scalar field

:=\Y2%ym and®?:=®2/y. The deficit solid angler becomes Ot r)=d(t,r)=0, D3(t,r)=€""¢(r). (12
large asa=4mw(8mv?), anda=4m for v=v,;, which im- _ _ _

Beyond the critical value the Supermagsive g|0ba| monobation since the back reaction is second Order, and we can
pole solutions appear far,,; <v <vmax[5]. This has a cos- consider the de Sitter spacetime as a background. If the per-

mological horizon. If V2/87<v<vna,, the scalar field turbation equation allows a solution with imaginasy the

shows the oscillating behavior approaching its VEV beyondM0de function evolves exponentially with time. That indi-

the cosmological horizofsee Fig. 1 Asymptotically it be- ~ Cates instability of the de Sitter solution.

comes the de Sitter spacetifis]. At v =uv 44 the solution The perturbation equation is written as

coincides continuouslyat least in the domain of the commu- 1

nicationg with the de Sitter solution. This can be seen in the T re2f 0 20 _ -1 2

behavior of the parametdr’ (0) as shown in Fig. 2. rz[r Ao ot 3
Maison and Liebling investigated the stability of the de

Sitter solutions against sphericdloth in spacetime and in Adopting the tortoise coordinateg, ,

internal spackeperturbations and found that stability changes

atv=uv - BY this result they expected that the stable prop- dr (14)

erty of the de Sitter solution with >uv,,, is transferred to dr,
the supermassive global monopole solutions. This kind of -
study was performed by using catastrophe theory and applieghd a new variabl€=r/, we can rewrite it in the Schro
for the black hole spacetimg47,18. However, are the su- dinger equation,
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dzz L In the far region from the monopole core, the teraks/ or
- —2+U(r)§:azg. (15 and gH/dy can be disregarded. Goldhaber pointed out that
dr the first two terms irp; are in the same form as the energy of

a sine-Gordon soliton, which implies that the energy is in-
variant under translation of coordinaje(or ¢). Thus, he
) concluded that the global monopoles have instability if there

U(r) is the potential function of the linear equation

(16)  is a deviation in whiclH=v and d6/dr=0 are held. Rhie
and Bennett proved, however, that such a collapse does not

The potential function never becomes positive inside the cos2ccur. if the monopole core is free to MoEL|.
mological horizon. This is exactly the same form as Eqs. e @ssum& andsh are small. Therefore we take
(37)—(39) in Ref.[19] in the de Sitter case. In that paper it — )

was shown that these equations always have at lease one f=06+¢&sing. (22)
negative eigenmode for any value »fandv. Hence, it is

concluded that all the de Sitter solutions which we consider, Now we ha_ve two pert_urbatwe functiogsand 5.h for the
here are unstable. O(3) scalar field. The simplest polar perturbation assumes

that sh=0 and¢ is independent of). However, this is in-

consistent. In a non-relativistic case, such perturbation must

vanish through a perturbation equation.élfthas 6 depen-
Since the de Sitter solutions have polar instabilities, thedence, we will get

self-gravitating global monopoles may inherit them. Hence

4
U(r)=—f)\v2(l+§7rvz

IV. POLAR PERTURBATION OF THE SCALAR FIELD

we study the polar perturbation of the global monopoles in dgé+2&cotd=0. (23
gggﬁgil relativity carefully in this section and the following The solution of this equation i§=(sin¢)~2 which is un-

The polar deformation of the(3) scalar field was pro- physical becausé violates the perturbative approximation

posed by Goldhabdrl0]. He introduced a new coordinate around the axis.

y:=Intan(#/2) to discuss the invariance of the energy under_. The same feature appears in the case that ohlis con-
the deformation. Achearro and Urrestilla improved his no- sidered. Consequently, we can conclude that perturbation
tation [13] ’ only with either¢ or sh does not occur when the self-gravity

is set to zero. We will find that this is true also in the self-
1_ . — gravitating case.
PI=H(Lr, f)sinb(t.r, 6)cose, Now, we assume is independent of). Since we will
examine thd =1 Legendre type perturbation below, we take

2_ Y H "
P =H(tr,0)sino(t,r,0)sind, sh=n(r)cosée. The perturbed scalar field is

d3=H(t,r,0)cosd(t,r,0), (17) ®1=(h+ 7 cosfe'"")sin 6 cosgp+ hée' 7t sin @ cosh cose,
and ®?=(h+ 7 coshe ’")sind sing+hée 7t sinh cosd sin g,
tan(9/2) =Y L0, (18 ®3=(h+ pcosve' ™) coss—hee ot sinfe. (24)
0 is the polar component ofb? and H(t,r,6)=h(r) Let us consider the combination
+6h(t,r,0). When =0, i.e., =6 and sh=6h(t,r) the
global monopole is spherically symmetric, while it becomes p(r)=hé+x, q(r)=hé (25
a “string” when {—c. The energy of the static global _ B
monopole is expressed with a new coordingte in Eq. (24). Puttl_ng p(r)=Q, we recover the polar perturba-
tion of the de Sitter solution
E= j drdydg(ps+py), (19 Dl=b?=0, b= —q(r)e'" (26)
where which is discussed in Sec. Ill.
2 o (95)2 r2 (35)2 V. POLAR PERTURBATION OF THE GLOBAL
= |sinré+| —| + - | 20 MONOPOLE
P2 dy|  coslty \ Ir (20
Achucarro and Urrestilla studied stability of the global
1/9H\?2 r2 gH\2 1 monopoles against polar perturbation with all ordé:/3 and
p2= —(—) + (—) +5(H?2—0?)2]. found that the global monopoles are stable. Here we extend
219y  2cosRyl !\ ar 2

their analysis to the self-gravitating cases.
For the global monopole solutions, the matter field is non-
(22 zero. So the first order perturbations of the matter field
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couple to O-th order to create the metric perturbations, which h2
can be described as T =ic—ésinge', (36)
1
ds?=—fe 2% dt?+ ?eﬁﬂ2dr2+ r2e®#3d 92 (0) )
where T| and T| are non-perturbed components. We dis-
+r2sirfhe’’d ¢2. (27 played only the first order perturbation. Thus, we can get the

perturbation equations
The valuables in the metric can be separd&,
L+ T=16mh?¢, (37

Sv=2, Ni(t,r)P,(cosé), (28)
1
f(—rT’+L—rT5’—T)+Ef’rT=8wrfh’1}, (38
Spa= 2, Ly(t,r)P(cosh), (29
1
fr2T—(frL) + S F'T'r24+ 36T —L

Sps= 2, [Ti(t,r)P(cosh)
=47r[—2fr2h’ 17’+fr2h’2L+2h2T

+S|(t,r)P|’g’g(C050)], (30) _4h(h§+ 7])—2r2)\h(h2—v2)77] (39)
oy=2. [Ti(t,r)P(cosh) r22e?
fr2T" —frL =L+ 2T/ = 2fr ' L+ 28T = ——T
+§/(t,r)P, 4(cosé)cotd], (3D
r !
where P, is a Legendre polynomial. Now we consider the —Br+o+ TZSszfh'(h’LﬁLZU'), (40)
simplest casé=1 and drop the suffix For the higher order
Legendre polynomials, the eigenvalud is expected to be ; ; -
larger than that foi=1. Thus, the perturbed metric can be from the Einstein equation, and
written in the form
2he?’ L2, | 2n+2h¢
ds?= —[f+B(r)e'" cosfle 2d? T+ P I =51 (he)' = ———
1 .
+ —[1+L(r)e'“'cosh]dr? h_L_lh_B_ 2_ .2
f + o2 2 frz—)\h(h v)E, (41
+r2[1+T(r)e'"'cosh](d#?+sirfodp?). (32
0_2626

Here, we introduced a new variabB(r):=N(r)f(r) for
convenience, re-defined@:=T—S and assumed harmonic f
time dependence.

2 2h
pHin | SEHE =8y T - — +Ah(h?
r

The energy momentum tensor is ’ 4hé+47n—2hT  fh'L" 1
—v9)|L— > - +-h'B’
r 2 2
T 4 _2h h® h'f'B
_ + . ’ ’ + o _ = + + o £/
Tt Tt fh n 2 L r2 (hg 7]) r2T _ 2f :)\(3h2_02)7], (42)
_ 2_ .2 iot from the equation of the scalar field.
Ah(h"=v%) 7| cose™”, (33 The boundary conditions at=0 are obtained by impos-
ing regularity. By Taylor expansion aroume-0, we find
(0) "2 h 2 _ 3
T =T+ fh'y ——L— = (hé+n+—T §=£&r+0(r%), (43
2 r? r?
hy 2 4
_ 7= 7 (86 =Byr’+0(r", (44)
—xh(h?=v?)7|cosge', (34
1 24 3 s
T, =iofh’ ncospe'”, (35) B=Byr — 5| Mg+ o mhy |Byr°+0(r°), (45)
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FIG. 3. The eigenmodes of andhé&/v for o=0.1 (solid line) . . )
and 0.001(dashed lingwhenv=0.25. We can see the oscillating /G- 5. Diagram of the shooting paramety versuso when
behavior. These are continuous modes. v=0.25, which corresponds to the case of the supermassive global
monopoles. We can see that is continuously decreasing to 0, but
2 there is no zero mode as seen in Fig. 6.
— 2 3 5
= 5 mhiByr+O(r), (46) ficial fixing of the core, but only coordinate transformation.
The values oh; andmj; are given by the static solutions in
2 Sec. Il. ¢, and B, cannot be determined by this regularity
L= ( 16mé— 7751) hfr3+ o(rd), (47) condition. Among theseg, is arbitrary because of the free-
5 dom of the constant multiplication in the linear theory. Hence
there are two parameteB; and ¢ in this system, which
whereF , represents the n-th order derivative coefficienFof should be adjusted to obtain the regular normalizable eigen-
atr=0. We assumed all values a0 are 0, for the elimi- modes. If there is no solution, we cannot find an appropriate
nation of trivial translations mode in whiclj=—h’cosé  set ofB; anda?.
andhé=h/r [13]. This assumption is not, however, an arti- By these boundary conditions we solve E37)—(42)

numerically. Figure 3 is the typical solution of the supermas-
0.1

1000 T T 7T

0.08
800

0.06

0.04
400 -

0.02

0 0.2 04 B 06 0.3 1
! 0 100 200 300 400 500
FIG. 4. The diagram of the shooting paramelr versuso? ’

whenv =0.15. The background global monopole solution does not FIG. 6. “Zero modes” of the supermassive global monopoles.

have a cosmological horizon. We can seeconverges to positive We can see that the “zero modes” are positive and have no zero
constant for largeB;. The horizontal line is minimum eigenvalue point. This indicates the stability of the supermassive monopoles. At
omin:=2\v? in the non-self-gravitating case. The asymptotic valuev = y3/87~0.345, the supermassive global monopole coincides
of o for the self-gravitating case is smaller than that of the non-with the de Sitter solution, which is unstable. This figure shows that
self-gravitating case. the “zero modes” would have zero point @s-v yax-
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sive case. We can find the oscillating behavior for the posi- VI. DISCUSSION

tive eigenvalues®. These are the continuum modes. : . . 3 o
If we neglect self-gravity, the perturbation equations be- We investigated the polar stability of the self-gravitating

Lo . > supermassive global monopoles and de Sitter solutions in the
come quite simple. In this case it is easy to observe that th b 9 b

) L ; . EinsteinO(B) scalar system by the linear perturbation
potential function is nonzero constant asymptotically 10 in-method[13]. Although the de Sitter solutions always have at
finity. Hence there is a minimum value of the eigenvalue

) ) X least one unstable mode for any value of the VEV of the
Omin=2Av°>0 for the continuous modes. When self- scalar field, the supermassive global monopole solutions do
gravity is taken into account, the situation does not chang@ot. This implies that the supermassive global monopoles are
seriously for the ordinary global monopole solution. The ex-stable against polar perturbations. We also find that the mini-
istence of the minimum eigenvalue is seen in Fig. 4. Al-mum eigenvalue is infinitesimal for the supermassive global
though o2, decreases continuously for lardg, it con- monopoles while it becomes non-zero finite for the ordinary
verges to a positive constant which is smaller than that of théelf-gravitating global monopoles and non-gravitating coun-
non-self-gravitating case. terparts. This is due to the different boundary conditions at

For the supermassive global monopole, however, the fornfhe cosmological horizon. _
of the potential function is qualitatively different due to the  Our analysis can be extended to the black hole solution
existence of the cosmological horizon. It vanishes at the holnSide of the monopole, i.e., the black hole solution with
rizon without bottom up, and hence the continuous mode§(3) scalar hair. Such solution was discovered a decade ago
exist for the infinitesimally small eigenvalue as seen inl21,18 and its supermassive counterpart was recently dis-

Fig. 5.

Figure 6 shows the “zero modes’o€=0), which di-
verge and are non-normalizable, for several values.diVe
cannot find a real zero-mode solution for any valueBgf
while there exists a solution for non-zero positivé. When
a negative eigenmode exists in this kind of linear perturba
tion analysis, the perturbed functions have at least one ze
point for o?=0 in general. In our case, “zero modes” are
positive everywhere. This indicates that the self-gravitatin

supermassive global monopoles are stable against the pol

perturbations as well as the spherical perturbationsvAs
approaches its maximum valwe, 4, the “zero modes” be-
come small. It is expected that it has zero whenav ..
This behavior is consistent with the instability of the de Sit-
ter solution discussed in Sec. Ill.

S
%’2

covered by Maison and Lieblinfpl5]. It was reported that
these solutions are stable against spherical perturbations.
This result is notable because this scalar hair can be a physi-
cal hair. Hence we should check whether or not this hair is
stable also against polar perturbations. It should be noted,
however, that even if this hair is absolutely stable, it does not

fgean the violation of the black hole no-hair conjecture, be-

cause such conjecture is implicity assumed in the
ymptotic flatness. Some attempts to extend the conjecture
asymptotically non-flat spacetime were discussed in Refs.

,23.
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