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Duality for symmetric second rank tensors: The massive case
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A family of theories which are dual to the massive spin two Fierz-Pauli figld both free and coupled to
external sources, is constructed in terms of @,), tensor. The dualization method, a purely Lagrangian
approach, is based on a first order parent Lagrangian, from which the dual partners are generated.
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I. INTRODUCTION Lagrangiang 10] as well as the canonical formalisfil].
They can be extended to include source interactja2%

There usually is a great deal of freedom in the choice of The above duality among forms can be understood as a
variables for the description of a physical system. Different'elation between fields in different representations of the
choices are considered equivalent when they are able to déorentz group. The origin of this equivalence can be traced
scribe the same system. However, there might be practicasing the little group technique for constructing the represen-
reasons to prefer a given description to others. For exampléations of the Poincargroup in d dimensions. A detailed
in some cases it might be desirable to have a formulatioﬁf'scuss'on of this observation suggests the possibility of gen-

where some symmetries are made explicit in the Lagrangiarg'2/izing the duality transformations amopgorms to ten-

This usually requires the use of a redundant set of variable§Orial fields with arpitrary \_(oung symmetry ty.pes. Consistent
y red assless fre€l3], interacting[14], and massiv¢15] theo-

to describe the system configurations, as in the case of gau €< of mixed Youna symmetry tensors were constructed in
theories. Conversely, in other situations it is more convenien 9 sy y :

O . the past, but the attempts to prove a dual relation between
to choose a minimal, non-redundant, set of variables.

N . . ) these descriptions did not lead to a positive ansjlér].
Duality, in its wider meaning, refers to two equivalent b b i

- . : . . Additional interest in this type of theories arises from the
descriptions for a physical system using different fieflifs recent formulation ofd=11 dimensional supergravity as a
One of the simplest cases is the scalar-tensor duality. It Cor%]auge theory for the osp(BD) superalgebrl6].

rgsponds .to the equivalence between a free massless scalafy an earlier papef17] we have sketched a scheme to
field ¢, with field strengthf ,=d,¢, and a massless anti- construct dual theories originally motivated by the relation-
symmetric fieldB,,, the Kalb-Ramond field, with field shijp between field representations corresponding to associ-
strengthH ,,,= ,B 5+ 3,B;,+d,B,, [2—4]. Another ex-  ated Young diagrams. Here we fully develop this approach
ample is in fact a predecessor of the modern approach n a purely Lagrangian basis for the case of a massive spin-2
duality, the electric-magnetic symmetnE¢iB)—e'®(E  theory.
+iB) of the free Maxwell equations. When there are Letus consider the scalar fieldin order to illustrate our
charged sources this symmetry can be maintained by intrddrocedure for constructing dual theories. The starting point is
ducing magnetic monopoles]. This transformation pro- the second order Lagrangian
vides a connection between weak and strong couplings via
the Dirac quantization condition. At the level of Yang-Mills
theories with spontaneous symmetry breaking this kind of
duality is expected, due to the existence of topological dyon-
type solitong6]. The extension of electromagnetic duality to
SL(2,R) and SL(2,Z2) plays an important role in the non-
perturbative study of field and string theorifg and has As the first step, we construct a first order Lagrangian, using
been extended to Born-Infeld thedi§]. a generalization of a procedure used in Réf3]. We are
These basic ideas have been subsequently generalizedifgerested in a particular Lagrangian structure, which we will
arbitrary forms in arbitrary dimensions. Well known dualities call the standard form
are the ones between massles®rm and @—p—2)-form
fields and between massive and d—p—1) forms in
d-dimensional space-timg]. These dualities among free
fields have been proved by using the method of parent

1 1.,
L(@)=5dupd" o= 5m7e "+ Jo. 1)
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This standard form is defined by the kinetic term. It contains
the derivative of the original field times a new auxiliary vari- ~ L(F,A,G)=g—
. . . a
able, which we call, in a rather loose way, the field strength
of the original theory.
The key recipe to construct the dual theory is to introduce - E[G’”FW— G*"(d,A,—d,A)]. (8)
a point transformation in the configuration space for the aux-

iliary variable L*=€*"""H ., which leads to a new first The Euler-Lagrange equation fr,, leads to
order Lagrangian

1
aF, F 4D 5 €400

F’”FP”)

1 Fef= 2, 12
L(‘piHVU'T): HVUTGMVO—T(?[LQD+3HV(TTH voT— §m2¢2+‘]§0- (a +b )
(3) by a purely algebraic manipulation. This allows us to elimi-
nate this field from Lagrangia¢8), obtaining
This turns out to be the parent Lagrangian from which both

1
aG*—ib EGWG‘“’“'B) 9

dual theories can be obtained. In fact, using the equation of _ 1 b L s

motion forH . we obtainH,..(¢) which takes us back to LAG)= 87 (a2+b?) aG b 2€ Cpuv|Cap

our starting actiorfl) after it is substituted in Eq3). On the

other hand, we can also eliminate the figidfrom the La- .

grangian using its equation of motion + EG# (FuA=0AL) (10
mle= —3,€""7H o, +J. (4)  which identifiesG*” as the field strength oA*. The above

first order Lagrangian is equivalent to the second order La-
In such a way we obtain the new theory grangian(6). This can be verified via the solution

1 G*B=a(9*AP aﬂA)+'b1(aA d A,)ePTP
aB— q(g*AB— @y 4ip= oy eroa
L(H VO'T) = E(eluw”—a,uH VO'T)2+ 3m’H V(TTH T 227 ?

(11)
_ Ity H o+ EJz (5) of the equation of motion foG,,, together with the defini-
povor 27 tion (9). The variation ofA, in Lagrangian(10) produces the

remaining equatio,G*”=0. Let us define the dual field
which is equivalent to the original one through the transfor-H,z:
mation(4). In this form we have obtained a Lagrangian dual
to Eq.(1).

For a massless theom=0, we lose the connection be-
tween the original fieldp and the new onél .. In this case o _
Eq. (4) becomes the constraia},e“""™H,,,,=J, which tells By substitution in Eq(10) we obtain
us that the fieldH ,,, can be considered as a field strength

1
G =5 € H . (12)

with an associated potential out of the sources. Lo 1 1 aH —ibEe Hoo | o
Another paradigmatic example of dualization is the stan- 87 (a2+Db?) o 2 “Khpo
dard S duality for electrodynamics with @ term. Let us
consider the Euclidean Lagrangian N 1 16 R GPAT— a7 AP, 13
Qo 2 HVP
1 14 1 1 14 o H H H H H
L= oy aF, F*'+ |b§e#VWF”“ F? ) (6)  which is the correspondent parent Lagrangian. The variation

of this last Lagrangian with respect %" yields a Bianchi
o~ identity forH ., €"#*?9,H,,=0, which implies
The standard Euclidean S-dualization recipe>F, F—

+F, (a+ib)—(a+ib)~?! leads to the new Lagrangian H,o(B)=3,B,—3d,B,, (14)

whereH ,, is identified as the dual field strength. Using this

T—_ i a B Fav_ ib EE T:“”T:P") property in Eq.(13) leads to the second order Lagrangian
8m\a2+h% * a?+b22 *" '
@ LB = [ aHy b & ey HP | H
87 (a2+p?) | T2 |
Now we will show how to go from the original Lagrangian (15

to the dual one, using the basic ideas of our approach. To . o o
begin with, we construct a first order Lagrangian for E&),  the dual version of the original one.~The above Lagrangian is
introducing the Lagrange multiplie®*”: precisely(7) with the notationH*”=F#". The relation with
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the original theory appears at the level of the potentials andh this way we obtain the parent Lagrangid®) which gen-

is given by Eqs(11), (12) and (14). A similar method has erates the pair of dual theories. The fiéld can always be
been implemented for non-Abelian gauge theories in thliminated from Lagrangiati18) to recover the initial La-
context of the path integral formulatidi9]. grangian(16).

This paper focuses on the construction of a dual theory for Euler-Lagrange equation fdr is edW-+M2D=0. If

a massive spin-2 field in four dimensions. It is organ_ize(_j @10, or more generally if it is a regular matrix, this equa-
follows. In Sec. Il we formulate the scheme for duallzatlontion allows the algebraic elimination of the fieHl in La-

pursued here. Section Ill contains the construction of an aux- i s L
iliary first order Lagrangian which is equivalent to the usual9angian(18), yielding a second order Lagrangian ff
one in terms of the standard Fierz-Pauli fiélg, for a mas- 1 1 M2

sive spin-2 .pamcle. The. genera_l methqd for constructing E( = oW, VV) o = edWedW— — eWeW,
such an auxiliary Lagrangian is briefly reviewed in Appendix 2 2

A. An explicit proof of the equivalence between this auxil- (19
iary Lagrangian and the massive Fierz-Pauli Lagrangian is

given in Appendix B. Section IV contains the definition of which is the dual to the original(®).

the dual fieldT ,,), together with the construction of the  If M=0, the parent Lagrangian reduces to

parent Lagrangian. In Sec. V the duality transformations aris-

ing frqm the parent Lagrar!gian are dgrived. The dual La- E((I),VV)z(&(I))eVV—EeVVe\'/“V, (20)
grangian, in terms of ()., is obtained in Sec. VI together

with the corresponding equations of motion and the set of

Lagrangian contraints. These contraints allow us to makvith the equations of motion

sure that we have obtained the correct number of degrees of

freedom. Most of the calculations in this section are rel- €dW=0, (22)
egated to Appendix C. In Sec. VIl we discuss the example of N
an external point mass sourge The massive spin two fields eWe—€(dP)=0, (22

generated by this source are calculated in each of the dual

theories, thus allowing the explicit verification of the duality preventing the algebraic solution fdp. Nevertheless, Eq.
trasformations. Finally we close with Sec. VIII which con- (21) is a Bianchi identity foiW whose solution can be writ-
tains a summary of the work together with some comments,, symbolically adv=gB. That is to say, the dual field/

regarding preliminary work in the zero mass limit of the ;s 4 Feld strength and can be written in terms of a new

resent approach. A complete discussion of the massless case, .. = .
Esdeferrezpto a forthcom?ng publication. potential B. SubstitutingW in terms of B in Eq. (20) we

arrive at the dual Lagrangian

Il. THE DUALIZATION PROCEDURE 1

L(B)= s €dBedB. (23
In general terms, the method applied to the previous ex- 2
amples can be summarized as follows, assuming that there
no external source for simplicity. We start from a second
order theory for the free fiel® of a given tensorial charac-
ter, which can be schematically presented as

i
Fsmally, the relationedBe—ed® =0, obtained from Eq.
(22), provides the connection between the dual theories.

Ill. MASSIVE FIERZ-PAULI LAGRANGIAN
2

L(d)= 1&(1)6)(1)_ M_q)q) (16) The Lagrangian for the massive Fierz-Pauli field is
2 2 '
Next, we introduce an auxiliary fielV to construct a first L==0d,h"0h,+ 5 d.h* 9%y, +0,h "9 hg
order formulation in the standard form ,
1
1 M2 —Eaahﬁ&“hz—T(hwh“V—hth)—khW@”K
L(®,W)=(dP)W— -WW— —DP, 17
2 2 (24)

as explained in Appendix A. This identifiéd’ as the field \here we are considering the sour®e”, described by a
strength of®, with the equation of motio@W+M?®=0.  symmetric tensor not necessarily conserved in contrast to the
Now, we introduceéW as the field strength dual ¥/ via the  massless case. The kinetic part of the Lagran@ahis just
change of variable®V= W and substitute in the first order the linearized Einstein Lagrangian. The equations of motion

action (17) to obtain the Lagrangian for h,,, provide the following Lagragian constraints:
_ _1 M2 hem— oo 24 5.0 (25
L((I),W)—(aCD)eW—EeWeW—TCIxI). (19 @ am2| e 2 e’k ,
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IV. DUAL FIELD AND PARENT LAGRANGIAN
J*h

1 2
- M_ @, af
mYM2 9,00~ 3900t 3M2”7V‘9a‘9ﬁ® ) ' Now that we have identified the field streng€¥!#* for
(26) h,, and the corresponding first order theory, we can imple-

ment the transformation
which show that the trace and the divergencé pf do not
propagate, vanishing outside the sources, as expected for a
pure spin-2 theory. The resulting equation foy, is

Kbt lfol  Kalbri= ewviqifol - (32)

that leads to the dual theory. Substituting this transformation
in Eg. (30), we obtain the parent Lagrangian

1 1
o 2 — @ _ _ a
(09, + MO, =0~ 2| g, Mzaﬂay)(aa.

1
_ o vE) 2 v
L=a0{f7h 00— 7 (2a+e%) 0,909

(27) (nvé)
Following the procedure sketched in Appendix A, we can n E a(e?—a) et airel ety
construct an equivalent first order Lagrangian in the standard 3 X7 (uvh) 7}

form. This Lagrangian is not unique because of the freedom M2

in the choice of the auxiliary fields. Alternatively, we can _ ieawgﬂ{&,} 9P, g —(h. h#"—h #h 7)
construct a Lagrangian having the standard form with arbi- (uv§)Taloh o A pr wow
trary coefficients, which are subsequently adjusted to obtain

the original Lagrangian when the auxiliary fields are elimi- +0,,h""+ A g4 e“‘“’fﬂéﬁ‘léfr 65“”‘59%;;’5
nated. In the present case the last approach is simpler, and we epviqy @B

will follow it. Therefore, we start by proposing a field e ), (33
strengthK “1#7} satisfying the following symmetry proper-

_ 8
ties: whereQ 6= 0.0 {00 -

The dual theory is derived by eliminatirty, ;. Alterna-
K a0} = K aloB) (2)  tively, by eliminating Q{4 from Eq. (33) we recover the
Fierz-Pauli theory. The fiel@){4"*) satisfies the constraint

Ka{BU}+Kﬁ{Ua}+KU{aB}:O- (29) apv Bo v oa ouv af} _
e SQEMI%)_FEB# gﬂ%wé)—’_e ! gﬂéwé)_o’ (34)

These symmetry properties greatly simplify the manipula-55 5 consequence of E@9). A simple way to warrant this
tions and, as it will become evident in the following, they are .qnstraint is to expresﬁ{ﬂy} in terms of a tensof?. .=
consistent with the degrees of freedom of the spin-2 massive 1, (pa?) (po)
field. With this auxiliary field we construct the first order  (?)”
Lagrangian

as follows:

1
Byt — = (B B B
Qépgi)_ 3\/§(gTT(p(r)y+ng(a'T)y_FgoT(Tp)y—i_gZT(p(r)B

1 1 2
L=——aK*P7K g+ 2 AKPK g— =1 €7 K o K 1150
6 8 9 7 + gZT(UT)IB+ gZ'T(Tp)B) . (35)
2
_ iKa{'Bg—}é, h o— M—(h h#'—h #h ")+ @  hA" This expression identically satisfies the constraint, and
alofp Vwr wow wr avoids the necessity of its explicit use throughout the remain-

ing manipulations. The duality transformatioi32) now
+ A o KHA7 4 KALoel 1 K olably (300 reads

where Ka=Ka{A”. This Lagrangian has the most general 1

mass term for the fieltk “/47} with the symmetry properties Kbl = — E(T(W)‘Tf’”‘wﬂL T(unPe* ) (36)
(28), (29). HereK*!#7! is identified as the field strength of

h,s. The constraint29) is enforced by the Lagrange multi- with K= — %Ka{ﬁﬁ} _ \/iewaﬂT(W)B. The trace of

plfer_Aa{Btr}:Aﬁgﬁ' In Appeﬂdlx B we show t_hat the T(,..)p does not contribute to the expressi@%). Thus, we
elimination ofK andA ., in (30) leads effectively to i take T(,.,)p to be traceless and impose this constraint by
the Fierz-Pauli Lagrangian when the coefficients satisfy  means of a Lagrange multiplier. The analysis in Sec. VI will
5 5 ) show that this choice is indeed compatible with the dynamics
4r°=a(e’~a), 3g=2a+e”. (81 of the Fierz-Pauli field.
Using the identities
In such a case both theories are equivalent and Lagrangian

(30) is the first order standard Lagrangian for the Fierz-Pauli €7 5T (unyo TR 4 2T(70)B)

massive field. From condition€31) only two independent )

coefficients in Lagrangian30) remain, one of them being __f1v  _aBw

the normalization of the auxiliary field. 3 1€ gyt Toast Tana) (&7
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va o_ __ v a
T (yoT(ap)” =~ 260 " T (s T

— A€, T 10y, T, (38
which follows from the antisymmetry of“*)* and the null
trace propertyT*”) =0, we rewrite the parent Lagrangian

(33) as

1
L==

3 2

1 1
2a— —ez) T T+ 3(2a+ €T () s THAY

+1 2__ ,LLVK)\T T +eT o Mvaﬁa h
Sva(e = a) e () Tayo T € T(u € P dahop

2

M v v v (Ba)
= (N, h*7 =R, 0+ 6, e 43 TED, (39

The above Lagrangian is equivalent to E&2) in Ref.[17]
when®,,=0.

V. DUALITY TRANSFORMATIONS

From the parent Lagrangia39), the equation of motion
for A, yields
T =0. (40)

Varying h*” in Eq. (39) we obtain the Euler-Lagrange
equation

M?(h,“g#"—h~") + @~

e M aBov v aBou
which allows us to solve foh,,,
mv e afBov 7 aBou v
h = — ZMZ(E ao'T(aﬂ) +e &U'T(ZI,B) )
mv afpk a 1 nv
+3|\/|29 (e€ ﬁpT(aﬁ)K_®a)+ M2 ,
(42

giving the first duality relatiorh*”=h*"(T).
Varying T(**)? and contracting with the metric and the
Levi-Civita tensors we have
1

2a—¢?

3
T, =L & @ ey + e

(43

e
a

:O’

Tun)o L To)u g Tlouy

6/.LV(T)\

3
e(d,h% —ayh)+ E\/a(ez— a)\,

B 2a—e
(44)

PHYSICAL REVIEW D 66, 085018 (2002

ae,,aTH7=2\a(e?~a) T +e(d,h’% —a,h%)

12a+e€?
[ 22—

3 2a—¢?

(979, —9y9%)

3
X|e(d,h",—d,h)+ E\/a(ez—a))\p ,
(45

after some algebraic manipulations. Using the above con-
straints, the equations of motion f&f“*)* are

T(;w)tfz_i wvap g h0+i F«VW\(& h? —a,h)
2e€ allp € oV AT O\

2e
- %eJa(_e?—_a)(aMh”— I"hoH)
+ %EM[W(&KW— "h)—g”"(a,h**
—d*h)], (46)

which is the final expression for the duality transformation
Twe=TMo(h), Summarizing, using only algebraic ma-
nipulations and without any mixing between the results of
different variations, the Lagrangian equations of motions are
Egs. (42) and (46) together with the null trace condition.
These equations are used in eliminating eifif& or T(+)
from the parent Lagrangian, to obtain the corresponding
Lagrangians folf (*") or h?#, respectively. In fact, the de-
gEee)s of freedom dfi”# are mapped into the traceless part of
T,

All previous relations greatly simplify on shell. Under this
circumstance the condition

1
(GRS AINES Wa,@ 2 (47

is obtained, using Eq$25) and(26). The remaining on-shell
constraints are

Tun=0, (48)
. Ja(e’—a) . .
aBT(P- v) __W(ap,aa®y_avaa®,u)r (49)
BT g —ams 8,0 (50)
€ (uv)B eM2 ¥ J
1
3, TNy Ex/a(ez— a)e,,d, TH7
(2a+€?) | Ja(&@=a)
=——————¢€,, "0+ ——
6aeM 3eaM
X(=379,0"+g"73,0,07F). (51)
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Using the constraint equations for both fields the on-shelHere we have introduced the field strength

duality relations become

h#Y= — o Z(GQBUV&UT(QB)M_l— Ea[i’o-,u[?o_-l-(aﬁ)v)
L ge| Z0,00m 0%+ — e
Tamz? M o m2
(52
1 .. Ja(e’—a)
Tune= = 26" wdaNos™ =575 (0uNp= 00 ,p)
NCY, a(ez_a)( FRCY,
. ST T g,40,€
2e M2 uwvBYn "o 6aeM? 98979
—0up9,9,). (53

In the particular case whege= e? the duality transforma-

tions acquire the usual form

1
T(MV)B:—EG ,lLVo"ahO':B_—Ze- Mvﬁﬁn(@g, (54)

involving only the Levi-Civita tensor. The constraifsl) re-

duces tod T*M?=0 out of sources, which means that the

Flapnr=9aT (vt 96T (yayo T 3 T(apyv, (57

and the source term is given as a function of the so@rge
by

2(1
Jb =" | Z e Png 00— 79,0 4|, (58)

Note that the new sourcB®#)# is traceless and also satisfies

(pa‘](aﬁ)u:()’

4
EKaBu‘J(aB)M: _ E(?"@MK’

2
3,91 = = P73, (59)

As stated previouslyl'(,,,),=—T(,.), and therefore the
field T(, ), has 24 components. But not all of them are true
degrees of freedom, because there are cyclic variables. This
becomes clear by defining

R 1
T(;LV)U:T(MV)O'_ §(g,u0'TV_gVo'T,u) (60)

field TN contains purely transversal degrees of freedomWhere T, =T(up”, and T(,,), is a traceless fieldT,,)"

Otherwise, ifa#e?, the degrees of freedom 6f? are also
mapped in the longitudinal componentsd, (<)%
+9, TRy,

VI. DUAL THEORY

The substitution oh,,4(T), given by Eq.(42), in the par-

ent Lagrangian39) leads to the following Lagrangian for

Tuno:
1 1 1
_ 2 v)o 2 v
L=3|2a-3e T (e TH7+ z(2ate )T () g THP

1 VKN o 1
+§ a(e _a)E# T(I—“’) T(K)\)UJ’_ zhaB(T)

><(—ee“”’i‘ﬁaaT(W)"vL G)"B)H\BTB. (55
After some algebra and dropping a globa¢?/(2M?) factor
we obtain

4 2
L= § F(aﬁy)vp(aﬁy)v_|_ §|:(aﬁy)v|:(aﬁv)7_ F(aﬁ,u)luF(aBV)V

2M?2

3e?

5 1
aze

T(unyo TH7+(2a+€?)

3
X T(MV)UT(MU)V'f‘ E\/a(ez_ a) E’LV&BT(MV)O.T(QB)U

AN TP+ T (), I “PH (56)

=0. Next, we rewrite Lagrangiaf6) in terms of Tx¥)@
andT, and we further use the Euler-Lagrange equation for
T, to eliminate this variable. The resulting Lagrangian con-
tains linear and bilinear terms ;. Finally, using the cor-
responding equation of motion far; we can also eliminate
this variable. In such a way we obtain an alternative version

of the dual Lagrangian in terms G,

4, 2, . . .
L= 5F(apniF F7" % 3F (s FOPT = F apuy FP7,

2M?2
+T( B)MJ( ﬁ)_g

1 (nv)o
2a_§e T(M Yo T

2\ T T(pno)v 1 2 T T(uv)o
(224 %) Ty TH+ 5 (€% =) T 0o (T

N N 3 - N
+T(U’U“)V+T(VU)’U‘)+ E a(ez_a)GMVaBT(#V)UT(aB)U}.
(61)

This clearly shows that the degrees of freedom are in the

traceless fieldT*"?, as has already been assumed in Sec.
IV. When varying LagrangiaK6l) it is necessary to take into

account that not all the components B are indepen-
dent, because of the traceless condition, and this is rather
cumbersome.

Consequently, in order to study the properties of the dual
field T*"7 it is more convenient to go back to Lagrangian
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(56), because there we have to impose only the antisymmetry 527N+ g grT(@Pr— 5 T anv
constraint. Starting from this Lagrangian we obtain the equa-

tions of motion M? . MZ2a
+—a(e?—a) PN )+ —- TN =0.
262 “ e?

E(ﬁy)v:%{;a[z F@Bnvy (FlaBny 4 Eanp i pByay)] (66)
Furthermore, from Eq(65) we can write

—gv F(ByK)K_aa(g)/V F(aﬁK)K—i-g.BV F(’yaK)K) (ap) (ay)v
0-'a0-'7T _aaaBT 7

MZW sy 2M?2 5
+ —va(e"—a)e’™ '+ —
(xk\) afk v avk
62 362 :—E[ﬁy(e‘ B )\ﬁaT(K)\) +e€ A(?QT(K)\)B)
1 2 1 2 ayk\ v avk\ b%
|| 2a— e T(BY)V+§(2a+e) — (€7, T )"+ €9, Ty 1. (67)

The above equation and its dual imply

1
X (T('By)y_ T(VV)B)} - Z()\Bg“ﬂ_ )\ygﬁy) ((Waa‘r(av)ﬁ_ (gﬁ(;laT(av) Y)

1J<ﬁ7) 0 (62 D® & By P2 py 10N
- vV— f :__(91' 7V+_(9€)/KTK V. (68)
2 ae? 2e? :
() Hence, the equation of motigie6) and its dual can be writ-
T =0. 63 ten as
2 2

In order to make explicit the Lagrangian constraints aris- EazTJr EﬁZT* + aM T+ DM T*=0 (69)
ing from Eq.(62), which determine the number of propagat- e? e? e? e? '
ing degrees of freedom associated with the massive field
Te it is sufficient to consider the equations of motion out a D aM? DM?2
of sources. In Appendix C we provide some details of the —2(92T* - —2a2T+—2T* - ——T=0, (70
derivation and the results are summarized here. The con- e e e €

straints are . L
where we have omitted the indices B%”” and T* means

the dual ofT. Finally, solving forT¥"" we get
Tka) =0, TwOByTE@ALLTBRa=g g,T@AI=Q,

64) (P*+MHTEN =0, (71)
The simpler case?=a is reminiscent of the standard
) ” (e2—a)l . duality transformations and the constraint equations simplify
0=(8BT By V+(9BT B ‘)/)+ a E(EByK 195T(K)\)V tO
+ PG T 7 =S, @5 T#2=0, Twh=0, 4,T#%=0, g,T=0.
(72)
where we observe that the antisymmetric partﬁgT(BV)V VIl. POINT MASS SOURCE

turns out to be zero, as shown in the sourceless version of _ _ _ .

Eq. (C18) of Appendix C. The count of the number of inde- ~ As an illustration let us discuss the field generated by a
pendent degrees of freedom goes as follows. The Tiete)” point massn at rest. The corresponding source is the energy-
has 24 independent Components_ Equan(ﬁ'@ provide 4 momentum tensor of a pOint mass at rest and has the com-
+4+ 6= 14 constraints, respectively, thus leaving 24=14  Ponents®q=167ms(r),¢;=0;;=0. From Eq.(27), the
independent variables up to this level. Because of the synfesulting field configuration is

metry S?”=S"?, the remaining Eq(65) provides only 10

relations. Nevertheless, among them we find 5 additional = _8 m i h--—lé-Ah 1 3ah ho =0
identities: 4 arising froms, SI7"'=0 and 1 arising from 03y v T TIT00 S a2 TITIT00, 0T
9,,57"'=0, leaving only 5 additional independent con- (73)

straints. Thus, Eq65) reduces to 16 5=5 the previous 10
independent degrees of freedom, as appropriate for a massiVée last term irh;; is irrelevant when the field is coupled to

spin-2 system. a conserved source.
Taking into account the constraint64)—(65), the equa- It is interesting to observe how the zero mass limit dis-
tion of motion in the source free region becomes continuity (the van Dam-Veltman—Zakharov discontinuity
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[20,21)) manifests itself here. In the limi—0, hy, con-
verges tos of the Newtonian potentiain/r. Besides, the
component;; has a divergent term pldghooéij . This has to

PHYSICAL REVIEW D 66, 085018 (2002

be contrasted with the massless spin-2 theory in the Lorentz

gauge, where the non-zero fields are

~ 2m
hoo:T,

T1U=T1005”+r9|(7] f(r), (74)

€ (79) (v9)
ha,B:_ Z(Eygpal?pT'B +Ey5pﬁ(9pTa ), (83)
2M
1
Tap)y= = 55 € "apdphsy- (84)

From Eg.(84) and Egs.(79),(80) we obtain Eqs(81) and
(82). Conversely, applying Eq83) to the expression&31)

where the last term if;; accounts for a remaining gauge and (82) we recover Eqs(79) and (80). It is interesting to
freedom associated with a time- -independent spatial rotatiorbbserve that the term that diverges in the zero mass limit in

Next we consider the corresponding theory Tox 4, , in

the simpler case ai=e?. We refer the reader to Appendix C

for the notation. Here the dual source is

32mm
e

J(@B)p —

1
g,uOGOozBp_ §€aﬁ,up (9P5(r)! (75)

J(aBu) =_32:m (g#060a3p+ gaOGOB#p+ gBOEOMap_ eaﬁup)

X d,5(r). (76)

Our conventions are®*?*=e;,,= +1. The equation of mo-

tion, arising from Eq(C26) of Appendix C, becomes

1 1 1
a L MAOTBNv=_3BVvy ZJvBv)  _—_ 5 Ha3(vBv)
(0,0 +M)T 4J 4J GMzﬁaﬁ J ,

(77)
with the constraints
21(Byv) 1 (Byv) 2 (uv)o
METE = — 2307, M2g,T?=0,
M29, TN =0. (78)
From here, the non-zero componentsTgf, are
2m —Mr
T(Oi)j:¥(1+Mr)_€iijk1 (79)
4m e Mr
T(ij)oz_g(l"'Mr)_fiijk- (80)

Eq. (73) does not contribute td ), , which remains non-
divergent in this limit. Thus the description in terms of
T(ap)y SEEMS MoOre suitable for studying the massless limit.

The analysis of how the massless limit and the van Dam—
Veltman—Zakharov discontinuity appears in the dual theory
requires the discussion of duality in the caseMbE0. We
postpone the discussion of this interesting point to a forth-
coming paper.

VIlIl. SUMMARY AND FINAL REMARKS

The dualization scheme presented in this work is based on
a first order parent Lagrangian from which either the original
theory or the dual one can be obtained, by means of permis-
sible substitutions arising from the algebraic solutions of the
corresponding equations of motion. This procedure guaran-
tees the equivalence of both theories.

Given a Lagrangian to be dualized, we first construct an
equivalent auxiliary first order Lagrangian written in stan-
dard form, which can always be done by using the method of
Lagrange multipliers in the manner described in REIS]
and[22]. This first order Lagrangian is not unique and pro-
vides the identification of what we have called the field
strength of the original field. Dualization occurs at this level,
through the introduction of the dual tensor defined by the
contraction of the Levi-Civita tensor with the field strength.
Different possibilities might arise at this level which will
produce alternative dual theories.

Substitution of the field strength in terms of the dual ten-
sor in the auxiliary first order Lagrangian produces the parent
Lagrangian, which is a functional of the original field con-
figuration together with the new dual field. On the one hand,
the elimination of the dual field from this Lagrangian, via its
equations of motion, always takes us back to the original
second order theory. On the other hand, the elimination of

We can now compare both theories. In terms of the masge original field from the parent Lagrangian defines the dual

sive Fierz-Pauli solution, the solution féy,,,), can be writ-
ten as

1
Tooij=— 4—efijk5’khoo: (81)

1
Tijpo=+ Eeijkakhoo- (82

It is straightforward to verify that both solutions,,, and

theory.

This dual tensor plays different roles in the massive and
the massless cases, because the duality transformation is sin-
gular in the limitM — 0. The mapping between dual theories
is also very different according to these cases.Met0 the
dual tensor turns out to be the basic configuration variables
of the dual theory and its definition in terms of the original
field strength provides the relation among the resultant theo-
ries. Here the dual field is interpreted as a potential. Mor
=0 the equation of motion of the dual field becomes a con-

T(ap)y are in fact related by the duality transformations. Outstraint (a Bianchi identity on the dual variable, which im-

of the source the on-shell duality relations are

plies that it can be written in terms of a potential. Hence the
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dual field can be interpreted as a new field strength. ThR&€ ONACYT project 32431-E. He also thanks the program
connection between both theories is now given by a relatio€ERN-CONACYT for additional support.

between the original and dual potentials which usually in-

volves derivatives. Summarizing, for massive theories dual- APPENDIX A: FIRST ORDER LAGRANGIAN IN THE

ity relates field strengths and potentials, while for massless STANDARD FORM

theories it relates the corresponding potentials.

We have applied this scheme to the massive spin-2 field Here we show how to construct a first order Lagrangian
coupled to external sources, obtaining a family of dual theo€quivalent to a given second order Lagrangian using the
ries. The starting point is the symmetric massive Fierz-Paulmethod of Lagrange multipliers. This approach has been pre-
field h,, with its standard Lagrangian. The correspondingsented in the framework of classical mechanics for regular
first order auxiliary Lagrangian, which has two independengystems in Ref[18], to construct a Hamiltonian formalism
parameters, is written in terms bf,,, plus the field strength ~ Without the use of a Legendre transformation. Refer¢aag
Kasy - The latter satisfies additional symmetry properties.deals with its application to singular systems. To give a gen-
We have explicitly shown that the elimination of the auxil- €ral idea of the method, we simply sketch it for the case of
iary field leads to the original massive Fierz-Pauli Lagrangregular field theories. Consider a given regular Lagrangian
ian. At this stage there is some freedom in the election of the a a
dual field Q and we have chosen the relatida®#” L=L(y% 47 ). (A1)

=exr Q8 In order to partially fulfill the induced sym-

) 0167 h . q dth i Let us assume that we want to introduce a set of new func-
metry properties of}y, 7\, we have introduced the auxiliary tions fizfi(‘/’b,u)’ and treat them as new independent

(aﬁ) . . . . . .
;_entsg;/T . d? which clis rﬁql#red to be iﬂtlsgmmeérlc I'rf‘. tlrée. fields. To do this it must be possible to soly# , in terms of
IrSt two Indices, and which SErves as the basic dual Tielc Ia i.e.|af‘;/(9¢f’v|¢0. Substituting this solution in E¢A1)

the sequel. This field is reminiscent of what is called the #’ " ‘ . 2, b .
Fierz tensor in Ref{23]. Our approach for the massive case and Imposing the constralﬁth—fM(lp’M):O we obtain a
is different from the latter reference because we i) N€W Lagrangian
as the basic variable for the massive situation. The Lagrang- ~  aea geas b a
ian for this field is subsequently constructed by eliminating L=L(y% F)+ A (L) — 1),
h#” from the parent Lagrangian. By construction this dual , . . . - .
theory is equivalent to the initial Fierz-Pauli description, andWh'd_1 IS claearly eq_uwalent to the original one. T_he a“"""'?“y
the connection between both is established. The correct nurfidnCctionst,, exclusively appear as algebraic variables, with-
ber of degrees of freedom in the dual theory is verified byPUt derivatives. Therefore, they can be eliminated by using
identifying the Lagrange constraints arising from the equall€ir €quations of motion
tions of motion. ~

Finally, we have discussed the case of the massive field ﬁzi—v:o (A3)
generated by a point massat rest, which is described using ofe gf2 & 7
both the original and the dual theory. This simple example a .
suggests that the description in termsTéf”)” behaves con-  The solution of this equation is a set of functiof
tinuously in the limitM — 0, in contrast with that in terms of =f2(y2\%), and the resulting Lagrangian has the form
h#”. The latter theory develops a singularity in the—0
case , while the components of the dual field remain finite. T\ mfa b Ny ufal A\ B afa; jayu

We postpone for a separate publication a detailed discus- L=AGTL) AT T LA Ty ')\a))'(A4)
sion of theM =0 case. This situation is directly related to the

problem of dualizing linearized gravity, which has been therpe first term of the above Lagrangian shows thétdefine
subject of recent investigatiori24—26. Our preliminary e field strength ofs®. Their relationship with the configu-

work on this subject shows some interesting featufigshe a4ion variables is given by their equation of motion in the
zero mass limit of the dual Lagrangian f6f*?)?, given in first order theory

Eq. (56), has no arbitrary parameters so that one would ex-

(A2)

pect it to be completely determined by a set of gauge sym- b
metries.(ii) The Dirac analysis of the constraints leads to the fa(yP)— 3 (YA AL —N—+ —=0.  (AB)
count of two degrees of freedom per space point, in contrast gk INE oK

with the results in Ref{15]. The analysis of the gauge struc-

ture that arises in the approach pursued here should be dhis definition of the field strength is not unique, because it
some interest, together with the discussion of the van Dam-depends on the choice of the functiofri;( lﬂPM)-
Veltman—Zakharov discontinuity in the dual theory.

APPENDIX B: EQUIVALENCE BETWEEN SECOND
ACKNOWLEDGMENTS ORDER AND FIRST ORDER LAGRANGIANS

This work was partially supported by CONICET- In this appendix we show that Lagrangieg0), where the
Argentina and CONACYT-Mgico. L.F.U. acknowledges coupling constants satisfy Eq&1), is a first order Lagrang-
support from DGAPA-UNAM project IN-117000, as well as ian for the massive Fierz-Pauli thedi84). From Lagrangian
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(300 we obtain the equations of motion fdf,z, and
A
a{po}

1 1

2
5 5
- §aKa{ﬁo}+Zq g,Ba'Ka_gr(Ey aBK7{50}+ 4 aa'K‘y{EB})

e
- _aahﬁa_{—q)aﬂazoi (Bl)

V2

KlBot 4 K Bloat p KoleBi=Q (B2)

where CI)_aﬁU=Aa{30}+A§{,m}+A,,{a,3} is a comp_letely

symmetric tensor. EquatiofB2) leads to a constraint be-

tween the two possible contractions of the indice& 627!
Kot 2KP 5, =0. (B3)

First, we solve the field strengtk s, in terms of the

potential fieldh,;. Taking the two possible traces in Eq.

(B1) we obtain

2+2e
Kf

@ (za 3q (B4)

)(a hga—dahgP).

Performing a cyclic permutation of the indices in Eg.1)
and adding the results we get

Nt dghsatdohap)

e
q)a oo~ =
B 3\/5(

q
- 1_2(g¢r/3Ka+gBaK(r+gmrK,B)' (BS)

The contraction of Eq(B1) with €*?,, gives

1
— yae”

1 2
3 ,uVKy{c?a'}_l— 4q Eo—,u,v a §r(K,U,{V0'}_KV{/,w'})

1
+§r(g,u,o'KV_gV0'K,u,)_ tho’ 0. (B6)

e
E ;w Y
Combining this last equation with EqB1) to eliminate
terms proportional tOsy‘SWKy{&,} we obtain the following
expression folK sz, in terms ofh 4!

(B7)

V2
Ka{ﬁo’}: - ?[A Pa{B(r}+ BQa{,B(r}+ CRa{Bo’}!

where

Pa{,Bo—}z ga(r(ayhyﬁ_ aﬁhyy) + gaﬁ(&yhyu_ &Uhfyy)

- 2930'( d’h ya aahyy)i (88)
Qafpot=phoa™ &ahaﬁ— 20,0, (B9)
Raipo)= € upd Mot €0y Nsg,  (B1O)

together with the coefficients
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2 1 -1
A=e2(§r2+zaq a——q (a®+4r?)~ 1, (B1Y)
1
B=— Eaez(a2+4r2)’1, (B12)
C=-re?(a’+4r?) L. (B13)

All three tensors appearing on the right-hand side of(B@)
have a vanishing cyclic sum. The Lagrangian in termis

can be obtained by replacing expressi@v) in the first
order Lagrangiar{30), or more simply, noting that the con-
tribution from the mass terms fd¢*#?! is (—1/2) of the
contribution from the interaction term- (e/\2)K{#7!
d.hg, . Half of this last contribution gives the kinetic terms
of the h,;z Lagrangian. The interaction term gives

(2A+2B)3,h#" 3, %+ (—2B)d,h*"a%h,,,

+(—4A)3,h#"d,h, +(2A)3,h,“5°h,”,  (B14)

after substituting Eq(B7). Let us observe that the term pro-
portional toC gives no contribution. Comparing this expres-
sion with the kinetic part of the original Lagrangi&24) we
obtainA=(—1/2), B=(—1/2). From here the relatior{81)
follow.

APPENDIX C: LAGRANGIAN CONSTRAINTS FOR THE
PROPAGATING FIELD T®»e

We start from Eqs(62) and(63). The zero trace condition
implies FlaB0) = 5,T(@A? We will also use the property

€apysF PYIV= 36 L,s9PT(97 together with the notation
T(MVP)—T(MV)P+T(VP)M+T(PM)V andD= /a(eZ_a

Useful relations to determine the Lagrangian constraints
are obtained according to the following manipulations.

g,,E¥#Y"=0 implies

4DM?
)\B: 362 EBUKTT(KT)O' .

(C1

dgEFMNY=0 leads to

2

e 2
DMZeP 95T (ny" — Z(g”’aﬁxﬂ— N+ 3 MZ23,

X

1 1
— 2| 7By Z (g4 e
2a-e )T 5(2a+e’)
X(T(BV)Y_T(VV):B)}: (C2

This expression can be decomposed in the symmetric and
antisymmetric part
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MZ&B(T(BY)"-I— TEMY)

DM?2
2a

( E'BVK)\aﬁT(K}\) V4 GBVK)\aBT(K}\) 7)

e? 1

_ yv B_ —(av\7Y Y\ V
oz 9IS (NN | (CY

M Z(a_ e2)3ﬁ(T(B7)v_ T(ﬁV)V)
3DM?

(EﬁykkgﬁT(K)\)V— EBVK)\ﬁ’BT(K)\)y)

3¢?
+M2g,4(2a+e*) TOME+ —5 (=),

(CH
Applying 4, to Eq.(C2) we have
AMZ[D eP73,0,T )"+ 200,0 TEN]
=e29,(I\"—3"\?). (C5)

From eg,,,E#Y"=0 we obtain

vy« 2 v v__
ZeﬂvaﬁaF(BY) —6M GBwlpT(M) _3637V¢J(Bv) =0.

(C6)
Contracting the above equation wigh*™ leads to
1
9, FPma_\ ZT(BVV):§J(BVV)_ (C?)
9,EP7=0 implies
AVP=(9"NF— g*NY)
4DM?
_ VKN 0
= 92 et 0ﬁT(KX)
83M2 2\ 2
+ 2 9T 04 3, T (C8)
This equation contains 9,T*”? and its dual

3 €apurde T’ We now show that this relation leads to a
solution of A 45 . Taking into account that the constrai@1)
gives * A 5= (8DM?/3e?) 3,T(?**) for the dual ofA 45, we
can rewrite Eq(C8) as

2 2
M prry T _ 8aM
€ o) T o

D
AP+ — (AP = —
a e

X 9, TN, (C9
The dual

tion

of the above equation together with the
property’ (* A)=—A produce a second independent equa-
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D 8DM? M2
(*AMY)— EAMV: . (901-(#1/)0_ e’;gé’gT(“ﬁ)e.
(C10
Solving the system we are left with
8M?a
ARY=— 9TH1Y, (C1y)
%a
A= el pd T P)?, (C12

These expressions are consistent with the duality relation-
ship. Equation(C11) directly gives

2

e
2 (uv)0— _ —_ A uv
M<a,T 8aA . (C13

Taking now the divergence of EGC12 and comparing
with Eg. (C5) yields

AMZePY 95T ()" =0. (C14

Contracting the free index of this last equation with a Levi-
Civita tensor, together with EqC7) implies

M2T(BY) = — %J(Bw)_ (C15

Taking the divergence of this equation respect to one of the
antisymmetric indices we get

1
M ZaB(T(M)”—T(B")y) =—M ZaﬁT(W)B— EaBJ(V")B.
(C16

Using Eq.(C15 in Eq. (C1) we obtain a relationship be-
tween the Lagrange multipliex, and the source:

)\B=_2_D

9e?

€7 (e - (C17)
Finally, Egs.(C16) and(C13) imply

2
e 1
M295(TENY —TB7) = e EanW)a. (C18

From the above results the following independent La-
grangian constraints arise:
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2D 1 e
E— (Byv) 29 TBNV=___1e2A 7" — (a4 | g7
A, 5 5 €y d P, (C19 M23p TN = [€2A7" = 480,001+ | g7"9,\°
1 2
v v K\ v
1 — S (INHIN) =2 2 I5(€P" T (0
M2TBY) = — EJ(BYV)' (C20
+ e o) |, (C22
2 eQ
M2g T 0= — —— A1, (c21)

8a and the equation of motion is

D M?2
ZﬂaﬂaT(ﬁy)V+ 5(90[(9,3( GUYK)\T(K)\)V+ E(rvx)\T(K)\))/) _ (97( eUBK)\T(K}\)V+ E(}'VK)\T(K)\)‘B)] + ? /a(ez_ a) GBYK}\T(K)\)V

2 2
2aM T(B?’)V:E‘](,BY)V_}_ 2ate
2 2 6e2

1
JOBY) 4 m(z(ga(ya‘](YﬁV)_F 2(9V(9a‘](57)a+ (95(9&\](”7)“4- (97(9(1J(BV)01)
e

2 2

1 e 1
—(gY"\B—=qgB\7Y Bl g7V P _gn\7| — Bvayy_qrv B p
+4(g \N—g )\)+4 &(g dp\ 2&)\ ) (9P"97=g""3")d,\

M?a aM%a
2 e2
_ 24aM2(8avAM+ IPAYY+ IYAPYY — 8aM2(9a(gyvAaﬁ+gﬁyAya). (€23
In the casea=e€?, we have

p 218y — _ X 36m)
ANP=0, M-T¥Y =—§J ). (24

1
MZ9,T0 =0, M2gpTED"= = 25,307, (c25

1 1 1
(9,0%+ MZ)T(M)V=ZJ(/37)V+ ZJ(WH W(zaam(?ﬁvw 2079, Nt 5By JMay grg 3BV« - (C26)
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