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Duality for symmetric second rank tensors: The massive case
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A family of theories which are dual to the massive spin two Fierz-Pauli fieldhmn , both free and coupled to
external sources, is constructed in terms of aT(mn)s tensor. The dualization method, a purely Lagrangian
approach, is based on a first order parent Lagrangian, from which the dual partners are generated.
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I. INTRODUCTION

There usually is a great deal of freedom in the choice
variables for the description of a physical system. Differe
choices are considered equivalent when they are able to
scribe the same system. However, there might be prac
reasons to prefer a given description to others. For exam
in some cases it might be desirable to have a formula
where some symmetries are made explicit in the Lagrang
This usually requires the use of a redundant set of varia
to describe the system configurations, as in the case of g
theories. Conversely, in other situations it is more conven
to choose a minimal, non-redundant, set of variables.

Duality, in its wider meaning, refers to two equivale
descriptions for a physical system using different fields@1#.
One of the simplest cases is the scalar-tensor duality. It
responds to the equivalence between a free massless s
field w, with field strengthf m5]mw, and a massless ant
symmetric field Bmn , the Kalb-Ramond field, with field
strengthHmns5]mBns1]nBsm1]sBmn @2–4#. Another ex-
ample is in fact a predecessor of the modern approac
duality, the electric-magnetic symmetry (EW 1 iBW )→eif(EW

1 iBW ) of the free Maxwell equations. When there a
charged sources this symmetry can be maintained by in
ducing magnetic monopoles@5#. This transformation pro-
vides a connection between weak and strong couplings
the Dirac quantization condition. At the level of Yang-Mil
theories with spontaneous symmetry breaking this kind
duality is expected, due to the existence of topological dy
type solitons@6#. The extension of electromagnetic duality
SL(2,R) and SL(2,Z) plays an important role in the non
perturbative study of field and string theories@7# and has
been extended to Born-Infeld theory@8#.

These basic ideas have been subsequently generaliz
arbitrary forms in arbitrary dimensions. Well known dualiti
are the ones between masslessp-form and (d2p22)-form
fields and between massivep and (d2p21) forms in
d-dimensional space-time@9#. These dualities among fre
fields have been proved by using the method of par
0556-2821/2002/66~8!/085018~13!/$20.00 66 0850
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Lagrangians@10# as well as the canonical formalism@11#.
They can be extended to include source interactions@12#.

The above duality among forms can be understood a
relation between fields in different representations of
Lorentz group. The origin of this equivalence can be trac
using the little group technique for constructing the repres
tations of the Poincare´ group in d dimensions. A detailed
discussion of this observation suggests the possibility of g
eralizing the duality transformations amongp forms to ten-
sorial fields with arbitrary Young symmetry types. Consiste
massless free@13#, interacting@14#, and massive@15# theo-
ries of mixed Young symmetry tensors were constructed
the past, but the attempts to prove a dual relation betw
these descriptions did not lead to a positive answer@15#.
Additional interest in this type of theories arises from t
recent formulation ofd511 dimensional supergravity as
gauge theory for the osp(32u1) superalgebra@16#.

In an earlier paper@17# we have sketched a scheme
construct dual theories originally motivated by the relatio
ship between field representations corresponding to ass
ated Young diagrams. Here we fully develop this approa
on a purely Lagrangian basis for the case of a massive sp
theory.

Let us consider the scalar fieldw in order to illustrate our
procedure for constructing dual theories. The starting poin
the second order Lagrangian

L~w!5
1

2
]mw]mw2

1

2
m2w21Jw. ~1!

As the first step, we construct a first order Lagrangian, us
a generalization of a procedure used in Ref.@18#. We are
interested in a particular Lagrangian structure, which we w
call the standard form

L~w,Lm!5Lm]mw2
1

2
LmLm2

1

2
m2w21Jw. ~2!
©2002 The American Physical Society18-1
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This standard form is defined by the kinetic term. It conta
the derivative of the original field times a new auxiliary va
able, which we call, in a rather loose way, the field stren
of the original theory.

The key recipe to construct the dual theory is to introdu
a point transformation in the configuration space for the a
iliary variable Lm5emnstHnst , which leads to a new firs
order Lagrangian

L~w,Hnst!5Hnste
mnst]mw13HnstH

nst2
1

2
m2w21Jw.

~3!

This turns out to be the parent Lagrangian from which b
dual theories can be obtained. In fact, using the equatio
motion for Hnst we obtainHnst(w) which takes us back to
our starting action~1! after it is substituted in Eq.~3!. On the
other hand, we can also eliminate the fieldw from the La-
grangian using its equation of motion

m2w52]memnstHnst1J. ~4!

In such a way we obtain the new theory

L~Hnst!5
1

2
~emnst]mHnst!

213m2HnstH
nst

2Jemnst]mHnst1
1

2
J2, ~5!

which is equivalent to the original one through the transf
mation~4!. In this form we have obtained a Lagrangian du
to Eq. ~1!.

For a massless theory,m50, we lose the connection be
tween the original fieldw and the new oneHnst . In this case
Eq. ~4! becomes the constraint]memnstHnst5J, which tells
us that the fieldHnst can be considered as a field streng
with an associated potential out of the sources.

Another paradigmatic example of dualization is the st
dard S duality for electrodynamics with au term. Let us
consider the Euclidean Lagrangian

L5
1

8p S aFmnFmn1 ib
1

2
emnrsFmnFrsD . ~6!

The standard Euclidean S-dualization recipeF→F̃, F̃̃→
1F, (a1 ib)→(a1 ib)21 leads to the new Lagrangian

L̃52
1

8p S a

a21b2
F̃mnF̃mn2

ib

a21b2

1

2
emnrsF̃mnF̃rsD .

~7!

Now we will show how to go from the original Lagrangia
to the dual one, using the basic ideas of our approach
begin with, we construct a first order Lagrangian for Eq.~6!,
introducing the Lagrange multiplierGmn:
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L~F,A,G!5
1

8p S aFmnFmn1 ib
1

2
emnrsFmnFrsD

2
1

4p
@GmnFmn2Gmn~]mAn2]nAm!#. ~8!

The Euler-Lagrange equation forFmn leads to

Fab5
1

~a21b2!
S aGab2 ib

1

2
GmnemnabD ~9!

by a purely algebraic manipulation. This allows us to elim
nate this field from Lagrangian~8!, obtaining

L~A,G!52
1

8p

1

~a21b2!
S aGab2 ib

1

2
eabmnGmnDGab

1
1

4p
Gmn~]mAn2]nAm! ~10!

which identifiesGmn as the field strength ofAm. The above
first order Lagrangian is equivalent to the second order
grangian~6!. This can be verified via the solution

Gab5a~]aAb2]bAa!1 ib
1

2
~]rAs2]sAr!ersab

~11!

of the equation of motion forGmn , together with the defini-
tion ~9!. The variation ofAm in Lagrangian~10! produces the
remaining equation]mGmn50. Let us define the dual field
Hab :

Gmn5
1

2
emnrsHrs . ~12!

By substitution in Eq.~10! we obtain

L52
1

8p

1

~a21b2!
S aHkl2 ib

1

2
eklrsHrsDHkl

1
1

4p

1

2
emnrsHmn~]rAs2]sAr!, ~13!

which is the correspondent parent Lagrangian. The varia
of this last Lagrangian with respect toAm yields a Bianchi
identity for Hrs , enmrs]mHrs50, which implies

Hrs~B!5]rBs2]sBr , ~14!

whereHrs is identified as the dual field strength. Using th
property in Eq.~13! leads to the second order Lagrangian

L~B!52
1

8p

1

~a21b2!
S aHkl2 ib

1

2
eklrsHrsDHkl,

~15!

the dual version of the original one. The above Lagrangia
precisely~7! with the notationHmn5F̃mn. The relation with
8-2
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the original theory appears at the level of the potentials
is given by Eqs.~11!, ~12! and ~14!. A similar method has
been implemented for non-Abelian gauge theories in
context of the path integral formulation@19#.

This paper focuses on the construction of a dual theory
a massive spin-2 field in four dimensions. It is organized
follows. In Sec. II we formulate the scheme for dualizati
pursued here. Section III contains the construction of an a
iliary first order Lagrangian which is equivalent to the usu
one in terms of the standard Fierz-Pauli fieldhmn for a mas-
sive spin-2 particle. The general method for construct
such an auxiliary Lagrangian is briefly reviewed in Append
A. An explicit proof of the equivalence between this aux
iary Lagrangian and the massive Fierz-Pauli Lagrangian
given in Appendix B. Section IV contains the definition
the dual fieldT(mn)s together with the construction of th
parent Lagrangian. In Sec. V the duality transformations a
ing from the parent Lagrangian are derived. The dual
grangian, in terms ofT(mn)s , is obtained in Sec. VI togethe
with the corresponding equations of motion and the se
Lagrangian contraints. These contraints allow us to m
sure that we have obtained the correct number of degree
freedom. Most of the calculations in this section are r
egated to Appendix C. In Sec. VII we discuss the example
an external point mass sourcem. The massive spin two field
generated by this source are calculated in each of the
theories, thus allowing the explicit verification of the duali
trasformations. Finally we close with Sec. VIII which co
tains a summary of the work together with some comme
regarding preliminary work in the zero mass limit of th
present approach. A complete discussion of the massless
is deferred to a forthcoming publication.

II. THE DUALIZATION PROCEDURE

In general terms, the method applied to the previous
amples can be summarized as follows, assuming that the
no external source for simplicity. We start from a seco
order theory for the free fieldF of a given tensorial charac
ter, which can be schematically presented as

L~F!5
1

2
]F]F2

M2

2
FF. ~16!

Next, we introduce an auxiliary fieldW to construct a first
order formulation in the standard form

L~F,W!5~]F!W2
1

2
WW2

M2

2
FF, ~17!

as explained in Appendix A. This identifiesW as the field
strength ofF, with the equation of motion]W1M2F50.
Now, we introduceW̃ as the field strength dual toW via the
change of variablesW5eW̃ and substitute in the first orde
action ~17! to obtain the Lagrangian

L̃~F,W̃!5~]F!eW̃2
1

2
eW̃eW̃2

M2

2
FF. ~18!
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In this way we obtain the parent Lagrangian~18! which gen-
erates the pair of dual theories. The fieldW̃ can always be
eliminated from Lagrangian~18! to recover the initial La-
grangian~16!.

The Euler-Lagrange equation forF is e]W̃1M2F50. If
MÞ0, or more generally if it is a regular matrix, this equ
tion allows the algebraic elimination of the fieldF in La-
grangian~18!, yielding a second order Lagrangian forW̃

L̃S F[2
1

M2
e]W̃, W̃D }

1

2
e]W̃e]W̃2

M2

2
eW̃eW̃,

~19!

which is the dual to the originalL(F).
If M50, the parent Lagrangian reduces to

L̃~F,W̃!5~]F!eW̃2
1

2
eW̃eW̃, ~20!

with the equations of motion

e]W̃50, ~21!

eW̃e2e~]F!50, ~22!

preventing the algebraic solution forF. Nevertheless, Eq
~21! is a Bianchi identity forW̃ whose solution can be writ
ten symbolically asW̃5]B. That is to say, the dual fieldW̃
is a field strength and can be written in terms of a n
potential B. SubstitutingW̃ in terms of B in Eq. ~20! we
arrive at the dual Lagrangian

L~B!5
1

2
e]Be]B. ~23!

Finally, the relatione]Be2e]F50, obtained from Eq.
~22!, provides the connection between the dual theories.

III. MASSIVE FIERZ-PAULI LAGRANGIAN

The Lagrangian for the massive Fierz-Pauli field is

L52]mhmn]ahn
a1

1

2
]ahmn]ahmn1]mhmn]nha

a

2
1

2
]ahm

m]ahn
n2

M2

2
~hmnhmn2hm

mhn
n!1hmnQmn,

~24!

where we are considering the sourceQmn, described by a
symmetric tensor not necessarily conserved in contrast to
massless case. The kinetic part of the Lagrangian~24! is just
the linearized Einstein Lagrangian. The equations of mot
for hmn provide the following Lagragian constraints:

ha
a52

1

3M2 S Qa
a2

2

M2
]a]bQabD , ~25!
8-3
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]mhmn5
1

M2 S ]mQn
m2

1

3
]nQa

a1
2

3M2
]n]a]bQabD ,

~26!

which show that the trace and the divergence ofhmn do not
propagate, vanishing outside the sources, as expected
pure spin-2 theory. The resulting equation forhmn is

~]a]a1M2!hmn5Qmn2
1

3 S gmn1
1

M2
]m]nD Qa

a .

~27!

Following the procedure sketched in Appendix A, we c
construct an equivalent first order Lagrangian in the stand
form. This Lagrangian is not unique because of the freed
in the choice of the auxiliary fields. Alternatively, we ca
construct a Lagrangian having the standard form with a
trary coefficients, which are subsequently adjusted to ob
the original Lagrangian when the auxiliary fields are elim
nated. In the present case the last approach is simpler, an
will follow it. Therefore, we start by proposing a fiel
strengthKa$bs% satisfying the following symmetry proper
ties:

Ka$bs%5Ka$sb%, ~28!

Ka$bs%1Kb$sa%1Ks$ab%50. ~29!

These symmetry properties greatly simplify the manipu
tions and, as it will become evident in the following, they a
consistent with the degrees of freedom of the spin-2 mas
field. With this auxiliary field we construct the first orde
Lagrangian

L52
1

6
aKa$bs%Ka$bs%1

1

8
qKbKb2

2

9
r egdklKk$l

s%Kg$ds%

2
e

A2
Ka$bs%]ahsb2

M2

2
~hmnhmn2hm

mhn
n!1Qmnhmn

1La$bs~Ka$bs%1Kb$sa%1Ks$ab%!, ~30!

where Ka5Ka$l
l%. This Lagrangian has the most gene

mass term for the fieldKa$bs% with the symmetry properties
~28!, ~29!. HereKa$bs% is identified as the field strength o
hsb . The constraint~29! is enforced by the Lagrange mult
plier La$bs%5La$sb% . In Appendix B we show that the
elimination ofKa$bs% andLa$sb% in ~30! leads effectively to
the Fierz-Pauli Lagrangian when the coefficients satisfy

4r 25a~e22a!, 3q52a1e2. ~31!

In such a case both theories are equivalent and Lagran
~30! is the first order standard Lagrangian for the Fierz-Pa
massive field. From conditions~31! only two independent
coefficients in Lagrangian~30! remain, one of them being
the normalization of the auxiliary field.
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IV. DUAL FIELD AND PARENT LAGRANGIAN

Now that we have identified the field strengthKa$bs% for
hmn and the corresponding first order theory, we can imp
ment the transformation

Ka$bs%→V (mnj)
$bs% , Ka$bs%5eamnjV (mnj)

$bs% ~32!

that leads to the dual theory. Substituting this transformat
in Eq. ~30!, we obtain the parent Lagrangian

L5aV (mnj)
$bs% V$bs%

(mnj)2
1

4
~2a1e2!V (mnj)V

(mnj)

1
2

3
Aa~e22a!e rtx

m V (mnl)
$ls% V (rtx)

s%
$n

2
e

A2
eamnjV (mnj)

$bs% ]ahsb2
M2

2
~hmnhmn2hm

mhn
n!

1Qmnhmn1Labs~eamnjV (mnj)
$bs% 1ebmnjV (mnj)

$sa%

1esmnjV (mnj)
$ab% !, ~33!

whereV (mnj)5gabV (mnj)
$ab% .

The dual theory is derived by eliminatinghsb . Alterna-
tively, by eliminatingV$bs%

(mnj) from Eq. ~33! we recover the
Fierz-Pauli theory. The fieldV$bs%

(mnj) satisfies the constraint

eamnjV (mnj)
$bs% 1ebmnjV (mnj)

$sa% 1esmnjV (mnj)
$ab% 50, ~34!

as a consequence of Eq.~29!. A simple way to warrant this
constraint is to expressV (rst)

$bg% in terms of a tensorT(rs)
g 5

2T(sr)
g , as follows:

V (rst)
$bg% 52

1

3A2
~gt

bT(rs)
g1gr

bT(st)
g1gs

bT(tr)
g1gt

gT(rs)
b

1gr
gT(st)

b1gs
gT(tr)

b!. ~35!

This expression identically satisfies the constraint, a
avoids the necessity of its explicit use throughout the rema
ing manipulations. The duality transformation~32! now
reads

Ka$bs%52
1

A2
~T(mn)

semnab1T(mn)
bemnas! ~36!

with Ka52 1
2 Ka$b

b} 52A2emnabT(mn)b . The trace of
T(mn)b does not contribute to the expression~35!. Thus, we
will take T(mn)b to be traceless and impose this constraint
means of a Lagrange multiplier. The analysis in Sec. VI w
show that this choice is indeed compatible with the dynam
of the Fierz-Pauli field.

Using the identities

e ab
mn T(mn)s~T(ab)s12T(sa)b!

52
2

3
T(mn)

n eabgm~T(ab)g1T(ga)b1T(bg)a ,! ~37!
8-4
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emnabT(mn)sT(ab)
s522ea

mnbT(mn)sT(sa)
b

524ea
mnbT(ms)nT(sa)

b , ~38!

which follows from the antisymmetry ofT(mn)s and the null
trace propertyT(mn)

n50, we rewrite the parent Lagrangia
~33! as

L5
1

3 S 2a2
1

2
e2DT(mn)

sT(mn)
s1

1

3
~2a1e2!T(mn)bT(mb)n

1
1

2
Aa~e22a!emnklT(mn)

sT(kl)s1eT(mn)
semnab]ahsb

2
M2

2
~hmnhmn2hm

mhn
n!1Qmnhmn1lbT(ba)

a . ~39!

The above Lagrangian is equivalent to Eq.~12! in Ref. @17#
whenQmn50.

V. DUALITY TRANSFORMATIONS

From the parent Lagrangian~39!, the equation of motion
for lm yields

T(mn)
n50. ~40!

Varying hmn in Eq. ~39! we obtain the Euler-Lagrang
equation

M2~ha
agmn2hmn!1Qmn

2
e

2
~]sT(ab)

m eabsn1]sT(ab)
n eabsm!50 ~41!

which allows us to solve forhmn

hmn52
e

2M2
~eabsn]sT(ab)

m1eabsm]sT(ab)
n!

1
1

3M2
gmn~eeabrk]rT(ab)k2Qa

a!1
1

M2
Qmn,

~42!

giving the first duality relationhmn5hmn(T).
Varying T(mn)s and contracting with the metric and th

Levi-Civita tensors we have

T(mn)
n52

1

2a2e2

e

a FAa~e22a!~]shsm2]mh!1
3

4
elmG

50, ~43!

T(mn)s1T(ns)m1T(sm)n

5
1

2a2e2
emnslFe~]sh l

s 2]lh!1
3

2a
Aa~e22a!llG ,

~44!
08501
aemnklT(mn)s52Aa~e22a! T(kl)
s1e~]kh l

s 2]lh k
s !

1
1

2
e klm

s lm2
1

3

2a1e2

2a2e2
~gk

sgl
r2gl

sgk
r !

3Fe~]sh r
s 2]rh!1

3

2a
Aa~e22a!lrG ,

~45!

after some algebraic manipulations. Using the above c
straints, the equations of motion forT(mn)s are

T(mn)s52
1

2e
emnab]ahb

s1
1

2e
emnsl~]sh l

s 2]lh!

2
1

2ae
Aa~e22a!~]mhsn2]nhsm!

1
1

6ae
Aa~e22a!@gsm~]khkn2]nh!2gsn~]khkm

2]mh!#, ~46!

which is the final expression for the duality transformati
T(mn)s5T(mn)s(h). Summarizing, using only algebraic ma
nipulations and without any mixing between the results
different variations, the Lagrangian equations of motions
Eqs. ~42! and ~46! together with the null trace condition
These equations are used in eliminating eitherhsm or T(mn)s

from the parent Lagrangian, to obtain the correspond
Lagrangians forT(mn)s or hsm, respectively. In fact, the de
grees of freedom ofhsm are mapped into the traceless part
T(mn)s.

All previous relations greatly simplify on shell. Under th
circumstance the condition

~]khk
l2]lhk

k!5
1

M2
]hQhl ~47!

is obtained, using Eqs.~25! and~26!. The remaining on-shel
constraints are

T(mn)
m50, ~48!

]bT(m n)
b52

Aa~e22a!

3aeM2
~]m]aQn

a2]n]aQm
a !, ~49!

elmnbT(mn)b5
2

eM2
]mQml, ~50!

]kT(kl)s1
1

2a
Aa~e22a!emn

kl]kT(mn)s

52
~2a1e2!

6aeM2
enm

ls]m]bQnb1
Aa~e22a!

3eaM2

3~2]s]mQml1gls]b]hQhb!. ~51!
8-5
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Using the constraint equations for both fields the on-sh
duality relations become

hmn52
e

2M2
~eabsn]sT(ab)

m1eabsm]sT(ab)
n!

1
1

3M2
gmnS 2

M2
]g]lQgl2Qa

aD 1
1

M2
Qmn,

~52!

T(mn)b52
1

2e
e mn

as ]ahsb2
Aa~e22a!

2ae
~]mhnb2]nhmb!

2
1

2eM2
e mnb

s ]hQs
h2

Aa~e22a!

6aeM2
~gnb]hQm

h

2gmb]hQn
h!. ~53!

In the particular case wherea5e2 the duality transforma-
tions acquire the usual form

T(mn)b52
1

2e
e mn

as ]ahsb2
1

2eM2
e mnb

s ]hQs
h , ~54!

involving only the Levi-Civita tensor. The constraint~51! re-
duces to]kT(kl)s50 out of sources, which means that th
field T(kl)s contains purely transversal degrees of freedo
Otherwise, ifaÞe2, the degrees of freedom ofhsb are also
mapped in the longitudinal components (]kT(ks)b

1]kT(kb)s).

VI. DUAL THEORY

The substitution ofhsb(T), given by Eq.~42!, in the par-
ent Lagrangian~39! leads to the following Lagrangian fo
T(mn)s :

L5
1

3 S 2a2
1

2
e2DT(mn)sT(mn)s1

1

3
~2a1e2!T(mn)bT(mb)n

1
1

2
Aa~e22a!emnklT(mn)

sT(kl)s1
1

2
hsb~T!

3~2e emnab]aT(mn)
s1Qsb!1lbTb. ~55!

After some algebra and dropping a global2e2/(2M2) factor
we obtain

L5
4

9
F (abg)nF (abg)n1

2

3
F (abg)nF (abn)g2F (abm)

mF (abn)
n

2
2M2

3e2 F S 2a2
1

2
e2DT(mn)sT(mn)s1~2a1e2!

3T(mn)sT(ms)n1
3

2
Aa~e22a!emnabT(mn)sT(ab)

sG
1lbTb1T(ab)mJ(ab)m. ~56!
08501
ll

.

Here we have introduced the field strength

F (abg)n5]aT(bg)n1]bT(ga)n1]gT(ab)n , ~57!

and the source term is given as a function of the sourceQmn

by

J(ab)m5
2

e S 1

3
eabrm]rQa

a2eabsn]sQn
mD . ~58!

Note that the new sourceJ(ab)m is traceless and also satisfie

ekabmJ(ab)m52
4

e
]mQm

k , ]aJ(ab)m50,

]mJ(ab)m52
2

e
eabsn]s]mQmn . ~59!

As stated previouslyT(mn)s52T(nm)s and therefore the
field T(nm)s has 24 components. But not all of them are tr
degrees of freedom, because there are cyclic variables.
becomes clear by defining

T(mn)s5T̂(mn)s2
1

3
~gmsTn2gnsTm! ~60!

where Tm[T(mb)
b, and T̂(mn)s is a traceless field,T̂(mn)

n

50. Next, we rewrite Lagrangian~56! in terms of T̂(xc)s

andTm and we further use the Euler-Lagrange equation
Tm to eliminate this variable. The resulting Lagrangian co
tains linear and bilinear terms inlb . Finally, using the cor-
responding equation of motion forlb we can also eliminate
this variable. In such a way we obtain an alternative vers
of the dual Lagrangian in terms ofT̂(mn)s

L5
4

9
F̂ (abg)nF̂ (abg)n1

2

3
F̂ (abg)n F̂ (abn)g2F̂ (abm)

m F̂ (abn)
n

1T̂(ab)
m Jm

(ab)2
2M2

3e2 F S 2a2
1

2
e2D T̂(mn)sT̂(mn)s

1~2a1e2!T̂(mn)sT̂(ms)n1
1

2
~e22a!T̂(mn)s~ T̂(mn)s

1T̂(sm)n1T̂(ns)m!1
3

2
Aa~e22a!emnabT̂(mn)sT̂(ab)

sG .
~61!

This clearly shows that the degrees of freedom are in
traceless fieldT̂(mn)s, as has already been assumed in S
IV. When varying Lagrangian~61! it is necessary to take into
account that not all the components ofT̂(mn)s are indepen-
dent, because of the traceless condition, and this is ra
cumbersome.

Consequently, in order to study the properties of the d
field T(mn)s it is more convenient to go back to Lagrangia
8-6
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~56!, because there we have to impose only the antisymm
constraint. Starting from this Lagrangian we obtain the eq
tions of motion

E(bg)n
ª

2

3
]a@2 F (abg)n1~F (abn)g1F (gan)b1F (bgn)a!#

2]n F (bgk)
k2]a~ggn F (abk)

k1gbn F (gak)
k!

1
M2

e2
Aa~e22a!ebgklT(kl)

n1
2M2

3e2

3F S 2a2
1

2
e2DT(bg)n1

1

2
~2a1e2!

3~T(bn)g2T(gn)b!G2
1

4
~lbggn2lggbn!

2
1

2
J(bg)n50, ~62!

T(mn)
n50. ~63!

In order to make explicit the Lagrangian constraints a
ing from Eq.~62!, which determine the number of propaga
ing degrees of freedom associated with the massive fi
T(mn)r, it is sufficient to consider the equations of motion o
of sources. In Appendix C we provide some details of
derivation and the results are summarized here. The c
straints are

T(ma)
a50, T(ma)b1T(ab)m1T(bm)a50, ]uT(ab)u50,

~64!

05~]bT(bg)n1]bT(bn)g!1A~e22a!

a

1

2
~ebgkl]bT(kl)

n

1ebnkl]bT(kl)
g!ªS$gn%, ~65!

where we observe that the antisymmetric part of]bT(bg)n

turns out to be zero, as shown in the sourceless versio
Eq. ~C18! of Appendix C. The count of the number of inde
pendent degrees of freedom goes as follows. The fieldT(mn)r

has 24 independent components. Equations~64! provide 4
1416514 constraints, respectively, thus leaving 24-14510
independent variables up to this level. Because of the s
metry Sgn5Sng, the remaining Eq.~65! provides only 10
relations. Nevertheless, among them we find 5 additio
identities: 4 arising from]n S$gn%50 and 1 arising from
ggnS$gn%50, leaving only 5 additional independent co
straints. Thus, Eq.~65! reduces to 102555 the previous 10
independent degrees of freedom, as appropriate for a ma
spin-2 system.

Taking into account the constraints~64!–~65!, the equa-
tion of motion in the source free region becomes
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]2T(bg)n1]a]gT(ab)n2]a]bT(ag)n

1
M2

2e2
Aa~e22a!ebgklT(kl)

n1
M2a

e2
T(bg)n50.

~66!

Furthermore, from Eq.~65! we can write

]a]gT(ab)n2]a]bT(ag)n

52
D

4a
@]g~eabkl]aT(kl)

n1eankl]aT(kl)
b!

2]b~eagkl]aT(kl)
n1eankl]aT(kl)

g!#. ~67!

The above equation and its dual imply

~]g]aT(an)b2]b]aT(an)g!

52
D2

ae2
]2T(bg)n1

D

2e2
]2ebg

klT(kl)n. ~68!

Hence, the equation of motion~66! and its dual can be writ-
ten as

a

e2
]2T1

D

e2
]2T* 1

aM2

e2
T1

DM2

e2
T* 50, ~69!

a

e2
]2T* 2

D

e2
]2T1

aM2

e2
T* 2

DM2

e2
T50, ~70!

where we have omitted the indices ofT(bg)n andT* means
the dual ofT. Finally, solving forT(bg)n we get

~]21M2!T(bg)n50. ~71!

The simpler casee25a is reminiscent of the standar
duality transformations and the constraint equations simp
to

T(mu)
u50, T(mab)50, ]uT(mn)u50, ]uT(um)n50.

~72!

VII. POINT MASS SOURCE

As an illustration let us discuss the field generated b
point massm at rest. The corresponding source is the ener
momentum tensor of a point mass at rest and has the c
ponentsQ00516pmd(r ),Q0i5Q j i 50. From Eq.~27!, the
resulting field configuration is

h005
8

3

m

r
e2Mr , hi j 5

1

2
d i j h002

1

2M2
] j] ih00, h0i50.

~73!

The last term inhi j is irrelevant when the field is coupled t
a conserved source.

It is interesting to observe how the zero mass limit d
continuity ~the van Dam–Veltman–Zakharov discontinui
8-7
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@20,21#! manifests itself here. In the limitM→0, h00 con-
verges to 4

3 of the Newtonian potentialm/r . Besides, the
componenthi j has a divergent term plus12 h00d i j . This has to
be contrasted with the massless spin-2 theory in the Lor
gauge, where the non-zero fields are

h̃005
2m

r
, h̃i j 5h̃00d i j 1] i] j f ~r !, ~74!

where the last term inh̃i j accounts for a remaining gaug
freedom associated with a time-independent spatial rotat

Next we consider the corresponding theory forT(ab)g , in
the simpler case ofa5e2. We refer the reader to Appendix C
for the notation. Here the dual source is

J(ab)m5
32pm

e S gm0e0abr2
1

3
eabmrD ]rd~r !, ~75!

J(abm)5
32pm

e
~gm0e0abr1ga0e0bmr1gb0e0mar2eabmr!

3]rd~r !. ~76!

Our conventions aree01235e123511. The equation of mo-
tion, arising from Eq.~C26! of Appendix C, becomes

~]a]a1M2!T(bg)n5
1

4
J(bg)n1

1

4
J(gbn)1

1

6M2
]a]aJ(gbn),

~77!

with the constraints

M2T(bgn)52
1

2
J(bgn), M2]uT(mn)u50,

M2]bT(bg)n50. ~78!

From here, the non-zero components ofT(ab)g are

T(0i ) j5
2m

3e
~11Mr !

e2Mr

r 3
e i jkxk , ~79!

T( i j )052
4m

3e
~11Mr !

e2Mr

r 3
e i jkxk . ~80!

We can now compare both theories. In terms of the m
sive Fierz-Pauli solution, the solution forT(mn)s can be writ-
ten as

T(0i ) j52
1

4e
e i jk]kh00, ~81!

T( i j )051
1

2e
e i jk]kh00. ~82!

It is straightforward to verify that both solutions,hmn and
T(ab)g , are in fact related by the duality transformations. O
of the source the on-shell duality relations are
08501
tz

n.

s-

t

hab52
e

2M2
~egdra]rTb

(gd)1egdrb]rTa
(gd)!, ~83!

T(ab)g52
1

2e
e ab

rd ]rhdg . ~84!

From Eq. ~84! and Eqs.~79!,~80! we obtain Eqs.~81! and
~82!. Conversely, applying Eq.~83! to the expressions~81!
and ~82! we recover Eqs.~79! and ~80!. It is interesting to
observe that the term that diverges in the zero mass lim
Eq. ~73! does not contribute toT(ab)g , which remains non-
divergent in this limit. Thus the description in terms
T(ab)g seems more suitable for studying the massless lim

The analysis of how the massless limit and the van Da
Veltman–Zakharov discontinuity appears in the dual the
requires the discussion of duality in the case ofM50. We
postpone the discussion of this interesting point to a for
coming paper.

VIII. SUMMARY AND FINAL REMARKS

The dualization scheme presented in this work is based
a first order parent Lagrangian from which either the origin
theory or the dual one can be obtained, by means of perm
sible substitutions arising from the algebraic solutions of
corresponding equations of motion. This procedure guar
tees the equivalence of both theories.

Given a Lagrangian to be dualized, we first construct
equivalent auxiliary first order Lagrangian written in sta
dard form, which can always be done by using the method
Lagrange multipliers in the manner described in Refs.@18#
and @22#. This first order Lagrangian is not unique and pr
vides the identification of what we have called the fie
strength of the original field. Dualization occurs at this lev
through the introduction of the dual tensor defined by
contraction of the Levi-Civita tensor with the field strengt
Different possibilities might arise at this level which wi
produce alternative dual theories.

Substitution of the field strength in terms of the dual te
sor in the auxiliary first order Lagrangian produces the par
Lagrangian, which is a functional of the original field co
figuration together with the new dual field. On the one ha
the elimination of the dual field from this Lagrangian, via i
equations of motion, always takes us back to the origi
second order theory. On the other hand, the elimination
the original field from the parent Lagrangian defines the d
theory.

This dual tensor plays different roles in the massive a
the massless cases, because the duality transformation is
gular in the limitM→0. The mapping between dual theorie
is also very different according to these cases. ForMÞ0 the
dual tensor turns out to be the basic configuration variab
of the dual theory and its definition in terms of the origin
field strength provides the relation among the resultant th
ries. Here the dual field is interpreted as a potential. ForM
50 the equation of motion of the dual field becomes a c
straint ~a Bianchi identity! on the dual variable, which im-
plies that it can be written in terms of a potential. Hence
8-8
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dual field can be interpreted as a new field strength. T
connection between both theories is now given by a rela
between the original and dual potentials which usually
volves derivatives. Summarizing, for massive theories du
ity relates field strengths and potentials, while for massl
theories it relates the corresponding potentials.

We have applied this scheme to the massive spin-2 fi
coupled to external sources, obtaining a family of dual th
ries. The starting point is the symmetric massive Fierz-P
field hmn with its standard Lagrangian. The correspondi
first order auxiliary Lagrangian, which has two independ
parameters, is written in terms ofhmn plus the field strength
Ka$bg% . The latter satisfies additional symmetry properti
We have explicitly shown that the elimination of the aux
iary field leads to the original massive Fierz-Pauli Lagran
ian. At this stage there is some freedom in the election of
dual field V and we have chosen the relationKa$bg%

5eamnr V (mnr)
$bg% . In order to partially fulfill the induced sym

metry properties ofV (mnr)
$bg% we have introduced the auxiliar

tensorT(ab)g which is required to be antisymmetric in th
first two indices, and which serves as the basic dual field
the sequel. This field is reminiscent of what is called t
Fierz tensor in Ref.@23#. Our approach for the massive ca
is different from the latter reference because we takeT(ab)g

as the basic variable for the massive situation. The Lagra
ian for this field is subsequently constructed by eliminat
hmn from the parent Lagrangian. By construction this du
theory is equivalent to the initial Fierz-Pauli description, a
the connection between both is established. The correct n
ber of degrees of freedom in the dual theory is verified
identifying the Lagrange constraints arising from the eq
tions of motion.

Finally, we have discussed the case of the massive fi
generated by a point massm at rest, which is described usin
both the original and the dual theory. This simple exam
suggests that the description in terms ofT(ab)g behaves con-
tinuously in the limitM→0, in contrast with that in terms o
hmn. The latter theory develops a singularity in theM→0
case , while the components of the dual field remain fini

We postpone for a separate publication a detailed dis
sion of theM50 case. This situation is directly related to th
problem of dualizing linearized gravity, which has been t
subject of recent investigations@24–26#. Our preliminary
work on this subject shows some interesting features:~i! the
zero mass limit of the dual Lagrangian forT(ab)g, given in
Eq. ~56!, has no arbitrary parameters so that one would
pect it to be completely determined by a set of gauge s
metries.~ii ! The Dirac analysis of the constraints leads to
count of two degrees of freedom per space point, in cont
with the results in Ref.@15#. The analysis of the gauge stru
ture that arises in the approach pursued here should b
some interest, together with the discussion of the van Da
Veltman–Zakharov discontinuity in the dual theory.
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APPENDIX A: FIRST ORDER LAGRANGIAN IN THE
STANDARD FORM

Here we show how to construct a first order Lagrang
equivalent to a given second order Lagrangian using
method of Lagrange multipliers. This approach has been
sented in the framework of classical mechanics for regu
systems in Ref.@18#, to construct a Hamiltonian formalism
without the use of a Legendre transformation. Reference@22#
deals with its application to singular systems. To give a g
eral idea of the method, we simply sketch it for the case
regular field theories. Consider a given regular Lagrangia

L5L~ca,ca
,m!. ~A1!

Let us assume that we want to introduce a set of new fu
tions f m

a 5 f m
a (cb

,m), and treat them as new independe
fields. To do this it must be possible to solveca

,m in terms of
f m

a , i.e. u] f m
a /]c ,n

b uÞ0. Substituting this solution in Eq.~A1!
and imposing the constraintf m

a 2 f m
a (c ,m

b )50 we obtain a
new Lagrangian

L̃5L~ca, f m
a !1la

m
„f m

a ~c ,m
b !2 f m

a
…, ~A2!

which is clearly equivalent to the original one. The auxilia
functions f m

a exclusively appear as algebraic variables, wi
out derivatives. Therefore, they can be eliminated by us
their equations of motion

]L̃

] f m
a

5
]L

] f m
a

2la
m50. ~A3!

The solution of this equation is a set of functionsf m
a

5 f m
a (ca,la

m), and the resulting Lagrangian has the form

L̃5la
m f m

a ~c ,m
b !2la

m f m
a ~ca,la

m!1L„ca, f m
a ~ca,la

m!….
~A4!

The first term of the above Lagrangian shows thatla
m define

the field strength ofcb. Their relationship with the configu
ration variables is given by their equation of motion in t
first order theory

f m
a ~c ,m

b !2 f m
a ~ca,la

m!2lb
n
] f n

b

]la
m

1
]L

]la
m

50. ~A5!

This definition of the field strength is not unique, because
depends on the choice of the functionsf m

a (c ,m
b ).

APPENDIX B: EQUIVALENCE BETWEEN SECOND
ORDER AND FIRST ORDER LAGRANGIANS

In this appendix we show that Lagrangian~30!, where the
coupling constants satisfy Eqs.~31!, is a first order Lagrang-
ian for the massive Fierz-Pauli theory~24!. From Lagrangian
8-9
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~30! we obtain the equations of motion forKa$bs% and
La$bs%

2
1

3
aKa$bs%1

1

4
q gbsKa2

2

9
r ~e ab

gd Kg$ds%1e as
gd Kg$db%!

2
e

A2
]ahbs1Fabs50, ~B1!

Ka$bs%1Kb$sa%1Ks$ab%50, ~B2!

where Fabs5La$bs%1Lb$sa%1Ls$ab% is a completely
symmetric tensor. Equation~B2! leads to a constraint be
tween the two possible contractions of the indices ofKa$bs%

Ka12Kb
$ba%50. ~B3!

First, we solve the field strengthKa$bg% in terms of the
potential fieldhsb . Taking the two possible traces in E
~B1! we obtain

Ka5
2A2e

~2a23q!
~]bhba2]ahb

b!. ~B4!

Performing a cyclic permutation of the indices in Eq.~B1!
and adding the results we get

Fabs5
e

3A2
~]ahbs1]bhsa1]shab!

2
q

12
~gsbKa1gbaKs1gasKb!. ~B5!

The contraction of Eq.~B1! with e mn
ab gives

2
1

3
ae mn

gd Kg$ds%1
1

4
q esmn

a Ka1
2

3
r ~Km$ns%2Kn$ms%!

1
1

3
r ~gmsKn2gnsKm!2

e

A2
e mn

gd ]ghds50. ~B6!

Combining this last equation with Eq.~B1! to eliminate
terms proportional toe mn

gd Kg$ds% we obtain the following
expression forKa$bs% in terms ofhab :

Ka$bs%52
A2

e
@A Pa$bs%1BQa$bs%1CRa$bs%, ~B7!

where

Pa$bs%5gas~]ghgb2]bhg
g!1gab~]ghgs2]shg

g!

22gbs~]ghga2]ahg
g!, ~B8!

Qa$bs%5]bhsa1]shab22]ahbs , ~B9!

Ra$bs%5e ab
gd ]ghds1e as

gd ]ghdb , ~B10!

together with the coefficients
08501
A5e2S 2

3
r 21

1

4
aqD S a2

3

2
qD 21

~a214r 2!21, ~B11!

B52
1

2
ae2~a214r 2!21, ~B12!

C52re2~a214r 2!21. ~B13!

All three tensors appearing on the right-hand side of Eq.~B7!
have a vanishing cyclic sum. The Lagrangian in terms ofhab
can be obtained by replacing expression~B7! in the first
order Lagrangian~30!, or more simply, noting that the con
tribution from the mass terms forKa$bs% is (21/2) of the
contribution from the interaction term2(e/A2)Ka$bs%

]ahbs . Half of this last contribution gives the kinetic term
of the hab Lagrangian. The interaction term gives

~2A12B!]mhmn]ahn
a1~22B!]ahmn]ahmn

1~24A!]mhmn]nha
a1~2A!]ahm

m]ahn
n, ~B14!

after substituting Eq.~B7!. Let us observe that the term pro
portional toC gives no contribution. Comparing this expre
sion with the kinetic part of the original Lagrangian~24! we
obtainA5(21/2), B5(21/2). From here the relations~31!
follow.

APPENDIX C: LAGRANGIAN CONSTRAINTS FOR THE
PROPAGATING FIELD T „µn…r

We start from Eqs.~62! and~63!. The zero trace condition
implies F (abu)

u5]uT(ab)u. We will also use the property
eabgdF (bgd)c53eabgd]bT(gd)c, together with the notation
T(mnr)5T(mn)r1T(nr)m1T(rm)n andD5Aa(e22a).

Useful relations to determine the Lagrangian constra
are obtained according to the following manipulations.

ggnE(bg)n50 implies

lb5
4DM2

3e2
ebsktT(kt)s . ~C1!

]bE(bg)n50 leads to

DM2ebgkl]bT(kl)
n2

e2

4
~ggn]blb2]nlg!1

2

3
M2]b

3F S 2a2
1

2
e2DT(bg)n1

1

2
~2a1e2!

3~T(bn)g2T(gn)b!G50. ~C2!

This expression can be decomposed in the symmetric
antisymmetric part
8-10
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M2]b~T(bg)n1T(bn)g!

52
DM2

2a
~ebgkl]bT(kl)

n1ebnkl]bT(kl)
g!

1
e2

4a S ggn]blb2
1

2
~]nlg1]gln! D ~C3!

M2~a2e2!]b~T(bg)n2T(bn)g!

52
3DM2

2
~ebgkl]bT(kl)

n2ebnkl]bT(kl)
g!

1M2]b~2a1e2!T(gn)b1
3e2

8
~]gln2]nlg!.

~C4!

Applying ]n to Eq. ~C2! we have

4M2@Debgkl]n]bT(kl)
n12a]n]bT(bg)n#

5e2]n~]gln2]nlg!. ~C5!

From ebgncE(bg)n50 we obtain

2ebgnc]aF (bgn)a26M2ebgncT(bg)n23ebgncJ(bg)n50.
~C6!

Contracting the above equation witherstc leads to

]aF (bgn)a2M2T(bgn)5
1

2
J(bgn). ~C7!

]gE(bn)g50 implies

Lnm[~]nlm2]mln!

5
4DM2

e2
emnkl]uT(kl)

u

1
8aM2

e2
]uT(mn)u1

8D2M2

3ae2
]uT(umn). ~C8!

This equation contains ]uT(mn)u and its dual
1
2 eabmn]uT(mn)u. We now show that this relation leads to
solution ofLub . Taking into account that the constraint~C1!
gives * Lub5(8DM2/3e2)]uT(umn) for the dual ofLub , we
can rewrite Eq.~C8! as

Lmn1
D

a
~* Lmn!52

4DM2

e2
emnkl]uT(kl)

u 2
8aM2

e2

3]uT(mn)u. ~C9!

The dual of the above equation together with t
property* ( * L)52L produce a second independent equ
tion
08501
-

~ * Lmn!2
D

a
Lmn5

8DM2

e2
]uT(mn)u2

4aM2

e2
eab

mn]uT(ab)u.

~C10!

Solving the system we are left with

Lmn52
8M2a

e2
]uT(mn)u, ~C11!

* Lmn52
4M2a

e2
eab

mn]uT(ab)u. ~C12!

These expressions are consistent with the duality relat
ship. Equation~C11! directly gives

M2]uT(mn)u52
e2

8a
Lmn. ~C13!

Taking now the divergence of Eq.~C12! and comparing
with Eq. ~C5! yields

4M2ebnkl]s]bT(kl)
s50. ~C14!

Contracting the free index of this last equation with a Le
Civita tensor, together with Eq.~C7! implies

M2T(bgn)52
1

2
J(bgn). ~C15!

Taking the divergence of this equation respect to one of
antisymmetric indices we get

M2]b~T(bg)n2T(bn)g!52M2]bT(gn)b2
1

2
]bJ(gn)b.

~C16!

Using Eq. ~C15! in Eq. ~C1! we obtain a relationship be
tween the Lagrange multiplierls and the source:

lb52
2D

9e2
ebktsJ(kts) . ~C17!

Finally, Eqs.~C16! and ~C13! imply

M2]b~T(bg)n2T(bn)g!5
e2

8a
Lgn2

1

2
]aJ(gn)a. ~C18!

From the above results the following independent L
grangian constraints arise:
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ls52
2D

9e2
esbgnJ(bgn), ~C19!

M2T(bgn)52
1

2
J(bgn), ~C20!

M2]uT(mn)u52
e2

8a
Lmn, ~C21!
p.

-
n
r-
,’’

08501
M2]bT(bg)n5
1

16a
@e2Lgn24a]aJ(gn)a#1

e2

8a Fggn]rlr

2
1

2
~]nlg1]gln!22

DM2

e2
]b~ebgklT(kl)

n

1ebnklT(kl)
g!G , ~C22!

and the equation of motion is
2]a]aT(bg)n1
D

2a
]s@]b~esgklT(kl)

n1esnklT(kl)
g!2]g~esbklT(kl)

n1esnklT(kl)
b!#1

M2

e2
Aa~e22a!ebgklT(kl)

n

1
2aM2

e2
T(bg)n5

1

2
J(bg)n1

2a1e2

6e2
J(gbn)1

1

6M2
~2]a]aJ(gbn)12]n]aJ(bg)a1]b]aJ(ng)a1]g]aJ(bn)a!

1
1

4
~ggnlb2gbnlg!1

e2

4M2a
]bS ggn]rlr2

1

2
]nlgD2

e2

4M2a
~gbn]g2ggn]b!]rlr

2
e2

24aM2
~8]nLbg1]bLng1]gLbn!2

e2

8aM2
]a~ggnLab1gbnLga!. ~C23!

In the casea5e2, we have

lb50, M2T(bgn)52
1

2
J(bgn), ~C24!

M2]uT(mn)u50, M2]bT(bg)n52
1

4
]aJ(gn)a, ~C25!

~]a]a1M2!T(bg)n5
1

4
J(bg)n1

1

4
J(gbn)1

1

12M2
~2]a]aJ(gbn)12]n]aJ(bg)a1]b]aJ(ng)a1]g]aJ(bn)a!. ~C26!
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