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Axial anomaly in DÄ3¿1 light-cone QED
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We consider (311)-dimensional, Dirac electrons of arbitrary mass, propagating in the presence of electric
and magnetic fields which are both parallel to thex3 axis. The magnetic field is constant in space and time
whereas the electric field depends arbitrarily upon the light-cone time parameterx15(x01x3)/A2. We present
an explicit solution to the Heisenberg equations for the electron field operator in this background. The electric
field results in the creation of electron-positron pairs. We compute the expectation values of the vector and
axial vector currents in the presence of a state which is free vacuum atx150. Both current conservation and
the standard result for the axial vector anomaly are verified for the first time ever in (311)-dimensional
light-cone QED. An interesting feature of our operator solution is the fact that it depends in an essential way
upon operators from the characteristic atx252L, in addition to the usual dependence upon operators at
x150. This dependence survives even in the limit of infiniteL. Ignoring thex2 operators leads to a progres-
sive loss of unitarity, to the violation of current conservation, to the loss of renormalizability, and to an
incorrect result for the axial vector anomaly.

DOI: 10.1103/PhysRevD.66.085017 PACS number~s!: 11.15.Kc, 11.40.Dw, 12.20.Ds
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I. INTRODUCTION

It is customary in formulating a (311)-dimensional
quantum field theory on the light cone to regardx1[(x0

1x3)/A2 as the time coordinate. The complimentary n
direction,x2[(x02x3)/A2 is treated as a spatial coordinat
as are the transverse variables,x'5(x1,x2). In this view one
is led to imagine that the Heisenberg field equations can
solved to express the operators at an arbitrary p
(x1,x2,x') in terms of the initial value operators on a su
face of constantx1.

However, it has been known for some time that solvi
the Klein-Gordon or Dirac equation on the light cone ac
ally involves initial data on both characteristics@1#. In order
to completely determine the operators in the wedge w
x1.0 andx2.2L one must specify not only their value
for x150 with x2>2L, but also forx252L with x1

>0. This remains true even ifL is taken to` @2#, although
then the problem is segregated to the singularity atp150.
For free theories in trivial backgrounds, one can simply c
strain this sector of the theory. Such a constraint is consis
because there is no mode mixing for these theories.

Interactions introduce mode mixing, and it is no long
obvious that thep150 modes can be suppressed cons
tently. Nontrivial background fields can also result in mo
mixing and recent results in this context seem to show c
clusively that thep150 modes cannot be ignored. We no
have explicit and completely general solutions to the Heis
berg equations for Dirac electrons in the presence of an e
tric background field which points in thex3 direction and is
an arbitrary function ofx1 @3,4#. The homogeneous electri
field results ine1e2 pair production in an amazingly simpl
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fashion. Each Fourier mode of fixedk1 experiences pair
production at the instant when its minimally coupled m
mentum,p1(x1)[k12eA2(x1), vanishes. At this instan
the electron field operator suffers a drop in the amplitu
proportional to the initial value data from thex150 surface,
with the missing amplitude being supplied by operators fr
the surface of constantx2. Suppressing these other operato
leads to a progressive loss of unitarity and to violation
current conservation. One also fails to produce the stand
result for the axial vector anomaly in 111 dimensions@4#.

Although the first paper@3# applies to an arbitrary dimen
sion, the operator solution was only valid in the limitL
→`. Since the limit could only be taken in the distribution
sense, the solution was not sufficient to compute the exp
tation value of certain fermion bilinears. It is better to obta
a solution for arbitraryL, compute the expectation value o
whatever operator is desired first, andthen take the largeL
limit of the resultingC-number. This was done in the secon
paper @4#, but all the calculations were restricted to 111
dimensions. In this paper we compute in 311 dimensions.
We have also extended the background to include a cons
magnetic field which is co-linear with the electric field. Th
allows us to check the axial vector anomaly for the first tim
ever in (311)-dimensional light-cone QED.

This Introduction is the first of seven sections. Section
explains light-cone notation and gauge choices. It also p
sents our solution of the Dirac equation in the previou
described background. Section III describes quantization
also explains how to work in the presence of a state whic
empty on the initial value surface. In Sec. IV we calcula
the probability of pair creation. Section V is devoted to co
puting the expectation values of the vector currents. In S
VI, we show that the expectation values of the axial vec
currentsJ5

1 , J5
2 , and the pseudoscalarJ5 obey the Adler-

Bell-Jackiw anomaly to all orders in the magnetic field. Se
tion VII gives concluding remarks.
©2002 The American Physical Society17-1
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II. THE MODEL AND ITS SOLUTION

The Lagrangian density for QED is

L5C̄gm~ i ]m2eAm2m!C2
1

4
FmnFmn. ~1!

In four dimensionsm andn run from 0 to 3.Am is the gauge
potential,C is the Dirac bispinor, andFmn[]mAn2]nAm is
the Maxwell field strength tensor. We employ the conve
tions of Bjorken and Drell@5#, who givehmn timelike signa-
ture and$gm,gn%52hmn.

The coordinates of light-cone quantum field theory are@6#

x6[
1

A2
~x06x3!, x'[~x1,x2!. ~2!

Any vector can be expressed in this basis. For example,
inner product of two Lorentz vectors is

ambm5a1b21a2b12a'
•b'. ~3!

From Eq.~3! we are able to extract the nonvanishing co
ponents of the light-cone metric ash125h2152h115
2h2251. Therefore, raising and lowering are accomplish
thusly: a15a2, a25a1,a152a1,a252a2. Further, the
divergence of any 4-vector is]mVm5]1V11]2V2

1¹'•V'.
Light-cone gamma matrices satisfy

~g6!250, $g1,g2%52, $g i ,g j%522d i j . ~4!

Dirac spinors on the light-cone are decomposed by the
jectors

P6[
1

2
g7g65

1

2
~ I 6g0g3!. ~5!

Acting these on the full bispinor gives its1 and2 compo-
nents:

c65P6C, C5c11c2 . ~6!

Our electric and magnetic backgrounds areEW (x1,x2,x')
5E(x1) x̂3 andBW (x1,x2,x')5Bx̂3, respectively. We fix the
gauge with

A1~x1,x2,x'!50. ~7!
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We can also impose the surface conditions

A2~0,x2,x'!50,

A1~0,0,x'!52A2~0,0,x'!. ~8!

In this gauge the nonzero components of the vector poten
are

A2~x1!52E
0

x1

dyE~y!, A'~x'!5
B

2
~x2x̂12x1x̂2!.

~9!

With these conventions the Dirac equation is

@ ig1]11 ig2~]21 ieA2!1 ig'
•D'2m#C~x!50,

~10!

whereD'[¹'1 ieA' is the transverse covariant derivativ
of QED. Alternately multiplying this equation by12 g2 and
1
2 g1 gives two coupled equations involving the light-con
spinors:

i ]1c1~x!5 1
2 ~m1 ig'

•D'!g2c2 , ~11!

~ i ]22eA2!c2~x!5 1
2 ~m1 ig'

•D'!g1c1. ~12!

One solves this system by integrating Eq.~11! with respect to
x1 and Eq.~12! with respect tox2,

c1~x1,x2,x'!5c1~0,x2,x'!2
i

2
~m1 ig'

•D'!

3E
0

x1

dug2c2~u,x2,x'!, ~13!

c2~x1,x2,x'!5e2 ieA2(x1)(x21L)c2~x1,2L,x'!

2
i

2
~m1 ig'

•D'!E
2L

x2

dv

3e2 ieA2(x1)(x22v)g1c1~x1,v,x'!.

~14!

These equations implicitly expressc6(x1,x2,x') in terms
of c1 , for x150 and x2.2L, and c2 , for x1.0 and
x252L. To make the relation explicit we substitute E
~14! into Eq. ~13! and iterate. The result is an infinite serie
c1~x1,x2,x'!5 (
n50

` F2
1

2
~m1 ig'

•D'!~m2 ig'
•D'!GnE

0

x1

du1E
2L

x2

dv1e2 ieA2(u1)(x22v1)

3E
0

u1
du2E

2L

v1
dv2e2 ieA2(u2)(v12v2)

•••E
0

un21
dunE

2L

vn21
dvne2 ieA2(un)(vn212vn)

3H c1~0,vn ,x'!2
i

2
~m1 ig'

•D'!E
0

un
due2 ieA2(un)(vn1L)g2c2~u,2L,x'!J . ~15!

This series can be summed as in@4#. The result is
7-2
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c1~x1,x2,x'!5E
2L

`

dvE
2`

1`dk1

2p
ei (k11 i /L)(v2x2)3HU„x',t~0,x1;k1!…c1~0,v,x'!2

i

2
~m1 ig'

•D'!

3E
0

x1

due2 ieA2(u)(v1L)U„x',t~u,x1;k1!…g2c2~u,2L,x'!J . ~16!
fin

p
tiv

ut

,
is
The various hitherto undefined functions are

U~x',t![e2 iH[eA'(x')] t, ~17!

H@eA'~x'!#[ 1
2 ~m1 ig'

•D'!~m2 ig'
•D'!,

~18!

t~u,x1;k1![E
u

x1 du8

k12eA2~u8!1 i /L
.

~19!

To shorten expressions in later sections we make the de
tions

t1[t~0,x1;k1!, t2[t~u,x1;k1! ~20!

t1* [t* ~0,x1;q1!, t2* [t~y,x1;q1! ~21!

t11[t1* 2t1 , t22[t2* 2t2 . ~22!

At this stage our solution~16! is still valid for any
A'(x'); however, its dependence upon the initial value o
erators is complicated by the transverse covariant deriva
operator. To exhibit this dependence we expressU as a ker-
nel:

U~x',t! f ~x'![E d2y'K~x',y';t! f ~y'!. ~23!
08501
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One obtains the kernel by treatingH@eA'(x')# as a first
quantized Hamiltonian. The spinor structure factors o
through the reduction

H@eA'~x'!#5
1

2
@m22D'•D'#1bS3, ~24!

where S3[( i /2)@g1,g2# and b[ueuB/252eB/2. For our
linear A'(x'), Eq. ~9!, the Hamiltonian is that of a rotated
2-dimensional harmonic oscillator. Identifying its kernel
straightforward:

K~x',y';t![e2 ibS3tG~x',y';t!. ~25!

The functionG(x',y';t) is

2
ibe2( i /2)m2t

2psin~bt!
expF i

2
bcot~bt!~x'2y'!22 iex'

•A'~y'!G .
~26!

We will often use its Fourier transform ony':

G̃~x',k',s!5
e2( i /2)m2se2 ik'

•x'

cos~bs!

3expF i

2b
tan~bs!„k'2eA'~x'!…2G .

~27!

In terms of the kernel our solution forc1 is
c1~x1,x2,x'!5E
2L

`

dvE
2`

1`dk1

2p
ei (k11 i /L)(v2x2)E d2y'HK„x',y';t~0,x1;k1!…c1~0,v,y'!2

i

2
~m1 ig'

•D'!

3E
0

x1

due2 ieA2(u)(v1L)K„x',y';t~u,x1;k1!…g2c2~u,2L,y'!J . ~28!
the
is of
The solution forc2 is obtained by inverting Eq.~11!. That
is,

c25 ig1~m1 ig'
•D'!21]1c1 . ~29!

The inverse operator can be obtained by noting thatK is the
Green’s function for a time dependent Schro¨dinger equation,

S H2 i
]

]sDK~x',y';s!50. ~30!
Integrating Eq.~30! gives us the inverse operator,

~m1 ig'
•D'!21d2~x'2y'!

5 i E
0

`

ds„m2 ig'
•D'~x'!…K~x',y';s!. ~31!

It is sometimes desirable to express dependence upon
transverse coordinates using the harmonic oscillator bas
H. One begins by defining first quantized momenta:
7-3
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px[2 i
]

]x
, py[2 i

]

]y
. ~32!

With the position operators these are formed into lower
operators:

ax[
1

A2b
~bx1 ipx!, ay[

1

A2b
~by1 ipy!. ~33!

Finally, one defines complex raising and lowering operato

a6[
1

A2
~ax6 iay!, a6

† [
1

A2
~ax

†7 iay
†!. ~34!

The original coordinates and derivatives have the follow
expressions:

x5
1

2Ab
~a11a1

† 1a21a2
† !,

y5
i

2Ab
~2a11a1

† 1a22a2
† !, ~35!

]x5
Ab

2
~a12a1

† 1a22a2
† !,

]y5 i
Ab

2
~2a12a1

† 1a21a2
† !. ~36!

Hence the covariant derivative operators are
08501
g
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g

Dx5]x2 iby5Ab~a22a2
† !, ~37!

Dy5]y1 ibx5Ab~ ia21 ia2
† !. ~38!

The point of this technology is to give a simple express
for the first quantized Hamiltonian,

H5
1

2
m21~2a2

† a2111S3!b. ~39!

Its normalized eigenstates are

Wn6
~x'![

~a1
† !n1

An1!

~a2
† !n2

An2!
Ab

p
e2(b/2)ix'i2

. ~40!

The fields can be expressed in this basis as follows:

c1~x1,x2,n6![E d2x'Wn6
* ~x'!c1~x1,x2,x'!

[^^Wn6
uc1~x1,x2!&&. ~41!

Our solution~16! assumes the form

c6~x1,x2,x'!5E
2`

` dk1

2p
e2 i (k11 i /L)x2

3 (
n650

`

c̃6~x1,k1,n6!Wn6
~x'!,

~42!

where we define
c̃1~x1,k1,n6![E
2L

`

dvei (k11 i /L)vH ^^Wn6
ue2 iHt1uc1~0,v !&&

2
i

2E0

x1

due2 ieA2(u)(v1L)^^Wn6
u~m1 ig'

•D'!e2 iHt2g2uc2~u,2L !&&J , ~43!

c̃2~x1,k1,n6![E
2L

`

dvei (k11 i /L)vH K K Wn6
U i

2H ~m1 ig'
•D'!g13e2 iHt1Uc1~0,v !L L

1E
0

x1

due2 ieA2(u)(v1L)^^Wn6
ue2 iHt2uc2~u,2L !&&J . ~44!
7-4
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Note that the inverse ofH is straightforward to evaluate in
the harmonic oscillator basis.

Taking thex1 derivative of Eq.~43! gives

2 i ]1c̃1~x1,k1,n6!

52

1
2 m21~2n2111S3!b

k12eA2~x1!1 i /L
c̃1~x1,k1,n6!

2
e2 i (k11 i /L)L

k12eA2~x1!1 i /L

i

2
^^Wn6

u~m1 ig'
•D'!

3g2uc2~x1,2L !&&. ~45!

The last term only contributes atk15eA2(x1) in the large
L limit since

lim
L→`

e2 i „k12eA2(x1)1 i /L…L

k12eA2~x1!1 i /L
522p id„k12eA2~x1!….

~46!

We see that the largeL limit of c̃1(x1,k1,n6) is an eigen-
operator of2 i ]1 . Since the eigenvalues ofS3 are61 the
sign of the eigenvalue is controlled by the denominatork1

5eA2(x1). For k1.eA2(x1) the large L limit of
c̃1(x1,k1,n6) annihilates electrons with spins5 1

2 S3; for
k1,eA2(x1) it creates positrons with spins52 1

2 S3.

III. LIGHT-CONE QUANTIZATION

The Lagrangian density for Dirac fermions in our bac
ground is

L5A2c1
† S i ]1c12

1

2
~m1 ig'

•D'!g2c2D
1A2c2

† S ~ i ]22eA2!c2

2
1

2
~m1 ig'

•D'!g1c1D . ~47!

Using Eq.~47! we may read off the algebra that our opera
solutions satisfy on the initial value surfaces. The conjug
momenta of these initial value fields,c1(0,v,x') and
c2(u,2L,x'), are the normal derivatives of Eq.~47! evalu-
ated on the surfacesx150 and x252L, respectively.
Therefore, the momentum conjugate toc1(0,v,x') is
iA2c1

† (0,v,x'), and the corresponding conjugate mome
tum to c2

† (u,2L,x') is iA2c2(u,2L,x'). The two initial
value surfaces are spacelike separated, and therefore th
nonzero anticommutators are
08501
r
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$c1~0,v,x'!,c1
† ~0,w,y'!%

5
1

A2
P1d~v2w!d2~x'2y'!, ~48!

$c2~u,2L,x'!,c2
† ~y,2L,y'!%

5
1

A2
P2d~u2y!d2~x'2y'!. ~49!

The anticommutation relations for arbitrary equalx1 and
equalx2 are not independent but follow from our solution
~28!,~29!,

$c1~x1,x2,x'!,c1
† ~x1,y2,y'!%

5
1

A2
P1d~x22y2!d2~x'2y'!, ~50!

$c2~x1,x2,x'!,c2
† ~y1,x2,y'!%

5
1

A2
P2d~x12y1!d2~x'2y'!. ~51!

It remains to specify the Heisenberg state. For our p
poses the natural ‘‘vacuum’’uV& is empty atx150 andx2

52L. This makes calculating expectation values of fermi
bilinears straightforward. One first uses our solution to e
press the bilinear in terms of the initial value operators, a
then computes the expectation value of these in the abs
of the background fields using the standard free vacuum

^Vuca~x1,x2,x'!cb
†~y1,y2,y'!uV&Am50

5E d3p

~2p!3

~p”g01mg0!ab

2v

3e2 ip2(x12y1)2 ip1(x22y2)1 ip'
•(x'2y'), ~52!

^Vucb
†~y1,y2,y'!ca~x1,x2,x'!uV&Am50

5E d3p

~2p!3

~p”g02mg0!ab

2v

3eip2(x12y1)1 ip1(x22y2)2 ip'
•(x'2y'). ~53!

The variable of integration above ispi and we definev

[Am21pW •pW .
In using Eqs.~52!, ~53! one first specializes to the desire

initial value position and spinor component. Next chan
variables fromp3 to eitherp1 or p2,

E
2`

`

dp35E
0

`

dp1
v

p1 5E
0

`

dp2
v

p2 . ~54!

The complementary light-cone momentum is given by
mass shell condition, 2p1p25m21p'

•p'.
7-5
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When the spinor indices are not explicitly written we sh
understand expectation values of the formc†Mc to involve
an implied spinor trace. Specializing to the initial value s
faces and taking6 components gives the various combin
tions of this form,

^Vuc1
† ~0,w,y'!c1~0,v,x'!uV&

5A2d2~x'2y'!E
0

`dp1

2p
eip1(v2w), ~55!

^Vuc1
† ~0,w,y'!g2c2~u,2L,x'!uV&

52A2E d2p'

~2p!2
e2 ip'

•(x'2y')E
0

`dp1

2p

m

p1

3eip2u2 ip1(w1L), ~56!
o

to
t-

t

st
o

08501
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^Vuc2
† ~y,2L,y'!g1c1~0,v,x'!uV&

52A2E d2p'

~2p!2
e2 ip'

•(x'2y')

3E
0

`dp1

2p

m

p1 e2 ip2y1 ip1(v1L), ~57!

^Vuc2
† ~y,2L,y'!c2~u,2L,x'!uV&

5A2d2~x'2y'!E
0

`dp2

2p
eip2(u2y), ~58!

5A2d2~x'2y'!
1

2H d~u2y!1
i

p
PS 1

u2yD J . ~59!

Notice that in theL→` limit Eqs. ~56!,~57! vanish. This
means that the transverse coordinate dependence only
tributes delta functions.

In addition to Eqs.~55!–~59!, more complicated spino
traces will appear. It is convenient to list two of the opera
reductions here to expedite derivations in later sections,
^Vuc1
† ~0,w,y'8!eibS3t66c1~0,v,x'8!uV&5A2d2~x'82y'8!cos~bt66!E

0

`dp1

2p
eip1(v2w),^Vuc2

† ~y,2L,y'8!

3g1eibS3t6
*
„m1 ig'

•D'
* ~x'!…G* ~x',y'8;t6* !3„m1 ig'

•D'~x'!…

3G* ~x',x'8;t6!e2 ibS3t6g2c2~u,2L,x'8!uV& ~60!

5A8d2~x'82y'8!G* ~x',y'8;t6* !$~m21DQ'
* •DW'!cos~bt66!

2e i j DQ i'* DW j'sin~bt66!%G~x',x'8;t6!E
0

`dp2

2p
eip2(u2y), ~61!
the
o
rld

-
si-

y

e
of

ility
where e i j is the antisymmetric Levi-Civita density in tw
dimensions withi and j running over the values 1 and 2.

IV. PAIR CREATION PROBABILITY

At the end of Sec. II we were able to identify an opera
c̃1(x1,k1,n6) which gives exact eigenstates of the ligh
cone evolution operator2 i ]1 in the largeL limit. Its behav-
ior changes abruptly at timex15X(k1), defined such tha
k1[eA2„X(k1)…. For x1,X(k1) the operator
c̃1(x1,k1,n6) annihilates electrons of momentumk1, Lan-
dau leveln2 and spin1

2 S3. For x1.X(k1) it creates posi-
trons of momentumk1, Landau leveln2 and spin2 1

2 S3.
The transition between these two regimes is a manife

tion of particle creation, which is an instantaneous event
r

a-
n

the light cone. Just as in the previous treatments@3,4#, the
newly created positron accelerates to the speed of light in
1x3 direction, so its world line is asymptotically parallel t
the x1 axis. The electron goes the other way, so its wo
line is asymptotically parallel to thex2 axis. This has a
curious effect when one regardsx1 as the evolution opera
tor: electrons leave the light-cone manifold while the po
trons accumulate.

In this section we compute the probabilit
Prob(k1,n2 ,s) for creating a positron of momentumk1,
Landau leveln2 and spins. From the previous section w
see that the two nonzero spinor components
c̃1(x1,k1,n6) lack only a factor of 21/4 to be canonically
normalized. Therefore we can extract the creation probab
@for x1.X(k1)] from the relation
7-6
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lim
L→`

A2K VUc̃1
† ~x1,q1,m6!S 1

2
2sS3D

3c̃1~x1,k1,n6!UV L 5@12Prob~k1,n2 ,s!#2pd~k1

2q1!dm6 ,n6
. ~62!

The procedure for evaluating Eq.~62! is to first express
the operators in terms of the initial value operators us
2

08501
g

Eqs.~43!, ~44!. For any bilinear this produces four kinds o
operator products: the11 combination in which each term
is from thex150 surface; the12 combination in which
the first is fromx150 and the second fromx252L; and so
on. We then compute the expectation values of each pro
from the free, sourceless theory as explained in the last
tion. Finally, the largeL limit is taken. Since causality per
mits only the11 and22 products to survive this limit, we
report only these terms.

The 11 product is simple,
A2K VUc̃1
† ~x1,q1,m6!S 1

2
2sS3D c̃1~x1,k1,n6!UVL

11

5E
2L

1`

dvei (k11 i /L)vE
2L

1`

dwe2 i (q12 i /L)wK K Wn6UTrFe2 iHt1S 1

2
2sS3D P1E

0

`dp1

2p
eip1(v2w)eiHt1

* GUWm6L L ,

~63!

5E
0

`dp1

2p

e2 i (k11p11 i /L)L

k11p11 i /L

ei (q11p12 i /L)L

q11p12 i /L
dm6 ,n6

ei e(n2 ,s)t11, ~64!

wheree(n2 ,s)[ 1
2 m21(2n21122s)b. We are interested in the limitL→`, in which case,

e2 i (k11p11 i /L)L

k11p11 i /L

ei (q11p12 i /L)L

q11p12 i /L
→2pd~k11p1!2pd~q11p1!. ~65!

Whenq15k1 the largeL limit of expression~22! for t11 becomes

lim
L→`

E
0

x1S du

k12eA2~u!2 i /L
2

du

k12eA2~u!1 i /L D52p iX8~k1!u~eA22k1!u~k1!. ~66!

This vanishes in Eq.~64! because the delta functions and the range ofp1 conspire to makek1 negative whereaseA2(x1) is
assumed positive:

lim
L→`

A2K VUc̃1
† ~x1,q1,m6!S 1

2
2sS3D c̃1~x1,k1,n6!UV L

11

52pd~k12q1!u~2k1!dm6 ,n6
. ~67!

The 22 term is a little more difficult:

A2K VUc̃1
† ~x1,q1,m6!S 1

2
2sS3D c̃1~x1,k1,n6!UVL

22

5
1

4E2L

1`

dvei (k11 i /L)vE
0

x1

due2 ieA2(u)(v1L)E
2L

1`

dwe2 i (q12 i /L)wE
0

x1

dyeieA2(y)(w1L)

3K K Wn6UTrF ~m1 ig'
•D'!e2 iHt2S 1

2
2sS3Dg2P23E

0

`dp2

2p
e2 ip2(u2y)g1eiHt2

* ~m2 ig'
•D'!GUWm6L L ,

~68!

5
1

2E0

x1

du
e2 i (k11 i /L)L

k12eA2~u!1 i /L
E

0

x1

dy
ei (q12 i /L)L

q12eA2~y!2 i /L
H 1

2
d~u2y!1

i

2p
PS 1

u2yD J K K Wn6
UTrF ~m1 ig'

•D'!

3P1S 1
2sS3DeiHt22~m2 ig'

•D'!GUWm6L L . ~69!
7-7
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We reduce the transverse structure using the identity

~m1 ig'
•D'!P1S 1

2
2sS3DeiHt22~m2 ig'

•D'!

5P1S 1

2
2sS3D2HeiHt22. ~70!

This brings the22 term to the interesting form

A2K VUc̃1
† ~x1,q1,m6!S 1

2
2sS3D

3c̃1~x1,k1,n6!UV L
22

5E
0

x1

du
e2 i (k11 i /L)L

k12eA2~u!1 i /L

3E
0

x1

dy
ei (q12 i /L)L

q12eA2~y!2 i /L

3H 1

2
d~u2y!1

i

2p
PS 1

u2yD J
3dm6 ,n6

e~n2 ,s!ei e(n2 ,s)t22. ~71!

At this stage we observe that Eq.~71! is the same as the 1
11 expression~4.8! of Ref. @4# with the trivial replacement,

1

2
m2→ 1

2
m21~2n21122s!b[e~n2 ,s!. ~72!

This means that the remaining analysis has already b
done. We can read the final result from Ref.@4#,

lim
L→`

A2K VUc̃1
† ~x1,q1,m6!S 1

2
2sS3D

3c̃1~x1,k1,n6!UV L
22

52pd~k12q1!dm6 ,n6
u~k1!u„eA2~x1!2k1

…

3@12e22pl(k1,n2 ,s)#, ~73!

where we define

l~k1,n2 ,s![
e~n2 ,s!

ueE„X~k1!…u
. ~74!

Note that we could have used this same procedure to sho
the 11 derivation as well. It is almost always the case th
expressing the transverse coordinate dependence in the
monic oscillator basis results in an expression which diff
only by the replacement~72! from one already computed i
Ref. @4# for the (111)-dimensional theory.

Combining Eqs.~67! and ~73! gives
08501
en

en
t
ar-
s

lim
L→`

A2K VUc̃1
† ~x1,q1,m6!S 1

2
2sS3D

3c̃1~x1,k1,n6!UV L
52pd~k12q1!dm6 ,n6

$u~2k1!1u~k1!

3u„eA2~x1!2k1
…@12e22pl(k1,n2 ,s)#%.

~75!

The u(2k1) term implies there is no particle creation fo
k1,0. These modes start out as positron creation opera
and they continue to have that meaning forE(x1).0. Since
the state was initially empty of these modes it remains
The other term implies that positrons are created for 0,k1

,eA2(x1) with probability,

Prob~k1,n2 ,s!5e22pl(k1,n2 ,s). ~76!

Note that the spin dependence makes physical sense.
more probable for a positron to be created with its s
aligned (s51 1

2 ) with the magnetic field than opposed (s
52 1

2 ).

V. THE VECTOR CURRENTS

Our operator solutions~28!, ~29! enable us to calculate
exactly the one-loop response to an external electromagn
field. The light-cone currents are

J65
e

A2
~c6

† c62Tr@c6c6
† # !. ~77!

As usual in quantum field theory, we must regulate the
operators. We accomplish this by point splittingJ6 in x' and
in x7. To maintain gauge invariance we add a gauge str
when needed,

J1~x1;x2,y2;x',y'!5
e

A2
eieA2(y22x2)1 iey'

•A'(x')

3„c1
† ~x1,x2,x'!c1~x1,y2,y'!

2Tr@c1~x1,y2,y'!

3c1
† ~x1,x2,x'!#…. ~78!

J2~x1,y1;x2;x',y'!5
e

A2
eiey'

•A'(x')
„c2

† ~x1,x2,x'!

3c2~y1,x2,y'!

2Tr@c2~y1,x2,y'!

3c2
† ~x1,x2,x'!#…. ~79!

Point splitting breaks Hermiticity. Therefore, our currents a
the symmetric limits of Eqs.~78!, ~79!,
7-8
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J6~x!5 lim
y→x

1

2
„J6~x;y!1J6~y;x!…. ~80!

Note that the expectation values of the transverse curr
J1,J2 vanish. This can be seen by simple Dirac algebra
corresponds physically to the zero average transverse cu
for a particle undergoing helical motion.
08501
ts
It
ent

We begin withJ1 and compute the expectation values
the 11 and 22 terms as in the previous section.~As be-
fore, the12 and21 terms vanish in the largeL limit.! The
reductions are similar to those in the previous section, so
show the results~with y25x21D2) after performing thev
andw integrations and taking the transverse expectation
ues,
^VuJ1~x1;x2,y2;x',y'!uV&115 (
n6 ,s

Wn6
* ~x'!Wn6

~y'!eiey'
•A'(x')3

e

2
eieA2(x1)D2

3H E
2`

0

2E
0

`J dp1

2p E
2`

` dk1

2p

e2 i (k11 i /L)(y21L)

k12p11
i

L

3E
2`

` dq1

2p

e1 i (q12 i /L)(x21L)

q12p12
i

L

ei e(n2 ,s)t11, ~81!

^VuJ1~x1;x2,y2;x',y'!uV&225 (
n6 ,s

Wn6
* ~x'!Wn6

~y'!eiey'
•A'(x')3

e

2
eieA2(x1)D2E

0

x1

duE
0

x1

3dyH E
2`

0

2E
0

`J dp2

2p
e2 ip2(u2y)E

2`

` dk1

2p

3
e2 i (k11 i /L)(y21L)

k12eA2~u!1
i

L

E
2`

` dq1

2p

e1 i (q12 i /L)(x21L)

q12eA2~y!2
i

L

e~n2 ,s!ei e(n2 ,s)t22. ~82!

Recall thatt11 andt22 were defined in Eqs.~20!–~22! and thate(n2 ,s)[ 1
2 m21(2n21122s)b.

Each of these results has the form of(n6 ,sWn6
* (x')Wn6

(y')eiey'
•A'(x') times the corresponding (111)-dimensional

result of @4# with the trivial replacement:12 m2→e(n2 ,s). We can therefore read off the largeL limits directly. That for the
11 terms follows from equation~5.10! of @4#:

lim
L→`

^VuJ1~x1;x2,y2;x',y'!uV&115 (
n6 ,s

Wn6
* ~x'!Wn6

~y'!eiey'
•A'(x')

3
e

2 H i

pD2 2E
0

eA2dp1

2p
@11e22pl(p1,n2 ,s)#e2 i (p12eA2)D2J . ~83!

The largeL limit of the 22 terms derives from Eqs~5.11!–~5.13! of @4#,

lim
L→`

^VuJ1~x1;x2,y2;x',y'!uV&225 (
n6 ,s

Wn6
* ~x'!Wn6

~y'!eiey'
•A'(x')

e

2E0

eA2dp1

2p
@12e22pl(p1,n2 ,s)#e2 i (p12eA2)D2

.

~84!

Combining the11 and22 terms gives

lim
L→`

^VuJ1~x1;x2,y2;x',y'!uV&5 (
n6 ,s

Wn6
* ~x'!Wn6

~y'!eiey'
•A'(x')

3eH i

2pD2 2E
0

eA2dp1

2p
e22pl(p1,n2 ,s)e2 i (p12eA2)D2J . ~85!
7-9
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At this stage we can takey'→x'. Hermitization discards the 1/D2 term, at which point we can also takeD2→0. The result
is

lim
L→`

^VuJ1~x1,x2,x'!uV&52e (
n6 ,s

iWn6
~x'!i2E

0

eA2dp1

2p
e22pl(p1,n2 ,s). ~86!

This expression has a transparent physical interpretation based on the role ofJ1 as the light-cone charge density. This char
density derives from the steady accumulation of positrons as the electron member of each newly created pair le
light-cone manifold. Hence the charge density is the sum over states of the2e contributed by each positron, times the pa
production probability~76! we derived in Sec. IV.

Since the expectation value of the current operators cannot depend upon the transverse coordinate we may a
x'50. The harmonic oscillator basis functions are especially simple at this point,

Wn6
~0!5~2 !n2dn2 ,n1

Ab

p
. ~87!

Recalling thatl(p1,n2 ,s)5e(n2 ,s)/ueE„X(p1)…u, we can perform the sums overn6 ands,

lim
L→`

^VuJ1~x1,x2,x'!uV&52
eb

2p2E
0

eA2

dp1e2pm2/ueEu@11e24pb/ueEu# (
n50

`

~e24pb/ueEu!n, ~88!

5
e2B

4p2E
0

eA2

dp1e2pm2/ueEucothF pB

E„X~p1!…
G . ~89!

Sinceb[2eB/2 we see that theB→0 limit agrees with the result of@3#. The other new limit, that of largeB, seems more
interesting. In that case the hyperbolic cotangent goes to one, soJ1 grows linearly in the magnetic field. This might b
phenomenologically relevant to astrophysics because very large, approximately homogeneous magnetic fields are
occur. For example, the magnetic field strength in a neutron star can reachB;1013 G over a kilometer coherence length.

We turn now toJ2. After performing thev andw integrations and taking the transverse expectation values the11 and
22 terms assume the form

^VuJ2~x1,y1;x2;x',y'!uV&115 (
n6 ,s

Wn6
* ~x'!Wn6

~y'!eiey'
•A'(x')

e

2

]

]x1

]

]y1 H E
2`

0

2E
0

`J dp1

2p

3E
2`

` dk1

2p

e2 i (k11 i /L)(x21L)

k12p11
i

L

E
2`

` dq1

2p

e1 i (q12 i /L)(x21L)

q12p12
i

L

ei e(n2 ,s)s1

e~n2 ,s!
, ~90!

^VuJ2~x1,y1;x2;x',y'!uV&225 (
n6 ,s

Wn6
* ~x'!Wn6

~y'!eiey'
•A'(x')

e

2

]

]x1

]

]y1E
0

y1

duE
0

x1

dyH E
2`

0

2E
0

`J
3

dp2

2p
e2 ip2(u2y)E

2`

` dk1

2p

e2 i (k11 i /L)(x21L)

k12eA2~u!1
i

L

3E
2`

` dq1

2p

e1 i (q12 i /L)(x21L)

q12eA2~y!2
i

L

ei e(n2 ,s)s2. ~91!
The quantitiess6 are just t11 and t22 with the upper
limits of the second integral in each changed fromx1 to y1,

s1[E
0

x1 du8

q12eA2~u8!2
i

L

2E
0

y1 du8

k12eA2~u8!1
i

L

,

~92!
08501
s2[E
y

x1 du8

q12eA2~u8!2
i

L

2E
u

y1 du8

k12eA2~u8!1
i

L

.

~93!

The x2 derivative ofJ2 is ultraviolet finite so the oscil-
lator sums again multiply the same (111) dimensional cur-
7-10
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rents whose largeL limits were already computed in@4#. For
example, the largeL limit of the 11 terms follows from
equations~5.23!, ~5.24! of @4#,

lim
L→`

]2^VuJ2~x1,x1;x2;x',y'!uV&11

5 (
n6 ,s

Wn6
* ~x'!Wn6

~y'!eiey'
•A'(x')

e2E~x1!

4p

3@12e22pl(p1,n2 ,s)#. ~94!

The largeL limit of the 22 terms derives from equation
~5.25!–~5.28! of @4#,

lim
L→`

]2^VuJ2~x1,x1;x2;x',y'!uV&22

5 (
n6 ,s

Wn6
* ~x'!Wn6

~y'!eiey'
•A'(x')

e2E~x1!

4p

3@212e22pl(p1,n2 ,s)#. ~95!

Once the two terms are combined we can take the transv
coordinates to coincidence and again exploit transve
translational invariance to perform the sums overn6 ands at
x'50,
th

m

08501
rse
e

lim
L→`

]2^VuJ2~x1,x2,x'!uV&

52
e2E~x1!

2p (
n6 ,s

iWn6
i2e22pl(eA2 ,n2 ,s),

~96!

5
e3E~x1!B

4p2 e2pm2/ueEucothF pB

E~x1!
G . ~97!

Comparison with Eq.~89! verifies current conservation.
We can obtain the undifferentiated currentJ2 by integrat-

ing with respect tox2, just as in 111 dimensions@4#. How-
ever, the (311)-dimensional integration constant must
treated with care. Although our choice of state makes
expectation value ofJ2(x1,2L,x') vanish, moving even
infinitesimally to the left ofx252L results in an ultraviolet
divergence. Of course this is the one loop photon fi
strength renormalization. To extract it we fix one of the fiel
at x252L and take the other just inside. Since there is
11 term, and the mixed terms always vanish for largeL, we
compute only the22 contribution,
e

A2
eieA2(x1)D21 ieA'(x')•D'

^Vu$c2
† ~x1,2L,x'!c2~x1,D22L,x'1D'!2Tr@c2~x1,D22L,x'1D'!

3c2
† ~x1,2L,x'!#%uV&22

5 (
n6 ,s

Wn6
* ~x'!Wn6

~x'1D'!eieA'(x')•D' e

4pE2`

`

dk1
e2 i „k12eA2(x1)1 i /L…D2

k12eA2~x1!1
i

L

3E
0

x1 du

k12eA2~u!1
i

L

H E
2`

0

2E
0

`J dp2

2p
eip2(x12u)e~n2 ,s!e2 i e(n2 ,s)t2. ~98!
Because of its significance to this analysis we remind
reader of the functiont25t(u,x1;k1) from Eq. ~20!,

t~u,x1;k1!5E
u

x1 du8

k12eA2~u8!1
i

L

. ~99!

It will be important to note thatt(u,x1;k1) has a negative
imaginary part.

The next step is to perform the oscillator and spin su
using the relation
e

s

(
n6 ,s

Wn6
* ~x'!Wn6

~y'!eieA'(x')•D'
e~n2 ,s!e2 i e(n2 ,s)t2

5 i
]

]t2
H 2

ib

p
e2( i /2)m2t2cot~bt2!

3e( i /2)bcot(bt2)iD'i2J . ~100!

Sincex1>u the p2 integral gives

H E
2`

0

2E
0

`J dp2

2p
eip2(x12u)52

i

2p

1

x12u
. ~101!
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Now change variables fromu to t(u,x1;k1) by recognizing
the complex differential,

dt5
]t

]u
du5

2du

k12eA2~u!1
i

L

. ~102!

Since t(0,x1;k1)[t1 and t(x1,x1;k1)50, expression
~98! takes the form

2
ie

8p3E2`

`

dk1
e2 i [k12eA2(x1)1 i /L]D2

k12eA2~x1!1
i

L

E
0

t1 dt

x12u

3
]

]t
$bcot~bt!e2( i /2)m2t1( i /2)bcot(bt)iD'i2

%. ~103!

Note that the negative imaginary part oft makes the inte-
grand exponentially suppressed ast→0 as long asiD'i2

Þ0.
We must next express 1/(x12u) in terms oft. First ex-

pandt(u,x1;k1) for small Du[x12u,

t~u,x1;k1!5
Du

k12eA2~x1!1
i

L

1

1

2
eA28 ~x1!Du2

Fk12eA2~x1!1
i

LG2

1

1

6
eA29 ~x1!Du3

Fk12eA2~x1!1
i

LG2

1

1

3
@eA28 ~x1!#2Du3

Fk12eA2~x1!1
i

LG3 1O~Du4!.

~104!

Since all the vector potentials are evaluated atx1 we can
suppress their arguments in subsequent expressions. We
define the complex parameterK[k12eA21 i /L. Solving
perturbatively for 1/Du gives

1

Du
5

1

KtH 11
1

2
eA28 t1

1

6
eA29 Kt2

1
1

12
~eA28 t!21O~t3!J . ~105!

Substituting this result and integrating by parts brings E
~98! to the form
08501
lso

.

2
ie

8p3E2`

`

dk1
e2 iKD2

K H b

x1cot~bt1!

3e2( i /2)m2t11( i /2)bcot(bt1)iD'i2
1E

0

t1

dt
b

Kt2cot~bt!

3e2( i /2)m2t1( i /2)bcot(bt)iD'i2F12
1

6
eA29 Kt2

2
1

12
~eA28 t!21O~t3!G J . ~106!

Note that the surface term is obviously finite in the unreg
lated limit.

The ultraviolet divergence derives from the integrati
over small t. From the expansion cot(x)51/x21

3x2 1
45x

3

1••• we infer

b

t2cot~bt!e2( i /2)m2t1( i /2)bcot(bt)iD'i2

5e( i /2t)iD'i2H 1

t32
i

2 Fm21
1

3
b2iD'i2G 1

t22F1

8
m4

1
1

12
m2b2iD'i21

1

72
b4iD'i4

1
1

3
b2G1t 1O~1!J . ~107!

Only the following integrals can produce divergences:

E
0

t1dt

t3 e( i /2t)D2
5F2

4

D4 1
2i

t1D2Ge( i /2t1)D2

52
4

D4 1O~1!, ~108!

E
0

t1dt

t2 e( i /2t)D2
5

2i

D2 e( i /2t1)D2
5

2i

D2 1O~1!,

~109!

E
0

t1dt

t
e( i /2t)D2

52EiS iD2

2t1
D

52 ln~D2!1O~1!. ~110!

We can therefore isolate the terms from Eq.~98! which di-
verge with the transverse point splittingD2[iD'i2,

2 ie

8p3E2`

`

dk1
e2 iKD2

K2 H 2
4

D4 1
m2

D2 1Fm2

8
1

b2

3

1
eA29 K

6
1

~eA28 !2

12 G ln~D2!1O~1!J . ~111!
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It remains to perform thek1 integration. Most of the
transverse divergences are proportional to 1/K2 so they van-
ish with D2,

E
2`

`

dk1
e2 iKD2

K2
522pD2. ~112!

They are also purely imaginary and would vanish upon H
mitization. The single exception is the term proportional
eA29 . Thek1 integral for it is

E
2`

`

dk1
e2 iKD2

K
522p i . ~113!

This gives a real term which survives whenD2→0,

lim
D2→0

e

A2
eieA2D21 ieA'•D'

^Vu$c2
† ~x1,2L,x'!c2~x1,D2

2L,x'1D'!2Tr@c2~x1,D22L,x'1D'!

3c2
† ~x1,2L,x'!#%uV&

5
e2A29 ~x1!

24p2
ln~ iD'i22!1finite, ~114!

52dZ3]nFn21finite. ~115!

So we have recovered the standard one loop result for
photon field strength renormalization@5#. This is another im-
pressive check on the correctness and consistency of the
malism. As one might expect, the divergence can be isola
without taking the largeL limit.

VI. THE AXIAL VECTOR ANOMALY

The vector currents we have just obtained give the ex
one-loop response to our electromagnetic background. S
they are not entire functions of the electric field they cou
never be obtained in a perturbative expansion. It seems
vious that we can also access some of the nonperturba
structure of the axial vector currents. This is interesting
08501
r-

he

or-
d

ct
ce

b-
ve
-

cause it allows one to check for nonperturbative correcti
to the axial vector anomaly, just as what has already b
done in 111 dimensions@4#.

The axial vector anomaly is the violation of the naiv
divergence equation,

]mJ5
m22imJ550. ~116!

The anomaly in electrodynamics results from the one lo
triangle diagram containing two vector and one pseudove
vertices. Adler and Bardeen showed that this diagram
ceives noperturbativecorrections@7#. However, the possi-
bility for nonperturbative corrections remains open.

Modulo operator ordering and regularization, the ax
vector current operator and its pseudoscalar partner are

J5
65A2c6

† g5c6 , ~117!

J55
1

A2
~c1

† g2g5c21c2
† g1g5c1!.

~118!

The conventions of Sec. II implyg5[( 0 1
21 0). We regulate

the axial vector currents the same as we did the vector
rents,

J5
1~x1;x2,y2,x'!

[
1

A2
eieA2(x1)D2$c1

† ~x1,y2,x'!g5c1~x1,x2,x'!

2Tr@g5c1~x1,x2,x'!c1
† ~x1,y2,x'!#%. ~119!

J5
2~x1,y1;x2,x'![

1

A2
$c1

† ~y1,x2,x'!g5c1~x1,x2,x'!

2Tr@g5c1~x1,x2,x'!

3c1
† ~y1,x2,x'!#%. ~120!

The pseudoscalar is regulated by point splitting in both n
directions,
J5~x1,y1;x2,y2,x'![
1

A8
expF ie~x22y2!E

0

1

dhA2„y
11h~x12y1!…G$c1

† ~y1,y2,x'!g2g5c2~x1,x2,x'!

1c2
† ~y1,y2,x'!g1g5c1~x1,x2,x'!2Tr@g2g5c2~x1,x2,x'!c1

† ~y1,y2,x'!#

2Tr@g1g5c1~x1,x2,x'!c2
† ~y1,y2,x'!#%. ~121!

We Hermitize these operators as we did for the vector current,

J5
1~x1,x2,x'![ lim

y2→x2

1

2
$J5

1~x1;x2,y2,x'!1J5
1~x1;y2,x2,x'!%, ~122!
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J5
2~x1,x2x'![ lim

y1→x1

1

2
$J5

2~x1,y1;x2,x'!1J5
2~y1,x1;x2,x'!%. ~123!

As with the vector currents the subscripts66 denote which of the four initial value products is being considered. Also
before, only the11 and 22 products contribute to the largeL limit. We begin with ^VuJ5

1uV&. The 11 and 22
expectation values are

^VuJ5
1~x1;x2,y2,x'!uV&115S E

2`

0

2E
0

` D dp1

2p
e2 i [ p12eA2(x1)]D23E

2`

` dk1

2p

e2 i (k11 i /L)(y21L)

k12p11 i /L
E

2`

` dq1

2p

ei (q12 i /L)(x21L)

q12p12 i /L

3E d2x'8G~x',x'8;t1!G* ~x',x'8;t1* !isin~bt11!, ~124!

^VuJ5
1~x1;x2,y2,x'!uV&225

i

2
eieA2D2E

0

x1

duE
0

x1

dy
i

p
PS 1

u2yD
3E

2`

` dk1

2p

e2 i (k11 i /L)(y21L)

k12eA2~u!1 i /L
E

2`

` dq1

2p

ei (q12 i /L)(x21L)

q12eA2~y!2 i /L

3E d2x'8G* ~x',x'8;t2* !$~m22DQ'
* •DW'!sin~bt22!

2e i j DQ i'* DW j'cos~bt22!%G~x',x'8;t2!. ~125!

The presence ofg5 has interchanged the sines and cosines from where they would have resided had we compu
analogous vector current in transverse coordinate space. This small change allows us to obtain the result to all order
going to the harmonic oscillator basis. For example, the11 term is

^VuJ5
1~x1;x2,y2,x'!uV&115

eB

4p S E
2`

0

2E
0

1` D dp1

2p
e2 i [ p12eA2(x1)]D2

3E
2`

` dk1

2p

e2 i (k11 i /L)(y21L)

k12p11 i /L
E

2`

` dq1

2p

ei (q12 i /L)(x21L)

q12p12 i /L
e( i /2)m2t11,

→ eB

4p S E
2`

0

2E
0

1` D dp1

2p
e2 i [ p12eA2]D2e22pl(p1)u(p1)u(eA22p1) ~126!

5
eB

4p H i

pD2
2E

0

eA2dp1

2p
@11e22pl(p1)#e2 i (p12eA2)D2J , ~127!

wherel(p1)[l(p1,0,12 ), andl(p1,n2 ,s) was defined in Eq.~74!.
The 22 term can be greatly simplified by the identity

„D'
* G* ~x',x'8;t2* !…„D'G~x',x'8;t2!…sin~bt22!1e i j

„Di* G* ~x',x'8;t2* !…„DjG~x',x'8;t2!…cos~bt22!50. ~128!

Using this identity and taking the largeL limit gives

^VuJ5
1~x1;x2,y2,x'!uV&225

im2

2
eieA2D2E

0

x1

duE
0

x1

dyPS 1

u2yD
3E

2`

` dk1

2p

e2 i (k11 i /L)(y21L)

k12eA2~u!1 i /L
E

2`

` dq1

2p

ei (q12 i /L)(x21L)

q12eA2~y!2 i /L

3E d2x'8sin~bt22!G~x',x'8;t2!G* ~x',x'8,t2* !, ~129!
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→eB

4pE0

eA2

dp1l~p1!e2 i (p12eA2)D2e22pl(p1)

3E
2`

` da

2p

e2 i (a1 i )

a1 i
e2 il(p1)ln(a1 i )E

2`

` db

2p

ei (b2 i )

b2 i
eil(p1)ln(b2 i ), ~130!

5
eB

4pE0

eA2

dp1l~p1!e2 i „p12eA2(x1)…D2F12e22pl(p1)

2pl~p1!
G , ~131!

5
eB

8p2E
0

eA2

dp1@12e22pl(p1)#. ~132!

Combining Eqs.~127! and ~132! and Hermitizing gives us the largeL expression forJ5
1 ,

lim
L→`

^VuJ5
1~x1,x2,x'!uV&52

eB

4p2E
0

eA2

dp1e22pl(p1). ~133!

J5
2 involves many of the same procedures. Beginning with the11 term, it has the following reduction:

^VuJ5
2~x1,y1;x2,x'!uV&1152

im2

2 E
2`

` dk1

2p

e2 i (k11 i /L)(x21L)

k12eA2~x1!1 i /L
E

2`

` dq1

2p

ei (q12 i /L)(x21L)

q12eA2~y1!2 i /L

3S E
2`

0

2E
0

` D dp1

2p

1

k12p11 i /L

1

q12p12 i /L

3E d2x'8sin~bt11!G~x',x'8,t1!G* ~x',x'8,t1* !, ~134!

52
eBm2

8p E
2`

` dk1

2p

e2 i (k11 i /L)(x21L)

k12eA2~x1!1 i /L
E

2`

` dq1

2p

ei (q12 i /L)(x21L)

q12eA2~y1!2 i /L

3
1

k12q112i /L
F2 i 1

1

p
lnS k11 i /L

q12 i /L D Ge( i /2)m2t11. ~135!

We again take thex2 derivative to complete the calculation, this time requiring the axial vector currents to vanish atx25
2L.1 Acting ]2 on the11 term, taking the largeL limit, and enforcing coincidence gives

lim
L→`

]2^VuJ5
2~x1,x2,x'!uV&115

eBm2

8p E
2`

` da

2p

e2 i (a1 i )

a1 i
eil(eA2)ln(a1 i )E

2`

` db

2p

ei (b2 i )

b2 i
e2 il(eA2)ln(b2 i ), ~136!

52
e2E~x1!B

8p2 @12e22pl„eA2(x1)…#. ~137!

Integrating this last expression gives us the final result for the11 term

^VuJ5
2~x1,x2,x'!uV&11→2

e2E~x1!B

8p2 ~x21L !@12e22pl(eA2)#. ~138!

Note that this is not properly the infiniteL limit, but rather the two leading terms—one of which diverges linearly inL.
We pass now to the22 term. Reducing the transverse coordinates gives

1That this is so can be seen in Eq.~135! from the fact that thek1 andq1 integrals can be closed above and below to avoid each’s respe
poles.
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^VuJ5
2~x1,y1;x2,x'!uV&225

eB

4p

]

]x1

]

]y1E
0

x1

duE
0

y1

dyPS 1

u2yD
3E

2`

` dk1

2p

e2 i (k11 i /L)(x21L)

k12eA2~u!1 i /L
E

2`

1`dq1

2p

ei (q12 i /L)(x21L)e( i /2)m2t22

q12eA2~y!2 i /L
. ~139!

This can be recognized asB/2p times expression~5.19! in Ref. @4#. So we can read off the result of the subsequent reduct
from expressions~5.25! and ~5.28! of that paper,

lim
L→`

]2^VuJ5
2~x1,x2,x'!uV&225

e2E~x1!B

8p2 @11e22pl(eA2)#. ~140!

Integrating fromx252L gives

^VuJ5
2~x1,x2,x'!uV&22→ e2E~x1!B

8p2 ~x21L !@11e22pl(eA2)#. ~141!

Adding the11 terms~138! gives the final result forJ5
2 ,

^VuJ5
2~x1,x2,x'!uV&→

e2E~x1!B

4p2 ~x21L !e22pl(p1). ~142!

As was the case for the vector current, the only divergence in the axial vector currents resides inJ5
2 . Before computing the

pseudoscalar it is worth noting that in the massless limit the anomaly equation in 311 is simply

]mJ5
m5

a

4p
eabmnFabFmn5

e2EB

2p2 . ~143!

Whereas our axial currents contain factors that are completelynonperturbative, the limiting case satisfies Eq.~143!,

lim
m→0

@]1J5
11]2J5

2#5 lim
m→0

e2E~x1!B

2p2 e22pl(p1)5
e2E~x1!B

2p2 . ~144!

Notice how Eq.~144! does not follow if the22 terms are suppressed.
The only thing left to compute is the pseudoscalar. We begin with the11 term,

^VuJ5~x1,y1;x2,y2!uV&1152
eBm

8p
eie(x22y2)E

0

1

dhA2„y11h(x12y1)…

3S E
2`

0

2E
0

` D dp1

2p E
2`

` dk1

2p

e2 i (k11 i /L)x2

k12p11
i

L

E
2`

` dq1

2p

ei (q12 i /L)y2

q12p12
i

L

3S 1

k12eA2~x1!1
i

L

2
1

q12eA2~y1!2
i

L
D e( i /2)m2[ t* (0,y1;q1)2t1] , ~145!

→2
ieB

4pm
eie(x22y2)A2S E

2`

0

2E
0

` D dp1

2p

3S ]

]x1D E
2`

` dk1

2p

e2 i (k11 i /L)x2

k12p11
i

L

E
2`

` dq1

2p

ei (q12 i /L)y2

q12p12
i

L

e( i /2)m2t11, ~146!

→2
ieB

4pm
e2 ieA2D2]1S E

2`

0

2E
0

` D dp1

2p
eip1D2e22pl(p1)u(p1)u(eA22p1),

~147!
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5
ieB

8p2m
e2 ieA2D2]1F i

D2
1

ieieA2D2

D2
1E

0

eA2

dp1e22pl(p1)1 ip1D2G , ~148!

→2
ie2A28 ~x1!B

8p2m
@12e22pl„eA2(x1)…#. ~149!

In these reductions we sequentially tooky15x1, the largeL limit, and theny25x2. The final result is

lim
L→`

^VuJ5~x1,x2,x'!uV&115
ie2E~x1!B

8p2m
@12e22pl„eA2(x1)…#. ~150!

The 22 term is perfectly regular atx1 andx2 coincidence, so we can begin at coincidence,

^VuJ5~x1,x1;x2,y2!uV&2252
ieBm

8p S ]

]x1D E
0

x1

duE
0

x1

dy
i

p
PS 1

u2yD
3E

2`

` dk1

2p

e2 i (k11 i /L)x2

k12eA2~u!1 i /L
E

2`

` dq1

2p

ei (q12 i /L)y2
e( i /2)m2t22

q12eA2~y!2 i /L
, ~151!

→2
ieB

8p2m S ]

]x1D E
0

eA2(x1)
dp1@12e22pl(p1)# ~152!

52
ie2A28 ~x1!B

8p2m
@12e22pl„eA2(x1)…#. ~153!
c

e

w
to

e
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ve
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n
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n-
Combining Eqs.~150! and ~153! givesJ5,

lim
L→`

^VuJ5~x1,x2,x'!uV&

5
ie2E~x1!B

4p2m
@12e22pl„eA2(x1)…#. ~154!

With our results for the axial vector current, our divergen
equation becomes

lim
L→`

^Vu]1J5
11]2J5

222imJ5uV&5
e2EB

2p2 . ~155!

So the axial vector anomaly equation is satisfied and th
are no nonperturbative corrections.

VII. DISCUSSION

This paper had three basic purposes. The first of these
to compute the positron creation probability and the vec
current expectation values using operator solutions~28!,~29!
which are exact for anyL. This is important because on
cannot properly take the largeL limit—or any other
limit—of an operator. The correct procedure is first to ta
the expectation value in the presence of some state and
takeL to infinity in the resultingC-number function.

As in previous treatments@3,4# pair creation in a homo-
geneous electric field is a discrete and instantaneous e
For momentumk1 it occurs at the timex15X(k1) such that
08501
e

re

as
r

en

nt.

k15eA2(x1). Electrons accelerate to the speed of light
the minusz direction and leave the light-cone manifold. I
Sec. IV we obtained the following probability for the appea
ance of a positron of momentumk1, Landau leveln2 and
spin s:

Prob~k1,n2 ,s!5e22pl(k1,n2 ,s), ~156!

where we define

l~k1,n2 ,s![

1

2
m21~2n21122s!u

eB

2
u

ueE„X~k1!…u
. ~157!

It is reassuring that creation is more probable when the s
lines up with the magnetic field field (s51 1

2 ).
In Sec. V we obtained the following results for the no

zero currents:

^VuJ1~x1,x2,x'!uV&5
e2B

4p2E
0

eA2

dk1e2pm2/ueE
„X~k1!…

3cothF pB

E„X~k1!…
G , ~158!
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^VuJ2~x1,x2,x'!uV& ren

5
e3BE~x1!

4p2 ~x21L !e2pm2/ueE(x1)ucothF pB

E~x1!G .
~159!

We have removed the charge renormalization fromJ2. Our
results are conserved, and they correctly reduce to the
rents of Ref.@3# whenB50. It may be that the extra mag
netic field endows them with some phenomenological s
nificance. Whereas it is very difficult to maintain larg
electric fields over long distances, there are many astroph
cal sources which have large and quite extensive magn
fields.

Our second objective was to check the axial vec
anomaly in (311)-dimensional light-cone QED. Wherea
an electric background suffices for checking t
(111)-dimensional anomaly@4#, increasing the dimension
ality by 2 requires the addition of a colinear magnetic fie
Although we chose this to be constant it seems feasibl
consider more general backgrounds. For example, our s
tion ~16! can be made valid for anx1 dependent magneti
field B(x1) by the replacements

A'~x'!→A'~x1,x'!

5
B~x1!

2
~x2x̂12x1x̂2!, ~160!

U~x',t!→expF2 i E
u

x1

du8

3
H@eA'~u8,x'!#

k12eA2~u8!1 i /L
G . ~161!

This background entails transverse electric and magn
fields,

E'5
1

A8
B8~x1!~x1x̂12x2x̂2!,

B'5
1

A8
B8~x1!~x2x̂11x1x̂2!. ~162!

Although these make no contribution to the anomaly they
introduce an interesting breaking of translation invariance
the transverse directions.

Our final purpose was to catalog the various disas
which ensue when the operators atx252L are suppressed
One loses unitarity, current conservation and the axial ve
08501
r-

-
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or

anomaly. Not surprisingly, one also loses renormalizabil
For example, when we point-split on bothx2 and x' and
then Hermitize, the11 part of the expectation value ofJ1

is

2
e

2p (
n6 ,s

Wn6
* ~x'!Wn6

~x'1D'!

3E
0

eA2

dp1@11e22pl(p1,n2 ,s)#

3cos@~p12eA2!D2#. ~163!

The first term in the square brackets diverges quadratic
like iD'i22. Yet the only counterterm QED allows for th
current vectorJm is ]nFnm, which is only nonzero form5
2 in our background.

What do these problems mean? There is a ‘‘folk theore
to the effect that anything one can see by studying the
theory with a nontrivial background must occur as well,
some way or another, for the interacting theory in a triv
background. Of course the theory is fine if one includes
operators on thex252L surface, but then much of the sim
plicity of light-cone quantum field theory is sacrificed. Th
best thing would be if the effects of the extra operators co
be subsumed into some simple extra interactions, at leas
certain purposes. Quantifying the problem and deriving
appropriate fix are the subject of on-going research.

Two extensions of this work seem worth making. The fi
is to compute the one loop effective action with the additi
of a static magnetic field. This can no doubt be accomplis
using the same techniques which worked for the case of o
an electric field@8#. It would be interesting to check whethe
the Schwinger form persists in this larger class of ba
grounds.

The second extension is to re-compute the largeL limits
of the vector currents under the assumption thatA2(x1)
obeys the Maxwell equation,

2A29 ~x1!5^J2&. ~164!

Since the term on the right-hand side grows linearly withL,
it is apparent that the back-reacted vector potential mus
the same. Our work of Sec. V assumed thatA2(x1) is fixed
asL goes to infinity.
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