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Axial anomaly in D=3+1 light-cone QED
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We consider (3-1)-dimensional, Dirac electrons of arbitrary mass, propagating in the presence of electric
and magnetic fields which are both parallel to #eaxis. The magnetic field is constant in space and time
whereas the electric field depends arbitrarily upon the light-cone time paraxietdx®+x3)/\/2. We present
an explicit solution to the Heisenberg equations for the electron field operator in this background. The electric
field results in the creation of electron-positron pairs. We compute the expectation values of the vector and
axial vector currents in the presence of a state which is free vacusim=ad. Both current conservation and
the standard result for the axial vector anomaly are verified for the first time ever+irl \-8limensional
light-cone QED. An interesting feature of our operator solution is the fact that it depends in an essential way
upon operators from the characteristicxat= —L, in addition to the usual dependence upon operators at
x*=0. This dependence survives even in the limit of infinitdgnoring thex™ operators leads to a progres-
sive loss of unitarity, to the violation of current conservation, to the loss of renormalizability, and to an
incorrect result for the axial vector anomaly.
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[. INTRODUCTION fashion. Each Fourier mode of fixekl” experiences pair
production at the instant when its minimally coupled mo-
It is customary in formulating a (81)-dimensional mentum,p”(x*)=k*—eA_(x"), vanishes. At this instant
quantum field theory on the light cone to regard=(x" the electron field operator suffers a drop in the amplitude
+x%)/\/2 as the time coordinate. The complimentary null proportional to the initial value data from tixé =0 surface,
direction,x = (x°—x3)//2 is treated as a spatial coordinate, with the missing amplitude being supplied by operators from
as are the transverse variables= (x,x?). In this view one the surface of constamt . Suppressing these other operators
is led to imagine that the Heisenberg field equations can bkads to a progressive loss of unitarity and to violation of
solved to express the operators at an arbitrary poingurrent conservation. One also fails to produce the standard
(x*,x,x*) in terms of the initial value operators on a sur- result for the axial vector anomaly in11 dimensiong4].
face of constank™. Although the first pap€elr3] applies to an arbitrary dimen-
However, it has been known for some time that solvingsion, the operator solution was only valid in the linit
the Klein-Gordon or Dirac equation on the light cone actu-— . Since the limit could only be taken in the distributional
ally involves initial data on both characteristics. In order ~ sense, the solution was not sufficient to compute the expec-
to completely determine the operators in the wedge witHation value of certain fermion bilinears. It is better to obtain
x*>0 andx~>—L one must specify not only their values @ solution for arbitraryL, compute the expectation value of
for x™=0 with x =—L, but also forx =—L with x* whatever operator is desired first, athebntake the large.
=0. This remains true even If is taken to [2], although  limit of the resultingC-number. This was done in the second
then the problem is segregated to the singularitpat=0.  paper[4], but all the calculations were restricted tor1
For free theories in trivial backgrounds, one can simply condimensions. In this paper we compute if-3 dimensions.
strain this sector of the theory. Such a constraint is consistetWe have also extended the background to include a constant
because there is no mode mixing for these theories. magnetic field which is co-linear with the electric field. This
Interactions introduce mode mixing, and it is no longerallows us to check the axial vector anomaly for the first time
obvious that thep™=0 modes can be suppressed consisever in (3+ 1)-dimensional light-cone QED.
tently. Nontrivial background fields can also result in mode This Introduction is the first of seven sections. Section |
mixing and recent results in this context seem to show conexplains light-cone notation and gauge choices. It also pre-
clusively that thep* =0 modes cannot be ignored. We now sents our solution of the Dirac equation in the previously
have explicit and completely general solutions to the Heisendescribed background. Section Il describes quantization and
berg equations for Dirac electrons in the presence of an ele@lso explains how to work in the presence of a state which is
tric background field which points in the® direction and is empty on the initial value surface. In Sec. IV we calculate
an arbitrary function ok* [3,4]. The homogeneous electric the probability of pair creation. Section V is devoted to com-
field results ine*e™ pair production in an amazingly simple puting the expectation values of the vector currents. In Sec.
VI, we show that the expectation values of the axial vector
currentsJs , J5 , and the pseudoscaldg obey the Adler-
*Email address: soussam@phys.ufl.edu Bell-Jackiw anomaly to all orders in the magnetic field. Sec-
"Email address: woodard@phys.ufl.edu tion VIl gives concluding remarks.
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Il. THE MODEL AND ITS SOLUTION We can also impose the surface conditions
The Lagrangian density for QED is A_(0x™,x)=0,
— 1 —
L=Ty*(io,—eA,~mW—2F, F* (1) A1(0,0x")=—A,(0,0x"). (8)

In this gauge the nonzero components of the vector potential
In four dimensiong: and» run from O to 3.A, is the gauge are
potential, ¥ is the Dirac bispinor, an& ,,=d,A,—3,A, is 5
the Maxwell field strength tensor. We employ the conven- i x* B ~ -
tions of Bjorken and Drel[5], who give »** timelike signa- A-(x7)=— Jo dyE(y), AL(XL)_E(XZXFXIXZ)'
ture and{y*,y"}=27n"". (9)

The coordinates of light-cone quantum field theory[&ie
With these conventions the Dirac equation is

1
xT=—(x%%x%), xt=(x}x?). 2) [iyto, +iy (9_+ieA)+iy" - D, —m]¥(x)=0,
V2 (10)
Any vector can be expressed in this basis. For example, thehereD, =V, +ieA, is the transverse covariant derivative
inner product of two Lorentz vectors is of QED. Alternately multiplying this equation byy~ and
1+ Qi ; ; ; ;
e g oAl L 3" gives two coupled equations involving the light-cone
a*b,=a"b +ab"—a -b". 3 spinors:
From Eq.(3) we are able to extract t?g Eorlvialilshlnl%_com— 0,4, (x)=%(m+iy"-D)y o, (11)
ponents of the light-cone metric ag™ =7 "=—n"=
— n??=1. Therefore, raising and lowering are accomplished (io_—eA)y_(X)=%2(m+iy D)y y+. (12
thusly: a,=a~, a_=a",a;=—a',a,= —a? Further, the
divergence of any 4-vector isd, V¥= I NVT+a_V~ One solves this system by integrating Etfl) with respect to
+V, -V, x" and Eq.(12) with respect tax~,
Light-cone gamma matrices satisfy i
S . oy wl)— - yly PaL
(y5)2=0, {y*,y1=2, {y,ylt=—25". (4) (XX xh) =, (0x7,x5) 2(m+|yi D))
Dirac spinors on the light-cone are decomposed by the pro- x* _ _
jectors X fo duy” ¢_(u,x",xb), (13
1 _ 1 : -
P.=5y7y =5(1x9%). (5 Yo (xF X xh) = EAODT Y (x — L x)
i —
Acting these on the full bispinor gives its and — compo- ——(eriyL-Di)fX dv
. 2 L
nents:
—j Y (x~ —
Yo=P.W, W=y, +i . (6) X e AU Ty Ty (X v, xh).
(14

Our electric and magnetic backgrounds &ex*,x~,x")
—E(x")xs andB(x*,x~,x})=BXs, respectively. We fix the These equations implicitly expregs. (x*,x~,x") in terms
gauge with of %, , for x*=0 andx >-L, andy_, for x*>0 and

X~ =-—L. To make the relation explicit we substitute Eq.

AL (xt x ,xhH=0. (7) (14) into Eq. (13) and iterate. The result is an infinite series:

- 1 Nyt - . _
m(x*,x,xi>=n§0[—gmﬂf@)(m—iwm) f: dulfdevle*'eA—Wl)(X B

% fuldUZJ'Uldvze*ieA—(Uz)(vlfvz). .. funildUnJ‘UnildvnefieA—(Un)(vn—lfvn)
0 —L 0

X [ (0w, x")— 'E(m+iyi-DL)fou”due*ieuunxvﬁt)y ¥ (u,—L,x5)t. (15)

This series can be summed agd4]. The result is
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k4 +eodkt ) _ i
¢+<x+.x‘.xL)=f7Ldvff ge“k**"”‘“‘x AU, 70X K )Y (O xH) = S (mtiy" D)

xfx due ALk 7(ux T k) y g (u,—L,xH) |, (16)
0
|
The various hitherto undefined functions are One obtains the kernel by treatirfg[eA, (x*)] as a first
N inien quantized Hamiltonian. The spinor structure factors out
UxH, r)=e HIeAIIT, (17 through the reduction
H[eA (x)]=3 (m+iy"-D)(m—iy--D,), 1
[ L( L)] 2 ( YL L)( 'yL 6?8) H[GAJ_(XJ')]: E[mZ_DL'DL]+:823! (24)
o du’ where 23=(i/2)[ y},y?] and B=|e|B/2=—eB/2. For our
r(u,x*;k*)zf " —. linear A, (x*), Eq.(9), the Hamiltonian is that of a rotated,
u kT—eA (u)+i/lL 2-dimensional harmonic oscillator. Identifying its kernel is
(19 straightforward:
;irgnsshorten expressions in later sections we make the defini- IC(XJ.,yJ.;T)Ee—i523rg(xl,yj_;7.)_ (25)
The functionG(x*,y*;7) is
7.=70x";k"), 7r_=7(ux*;k") (20) -
ilBe—(IIZ)m T i | L .
= 0xtqt), F=ryxtqh) @) " 2msinB7) exr{zﬂcot(ﬁf)(x —yh)i—iext-A (y )}.
(26)
T =T -1, T__=1"—1_. (22)  We will often use its Fourier transform ort:
. . . . . —(i2)m2s o —ikt - xt
At this stage our solution(16) is still valid for any Txt K s)—e €
A, (x}); however, its dependence upon the initial value op- A cog f3s)
erators is complicated by the transverse covariant derivative _
operator. To exhibit this dependence we expidss a ker- o L_ 11)2
nel X ex 2’Btar(/s’s)(k eA (x7))7|.
al € 2y,L 1 L 1 (27)
U=, Mix )=J doy KOy Df(y). 23 In terms of the kernel our solution fak, is
|
B 0 +edk® L i .
b0 )= [ [TSSet meO [y Kty (0X K D 0y )~ g (miy D)
—L — o
+ .
XJX due "eA-WETL eyl r(ux T k) y - (u,—L,yh) ¢ (29
0

The solution fory_ is obtained by inverting Eq.11). That  Integrating Eq.(30) gives us the inverse operator,
is,
. . (m+iyt-Dy)~1e(x —y*)
Yo=iy"(m+iy D), (29) .
=i —iyt-D Lytis). (31
The inverse operator can be obtained by noting thad the IJo dsm=iy"- DL )KOE,ys). (3D
Green’s function for a time dependent Sdlirger equation,

It is sometimes desirable to express dependence upon the
. d transverse coordinates using the harmonic oscillator basis of
i Loylee)—
(H ! as) KXy i8)=0. (30 ‘H. One begins by defining first quantized momenta:
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J d Dy=dy—iBy=+B(a_—al), (37)

pr_i&_X' pyE_|@- (32)

Dy=a,+ipx=\B(ia_+ia"). (38)
With the position operators these are formed into lowering

operators: The point of this technology is to give a simple expression
for the first quantized Hamiltonian,

1 1
a=—(Bx+ipy), a,=—(By+ipy). (33
V2B T \2p ’ H=%m2+(2aia_+1+z3)ﬁ. (39)

Finally, one defines complex raising and lowering operators: ] )
Its normalized eigenstates are

1 n (gt
a,ria,), al=-——(al¥ia). (34 (al)" (ah) ﬁewﬂ)l“. 0

V2 W%(xL)EJm R

The original coordinates and derivatives have the followin ' s . i
expressions: gThe fields can be expressed in this basis as follows:

L
a.= \/E(

1 +|_.+EJd2LW* 1 +,—,J_
X:—(a++a1+a,+at), Y (X7 x7,02) X ni(X ) (X7, X7,x7)

2B _
=((Wn_ |, (X", x7))). (4D
i
y= ﬁ(—a++a1+a,—ai), (35)  Our solution(16) assumes the form
B
o dkt
l[lt(X+,X7,Xi)=f _efl(k +i/L)x
B X X P (XK )Wy (XD,
+=0 -
dy=i—5(—a,—al+a_+a'). (36) "=
2 (42)
Hence the covariant derivative operators are where we define

Tm(x*,k*,ni)zr dve“k**”””{<<wn+lei”f+|¢+<o,u>>>
o .

_ 'Ef()”duefieA,<u>(v+L)<<Wni|(m+i%-Di)e*i”’*y’ldf_(u,— L)>>}v (43

l/f+(0,v)>>

. joﬁduefieA—(”)(”JrL)((Wni|eiiHT_| y_(u,— L)>>] : (44)

i )
S (MHiy- D)y xe e

’l;/‘/_(XJr,kJr,nt)E devei(k++i/L)U[ < <Wn_,,
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Note that the inverse oft is straightforward to evaluate in {(00,x5), 4" (Ow,yH)}
the harmonic oscillator basis.

Taking thex™ derivative of Eq.(43) gives 1
’ A =P S W Ry, (@9

V2

—id, o (x"kT,n.) {_(u,—Lx"), ¢! (y,—L,y")}

im?+(2n_+1+3% 8.

k" —eA (xT)+ilL v (X7 KEN2) =—=P_s(u—y)&*(x" —y"). (49)
V2
e—i(k*ﬂ/L)L
- — §<<Wnr|(m+i'yL'DL) The anticommutation relations for arbitrary equal and
k™ —eA_(Xx7)+ilL equalx™ are not independent but follow from our solutions
Xy [ (x*,=L)). (45 (2829,

{0 xxh), gl (xhy Ty}
The last term only contributes &t =eA_(x") in the large

L limit since 1 -y 82k L
=—P,d(x — oo (X —yr), 50
2 (X" =y )o(x—y) (50
—i(kt—eA_(xT)+i/L)L _ _
lim = —=—2mi skt —eA_(x)). - (" xxh) l(y " x Tyl
Lokt —eA_(X")+ilL
(46) :ip,a(x+—y+)52(xl—yi). (51
V2
We see that the larde limit of ¥, (x*,k*,n.) is an eigen- It remains to specify the Heisenberg state. For our pur-
operator of—id, . Since the eigenvalues af° are =1 the poses the natural “vacuum{2) is empty atx* =0 andx"
sign of the eigenvalue is controlled by the denomin&tor — — — | This makes calculating expectation values of fermion

=eA (x). For k">eA (x") the large L limit of pijlinears straightforward. One first uses our solution to ex-

¥+ (x* k*,n.) annihilates electrons with spis= 333 for  press the bilinear in terms of the initial value operators, and

k*<eA_(x") it creates positrons with spis=— 333 then computes the expectation value of these in the absence
of the background fields using the standard free vacuum,

1. LIGHT-CONE QUANTIZATION <Q|¢a(x+,x_,xl)¢;(y+,y_,yL)|Q>AM:0
The Lagrangian density for Dirac fermions in our back- d®p (py°+myP)
ground is = 3 b
(2m) 2w

x e i O =y )i O -y ) HiRt 0y (5p)

1
L= \/Elﬂ(i(h%— E(m"'if'pl)'y_‘ﬂ—)
(Qypy "y~ Y ) (X X7 XD ~o

+\/§¢T((ia—ek)¢ (A (B my0)
) (2m)3 2w
1
—§(m+iyl-Di)yﬂ/;+>. (47) X el <y DHPTOC—y )ity (53)

The variable of integration above §§ and we definew

Using Eq.(47) we may read off the algebra that our operator= ym?+ 5 5

solutions satisfy on the initial value surfaces. The conjugate In using Eqs(52), (53) one first specializes to the desired
momenta of these initial value fieldsy, (0p,x") and initial value position and spinor component. Next change
¢_(u,—L,x"), are the normal derivatives of E@7) evalu-  variables fromp? to eitherp™ or p~,

ated on the surfacex™=0 and x =—L, respectively.
Therefore, the momentum conjugate b, (0p,x") is f“ 3 f‘” +i_fw _w
iV2y" (0w,x"), and the corresponding conjugate momen- _wdp ~Jo dp pt Jo dp p- (54)

tum to ' (u,—L,x") isiv2¢_(u,—L,x"). The two initial
value surfaces are spacelike separated, and therefore the tWhe complementary light-cone momentum is given by the
nonzero anticommutators are mass shell condition, ' p~=m?+p*-p*.

085017-5



M. E. SOUSSA AND R. P. WOODARD PHYSICAL REVIEW [B6, 085017 (2002

When the spinor indices are not explicitly written we shall Oy (y,— L,y y ¢, (0w, xH)|Q)
understand expectation values of the fogitMl s to involve

an implied spinor trace. Specializing to the initial value sur- d’pt
: . . . =—\2 e i -(x—y)
faces and takingt components gives the various combina- (272
tions of this form,
o +
XJ dzr; pge—ip*yﬁp*(uﬂ), (57)
0

(QlyL (0w )y, (0w X)) .
cdp (Qly(y, ~LyH)y-(u,~LxH)|Q)
=\28%(x" —y") | S —eP W, (55 =dp” -

fo 2m =ﬁ52(xi—yi)fo%em R )

u-y
dep+ m Notice that in theL—co limit Egs. (56),(57) vanish. This

=\/§52(xl—yl)%[ 5(u—y)+|;7> ] (59)

Qg ow,y)y ¥ (u,—L,xH)|Q)

:_@J

-— means that the transverse coordinate dependence only con-

2L
d p e_ipl,(xj__yj_)
217)2 0o 27 p’

(

Xeip’u—ip*(w-%—L)’ (56)

tributes delta functions.

In addition to Egs.(55—(59), more complicated spinor
traces will appear. It is convenient to list two of the operator
reductions here to expedite derivations in later sections,

! H ’ ! ! ood * int !
(QUu 0wy HEF T, (00 xH)|2) = V287 (! -y )coewr:i)fo S 0yl (g, Ly )
Xyt BT Myt DY (X)) (xy ) X (M DL (X))
XG*(xxt ) e BTy Ty (U, Lxt )| (60)
= \B2(x" —y- )G (x- Y (P DY - D, )eod BT )

e , dp~ . _
_EIJ,Di*LIDjLSin(ﬁTti)}g(xlaxl ;Ti)f %e'p (U*y), (61)
0

where €'l is the antisymmetric Levi-Civita density in two the light cone. Just as in the previous treatmégBgtd], the
dimensions with andj running over the values 1 and 2.  newly created positron accelerates to the speed of light in the
+x3 direction, so its world line is asymptotically parallel to
IV. PAIR CREATION PROBABILITY the x™ axis. The electron goes the other way, so its world
) ) line is asymptotically parallel to th&™ axis. This has a
_ Atthe end of Sec. Il we were able to identify an operatorcyrious effect when one regard$ as the evolution opera-
& (x*,k*,n.) which gives exact eigenstates of the light- tor: electrons leave the light-cone manifold while the posi-
cone evolution operatorid, in the largeL limit. Its behav-  trons accumulate.
ior changes abruptly at time™=X(k™), defined such that In this section we compute the probability
T=eA (X(kT)). For x"<X(k*) the operator Probk®*,n_,s) for creating a positron of momentuii",
¥+ (x* k*,n.) annihilates electrons of momentui, Lan-  Landau leveln_ and spins. From the previous section we
dau leveln_ and spin3 2. Forx*>X(k") it creates posi- see that the two nonzero spinor components of
trons of momentunk™, Landau leveh_ and spin—£3.3. ¥ (xT,k*,n.) lack only a factor of 2 to be canonically
The transition between these two regimes is a manifestanormalized. Therefore we can extract the creation probability
tion of particle creation, which is an instantaneous event ofifor x*>X(k*)] from the relation
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_ 1 Egs.(43), (44). For any bilinear this produces four kinds of
lim \/§<Q ¢1(X+,q+,m+)(§—5‘23> operator products: the + combination in which each term
Lo is from thex™ =0 surface; thet — combination in which
the first is fromx* =0 and the second from™ = —L; and so
Q> =[1-Proldk™,n_,s)]278(k™  on. We then compute the expectation values of each product
from the free, sourceless theory as explained in the last sec-
—q9")6m. .- (62  tion. Finally, the largeL limit is taken. Since causality per-
o mits only the+ + and— — products to survive this limit, we
The procedure for evaluating E¢62) is to first express report only these terms.
the operators in terms of the initial value operators using The + + product is simple,

Xhlr/’/+(x+1k+vni)

Q>
++

+oo o+ +o e+
=f dve'(k +|/L)uf dwefl(q —i/L)w Wn_,_ Tr
-L -L -

- 1 -
ﬁ<n’wl(xﬁq*,mi)(z—sﬁ)¢+<x+,k+,ni>

0 +
e*iHTJr %_SES) P+f dp eip+(U7W)ei’HT’;

)

0 2
(63)
°°dp+ e—i(k++p++i/L)L ei(q++p+—i/L)L
— j 6m ei e(n_ ,S)'r++' (64)
0o 27 k*+pt+i/lL gqf4+pt-ilL
wheree(n_,s)=3m?+ (2n_+1—2s)3. We are interested in the limit—oc, in which case,
e—i(k++p*+i/|_)|_ ei(q*+p*—i/|_)|_
—2m8(kT+pH)2ws(qt+pt). 65
kt+p*+i/lL gq"+pt—ilL { pr)2mala+pT) (69
Whengt=k™ the largeL limit of expression(22) for 7, , becomes
l fx+ du du —27iX' (k") 6(eA —k*)o(k* 66
L[nw o \kt—eA_(u)—i/lL kT—eA (u)+i/L) mixX'(k7)6(e )O(K™). (66)

This vanishes in Eq64) because the delta functions and the rangp ‘otonspire to mak&™ negative whereasA_(x") is
assumed positive:

lim \/§<Q‘Zﬂ(x+,q+,m+)(%—323)Tp+(x+,k+,n+) Q> =278(k* =) 0(—k") S, n, - (67)

Lo
o)

1 [+= U xT . oo AP xt .
:ZJ dvel(k +|/L)uf dueﬂeA_(u)(zﬁL)j dwefl(q 7|/L)wf dyéeA—(y)(W+L)
-L 0 -L 0

The — — term is a little more difficult:

ﬁ<9‘t~/fl(><*,q*,m+)<%—823)?1f+(><*,k*,n+)

1 »dp” . _ -
- 3 - T amip (U=y) A, HT s .
5 32)7 P_xfo > € yrem" - (m—iyt-D))

)}

><<<Wn+ Trl (m+iy--D, e M-
(68)
1 [yt e—i(k++i/L)L o ei(q*—i/L)L 1 i 1
== du j d [—5 u-— +—P(—)]<<W Tr(m+iy--D
2fo k*—eA_(u)+i/LJo yq*—eA_(y)—i/L 20Ut o u-—y S Py

XP, e ——(m—iyt-D))

o) o
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We reduce the transverse structure using the identity - 1
lim v2{ Q w1<x+,q+,m+>(§—s23)

L—o
o

=2m8(k* = Q") S, o {0(—K")+ 0(K)

e -(m—iy--D))

(m+iyi~Di)P+(%—SE3
XE+(X+1k+vni)

1 ‘
:P+(E—523>2He'm. (70)

This brings the— — term to the interesting form % a(eA_(X+)_k+)[1_efzm(k+,n, 9L

~ 75
ﬁ<ﬂ‘¢1(><*,q*,m+)(%—si3) 79
The 6(—k™) term implies there is no particle creation for
_ k*<0. These modes start out as positron creation operators
X (X7 kT,n.) Q> and they continue to have that meaning Egx ") >0. Since
- the state was initially empty of these modes it remains so.
f"+ e (K +ILL The other term implies that positrons are created fark0

= du <eA_(x") with probability,
0 k'—eA (u)+ilL

o ei(q*—i/L)L
x jo dyq*—eA_(y)—i/L Note that the spin dependence makes physical sense. It is
more probable for a positron to be created with its spin

15(u—y)+i—P 1 zilignled 6= +3) with the magnetic field than opposed (
2 27 \u—y =—2)

X Om, n,€(N- s)elen— 97— 71

Probk*,n_,s)=e 27K n_.s), (76)

X

V. THE VECTOR CURRENTS

At this stage we observe that E(.1) is the same as the 1 Our operator solution$28), (29) enable us to calculate _
+ 1 expressior4.8) of Ref.[4] with the trivial replacement, exactly the one-loop response to an external electromagnetic
field. The light-cone currents are

1

2 1 2
Em —>§m +(2n_+1-2s)B=¢€(n_,s). (72

. e
J*=E(¢Lwi—Trwt¢L]>. (77)
This means that the remaining analysis has already been

done. We can read the final result from Ref], As usual in quantum field theory, we must regulate these

1 operators. We accomplish this by point splittifig in x- and
lim \/§<QTpﬂ(x+,q*,m+)(——523> in Xx*. To maintain gauge invariance we add a gauge string
2 when needed,

L—o

X¢+(X+1k+ani) Q

e . e
> J+(X+;Xf,yf;xi,yi)=—e'6A*(y —x7)+ieyt A (xh)

22’775(|(+—C]+)5mi mﬁﬁ(k*)e(ek(x*)—k*) < (l//TF(X+,X7,XL)l//+(X+,y7,yl)

X[l_e72ﬂrr)\(k+,n_ ,s)], (73) —Tr[z/u,(x*,y’,yl)
where we define Xyl (X x7 X)) (78)
(S s)EM. (74) J7(xTy T ixTixt yL)=ieie>’l'Ai(xl)(z,[[(xJr X7, xh)
|[eE(X(k™))] V2
Note that we could have used this same procedure to shorten XY (Y. x7yh)

the + + derivation as well. It is almost always the case that

. ) ; —Tly-(y" x7,yh)
expressing the transverse coordinate dependence in the har-

monic oscillator basis results in an expression which differs Xt (xF,x7 x5H)D. (79

only by the replacemer(2) from one already computed in

Ref. [4] for the (1+1)-dimensional theory. Point splitting breaks Hermiticity. Therefore, our currents are
Combining Eqs(67) and(73) gives the symmetric limits of Eqs(78), (79),

085017-8



AXIAL ANOMALY IN D=3+1 LIGHT-CONE QED PHYSICAL REVIEW D 66, 085017 (2002

. o1 . We begin withJ* and compute the expectation values of
J7(x)=lim= (3= (6y) +37(y;x))- (80 the ++ and—— terms as in the previous sectioiis be-
y=x fore, the+ — and— + terms vanish in the largelimit.) The

Note that the expectation values of the transverse currenf§ductions are similar to those in the previous section, so we
J%,J2 vanish. This can be seen by simple Dirac algebra. 18how the resultswith y~=x"+A") after performing the
corresponds physically to the zero average transverse curreddw integrations and taking the transverse expectation val-
for a particle undergoing helical motion. ues,

. e )
QI (xx Ty x|, = ES VVﬁi(xi)Wnt(yi)e'eW'AL(XL)><§e'e’*—(x+)A

N+
0 =\dp* = dk* e (K +ilL)(y™+L)
X[fx_fo]wawZW i

+ _ht
kp+L

- dq* e+i(q+—i/L)(x‘+L)
XJ eie(n, ,S)T++’ (81)

. e . _ + +
(QIT(xx 7y ixthyH|Q) = ES V\/:i(XJ‘)Wnt(yJ‘)e'eyl'AL(XL)Xie'eA*(XﬂA JX dufx

n. 0 0
0 )l dp- . _ » dk*
X — — _amip (u-y)
dy[J’w fo] 27Te — 2T
ei(k++i/L)(y+L)fw dq* e+i(q*—i/|.)(x*+|.)

i > —e(n_ ,s)elen- 97— (82)
k+—eA(u)+E o q+—ek(y)—t

X

Recall thatr, , andr__ were defined in Eq920)—(22) and thate(n_,s)=3m?+(2n_+1—2s)B.
Each of these results has the form Bf ,SW?L(XL)Wni(yl)eieyL'AL(XL) times the corresponding (t11)-dimensional

result of[4] with the trivial replacementm®— e(ri ,S). We can therefore read off the largidimits directly. That for the
+ + terms follows from equatio5.10 of [4]:

lim (37 (X7 y Xy o= 2 WE (X)W, (yh)elsy A
n.,s = =

L—o

el i eAdp* _ _
XE[K—L 2'27[1+ef2ﬂ<l’*‘“—'S>]e*'<P**F-‘A—>A . (83

The largeL limit of the — — terms derives from Eq&.11)—(5.13 of [4],

_ e (eAdp? _ _
lim (Q37(xx 7,y 7ixyQ) = X Wy (X)W, (yl)e'eyL'AL(XL)‘J D [1-e2m e 9)guilpT-en)a”,
L—oo n.,s * - 2J)o 2
(84)
Combining the+ + and — — terms gives
lim (QIF(x";x 7,y 7 xhyH)|Q)= D, W:+(XL)Wn+(yL)eieyL.Al(xi)
L—oe n.,s - -
i eA dp” N - _
Xe{m_fo %e—zm\(p ,n,,s)efl(p —eA_)A ) (85)
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At this stage we can takg" — x*. Hermitization discards the A/ term, at which point we can also take —0. The result
is

lim (Q]I*(x*,x™,x )|Q>——e2 W, (x* )Hzf dzp —2m\(pTn_9) (86)

L—oo

This expression has a transparent physical interpretation based on the Jél@sfthe light-cone charge density. This charge
density derives from the steady accumulation of positrons as the electron member of each newly created pair leaves the
light-cone manifold. Hence the charge density is the sum over states efeélmontributed by each positron, times the pair
production probability(76) we derived in Sec. IV.
Since the expectation value of the current operators cannot depend upon the transverse coordinate we may as well set
=0. The harmonic oscillator basis functions are especially simple at this point,

W, (0)=(=)"8, . \/é (87)

Recalling that\(p*,n_,s)=e€(n_,s)/|eE(X(p*))|, we can perform the sums over. ands,

lim <Q|J+(X+,X7,XL)|Q>: _ e’B f 7-rm2/|eE|[1+e 477B/\9E|]2 477,8/\eE\)n’ (88)

L—oo

(89

e’B [eA_ B
:FJ dp+e_ WmZ/eECOt}‘{—W T
mJo EX(p™))

Since 3= —eB/2 we see that thB8—0 limit agrees with the result df3]. The other new limit, that of largB, seems more
interesting. In that case the hyperbolic cotangent goes to ond; sgrows linearly in the magnetic field. This might be
phenomenologically relevant to astrophysics because very large, approximately homogeneous magnetic fields are known to
occur. For example, the magnetic field strength in a neutron star can Beath'® G over a kilometer coherence length.

We turn now toJ . After performing thev andw integrations and taking the transverse expectation values-theand
— — terms assume the form

(@O Xyl 0) = X ni<xL)wni<yL>eieyL"W’E37&y U f j
» dk* e—i(k++i/L)(x’+L) - dq+ e+i(q+—i/L)(x’+L) gle(n_ s)o.
xf —_— - f - , (90)
—x 27T T o 27T v ] e(n_,s)
Ki=p'+ 1 Q9 -P -
(T yT oy oyl vl _ 1 1yal
(QI7(x*y"ixTixhyH Q) - - ES Wi, (X)W, (y+)e 2(9x &y " du dy” f }
dp~ % dk* e—i(k*+i/|_)(x*+|_)
x_efip‘(ufy)f = _
21 o 27T I
k" —eA_(u)++
L
w + ot+i(gt=iL)(xT+L)
><J da’ e _gle(n—.s)o— (92
a'—eA(y)-
I
'_rh(_e quantitieso . are just Tiy and 7_ _ with the upper o du’ . du’
limits of the second integral in each changed fremto y™*, o_= — =
y + ! u + l
—eA (u')—— km—eA_(u")+ —
xT du’ y" du’ q ( ) L ( ) L
0'+Ef - —J’ —, (93
O gr—eA(U)-~ ° Ki—eA (u')+—
q L L The x™ derivative ofJ™ is ultraviolet finite so the oscil-

(92 lator sums again multiply the same<{1) dimensional cur-
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rents whose large limits were already computed [@]. For
example, the largé limit of the ++ terms follows from

PHYSICAL REVIEW D 66, 085017 (2002

lim a_{(Q]I~(x*,x~,x")|Q)

L—oo

equationg5.23), (5.249 of [4],

2 +
e“E(x™) 2 2
- _ > 7 —2mN(eA_ ,n_,s)
lim o_(QI~(x",x";x ;x5 yH Q) 4 4 2 n+2,s H\Nni” © '
L—o -
(96)
2 +
ol L EeE(xT)
= 2 Wi, ()W (yH)el™ Al =2 o
. N :e E(x )Be*”mz”e'ﬂcot 7B
X[1—e 2mMPTn-.9)], (94) T 4m2 Ex)|’ 97)
The largeL limit of the — — terms derives from equations
(5.25-(5.28 of [4],
. _ _ Comparison with Eq(89) verifies current conservation.
+ oy Fey— eyl L
L'”;flﬁ—<9|\] (X xTxTixhyh)[Q) - We can obtain the undifferentiated currént by integrat-
ing with respect to« ™, just as in 21 dimension$4]. How-
N Loyt A (XL)GZE(XW ever, the (3-1)-dimensional integration constant must be
ZnES Wh, (X)W, _(y+)e Ry treated with care. Although our choice of state makes the
s expectation value o~ (x*,—L,x') vanish, moving even
X[_l_efZM(p*,nf 9. (95)  infinitesimally to the left ofk™ = —L results in an ultraviolet

divergence. Of course this is the one loop photon field
Once the two terms are combined we can take the transversérength renormalization. To extract it we fix one of the fields
coordinates to coincidence and again exploit transversatx™ =—L and take the other just inside. Since there is no
translational invariance to perform the sums ovgrandsat  + + term, and the mixed terms always vanish for lakgeve
xt=0, compute only the- — contribution,

e . _
Ee'e‘w*)A HieAL )AL O 11T (x = Lxh) o (x T, AT —LoxE AL =T o (xF, A~ =L x- +A%)

Xyl (xF,—LxH) Q) -

w —i(kt—eA_(xT)+i/L)A™
bt & dkt

— E W:+(XL)WH+(XL+AL)eieAL(X
n.,s + -

X+
X
0

mT) -

i
k+—eA(x+)+E

du [ 0 21dpT .
— — P (x"-u) —ie(n_,s)7_
fo fo } 2m © e(n-.s)e :

K*—eA (u)+T

Because of its significance to this analysis we remind the

W5 (x5 )W 1 eieAl(xi).Ai‘E n_.s e ie(n_ )7
reader of the functiorr_ = 7(u,x";k*) from Eq. (20), > . OCWn. (¥5) ( )

n.,s

. du’ :ii(_fe(wz)mzrcowt)
T(u,x+;k+)=fx = (99) -1 7
u k+ AL ! :
—eA(UD)F Xe(ilz)ﬁcotwwlmllz]_ (100

It will be important to note that(u,x;k*) has a negative Sincex”=u thep~ integral gives
imaginary part. 0 2\ dp- .

The next step is to perform the oscillator and spin sums f _f P elp (X" U= _ ! (101)

. ) —.
using the relation —w Jo | 2m 27 X" —U
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Now change variables fromto 7(u,x* ;k") by recognizing ie (= e iKA™
the complex differential, - + —
p 87T3fxdk K (X+cot(,87-+)
_dr —du L s (B
dr= Edu— — (102 x @~ (i2)m?r, +(i12)pcot(pr )| A*| +f dTFcot(,BT)
k*—ek(u)+r 0 T
) . 1
_ 2. AlaL)2 "
Since 7_(0,)(+;|(+)E7_+ and T(X+,X+;k+):0, expression x @~ (12m=7+(i12) feot(B7) A~ 1_EeAKT2
(98) takes the form
1
ie (= e ik —eA (X HILIAT 1 (4, —1—2(eAL7)2+O(T3) } (106
-— dk* - f
3) = i xT—u
8m k*—eA_ (xM)+ — 0 ) . o
L Note that the surface term is obviously finite in the unregu-
5 lated limit.
Nas —(i2)m?r+(i12) Beot(B7)| A%y The ultraviolet divergence der'|ves from the integration
ﬁr{’BCOt(’BT)e ! (103 over small 7. From the expansion cod=1/x —3x—zx°

+--- we infer
Note that the negative imaginary part efmakes the inte-
grand exponentially suppressed as:0 as long agA*|? B
£0. _zcot(ﬁT)e—(i/z)mzr+(i/zmcot(,ef)nAiH?
N

We must next express X( —u) in terms of 7. First ex-

+.,+ —yt_ .
pand7(u,x™;k™) for smallAu=x"—u, _ gi2nla 2 10 2, },82||Ai||2 1 Em“
AU ™ 2 3 ~ |8
(u,xt;kt)= i 1 1
T 22 AL20 T pA AL
K —eA (x')+T + M2 BEIA 2 = Al
1l a2 + EBZ 1+0(1) (107
EeA,(x )Au 3 T .
+ T2
k*—ek(x+)+t Only the following integrals can produce divergences:
1 rdr 2 4 2i . 2
T AN (vt 3 RPN (7725 V-G (il27+)A
6eA,(x )Au fo =3¢€ AT Az e
+ T2
+ _ + _ 4
Ki—eA-(xX)+ —— 13 +0(1), (108
1[eA’ (x")]?Au®
3 - wdr 2 2i . 2 2i
+ _ 3+O(AU4). _2_e(I/2'r)A :Pe(ll27+)A :KZ+O(1)!
K" —eA (x")+ — o7
L (109

(104

Since all the vector potentials are evaluatedkatwe can
suppress their arguments in subsequent expressions. We also
define the complex paramet&r=k™—eA_+i/L. Solving =—-In(A%)+0(1). (110
perturbatively for 1Au gives

- FA2
J+d_7-e(i/2r)A2:_Ei(i
o T 27,

We can therefore isolate the terms from E®8) which di-

1 1 1 - O ST
e 14 TeA e K2 verge with the transverse point splittig’=||A*|?,
Au Kr 2 6
1 —ie (= e ™A 4 m? [m? p?
! —_— + _—— [— —_— _
+1—2(eA_T)2+O(r3)]. (105 87r3focdk " [ Tzt gt 3
" 1 \2
Substituting this result and integrating by parts brings Eq. eAlK (eAl) 5
(98) to the form t— t gz |INAHFOM). (111)
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It remains to perform the&™ integration. Most of the
transverse divergences are proportional #21¢o they van-

—iKA™

PHYSICAL REVIEW D 66, 085017 (2002

cause it allows one to check for nonperturbative corrections
to the axial vector anomaly, just as what has already been
done in 1+ 1 dimensiong4].

The axial vector anomaly is the violation of the naive

divergence equation,

=—-27A".

ish with A™,
@ e
f dk* (112

Th?y are also pu_rely Imaginary a_nd would vanish upon Her"I'he anomaly in electrodynamics results from the one loop
mitization. The single exception is the term proportional to

) o triangle diagram containing two vector and one pseudovector
U +
eA. Thek™ integral for it is vertices. Adler and Bardeen showed that this diagram re-
. ceives noperturbativecorrections]7]. However, the possi-
[ ac
This gives a real term which survives whan —0,

2
K N

L JE—2imJs=0. (116

e—iKA7

K

bility for nonperturbative corrections remains open.
Modulo operator ordering and regularization, the axial
vector current operator and its pseudoscalar partner are

Js =2yl ysye (117)

— 2. (113

lim ie‘e’**A_“‘*AL'AL<Q|{1!/J1(X*,— Lx5 )y (x",A°
AT —0

—Lx + AN =T ¢y_(x", A" —L,x"+Ah)

Xyl (x*, =L xH 1 Q)

1
J5=E(¢17‘75w_+¢1yw5w+>.
(118

The conventions of Sec. Il implys=("5 5. We regulate
the axial vector currents the same as we did the vector cur-

A a2+ i (119  rents
=————In ~2) +finite, ,
247
Jo(xTx7,y 7, xh)
=— 0250, F" +finite. (115

1
\2

=T s (X7 x 7 XD gt (xTy ™ XD 1L

So we have recovered the standard one loop result for the
photon field strength renormalizati¢s]. This is another im-
pressive check on the correctness and consistency of the for-
malism. As one might expect, the divergence can be isolated
without taking the largd. limit.

e/ A- 0Dyt (Y™ XE) ysihy (XX, XE)

(119

1

V2

J5_(X+vy+ X !XL)E {¢I—(y+ X rxl) YS¢+(X+ X lXL)

VI. THE AXIAL VECTOR ANOMALY
The vector currents we have just obtained give the exact -7 g oyl
; ; Mys (X7, X7,x7)
one-loop response to our electromagnetic background. Since
they are not entire functions of the electric field they could Xyt (y T x7,xH)1)
never be obtained in a perturbative expansion. It seems ob-
vious that we can also access some of the nonperturbativEhe pseudoscalar is regulated by point splitting in both null
structure of the axial vector currents. This is interesting bedirections,

(120

1 1
Js(x Ty ixTy T xh)= ﬁexp[ie(x—y)fo dnA_(y"+ 90—y )l (y Ty Xy s (xTx7,x5)

+ lpt(eriyile)’er 75¢’+(X+1X71Xl)_Tr[ 77 ySwf(X+1X71XL)¢1(y+7y71XL)]

=Ty st (XX X)Ly Ty x5} (121
We Hermitize these operators as we did for the vector current,
1
Ja (xT,x7,x5)= lim E{JQ(X*;X‘,y‘,xL)+J5+(x+;y‘,x‘,xL)}, (122

y —x
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- _ N _ - _
Jo (xF x"xh)= Iim o{J5 (xT,y"ix7 x5+ 35 (v xTixT,xh)} (123
y+ﬂx+2
As with the vector currents the subscriptst denote which of the four initial value products is being considered. Also as

before, only the++ and —— products contribute to the large limit. We begin with (Q|JZ]Q). The ++ and ——

expectation values are
0 =\ d p‘*’
ffoo B fo 2@

X f d2x GIxE Xt )G (xE xR )ising BTy ), (124

<Q|‘]5+(X+;X71yivxl)|9>++:

w + a—i(kTHIL) (Y +L) ro + &gt =i/L)(xT+L)
efi[p+feA,(x+)]A,Xj dk” e f dq” e
—w 27 kT —pt4ilL

—w 2™ qt—pt—i/L

(QIZ(xT;x7,y ", xH|Q) =i—eieAAfX+dujx+dyi—P 1
T 2 0 o ~m \u-y

© dk* e—i(k++i/L)(y’+L) - dq+ ei(q*—i/L)(xwL)

227 K —eA (U)+i/L) = 2T gt —eA (y)—ilL
XJ’ d?xt GF (xt x4 {(m2=D* . D, )sin(Br__)
— €D}, Dy, cog BT )}G(XE X 7). (125
The presence ofys; has interchanged the sines and cosines from where they would have resided had we computed the

analogous vector current in transverse coordinate space. This small change allows us to obtain the result to all orders without
going to the harmonic oscillator basis. For example, the term is

B
— 0 27T €
" dk+ e*i(k++i/|—)(y_+|-) © dq+ei(q+7i/L)(X_+L)
>< [
f_oo27r kt—p*+ilL f—ocZW gt—pt—i/L

—i[pT—eA_(x1)]A_

- eB
<Q|‘];(X+;X !y !Xl)|Q>++=E

e(i/z)m27'++’

0 o +
Hg“ _F )dziwe—i[p*—ekme—zm(pﬂo(p*)a(eA—p*) (126
% 0
eB| | eA-dp” —2mn(pT)1a—i(pT—eA )A
:E " §[1+e m\(p )]e i(p"—eA_)A_ , (127
- 0

wherex(pT)=\(p*,0,3), andA(p™,n_,s) was defined in Eq(74).
The — — term can be greatly simplified by the identity

(D} G* (X" x- ' 7)) (DL G xE 5 70))sin(Br_ )+ € (DF G* (x- x5 7)) (DyG(x* X 7-))cog Br__)=0. (128

Using this identity and taking the lardelimit gives

im? + + 1
<Q|Js+(x*;xiy*,xL)Imﬁ=7e'e’*—A—fX dufX dyP(T)
0 0 u-—y

» dkt e (K HL L) o dq* i@ —iL)(x+1)
L»o 2m k+—ek(u)+i/wa 2m gt —eA_(y)—ilL

xf d2xt sin(Br_ )G(xE xE )G (xE ) ), (129
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A_
He_Bfe dpta(p*)e I(PT—eA)A_g=2m(pT)
4 )

= db (="

= dae-i@) _ - .
_ —iN(pT)In(a+i) iIN(pT)In(b—1i)
Xf,xzw ati © Lozw b—i © . (130
eBJGA’ Ty (e i (0T —eA_(xT)A 1-e 2D
=— dp™A e '\P TeA- | — 131)
an), 9P (p") 2 () (
eB [reA_
:Wfo dp*[1—e 2™, (132
Combining Egs(127) and (132 and Hermitizing gives us the lardeexpression fods ,
; Fryt v eB [er +a-2mn(p*
lim (Q32 (x*,x~,xH)|Q)y=—— dpte 2mP), (133
L—oo 477 0

Js involves many of the same procedures. Beginning with-the term, it has the following reduction:

QI (xTyTix xH|Q) = —

imsz dk+ e—i(k++i/L)(x‘+L) fx dq* ei(q+—i/L)(x‘+L)
2 ) =2mkt—eA (xN)+i/lL) = 2T gt —eA (y)—ilL

y fo Joc)dp+ 1 1
—» Jo | 2m kT—pt+i/lL g —pt—ilL
Xf dZXL’SimBT++)g(XL1XL'17+)g*(XL1XllaTi)1 (134)
eBn? = dk* e—i(k++i/L)(x‘+L) wdq* ei(q+—i/L)(x‘+L)
~ 8m f—mﬁ k*—ek(x*)+i/Lf—oo 27 gt —eA (yH)—ilL
1 1 [kT+ilL } o
X——— | —i+ —In - eli2mrs s 13
k*—qt+2i/L ™ (Q*—I/L (139

We again take the™ derivative to complete the calculation, this time requiring the axial vector currents to vaniSh=at
—L.Y Acting 9_ on the+ + term, taking the largé limit, and enforcing coincidence gives

eBn? (= dae '@ (> dbe® D _
; —(yt v oyl — _ iN(eA_)In(a+i) _ —in(eA)In(b—i)
1im (@35 (XX D) =g chw ati © chw b—i © (138
2 +
e“E(x")B B +
—_?[1_6 2mN(eA_(x ))] (137)
Integrating this last expression gives us the final result for-thie term
e’E(x")B
(Q|J5_(x+,x‘,xl)|ﬂ>++—>—%)r(x‘+L)[l—e‘2“(eAf)]. (138

Note that this is not properly the infinite limit, but rather the two leading terms—one of which diverges linearliz.in
We pass now to the- — term. Reducing the transverse coordinates gives

1That this is so can be seen in B35 from the fact that thé&™ andq™ integrals can be closed above and below to avoid each’s respective
poles.
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Q35 (xFy;x7 x5 Q) cB 9 J duJ dyP| —
SAE e T 4w axT oyt u-y

% gkt e i(kTHIL(XT+L) +edg” ei(q*—i/L)(X’+L)e(i/2)m27"
Loﬁ k+—eAL(u)+i/Lf°° 2m  gqt—eA (y)-ilL

(139

This can be recognized &2+ times expressiofb.19 in Ref.[4]. So we can read off the result of the subsequent reductions
from expression$5.25 and(5.28 of that paper,

e’E(x")B
lim g_(Q]Js (x",x~,x")|Q)__ :EB(TZ)[lJre*Z“(EA—)]. (140
L—oe
Integrating fromx™ = —L gives
— o+ o= L ( +) 2mwN(eA)
Q35 (X", x7 ,xH|Q)y__— T(X +L)[1+e” ]. (141
Adding the + + terms(138) gives the final result fodg ,
e’E(x")B .
(Q|Jg(x+,x‘,xi)|()>—>%(x‘%—L)e‘z’”‘(p ), (142

As was the case for the vector current, the only divergence in the axial vector currents resige8efore computing the
pseudoscalar it is worth noting that in the massless limit the anomaly equatiohlins3simply

ul @ g e’EB
J ‘JSZEE MFaﬁF,u,VZZ_ﬂ_Z_' (143)

Whereas our axial currents contain factors that are complataiperturbativethe limiting case satisfies E¢143),

eE(x")B _, . €E(x")B
lim[d,J2 +0_d5 1= lim———e 2™P )= —— (144
m—0 m—0 2@ 2

Notice how Eq.(144) does not follow if the—— terms are suppressed.
The only thing left to compute is the pseudoscalar. We begin withtthe term,

eBm  _[*
<Q|35(X+,y+;x*,y’)|9)++=——e'e(x -y )f dpA_(yT+p(xt—y*)

8 0
f f ) j dk* e —i(kT L)X e dq* ei(q*—i/L)y*
— 27T | J'foo 27T |
+__ At _ + _ At
Ki=p + 9 -pP 1
X 1 — 1 ; e(i/Z)mZ[T*(O,y*:Q*)—u], (145
kt—eA_(x* )+E q*—eA_(y*)—E
e 22 e [ L[|
4m
- + ik HILXT e + Li(gT=iL)y”
% i &e dq” e AGi12)mer, (146
ax* 2 i i '
—o0 &TT k+_ + |_ —00277 . +_|_
p L q —p L

ipTA_g=2m\(p")0(p")0(eA —pT)

ieB 0 =\dp*
i —ieA_A_ _
47Tme J (J’oo fo>277e
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ieB i jel*A-A- rea .
— —ieA_A_ . +a—2mN(pT)+ipTA_
= e d4 A,+ A +j0 dp'e , (148
il A (T
i w[l_e*hh(ek(f))]_ (149
8m’m

In these reductions we sequentially topk=x", the largeL limit, and theny~=x". The final result is
ie’E(x")B

g [1_e*2ﬂ'}\(eA_(X+))]. (150)

lim (Q]Is(x™,x~,xH)[Q), . =

L—oe

The —— term is perfectly regular at* andx™~ coincidence, so we can begin at coincidence,

A3t - v Q) = ieBm' g fﬁd fx+d iP 1
< | 5(X XXy )| >——_ 8 (7X+ 0 u 0 y77 u—y
< dk* e—i(k++i/L)x’ - dq+ ei(q*—i/L)y*e(ilz)mZL,
X f - . f . (152)
— 2 kt—eA_(U)+i/lL)-= 2T qgqf—eA_(y)—ilL
ieB J eA_(x") 2mn(n*
[ —e 27\ (p")
= Swzm(aﬁ)fo dp'[1-e 2707 (152
F2A7 [yt
_eAOB )B[l—e—%*(e’*—“*))]. (153
8m’m
|
Combining Eqgs(150) and (153 gives Js, k*=eA_(x"). Electrons accelerate to the speed of light in
) . the minusz direction and leave the light-cone manifold. In
lim (Q[Is(x™,x™,x")|Q) Sec. IV we obtained the following probability for the appear-
Lo ance of a positron of momentuki”, Landau leveln_ and
ie2E(x*)B . spins:
— _ a—2mh(eA_(xT))
277m [1-e 1. (159
+ _ a—2mn(kT,n_s)
With our results for the axial vector current, our divergence Prof(k™,n_,s)=e ’ (156
equation becomes
e’EB where we define
lim (Q]d, Iz +9_Js —2imJs| Q)= 57 (155
L—oo
1 ) eB
So the axial vector anomaly equation is satisfied and there >m +(2n_+1—25)|7|
are no nonperturbative corrections. AkT,n_,s)= . (157

leE(X(k™))|
VIl. DISCUSSION

This paper had three basic purposes. The first of these w.
to compute the positron creation probability and the vecto
current expectation values using operator soluti@s,(29)
which are exact for any. This is important because one
cannot properly take the largé limit—or any other
limit—of an operator. The correct procedure is first to take e?B [eA_ .
the expectation value in the presence of some state and ther{Q|J*(x+,x*,xi)|Q)=Ff dk*e” ™ 7IeE(X (k™))
takeL to infinity in the resultingC-number function. T Jo

Lsis reassuring that creation is more probable when the spin
%nes up with the magnetic field fields& + 3).

In Sec. V we obtained the following results for the non-
zero currents:

As in previous treatments3,4] pair creation in a homo- B
geneous electric field is a discrete and instantaneous event. tH— T2 , (159
For momentunk™ it occurs at the tima™ =X(k™) such that EX(k*))
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QI (X" X7 %) [ Q)ren anomaly. Not surprisingly, one also loses renormalizability.
For example, when we point-split on bo#v and x* and

:egB E(x") (x~+Lye- TmIeE go mB _ then Hermitize, ther + part of the expectation value df
A7? E(x™) is
(159

T o S WKWy (¢ +AT)
We have removed the charge renormalization fibm Our 2miss  F -

results are conserved, and they correctly reduce to the cur- oA

rents of Ref[3] whenB=0. It may be that the extra mag- xf Tdpt[1+e 279
netic field endows them with some phenomenological sig- 0

nificance. Whereas it is very difficult to maintain large
electric fields over long distances, there are many astrophysi-
cal sources which have large and quite extensive magnet
fields.

Our second objective was to check the axial vecto
anomaly in (3+1)-dimensional light-cone QED. Whereas
an electric background suffices for checking the
(1+1)-dimensional anomalj4], increasing the dimension-

xcog(pt—eA )AT]. (163

LFhe first term in the square brackets diverges quadratically
Jike [A*]~2. Yet the only counterterm QED allows for the
current vector* is d,F"#, which is only nonzero fopu =
— in our background.

What do these problems mean? There is a “folk theorem”

ality by 2 requires the addition of a colinear magnetic field.to the eff_ect that a'?y.thing one can see by studying the f_ree
gweory with a nontrivial background must occur as well, in

Although we chose this to be constant it seems feasible t ) . i o
ome way or another, for the interacting theory in a trivial

figgs('fg)r g?}%g?:aeézl \E);?(I;g]]cg?u;;f ' dz(;)reﬁsgrr:lprlﬁégr? étﬁ:m yackground. Of course the theory is fine if one includes the

: n operators on th& ™ = — L surface, but then much of the sim-
field B(x") by the replacements plicity of light-cone quantum field theory is sacrificed. The
A (XD —A, (xF x5 best thing would be if the effects of the extra operators could

+ SR be subsumed into some simple extra interactions, at least for
B(x") - = certain purposes. Quantifying the problem and deriving an
=5 (X% =XX), (160 appropriate fix are the subject of on-going research.
Two extensions of this work seem worth making. The first
is to compute the one loop effective action with the addition
U(XL’T)HGX’{ —i f’“du, of a static magnetic field. This can no doubt be accomplished
u using the same techniques which worked for the case of only
an electric field 8]. It would be interesting to check whether
the Schwinger form persists in this larger class of back-
: (161) grounds.
The second extension is to re-compute the ldrdinits
8f the vector currents under the assumption thAat(x™)
obeys the Maxwell equation,

H[eA (u’',xH]
k*—eA_(u)+ilL

This background entails transverse electric and magneti
fields,

. — AT (x)=(37). (164)
EL:_B/(XJr)(Xl;(l_XZ;(Z),

J8 Since the term on the right-hand side grows linearly wkith
it is apparent that the back-reacted vector potential must do
1 the same. Our work of Sec. V assumed thatx ") is fixed
BL=EB’(X+)(X2;(1+X1;(2). (1620  asL goes to infinity.
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