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Hard-thermal-loop perturbation theory to two loops
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We calculate the pressure for pure-glue QCD at high temperature to two-loop order using hard-thermal-loop
~HTL! perturbation theory. At this order, all the ultraviolet divergences can be absorbed into renormalizations
of the vacuum energy density and the HTL mass parameter. We determine the HTL mass parameter by a
variational prescription. The resulting predictions for the pressure fail to agree with results from lattice gauge
theory at temperatures for which they are available.
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I. INTRODUCTION

Relativistic heavy-ion collisions allow the experiment
study of hadronic matter at energy densities exceeding
required to create a quark-gluon plasma. A quantitative
derstanding of the properties of a quark-gluon plasma is
sential in order to determine whether it has been crea
Because QCD is asymptotically free, its running coupli
constantas becomes weaker as the temperature increa
One might therefore expect the behavior of hadronic ma
at sufficiently high temperature to be calculable using per
bative methods. Unfortunately, a straightforward perturba
expansion in powers ofas does not seem to be of any qua
titative use even at temperatures orders of magnitude hi
than those achievable in heavy-ion collisions.

The problem is evident in the free energyF of the quark-
gluon plasma, whose weak-coupling expansion has been
culated through orderas

5/2 @1–3#. For a pure-glue plasma, th
first few terms in the weak-coupling expansion are
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where Fideal52(8p2/45)T4 is the free energy of an idea
gas of massless gluons andas5as(m) is the running cou-
pling constant in the modified minimal subtraction (MS)
scheme. In Fig. 1 the free energy is shown as a function
the temperatureT/Tc , whereTc is the critical temperature
for the deconfinement transition. The weak-coupling exp
sions through ordersas , as

3/2, as
2 , and as

5/2 are shown as
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bands that correspond to varying the renormalization scalm
by a factor of two from the central valuem52pT. As suc-
cessive terms in the weak-coupling expansion are added
predictions change wildly and the sensitivity to the renorm
ization scale grows. It is clear that a reorganization of
perturbation series is essential if perturbative calculations
to be of any quantitative use at temperatures accessibl
heavy-ion collisions.

The free energy can also be calculated nonperturbativ
using lattice gauge theory@4#. The thermodynamic functions
for pure-glue QCD have been calculated with high precis
by Boyd et al. @5#. There have also been calculations wi
Nf52 and 4 flavors of dynamical quarks@6#. In Fig. 1 the
lattice results for the free energy of pure-glue QCD fro

FIG. 1. The free energy for pure-glue QCD as a function
T/Tc . The weak-coupling expansions through ordersas , as

3/2, as
2 ,

andas
5/2 are shown as bands that correspond to varying the re

malization scalem by a factor of two. The diamonds are the lattic
result from Boydet al. @5#. The size of the diamonds indicate th
typical error bar.
©2002 The American Physical Society16-1
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Boyd et al. @5# are shown as diamonds. The free energy
very close to zero nearTc . As the temperature increases, t
free energy increases and approaches that of an ideal g
massless gluons. We will regard the lattice results as
correct results for the thermodynamic functions. One goa
any reorganization of perturbation theory is to obtain a f
energy that agrees within its domain of validity with th
lattice results.

There is of course little to be gained by just reproduc
the results of lattice gauge theory. A method for reorganiz
perturbation theory is of practical use only if it allows th
calculation of quantities that are not so easily calculated
ing lattice gauge theory. There are many observables tha
difficult or even impossible to calculate using lattice gau
theory. First, lattice gauge theory becomes increasingly in
ficient at higher temperatures, so some other method is
quired to extrapolate to highT. Second, calculations with
light dynamical quarks require orders of magnitude m
computer power than pure-glue QCD. Third, the Mon
Carlo approach used in lattice gauge theory fails comple
at nonzero baryon number density. Finally, lattice gau
theory is only effective for calculating static quantities, b
many of the more promising signatures for a quark-glu
plasma involve dynamical quantities.

The only rigorous method available for reorganizing p
turbation theory in thermal QCD isdimensional reductionto
an effective 3-dimensional field theory@7,8#. The coefficients
of the terms in the effective Lagrangian are calculated us
perturbation theory, but calculations within the effective fie
theory are carried out nonperturbatively using lattice ga
theory. Dimensional reduction has the same limitations
ordinary lattice gauge theory: it can be applied only to sta
quantities and only at zero baryon number density. Unlike
ordinary lattice gauge theory, light dynamical quarks do
require any additional computer power, because they o
enter through the perturbatively calculated coefficients in
effective Lagrangian. This method has been applied to
Debye screening mass for QCD@8# as well as the pressur
@7#.

There are some proposals for reorganizing perturba
theory in QCD that are essentially just mathematical mani
lations of the weak coupling expansion. The methods incl
Padé approximates@9#, Borel resummation@10#, and self-
similar approximates@11#. These methods are used to co
struct more stable sequences of successive approxima
that agree with the weak-coupling expansion when expan
in powers of as . These methods can only be applied
quantities for which several orders in the weak-coupling
pansion are known, so they are limited in practice to
thermodynamic functions.

One promising approach for reorganizing perturbat
theory in thermal QCD is to use a variational framewo
The free energyF is expressed as the variational minimu
of a thermodynamic potentialV(T,as ;m2) that depends on
one or more variational parameters that we denote col
tively by m2:

F~T,as!5V~T,as ;m2!u]V/]m250 . ~2!

A particularly compelling variational formulation is th
08501
s

of
e
f

e

g

s-
re

e
f-
e-

e

ly
e
t
n

-

g

e
s
c
n
t
ly
e
e

n
-
e

-
ns

ed

-
e

n
.

c-

F-derivable approximation, in which the complete propaga
tor is used as an infinite set of variational parameters@12#.
The F-derivable thermodynamic potentialV is the two par-
ticle irreduciable~2PI! effective action, the sum of all dia
grams that are 2-particle-irreducible with respect to the co
plete propagator @13#. The n-loop F-derivable
approximations, in whichV is the the sum of 2PI diagram
with up to n loops, form a systematically improvable s
quence of variational approximations. Until recent
F-derivable approximations have proved to be intracta
for relativistic field theories except for simple cases in whi
the self-energy is momentum independent. However, th
has been some recent progress in solving the three-
F-derivable approximation for scalar field theories. Braa
and Petitgirard have developed an analytic method for s
ing the three-loopF-derivable approximation for the mass
lessf4 field theory @14#. Van Hees and Knoll have deve
oped numerical methods for solving the 3-loopF-derivable
approximation for the massivef4 field theory @15#. They
have also investigated renormalization issues associated
the F-derivable approximation.

The application of theF-derivable approximation to
QCD was first discussed by McLerran and Freedman@16#.
One problem with this approach is that the thermodynam
potentialV is gauge dependent, and so are the resulting t
modynamic functions. The gauge dependence is the s
order inas as the truncation error. However, the most serio
problem is that even the two-loopF-derivable approxima-
tion has proved to be intractable.

The two-loop F-derivable approximation for QCD ha
been used as the starting point for hard-thermal-loop~HTL!
resummationsof the entropy by Blaizot, Iancu and Rebha
@17# and of the pressure by Peshier@18#. The thermodynamic
potentialV2-loop is a functional of the complete gluon propa
gator Dmn(P). The HTL resummations of Refs.@17# and
@18# can be derived in two steps. The first step is to repla
the two-loop functional at its variational point by a 1-loo
functional evaluated at the two-loop variational point. In t
resummation of the pressure of Ref.@18#, the 2-loop func-
tional is the thermodynamic potential and this step is a we
coupling approximation:

V2-loop@Dmn#udV2-loop50'V1-loop@Dmn#udV2-loop50 . ~3!

In the resummation of the entropy of Ref.@17#, the two-loop
functional is the derivative ofV2-loop with respect toT and
this step is an exact equality. The second step exploits
fact that the HTL gluon propagatorDmn

HTL(P) is an approxi-
mate solution to the variational equationdV2-loop50. The
HTL gluon propagator depends on one parametermD

2 , which
can be interpreted as the Debye screening mass for the g
The HTL gluon propagator satisfies the variational equat
to leading order inas provided thatmD

2 reduces in the weak
coupling limit to

mD
2 5

4pNc

3
as~m!T2, ~4!
6-2
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with some appropriate choice for the scalem such asm
52pT. Thus we can approximate the solution to the var
tional equation in~3! by Dmn

HTL(P):

V1-loop@Dmn#udV2-loop50'V1-loop@Dmn
HTL#um

D
2 54pasT

2. ~5!

This approximate solution holds whenmD
2 is given by Eq.

~4!, however, there is some freedom in the choice of
parametermD

2 , as long as it reduces to Eq.~4! in the weak-
coupling limit. It cannot be determined variationally becau
the variational character of the thermodynamic potential w
lost in the first step~3!. With the prescription~4!, the errors
in the thermodynamic functions are of orderas

3/2. The errors
can be reduced to orderas

2 by adding anas
3/2 term to the

right side of Eq.~4!.
The intractability of F-derivable approximations moti

vates the use of simpler variational approximations. O
such strategy that involves a single variational parametem
has been calledoptimized perturbation theory@19#, varia-
tional perturbation theory@20#, or the linear d expansion
@21#. This strategy was applied to the thermodynamics of
masslessf4 field theory by Karsch, Patkos and Petrecz
under the namescreened perturbation theory@22#. The
method has also been applied to spontaneously broken
theories at finite temperature@23#. The calculations of the
thermodynamics of the masslessf4 field theory using
screened perturbation theory have been extended to 3 l
@24#. The calculations can be greatly simplified by using
double expansion in powers of the coupling constant
m/T @25#.

HTL perturbation theory~HTLPT! is an adaptation of this
strategy to thermal QCD@26#. The exactly solvable theory
used as the starting point is one whose propagators are
HTL gluon propagators. The variational mass parametermD
can be identified with the Debye screening mass. The o
loop free energy in HTLPT was calculated for pure-gl
QCD in Ref. @26# and for QCD with light quarks in Ref
@27#. At this order, the parametermD cannot be determined
variationally, so the prescription~4! was used. The resulting
thermodynamic functions have errors of orderas , but the
terms of orderas

3/2 associated with Debye screening are c
rect. A two-loop calculation is required to reduce the err
to orderas

2 . At two-loop order, it is also possible to dete
mine mD using a variational prescription.

One difference between HTLPT and the HTL resumm
tion methods of Refs.@17# and@18# is in how they deal with
gauge invariance. HTLPT is constructed in such a way t
physical observables are gauge invariant order by orde
perturbation theory. Gauge invariance arises in the same
as in ordinary perturbation theory by cancellations betw
diagrams. In the HTL resummation methods of Refs.@17#
and @18#, the two-loop thermodynamic potentialV2-loop that
is used as the starting point is gauge dependent. In the
step~3! of the derivation,V2-loop is replaced by a one-loop
functionalV1-loop that is gauge invariant, but the variation
equationdV2-loop50 is still gauge dependent. In the seco
step~5!, the solution to that variational equation is appro
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HTL , and it is only at this point that the gaug

dependence disappears.
Another difference between HTLPT and the HTL resu

mation methods of Refs.@17# and @18# is in the ranges of
observables to which they can be applied. The HTL resu
mation methods were specifically formulated as approxim
tions to the thermodynamic functions, so they cannot be e
ily applied to other observables. However, they can be u
to calculate the thermodynamic functions in cases where
culations using conventional lattice gauge theory are diffic
or impossible: the high-temperature limit of pure-glue QC
QCD with light quarks, and QCD with nonzero baryon num
ber density. In contrast to these methods, HTLPT has
same wide range of applicability as ordinary perturbat
theory. It can be used to calculate the thermodynamic fu
tions, but it can also be applied to all the standard signatu
of a quark-gluon plasma such as heavy-quark production
dilepton production. It has some of the limitations of ord
nary perturbation theory. Calculations can be carried out o
up to the order at which the magnetic screening probl
causes diagrammatic methods to break down.

In this paper we calculate the thermodynamic functions
QCD to two-loop order in HTLPT. We begin with a brie
summary of HTLPT in Sec. II. In Sec. III, we give the ex
pressions for the one-loop and two-loop diagrams for
thermodynamic potential. In Sec. IV we reduce those d
grams to scalar sum integrals. We are unable to comp
those sum integrals, so in Sec. V we evaluate them appr
mately by expanding them in powers ofmD /T. The dia-
grams are combined in Sec. VI to obtain the final results
the two-loop thermodynamic potential up to fifth order ing
andmD /T. In Sec. VII we present our numerical results f
the thermodynamic functions of QCD. There are several A
pendixes that contain technical details of the calculations
Appendix A we give the Feynman rules for HTLPT i
Minkowski space to facilitate the application of this forma
ism to signatures of the quark-gluon plasma. The most d
cult aspect of these calculations was the evaluation of
sum integrals obtained from the expansion inmD /T. We
give the results for these sum integrals in Appendix B. T
evaluation of some difficult thermal integrals that were
quired to obtain the sum integrals is described in Appen
C.

II. HTL PERTURBATION THEORY

The Lagrangian density that generates the perturbative
pansion for pure-glue QCD can be expressed in the form

LQCD52
1

2
Tr~GmnGmn!1Lgf1Lghost1DLQCD, ~6!

where Gmn5]mAn2]nAm2 ig@Am ,An# is the gluon field
strength andAm is the gluon field expressed as a matrix
the SU(Nc) algebra. The ghost termLghost depends on the
choice of the gauge-fixing termLgf . Two choices for the
gauge-fixing term that depend on an arbitrary gauge par
eterj are the general covariant gauge and the general C
lomb gauge:
6-3
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Lgf52
1

j
Tr@~]mAm!2# covariant, ~7!

52
1

j
Tr@~“•A!2# Coulomb. ~8!

The perturbative expansion in powers ofg generates ultra-
violet divergences. The renormalizability of perturbati
QCD guarantees that all divergences in physical quant
can be removed by renormalization of the coupling cons
as5g2/4p. There is no need for wave function renormaliz
tion, because physical quantities are independent of the
malization of the field. There is also no need for renorm
ization of the gauge parameter, because physical quan
are independent of the gauge parameter. If we use dim
sional regularization with minimal subtraction as a renorm
ization prescription, the renormalization can be acco
plished by substituting as→as1Das , where the
countertermDas is a power series inas whose coefficients
have only poles ine:

Das52
11Nc

12pe
as

21S 121Nc
2

144p2e22
17Nc

2

48p2e Das
31O~as

4!.

~9!

Renormalized perturbation theory can be implemented
including among the interaction terms a counterterm
grangianDLQCD that is given by the change in the first thre
terms on the right side of Eq.~6! upon substitutingg→g(1
1Das)

1/2.
Hard-thermal-loop perturbation theory is a reorganizat

of the perturbation series for thermal QCD. The Lagrang
density is written as

L5~LQCD1LHTL!ug→Adg1DLHTL . ~10!

The HTL improvement term is

LHTL52
1

2
~12d!mD

2 TrS GmaK yayb

~y•D !2L
y

Gb
mD , ~11!

whereDm is the covariant derivative in the adjoint represe
tation,ym5(1,ŷ) is a light-like four-vector, and̂ . . . &y rep-
resents the average over the directions ofŷ. The term~11!
has the form of the effective Lagrangian that would be
duced by a rotationally invariant ensemble of color
sources with infinitely high momentum. The parametermD
can be identified with the Debye screening mass. HTLPT
defined by treatingd as a formal expansion parameter. T
free Lagrangian in general covariant gauge is obtained
settingd50 in Eq. ~10!:
08501
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Lfree52Tr~]mAn]mAn2]mAn]nAm!

2
1

j
Tr@~]mAm!2#2

1

2
mD

2 TrS ~]mAa2]aAm!

3K yayb

~y•]!2L
y

~]mAb2]bAm!D . ~12!

The resulting propagator is the HTL gluon propagator. T
remaining terms in Eq.~10! are treated as perturbations. Th
Feynman rules for gluon and ghost propagators and
3-gluon, ghost-gluon, and 4-gluon vertices are given in A
pendix A.

The HTL perturbation expansion generates ultraviolet
vergences. In QCD perturbation theory, renormalizabi
constrains the ultraviolet divergences to have a form that
be cancelled by the counterterm LagrangianDLQCD. There
is no proof that the HTL perturbation expansion is renorm
izable, so the general structure of the ultraviolet divergen
is not known. The most optimistic possibility is that HTLP
is renormalizable, so that the ultraviolet divergences
physical quantities can all be cancelled by renormalization
the coupling constantas , the mass parametermD

2 , and the
vacuum energy densityE0. If this is the case, the renorma
ization of a physical quantity can be accomplished by s
stituting as→as1Das and mD

2 →mD
2 1DmD

2 , where Das

andDmD
2 are counterterms. In the case of the free energy

is also necessary to add a vacuum energy countertermDE0.
If we use dimensional regularization with minimal subtra
tion as a renormalization prescription, the form of the cou
terterms fordas , (12d)mD

2 , andE0 should be the power o
(12d)mD

2 required by dimensional analysis multiplied by
power series indas with coefficients that have only poles i
e. The counterterm fordas should be identical to that in
ordinary perturbative QCD given in Eq.~9! with

dDas52
11Nc

12pe
d2as

21S 121Nc
2

144p2e22
17Nc

2

48p2e D d3as
3

1O~as
4!. ~13!

The leading term in the delta expansion of theE0 counter-
term DE0 was deduced in Ref.@26# by calculating the free
energy to leading order ind. TheE0 countertermDE0 must
therefore have the form

DE05S Nc
221

128p2e
1O~das! D ~12d!2mD

4 . ~14!

To calculate the free energy to next-to-leading order ind, we
need the countertermDE0 to order d and the counterterm
DmD

2 to order d. We will show that there is a nontrivia
cancellation of the ultraviolet divergences if the mass co
terterm has the form

DmD
2 5S 2

11Nc

12pe
das1O~d2as

2! D ~12d!mD
2 . ~15!
6-4
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Renormalized perturbation theory can be implemented
including a counterterm LagrangianDLHTL among the inter-
action terms in Eq.~10!.

Physical observables are calculated in HTLPT by expa
ing them in powers ofd, truncating at some specified orde
and then settingd51. This defines a reorganization of th
perturbation series in which the effects of themD

2 term in Eq.
~12! are included to all orders but then systematically s
tracted out at higher orders in perturbation theory by
dmD

2 term in Eq.~11!. If we setd51, the Lagrangian~10!
reduces to the QCD Lagrangian~6!. If the expansion ind
could be calculated to all orders, all dependence onmD
should disappear when we setd51. However, any trunca
tion of the expansion ind produces results that depend o
mD . Some prescription is required to determinemD as a
function ofT andas . We choose to treatmD as a variational
parameter that should be determined by minimizing the f
energy. If we denote the free energy truncated at some o
in d by V(T,as ,mD ,d), our prescription is

]

]mD
V~T,as ,mD ,d51!50. ~16!

SinceV(T,as ,mD ,d51) is a function of a variational pa
rametermD , we will refer to it as thethermodynamic poten
tial. We will refer to the variational equation~16! as thegap
equation. The free energyF is obtained by evaluating th
thermodynamic potential at the solution to the gap equat
Other thermodynamic functions can then be obtained by
ing appropriate derivatives ofF with respect toT.

III. DIAGRAMS FOR THE THERMODYNAMIC
POTENTIAL

The thermodynamic potential at leading order in HTL p
turbation theory is

VLO5~Nc
221!Fg1D0E0 , ~17!

whereFg is the contribution to the free energy from each
the color states of the gluon:

Fg52
1

2XP $~d21!log@2DT~P!#1 logDL~P!%.

~18!

~See Fig. 2.! The transverse and longitudinal HTL propag
tors DT(P) and DL(P) are given in Eqs.~A49! and ~A50!.

FIG. 2. Diagrams contributing through NLO in HTLPT. Th
curly lines with shaded circles are HTL gluon propagators. T
dashed lines are ghost propagators. The vertices with shaded c
are HTL vertices. The shaded circle labeled ‘‘P ’’ is the insertion of
the HTL self-energy.
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We use dimensional regularization withd5322e spatial di-
mensions to regularize ultraviolet divergences. The term
orderd0 in the vacuum energy counterterm was determin
in Ref. @26#:

D0E05
Nc

221

128p2e
mD

4 . ~19!

The thermodynamic potential at next-to-leading order
HTLPT can be written

VNLO5VLO1~Nc
221!@F3g1F4g1Fgh1FHTL#1D1E0

1D1mD
2 ]

]mD
2 VLO , ~20!

where D1E0 and D1mD
2 are the terms of orderd in the

vacuum energy density and mass counterterms. The co
butions from the two-loop diagrams with the 3-gluon a
4-gluon vertices are

F3g5
Nc

12
g2
XPQ

Gmlr~P,Q,R!Gnst~P,Q,R!Dmn~P!

3Dls~Q!Drt~R!, ~21!

F4g5
Nc

8
g2
XPQ

Gmn,ls~P,2P,Q,2Q!Dmn~P!

3Dls~Q!, ~22!

whereR52(P1Q). Expressions for the gluon propagat
tensorDmn, the 3-gluon vertex tensorGmlr, and the 4-gluon
vertex tensorGmn,ls in Minkowski space are given in Eq
~A25! or Eqs. ~A26!, ~A32!, and ~A41!. Prescriptions for
translating them into the Euclidean tensors appropriate
the imaginary time formalism are given in Appendix A. Th
contribution from the ghost diagram depends on the cho
of gauge. The expressions in the covariant and Coulo
gauges are

Fgh5
Nc

2
g2
XPQ

1

Q2

1

R2 QmRnDmn~P! covariant,

~23!

5
Nc

2
g2
XPQ

1

q2

1

r 2~Qm2Q•nnm!~Rn2R•nnn!

3Dmn~P! Coulomb.
~24!

The contribution from the HTL counterterm diagram is

FHTL5
1

2XP
Pmn~P!Dmn~P!. ~25!

It can also be obtained by substitutingmD
2 →(12d)mD

2 in
the one-loop expressionFg in Eq. ~18! and expanding to first
order ind:

e
les
6-5
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FHTL5
1

2XP
@~d21!PT~P!DT~P!2PL~P!DL~P!#.

~26!

Provided that HTLPT is renormalizable, the ultraviolet dive
gences at any order ind can be cancelled by renormaliza
tions of the vacuum energy densityE0, the HTL mass param
etermD

2 , and the coupling constantas . Renormalization of
the coupling constant does not enter until orderd2. We will
calculate the thermodynamic potential as a double expan
in powers ofg andmD /T, including all terms through fifth
order. Thedas term in DE0 does not contribute until sixth
order in this expansion, so the term of orderd in DE0 can be
obtained simply by expanding Eq.~19! to first order ind:

D1E052
Nc

221

64p2e
mD

4 . ~27!

The remaining ultraviolet divergences must be removed
renormalization of the mass parametermD . We will find that
there are ultraviolet divergences in theasmD

2 T2 andasmD
3 T3

terms, and both are removed by the same countert
D1mD

2 . This provides nontrivial evidence for the renorma
izability of HTLPT at this order ind.

The sum of the 3-gluon, 4-gluon, and ghost contributio
in Eqs. ~21!, ~22!, and ~23! or ~24! is gauge invariant. By
inserting the expression~A25! or ~A26! for the gluon propa-
gator tensor and using the Ward identities~A35! and ~A42!,
one can easily verify that the sum of these three diagram
independent of the gauge parameterj in both covariant
up

th

E

08501
-

on

y

m

s

is

gauge and Coulomb gauge. With more effort, we can ve
the equivalence of the covariant gauge expression witj
50 ~Landau gauge! and the Coulomb gauge expression w
j50. This involves expanding the tensornP

mnP
n in the cova-

riant gauge propagator into the sum of terms proportiona
nmnn, Pmnn, nmPn, andPmPn, and then applying the Ward
identities to the terms involvingPm or Pn.

IV. REDUCTION TO SCALAR SUM INTEGRALS

The first step in calculating the thermodynamic poten
is to reduce the sum of the diagrams to scalar sum integ
The one-loop diagram in Eq.~18! and the HTL counterterm
diagram~25! are already expressed in terms of scalar in
grals. We proceed to consider the 3-gluon diagram in
~21!, the 4-gluon diagram in Eq.~22!, and the ghost diagram
in Landau gauge which is given in Eq.~23!. The expression
for the sum of these three diagrams is simpler than that of
3-gluon diagram alone. We insert the gluon propagator in
form ~A29! with j50. It has terms proportional toDT and
DX , whereDX is the combination of transverse and longit
dinal propagators defined in Eq.~A27!. When a momentum
Pm from the gluon propagator tensor is contracted with
3-gluon or 4-gluon vertex, the Ward identities can be used
reduce it ultimately to expressions involving the inver
propagator~A20!. The termDT /DL can be eliminated in fa-
vor of DX /DL using the definition~A27!. This reduces the
sum of the 3-gluon, 4-gluon, and ghost diagrams to the
lowing form:
F3g1F4g1Fgh5
Nc

12
g2
XPQ H GmnlGmnlDT~P!DT~Q!DT~R!23Gmn0Gmn0DT~P!DT~Q!DX~R!

13Gm00Gm00DT~P!DX~Q!DX~R!2~G000!2DX~P!DX~Q!DX~R!13d~d11!DT~P!DT~Q!

26dDT~P!DX~Q!1
3

2
G00,00DX~P!DX~Q!16S Q•R

Q2R2 DT~P!2
n•Q n•R

Q2R2 DX~P! D212S n•Q nQ•R

q2R2 DT~P!

2
n•Q n•R

Q2R2 DX~P! D DX~Q!

DL~Q!
16S n•Q n•R nQ•nR

q2r 2 DT~P!2
n•Q n•R

Q2R2 DX~P! D DX~Q!

DL~Q!

DX~R!

DL~R!J . ~28!
In the 3-gluon and 4-gluon vertex tensors, we have s
pressed the momentum arguments:Gmnl5Gmnl(P,Q,R)
andG00,005G00,00(P,2P,Q,2Q).

The next step is to insert the Euclidean analogs of
expressions~A32! and ~A41! for the 3-gluon and 4-gluon
vertex tensors. The combinations of terms that appear in
~28! can be simplified using the ‘‘Ward identities’’~A3!,
~A34!, and~A38! satisfied by the HTL correction tensors:

GmnlGmnl53d~P21Q21R2!1mD
4 T mnlT mnl, ~29!
-

e

q.

Gmn0Gmn05p21q214r 212d~n•P!212d~n•Q!2

2d~n•R!212mD
2 ~2TR2TP2TQ!

1mD
4 T mn0T mn0, ~30!

Gm00Gm0052q212r 22p222mD
2 @2TP2TQ2TR

1n•~Q2R!T 000#1mD
4 T m00T m00, ~31!

~G000!25mD
4 ~T 000!2, ~32!

G00,0052mD
2 T 0000. ~33!
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In the 3-gluon and 4-gluon HTL correction tensors, we have suppressed the momentum arguments:T mnl5T mnl(P,Q,R) and
T 00005T 0000(P,Q,2P,2Q). We have also used the short-handTP52T 00(P,2P) for the 2-gluon HTL correction tensor
Inserting the expressions~29!–~33! into Eq. ~28! and eliminating 1/DL(P) in favor of TP , the reduction to scalar integrals

F3g1F4g1Fgh5
Nc

4
g2
XPQ H F3dR21

1

3
mD

4 T mnlT mnlGDT~P!DT~Q!DT~R!1@22q224r 224d~n•Q!21d~n•R!2

24mD
2 ~TR2TQ!2mD

4 T mn0T mn0#DT~P!DT~Q!DX~R!1@2p214r 222mD
2 n•~Q2R!T 00024mD

2 ~TP2TR!

1mD
4 T m00T m00#DT~P!DX~Q!DX~R!2

1

3
mD

4 ~T 000!2DX~P!DX~Q!DX~R!1d~d11!DT~P!DT~Q!

22dDT~P!DX~Q!2
1

2
mD

2 T 0000DX~P!DX~Q!12
Q•R

Q2R2 DT~P!$12@q21mD
2 ~12TQ!#DX~Q!%

3$12@r 21mD
2 ~12TR!#DX~R!%22

n•Q n•R

Q2R2 DX~P!$12@q21mD
2 ~12TQ!#DX~Q!%

3$12@r 21mD
2 ~12TR!#DX~R!%14

q•r

q2R2
@q21mD

2 ~12TQ!#DT~P!DX~Q!22
~2nQ

2 21!q•r

q2r 2

3@q21mD
2 ~12TQ!#@r 21mD

2 ~12TR!#DT~P!DX~Q!DX~R!J . ~34!
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V. EXPANSION IN THE MASS PARAMETER

The thermodynamic potential has been reduced to sc
sum integrals. In Ref.@26# the sum integrals for the one-loo
free energy were evaluated exactly by replacing the sum
contour integrals, extracting the poles ine, and then reduc-
ing the momentum integrals to integrals that were at m
two-dimensional and could therefore be easily evaluated
merically. It was also shown that the sum integrals could
expanded in powers ofmD /T, and that the first few terms in
the expansion gave a surprisingly accurate approximatio
the exact result.

If we tried to evaluate the two-loop HTL free energy e
actly, there are terms such as those involvingT mnlT mnl that
could at best be reduced to five-dimensional integrals
would have to be evaluated numerically. We will therefo
evaluate the sum integrals approximately by expanding th
in powers ofmD /T. We will carry out themD /T expansion
to high enough order to include all terms through orderg5 if
mD /T is taken to be of orderg.

A. One-loop sum integrals

The one-loop sum integrals include the leading order f
energy given by the sum integrals~18! and the HTL coun-
terterm given by Eq.~26!. The leading order free energ
must be expanded to order (mD /T)5 in order to include all
terms through orderg5. The HTL counterterm has an explic
factor of mD

2 , so the sum integral for the HTL counterter
diagram need only to be expanded to order (mD /T)3 to in-
clude all terms through orderg5.

The sum integrals overP involve two momentum scales
mD andT. In order to expand them in powers ofmD /T, we
08501
lar

by

st
u-
e

to

at

m

e

separate them into contributions from hard loop momentu
for which some of the components ofP are of orderT, and
soft loop momenta, for which all the components ofP are of
order mD . We will denote these regions by~h! and (s).
Since the Euclidean energyP0 is an integer multiple of
2pT, the soft region requiresP050.

1. Hard contributions

If P is hard, the denominatorsP21PT andp21PL in the
propagators are of orderT, but the self-energy functionsPT

andPL are of ordermD
2 . ThemD /T expansion can therefor

be obtained by expanding in powers ofPT andPL .
For the one-loop free energy, we need to expand to sec

order inmD
2 :

F g
(h)5

d21

2 XP
log~P2!1

1

2
mD

2
XP

1

P2

2
1

4~d21!
mD

4
XP F 1

~P2!2 22
1

p2P2

22d
1

p4TP12
1

p2P2TP1d
1

p4 ~TP!2G . ~35!

Note that the functionTP cancels from themD
2 term because

of the identity ~A12!. The values of the sum integrals a
given in Appendix B. Inserting those expressions, the h
contributions to the leading-order free energy reduce to
6-7
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F g
(h)52

p2

45
T41

1

24F11S 212
z8~21!

z~21! D eG
3S m

4pTD 2e

mD
2 T22

1

128p2S 1

e
2712g1

2p2

3 D
3S m

4pTD 2e

mD
4 , ~36!

whereg is the Euler-Mascheroni constant. Note that the p
in the mD

4 term is cancelled by the counterterm~19!.
The HTL counterterm diagram has an explicit factor

mD
2 , so we need only to expand the sum integral to fi

order inmD
2 . EliminatingPT(P) andPL(P) in favor of the

function TP , the result is

F ct
(h)52

1

2
mD

2
XP

1

P21
1

2~d21!
mD

4
XP F 1

~P2!2 22
1

p2P2

22d
1

p4TP12
1

p2P2TP1d
1

p4 ~TP!2G . ~37!

The values of the sum integrals are given in Appendix
Inserting those expressions, the hard contributions to
HTL counterterm in the free energy reduce to

F ct
(h)52

1

24
mD

2 T21
1

64p2S 1

e
2712g1

2p2

3 D
3S m

4pTD 2e

mD
4 . ~38!

Note that the first term in Eq.~38! cancels the order-e0 term
in the coefficient ofmD

2 T2 in Eq. ~36!. We have kept the
order-e term in the coefficient ofmD

2 T2 in Eq. ~36! because it
will contribute to the final result through the mass count
term.

2. Soft contributions

The soft contribution comes from theP050 term in the
sum integral. At soft momentumP5(0,p), the HTL self-
energy functions reduce toPT(P)50 andPL(P)5mD

2 . The
transverse term vanishes in dimensional regularization
08501
e

f
t

.
e

-

e-

cause there is no momentum scale in the integral ovep.
Thus the soft contribution comes from the longitudinal te
only.

The soft contribution to the leading order free energy

F g
(s)5

1

2
TE

p
log~p21mD

2 !. ~39!

Using the expression for the integral in Appendix C, we o
tain

F g
(s)52

1

12pF11
8

3
eG S m

2mD
D 2e

mD
3 T. ~40!

The soft contribution to the HTL counterterm is

F ct
(s)52

1

2
mD

2 TE
p

1

p21mD
2 . ~41!

Using the expression for the integral in Appendix C, we o
tain

F ct
(s)5

1

8p
mD

3 T. ~42!

B. Two-loop sum integrals

The sum of the two-loop sum integrals is given in E
~34!. Since these integrals have an explicit factor ofg2, we
need only expand the sum integrals to order (mD /T)3 to
include all terms through orderg5.

The sum integrals involve two momentum scales:mD and
T. In order to expand them in powers ofmD /T, we separate
them into contributions from hard loop momenta and s
loop momenta. This gives three separate regions which
will denote (hh), (hs), and (ss). In the (hh) region, all
three momentaP, Q, R are hard. In the (hs) region, two of
the three momenta are hard and the other is soft. In thess)
region, all three momenta are soft.

1. Contributions from the„hh… region

If P, Q, R are all hard, we can obtain themD /T expansion
simply by expanding in powers ofmD

2 . To obtain the expan-
sion through ordermD

3 /T3, we need only expand to first or
der in mD

2 , with DX andPT taken to be of ordermD
2 :
wers
F3g14g1gh
(hh) 5

Nc

4
g2
XPQ H 3dR2DT~P!DT~Q!DT~R!1@22q224r 224d~n•Q!21d~n•R!2#DT~P!DT~Q!DX~R!

1d~d11!DT~P!DT~Q!22dDT~P!DX~Q!12
Q•R

Q2R2 DT~P!@122q2DX~Q!#

22
n•Q n•R

Q2R2 DX~P!14
q•r

R2
DT~P!DX~Q!J . ~43!

For hard momenta, the self-energies are suppressed bymD
2 /T2 relative to the propagators, so they can be expanded in po

of PT andPL . Expanding all terms to first order inmD
2 , and using Eqs.~A6! and ~A7! to eliminatePT(P) andPL(P) in

favor of TP , we obtain
6-8
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F3g14g1gh
(hh) 5

Nc

4
g2
XPQ H ~d21!2

1

P2

1

Q2J 1
Nc

4
g2mD

2
XPQ H 22~d21!

1

P2

1

~Q2!212~d22!
1

P2

1

q2Q212
1

P2Q2R2

1~d12!
1

P2Q2r 222d
P•Q

P2Q2~r 2!224d
q2

P2Q2~r 2!214
q2

P2Q2r 2R222~d21!
1

P2

1

q2Q2TQ2~d11!
1

P2Q2r 2 TR

14d
q2

P2Q2~r 2!2TR12d
P•Q

P2Q2~r 2!2TRJ . ~44!

Inserting the sum integrals from Appendix B, this reduces to

F3g14g1gh
(hh) 5

p2

12

Ncas

3p
T42

7

96F1

e
14.621GNcas

3p S m

4pTD 4e

mD
2 T2. ~45!

2. The „hs… contributions

In the (hs) region, the soft momentum can be any one of the three momentaP, Q, or R. However, we can always permut
the momenta so that the soft momentum isP5(0,p). The function that multiplies the soft propagatorDT(0,p) or DX(0,p) can
be expanded in powers of the soft momentump. In the case ofDT(0,p), the resulting integrals overp have no scale and
therefore vanish in dimensional regularization. The integration measure*p scales likemD

3 , the soft propagatorDX(0,p) scales
like 1/mD

2 , and every power ofp in the numerator scales likemD . The only terms that contribute through orderg2mD
3 T are

F3g14g1gh
(hs) 5

Nc

4
g2TE

p
DX~0,p!XQ H @22q224p224d~n•Q!214mD

2 TQ#DT~Q!DT~R!1@4r 222q214p2#DT~Q!DX~R!

22dDT~Q!12
~n•Q!2

Q2R2 @122q2DX~Q!#J . ~46!

In the terms that are already of orderg2mD
3 T, we can setR52Q. In the terms of orderg2mDT3, we must expand the

sum-integrand to second order inp. After averaging over angles ofp, the linear terms inp vanish and quadratic terms of th
form pipj are replaced byp2d i j /d. We can setp252mD

2 , because any factor proportional top21mD
2 will cancel the

denominator of the integral overp, leaving an integral with no scale. Our expression for the (hs) contribution reduces to

F3g14g1gh
(hs) 5

Nc

2
g2TE

p

1

p21mD
2XQ H 2~d21!

1

Q2 12~d21!
q2

~Q2!2J 1Ncg
2mD

2 TE
p

1

p21mD
2XQ H 2~d24!

1

~Q2!2

1
~d21!~d12!

d

q2

~Q2!32
4~d21!

d

q4

~Q2!4J . ~47!
te

cy
n

es
a
-

at

gral

h

Inserting the sum integrals from Appendix B and the in
grals from Appendix C, this reduces to

F3g14g1gh
(hs) 52

p

2

Ncas

3p
mDT32

11

32pS 1

e
1

27

11
12g D

3
Ncas

3p S m

4pTD 2eS m

2mD
D 2e

mD
3 T. ~48!

3. The „ss… contributions

The (ss) contributions come from the zero-frequen
modes of the sum integrals. The HTL correction functio
TP , T 000, andT 0000 vanish when all the external frequenci
are zero. The self-energy functions at zero frequency
PT(0,p)50 andPL(0,p)5mD

2 . The only scales in the inte
grals come from the longitudinal propagatorsDL(0,p)
51/(p21mD

2 ). Therefore in dimensional regularization,
08501
-

s

re

least one such propagator is required in order for the inte
to be nonzero. The only terms in Eq.~34! that give nonzero
contributions are

F3g14g1gh
(ss) 5

Nc

4
g2T2E

pq
$@22q224r 2#DT~0,p!DT~0,q!

3DX~0,r !1@2p214r 2#DT~0,p!DX~0,q!

3DX~0,r !%. ~49!

After simplifying the integral by dropping terms that vanis
in dimensional regularization, it reduces to

F3g14g1gh
(ss) 5

Nc

4
g2T2E

pq

p214mD
2

p2~q21mD
2 !~r 21mD

2 !
. ~50!

Inserting the integrals from Appendix C, this reduces to
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F3g14g1gh
(ss) 5

3

16F1

e
13GNcas

3p S m

2mD
D 4e

mD
2 T2. ~51!

VI. THERMODYNAMIC POTENTIAL

In this section we calculate the thermodynamic poten
V(T,as ,mD ,d51) explicitly, first to leading order in thed
expansion and then to next-to-leading order.

A. Leading order

The complete expression for the leading order thermo
namic potential is the sum of the contributions from one-lo
diagrams and the leading term~19! in the vacuum energy
counterterm. The contributions from the one-loop diagra
including all terms through orderg5, is the sum of Eqs.~36!
and ~40!:

V1-loop5FidealH 12
15

2
m̂D

2 130m̂D
3

1
45

8
S 1

e
12 log

m̂

2
2712g1

2p2

3
D m̂D

4 J , ~52!

where Fideal is the free energy of an ideal gas ofNc
221

massless spin-one bosons,

Fideal5~Nc
221!S 2

p2

45
T4D , ~53!

andm̂D and m̂ are dimensionless variables:

m̂D5
mD

2pT
, ~54!

m̂5
m

2pT
. ~55!

Adding the counterterm~19!, we obtain the thermodynami
potential at leading order in the delta expansion:

VLO5FidealH 12
15

2
m̂D

2 130m̂D
3

1
45

4
S log

m̂

2
2

7

2
1g1

p2

3
D m̂D

4 J . ~56!

The coefficient ofm̂D
4 in Eq. ~56! differs from the result

calculated previously in Ref.@26#. In that paper the constan
under the logarithm ofm̂/2 was 2 3

2 1g1 log 2 instead of
2 7

2 1g1 1
3 p2. The reason for the difference is that the su

integral Fg was calculated in Ref.@26# using dimensional
regularization to regularize the integral, but using the thr
dimensional expressions for the HTL propagatorsDT and
DL . At leading order, the difference can be absorbed into
definition of the scalem. For calculations beyond leadin
08501
l

-
p

s,

-

e

order, it is essential for consistency to use thed-dimensional
expressions for these propagators.1

B. Next-to-leading order

The complete expression for the next-to-leading or
correction to the thermodynamic potential is the sum of
contributions from the two-loop diagrams, the HTL counte
terms, and renormalization counterterms. The contributi
from the two-loop diagrams, including all terms through o
der g5, is the sum of Eqs.~45!, ~48!, and~51!:

V2-loop5Fideal

Ncas

3p H 2
15

4
145m̂D

2
165

8
F1

e
14 log

m̂

2
2

72

11
logm̂D

11.969Gm̂D
2 1

495

4
F1

e
14 log

m̂

2
22 logm̂D

1
27

11
12gGm̂D

3 J . ~57!

The HTL counterterm contribution is the sum of Eqs.~38!
and ~42!:

VHTL5FidealH 15

2
m̂D

2 245m̂D
3

2
45

4
S 1

e
12 log

m̂

2
2712g1

2p2

3
D m̂D

4 J . ~58!

1We thank E. Iancu and A. Rebhan for first bringing this proble
to our attention.

FIG. 3. Solution to the gap equation~63! as a function of
as(2pT). The shaded band corresponds to variation of the ren
malization scalem by a factor of two aroundm52pT.
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The ultraviolet divergences that remain after these th
terms are added can be removed by renormalization of
vacuum energy densityE0 and the HTL mass parametermD .
The renormalization contributions at first order ind are

DV5D1E01D1mD
2 ]

]mD
2 VLO , ~59!

where D1E0 and D1mD
2 are the terms of orderd in the

vacuum energy counterterm and the mass counterterm.
expression forD1E0 is given in Eq.~27!. It cancels the poles
in e proportional tomD

4 in Eqs.~52! and~58!. The remaining
ultraviolet divergences are poles ine proportional tomD

2 and
mD

3 in Eq. ~57!. If HTL perturbation theory is renormalizable
both divergences must be removed by the same mass c
terterm. This requires a remarkable coincidence between
coefficients of the two poles, and provides a nontrivial tes
renormalizability. The value of the counterterm required i

D1mD
2 52

11

4e

Ncas

3p
mD

2 . ~60!
io

e

t
rb

d

n
on
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e
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The complete contribution from the counterterms throu
first order ind is

DV5FidealH 45

4e
m̂D

4 1
165

8
F1

e
12 log

m̂

2
1212

z8~21!

z~21!
G

3
Ncas

3p
m̂D

2 2
495

4
F1

e
12 log

m̂

2
22 logm̂D12G

3
Ncas

3p
m̂D

3 J . ~61!

Adding the contributions from the two-loop diagrams in E
~57!, the HTL counterterm in Eq.~58!, and the renormaliza-
tion counterterms in Eq.~59! and adding them to the leadin
order thermodynamic potential in Eq.~56!, we obtain the
complete expression for the thermodynamic potential
next-to-leading order in HTLPT:
VNLO5FidealH 1215m̂D
3 2

45

4
S log

m̂

2
2

7

2
1g1

p2

3
D m̂D

4 1
Ncas

3p
F2

15

4
145m̂D2

165

4
S log

m̂

2
2

36

11
logm̂D22.001D m̂D

2

1
495

2
S log

m̂

2
1

5

22
1g D m̂D

3 G J . ~62!

C. Gap equation

The gap equation which determinesmD is obtained by differentiating~62! with respect tomD and setting this derivative
equal to zero yielding

m̂D
2 F11S log

m̂

2
2

7

2
1g1

p2

3
D m̂DG5

Ncas

3p
F12

11

6
S log

m̂

2
2

36

11
logm̂D23.637D m̂D1

33

2
S log

m̂

2
1

5

22
1g D m̂D

2 G . ~63!
s
lu-

s

c-
of

re.
In Fig. 3 we have plotted the solution to this gap equat
normalized to the leading-order perturbative result in Eq.~4!
as a function ofas(2pT). The shaded band indicates th
range resulting from varying the renormalization scalem by
a factor of two aroundm52pT. From this plot we see tha
the gap equation solution matches nicely onto the pertu
tive result asas→0. The solution decreases withas(2pT)
out to aboutas'0.06 and then begins to increase. It excee
the perturbative result at aroundas'0.18, and then quickly
diverges to1`.

VII. THERMODYNAMIC FUNCTIONS

In this section we compare the thermodynamic functio
calculated at next-to-leading order in HTL perturbati
theory with those calculated using lattice gauge theory.
n

a-

s

s

A. Pressure

The final results for the LO and NLO HTLPT prediction
for the free energy of pure-glue QCD are obtained by eva
ating the thermodynamic potentials~56! and ~62! at the so-
lution to the gap equation~63!. Once the free energyF(T) is
given as a function ofT, all other thermodynamic function
are determined. In particular, the pressureP and the energy
densityE are

P52F, ~64!

E5F2T
dF
dT

. ~65!

In Fig. 4 we have plotted the LO and NLO HTLPT predi
tions for the pressure of pure-glue QCD as a function
T/Tc , whereTc is the deconfinement transition temperatu
6-11



-
r

ar
h
e
to
co
ig
a
u

at

y
t

a
he
e
n

h
e
ry

le
t is
4D
ted
on

not

y-
on-
liza-
f
ow-

ose
ed
t of

-

.

g
an

of

T

e
ht
lt
ad

in
nd
s a
orre-

ANDERSEN, BRAATEN, PETITGIRARD, AND STRICKLAND PHYSICAL REVIEW D66, 085016 ~2002!
To translateas(2pT) into a value ofT/Tc , we use an ana
lytic approximation to the two-loop running formula fo
pure-glue QCD

as~m!5
4p

11L̄
F12

102

121

log~ L̄ !

L̄
G , ~66!

whereL̄5 log(m2/LMS
2 ) andLMS50.65Tc @28,29#.

Thus as(2pT)50.06 and 0.2 translate intoT/Tc5415
and 0.906, respectively. The LO and NLO HTLPT results
shown in Fig. 4 as a light-shaded band outlined by a das
line and a dark-shaded band outlined by a solid line, resp
tively. The LO and NLO bands overlap all the way down
T5Tc , and the bands are very narrow compared to the
responding bands for the weak-coupling predictions in F
1. Thus the convergence of HTLPT seems to be dramatic
improved over naive perturbation theory and the final res
is extremely insensitive to the scalem.

In Fig. 4 we have also included the four-dimensional l
tice gauge theory results of Boydet al. @5# and the three-
dimensional lattice gauge theory results of Kajantie et al.@7#.
The LO and NLO HTLPT predictions differ significantl
from the 4D lattice results of Ref.@5#, even at the highes
temperatures for which they are available. AtT55 Tc , the
HTLPT prediction for the deviation of the pressure from th
of the ideal gas is only 45% of the 4D lattice result. In t
high temperature limit, the HTLPT prediction approach
that of the ideal gas very slowly, in qualitative agreeme
with the results of the 3D lattice calculations of Ref.@7#.
However the quantitative agreement is not very good. T
results of Ref.@7# depend on an unknown coefficient in th
effective Lagrangian for the dimensionally reduced theo

FIG. 4. The LO and NLO results for the pressure in HTLP
compared with 4D lattice results~diamonds! and 3D lattice results
~dotted lines! for various values of an unknown coefficient in th
3D effective Lagrangian. The LO HTLPT result is shown as a lig
shaded band outlined by a dashed line. The NLO HTLPT resu
shown as a dark-shaded band outlined by a solid line. The sh
bands correspond to variations of the renormalization scalem by a
factor of two aroundm52pT.
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The five dotted lines in Fig. 4 correspond to five possib
values for that coefficient. We assume that the coefficien
such that the 3D results match on reasonably well to the
results, such as one of the middle three of the five dot
lines. In that case, the HTLPT prediction for the deviati
from the ideal gas atT5103 Tc is only about 59% of the 3D
lattice result. We conclude that HTLPT at this order does
describe the pressure for pure-glue QCD.

B. Trace anomaly

The combinationE23P can be written as

E23P52T5
d

dTS F
T4D . ~67!

This combination is proportional to the trace of the energ
momentum tensor. In QCD with massless quarks, it is n
zero only because scale invariance is broken by renorma
tion effects. We will call it the trace anomaly density. It o
course vanishes for an ideal gas of massless particles. H
ever, it also vanishes for a gas of quasiparticles wh
masses are linear inT and whose interactions are govern
by a dimensionless coupling constant that is independen
T.

In Fig. 5 we have plotted the LO and NLO HTLPT pre
dictions for the trace anomaly density as a function ofT/Tc .
At largeT, the HTLPT prediction is very small and positive
As T decreases, the NLO prediction forE23P increases to
its maximum value around 10Tc and then begins decreasin
and quickly turns negative. The maximum value is less th
about 0.2% of the energy densityEideal of the ideal gas. In
contrast, the 4D lattice result increases to a maximum

-
is
ed

FIG. 5. The LO and NLO results for the trace anomaly
HTLPT. The LO HTLPT result is shown as a light-shaded ba
outlined by a dashed line. The NLO HTLPT result is shown a
dark-shaded band outlined by a solid line. The shaded bands c
spond to variations of the renormalization scalem by a factor of
two aroundm52pT.
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about 70% ofEideal at a temperature that is very close toTc
and then decreases rapidly to 0@5#.

VIII. CONCLUSIONS

We have calculated the free energy of pure-glue QCD
high temperature to two-loop order using HTL perturbati
theory ~HTLPT!. The gauge invariance of the two-loop e
pression was verified explicitly in generalized covaria
gauge and generalized Coulomb gauge. The expression
reduced to a relatively compact form involving only sca
sum integrals. The numerical evaluation of the scalar s
integrals would have been extremely difficult. We chose
stead to approximate them by expanding in powers ofmD /T,
keeping all terms through fifth order ing and mD /T. The
ultraviolet divergences in the resulting expression for
thermodynamic potential can be removed by renormaliza
of the vacuum energy density and the HTL mass param
mD . This provides a nontrivial test of the renormalizabili
of HTL perturbation theory to this order.

The two-loop order of HTLPT is the first order at whic
mD can be determined by a variational prescription. The c
dition that mD be a stationary point of the thermodynam
potential provides a ‘‘gap equation’’ formD . The only am-
biguity in the free energy then resides in the scalem associ-
ated with renormalizations of the vacuum energy density
mD . The predictions for the thermodynamic functions a
extremely insensitive to the choice ofm.

The quantitative predictions for the pressure in two-lo
HTLPT are disappointing. In the range 2Tc,T,20Tc , the
pressure is predicted to be nearly constant with a value
about 95% of that of an ideal gas of gluons. The HTL
prediction for the deviation from the ideal gas is about 45
of the result from four-dimensional lattice gauge theory
T55Tc , the highest temperature for which the lattice res
is available. At very high temperature, the approach to
ideal gas limit is extremely slow, in qualitative agreeme
with the results of 3D lattice gauge theory calculation
However, assuming that the 3-d results match on reason
well to the 4D results, the HTLPT prediction for the devi
tion from the ideal gas atT5103 Tc is only about 59% of the
3D lattice result.

There are many possible reasons for the discrepancy
tween the HTLPT predictions and the lattice results. O
possibility is that HTLPT at this order simply fails to de
scribe with sufficient accuracy the contributions from gluo
with momenta of ordergT. Another possibility is that the
discrepancy arises from omitting the contributions fro
magnetostatic gluons with momenta of orderg2T, which
would first enter HTLPT as an infrared-divergent contrib
tion at NNLO. In either of these cases, we would conclu
that two-loop HTLPT is not a quantitatively useful approx
mation for thermal QCD. Another possibility is that the pro
lem lies not with HTLPT but with our use of themD /T
expansion to approximate the scalar sum integrals. The
integrals that were encountered at fourth and fifth orde
mD /T were so difficult to evaluate that it seems hopeless
try to expand to higher order. However, it is possible that
scalar sum integrals could be evaluated numerically. Par
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the difficulty is that it is necessary to isolate the infrar
divergent and ultraviolet divergent terms analytically befo
evaluating the remaining terms numerically. OurmD /T ex-
pansions of the sum integrals might be useful for genera
the necessary subtractions that would allow the scalar
integrals to be evaluated numerically.

Our calculations required the development of new me
ods for evaluating sum integrals. The most difficult we
two-loop sum integrals that also involved a HTL angu
average. These sum integrals may be useful in other app
tions, such as solving the two-loopF-derivable approxima-
tion for QCD.
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APPENDIX A: HTL FEYNMAN RULES

In this appendix we present Feynman rules for HTL p
turbation theory in pure-glue QCD. We give explicit expre
sions for the propagators and for the 3-particle and 4-part
vertices. The Feynman rules are given in Minkowski space
facilitate applications to real-time processes. A Minkows
momentum is denotedp5(p0 ,p), and the inner product is
p•q5p0q02p•q. The vector that specifies the thermal re
frame isn5(1,0).

1. Gluon self-energy

The HTL gluon self-energy tensor for a gluon of mome
tum p is

Pmn~p!5mD
2 @T mn~p,2p!2nmnn#. ~A1!

The tensorT mn(p,q), which is defined only for momenta
that satisfyp1q50, is

T mn~p,2p!5 K ymyn
p•n

p•yL
ŷ

. ~A2!

The angular brackets indicate averaging over the spatia
rections of the light-like vectory5(1,ŷ). The tensorT mn is
symmetric inm andn and satisfies the ‘‘Ward identity’’

pmT mn~p,2p!5p•nnn. ~A3!

The self-energy tensorPmn is therefore also symmetric inm
andn and satisfies

pmPmn~p!50, ~A4!

gmnPmn~p!52mD
2 . ~A5!
6-13
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The gluon self-energy tensor can be expressed in term
two scalar functions, the transverse and longitudinal s
energiesPT andPL , defined by

PT~p!5
1

d21
~d i j 2 p̂i p̂ j !P i j ~p!, ~A6!

PL~p!52P00~p!, ~A7!

wherep̂ is the unit vector in the direction ofp. In terms of
these functions, the self-energy tensor is

Pmn~p!52PT~p!Tp
mn2

1

np
2 PL~p!Lp

mn , ~A8!

where the tensorsTp andLp are

Tp
mn5gmn2

pmpn

p2
2

np
mnp

n

np
2

, ~A9!

Lp
mn5

np
mnp

n

np
2

. ~A10!

The four-vectornp
m is

np
m5nm2

n•p

p2 pm ~A11!

and satisfiesp•np50 and np
2512(n•p)2/p2. Equation

~A5! reduces to the identity

~d21!PT~p!1
1

np
2 PL~p!5mD

2 . ~A12!

We can express both self-energy functions in terms of
function T 00 defined by~A2!:

PT~p!5
mD

2

~d21!np
2@T 00~p,2p!211np

2#, ~A13!

PL~p!5mD
2 @12T 00~p,2p!#. ~A14!

In the tensorT mn(p,2p) defined in Eq.~A2!, the angular
brackets indicate the angular average over the unit vectoŷ.
In almost all previous work, the angular average in Eq.~A2!
has been taken ind53 dimensions. For consistency o
higher order radiative corrections, it is essential to take
angular average ind5322e dimensions and analytically
continue tod53 only after all poles ine have been canceled
Expressing the angular average as an integral over the co
of an angle, the expression for the 00 component of the
sor is

T 00~p,2p!5
w~e!

2 E
21

1

dc~12c2!2e
p0

p02upuc
,

~A15!

where the weight functionw(e) is
08501
of
f-

e

e

ine
n-

w~e!5
G~222e!

G2~12e!
22e5

G~ 3
2 2e!

G~ 3
2 !G~12e!

. ~A16!

The integral in Eq.~A15! must be defined so that it is ana
lytic at p05`. It then has a branch cut running fromp05
2upu to p051upu. If we take the limite→0, it reduces to

T 00~p,2p!5
p0

2upu
log

p01upu
p02upu

, ~A17!

which is the expression that appears in the usual HTL s
energy functions.

2. Gluon propagator

The Feynman rule for the gluon propagator is

idabDmn~p!, ~A18!

where the gluon propagator tensorDmn depends on the
choice of gauge fixing. We consider two possibilities th
introduce an arbitrary gauge parameterj: general covariant
gauge and general Coulomb gauge. In both cases, the inv
propagator reduces in the limitj→` to

D`
21~p!mn52p2gmn1pmpn2Pmn~p!. ~A19!

This can also be written

D`
21~p!mn52

1

DT~p!
Tp

mn1
1

np
2DL~p!

Lp
mn , ~A20!

whereDT andDL are the transverse and longitudinal prop
gators:

DT~p!5
1

p22PT~p!
, ~A21!

DL~p!5
1

2np
2p21PL~p!

. ~A22!

The inverse propagator for generalj is

D21~p!mn5D`
21~p!mn2

1

j
pmpn covariant, ~A23!

5D`
21~p!mn2

1

j
~pm2p•n nm!

3~pn2p•n nn! Coulomb. ~A24!

The propagators obtained by inverting the tensors in E
~A24! and ~A23! are
6-14
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Dmn~p!52DT~p!Tp
mn1DL~p!np

mnp
n

2j
pmpn

~p2!2
covariant, ~A25!

52DT~p!Tp
mn1DL~p!nmnn

2j
pmpn

~np
2p2!2

Coulomb. ~A26!

It is convenient to define the following combination
propagators:

DX~p!5DL~p!1
1

np
2 DT~p!. ~A27!

Using Eqs.~A12!, ~A21!, and~A22!, it can be expressed in
the alternative form

DX~p!5@mD
2 2dPT~p!#DL~p!DT~p!, ~A28!

which shows that it vanishes in the limitmD→0. In the
covariant gauge, the propagator tensor can be written

Dmn~p!5@2DT~p!gmn1DX~p!nmnn#

2
n•p

p2 DX~p!~pmnn1nmpn!

1FDT~p!1
~n•p!2

p2 DX~p!2
j

p2G pmpn

p2 . ~A29!

This decomposition of the propagator into three terms
proved to be particularly convenient for explicit calculation
For example, the first term satisfies the identity

@2DT~p!gmn1DX~p!nmnn#D`
21~p!nl

5gm
l2

pmpl

p2 1
n•p

np
2p2

DX~p!

DL~p!
pmnp

l . ~A30!

3. Three-gluon vertex

The three-gluon vertex for gluons with outgoing momen
p, q, andr, Lorentz indicesm, n, andl, and color indicesa,
b, andc is

iGabc
mnl~p,q,r !52g fabcG

mnl~p,q,r !, ~A31!

where f abc is the SU(3) structure constant and the thre
gluon vertex tensor is

Gmnl~p,q,r !5gmn~p2q!l1gnl~q2r !m

1glm~r 2p!n2mD
2 T mnl~p,q,r !.

~A32!

The tensorT mnl in the HTL correction term is defined onl
for p1q1r 50:
08501
s
.

T mnl~p,q,r !52 K ymynylS p•n

p•yq•y
2

r •n

r •yq•yD L .

~A33!

This tensor is totally symmetric in its three indices and tra
less in any pair of indices:gmnT mnl50. It is odd ~even!
under odd~even! permutations of the momentap, q, andr. It
satisfies the ‘‘Ward identity’’

qmT mnl~p,q,r !5T nl~p1q,r !2T nl~p,r 1q!.
~A34!

The three-gluon vertex tensor therefore satisfies the W
identity

pmGmnl~p,q,r !5D`
21~q!nl2D`

21~r !nl. ~A35!

4. Four-gluon vertex

The four-gluon vertex for gluons with outgoing momen
p, q, r, and s, Lorentz indicesm, n, l, and s, and color
indicesa, b, c, andd is

iGabcd
mnls~p,q,r ,s!52 ig2$ f abxf xcd~gmlgns2gmsgnl!

12mD
2 tr@Ta~TbTcTd1TdTcTb!#T mnls~p,q,r ,s!%

12 cyclic permutations, ~A36!

where the cyclic permutations are of (q,n,b), (r ,l,c), and
(s,s,d). The matricesTa are the fundamental representatio
of the SU(3) algebra with the standard normalizatio
tr(TaTb)5 1

2 dab. The tensorT mnls in the HTL correction
term is defined only forp1q1r 1s50:

T mnls~p,q,r ,s!

5 K ymynylysS p•n

p•y q•y~q1r !•y

1
~p1q!•n

q•y r•y~r 1s!•y
1

~p1q1r !•n

r •y s•y~s1p!•yD L . ~A37!

This tensor is totally symmetric in its four indices and trac
less in any pair of indices:gmnT mnls50. It is even under
cyclic or anti-cyclic permutations of the momentap, q, r, and
s. It satisfies the Ward identity

qmT mnls~p,q,r ,s!5T nls~p1q,r ,s!

2T nls~p,r 1q,s! ~A38!

and the Bianchi identity

T mnls~p,q,r ,s!1T mnls~p,r ,s,q!1T mnls~p,s,q,r !50.
~A39!

When its color indices are traced in pairs, the four-glu
vertex becomes particularly simple:
6-15
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dabdcdiGabcd
mnls~p,q,r ,s!

52 ig2Nc~Nc
221!Gmn,ls~p,q,r ,s!, ~A40!

where the color-traced four-gluon vertex tensor is

Gmn,ls~p,q,r ,s!52gmngls2gmlgns2gmsgnl

2mD
2 T mnls~p,s,q,r !. ~A41!

Note the ordering of the momenta in the arguments of
tensorT mnls, which comes from the use of the Bianchi ide
tity ~A39!. The tensor~A41! is symmetric under the inter
change ofm andn, under the interchange ofl ands, and
under the interchange of (m,n) and (l,s). It is also sym-
metric under the interchange ofp and q, under the inter-
change ofr and s, and under the interchange of (p,q) and
(r ,s). It satisfies the Ward identity

pmGmn,ls~p,q,r ,s!5Gnls~q,r 1p,s!2Gnls~q,r ,s1p!.
~A42!

5. Ghost propagator and vertex

The ghost propagator and the ghost-gluon vertex dep
on the gauge. The Feynman rule for the ghost propagato

i

p2 dab covariant, ~A43!

i

np
2p2 dab Coulomb. ~A44!

The Feynman rule for the vertex in which a gluon with i
dicesm anda interacts with an outgoing ghost with outgoin
momentumr and color indexc is

2g fabcr m covariant, ~A45!

2g fabc~r m2r •nnm! Coulomb. ~A46!

Every closed ghost loop requires a multiplicative factor
21.

6. HTL counterterm

The Feynman rule for the insertion of an HTL counte
term into a gluon propagator is

2 idabPmn~p!, ~A47!

wherePmn(p) is the HTL gluon self-energy tensor given
Eq. ~A8!.

7. Imaginary-time formalism

In the imaginary-time formalism, Minkoswski energie
have discrete imaginary valuesp05 i (2pnT) and integrals
over Minkowski space are replaced by sum integrals o
Euclidean vectors (2pnT,p). We will use the notationP
5(P0 ,p) for Euclidean momenta. The magnitude of the sp
tial momentum will be denotedp5upu, and should not be
08501
e

nd
is

r

-

confused with a Minkowski vector. The inner product of tw
Euclidean vectors isP•Q5P0Q01p•q. The vector that
specifies the thermal rest frame remainsn5(1,0).

The Feynman rules for Minkowski space given above c
be easily adapted to Euclidean space. The Euclidean te
in a given Feynman rule is obtained from the correspond
Minkowski tensor with raised indices by replacing ea
Minkowski energyp0 by iP0, whereP0 is the corresponding
Euclidean energy, and multipying by2 i for every 0 index.
This prescription transformsp5(p0 ,p) into P5(P0 ,p),
gmn into 2dmn, andp•q into 2P•Q. The effect on the HTL
tensors defined in Eqs.~A2!, ~A33!, and~A37! is equivalent
to substituting p•n→2P•N where N5(2 i ,0), p•y→
2P•Y where Y5(2 i ,ŷ), and ym→Ym. For example, the
Euclidean tensor corresponding to Eq.~A2! is

T mn~P,2P!5 K YmYn
P•N

P•YL . ~A48!

The average is taken over the directions of the unit vectoŷ.
Alternatively, one can calculate a diagram by using t

Feynman rules for Minkowski momenta, reducing the e
pressions for diagrams to scalars, and then make the ap
priate substitutions, such asp2→2P2, p•q→2P•Q, and
n•p→ in•P. For example, the propagator functions~A21!
and ~A22! become

DT~P!5
21

P21PT~P!
, ~A49!

DL~P!5
1

p21PL~P!
. ~A50!

The expressions for the HTL self-energy functionsPT(P)
and PL(P) are given by Eqs.~A13! and ~A14! with np

2 re-
placed bynP

2 5p2/P2 andT 00(p,2p) replaced by

TP5
w~e!

2 E
21

1

dc~12c2!2e
iP0

iP02pc
. ~A51!

Note that this function differs by a sign from the 00 comp
nent T 00(P,2P) of the Euclidean tensor corresponding
Eq. ~A2!:

T 00~P,2P!52T 00~p,2p!up0→ iP0
52TP . ~A52!

A more convenient form for calculating sum integrals th
involve the functionTP is

TP5K P0
2

P0
21p2c2L

c

, ~A53!

where the angular brackets represent an average overc de-
fined by

^ f ~c!&c[w~e!E
0

1

dc~12c2!2e f ~c! ~A54!

andw(e) is given in Eq.~A16!.
6-16
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APPENDIX B: SUM-INTEGRALS

In the imaginary-time formalism for thermal field theor
a boson has Euclidean 4-momentumP5(P0 ,p), with P2

5P0
21p2. The Euclidean energyP0 has discrete values

P052pnT, wheren is an integer. Loop diagrams involv
sums overP0 and integrals overp. With dimensional regu-
larization, the integral is generalized tod5322e spatial di-
mensions. We define the dimensionally regularized sum
tegral by

XP
[S egm2

4p D e

T(
P0

E d322ep

~2p!322e
, ~B1!

whered5322e is the dimension of space andm is an arbi-
trary momentum scale. The factor (eg/4p)e is introduced so
that, after minimal subtraction of the poles ine due to ultra-
violet divergences,m coincides with the renormalizatio
scale of theMS renormalization scheme.

1. Simple one-loop sum integrals

The simple one-loop sum integrals required in our cal
lations are

XP
log P252

p2

45
T4, ~B2!

XP

1

P25T2S m

4pTD 2e 1

12F11S 212
z8~21!

z~21! D eG ,
~B3!

XP

p2

~P2!25
1

8
T2, ~B4!

XP

1

p2P25
1

~4p!2 S m

4pTD 2e

2F1

e
12g12

1S 414g1
p2

4
24g1D eG , ~B5!

XP

1

~P2!25
1

~4p!2 S m

4pTD 2eF1

e
12g1S p2

4
24g1D eG ,

~B6!

XP

p2

~P2!35
1

~4p!2 S m

4pTD 2e 3

4 F1

e
12g2

2

3G , ~B7!

XP

p4

~P2!45
1

~4p!2 S m

4pTD 2e 5

8 F1

e
12g2

16

15G , ~B8!

XP

1

~P2!35
2z~3!

~4p!4

1

T2 . ~B9!

The calculation of these sum integrals is standard. The er
are all one order higher ine than the smallest term shown
The numberg1 is the first Stieltjes gamma constant defin
by the equation
08501
-

-

rs

z~11z!5
1

z
1g2g1z1O~z2!. ~B10!

2. One-loop HTL sum integrals

The one-loop sum integrals involving the HTL functio
TP defined in Eq.~A51! are

XP

1

P2TP5T2S m

4pTD 2eS 2
1

24D F1

e
12

z8~21!

z~21! G ,
~B11!

XP

1

p4TP5
1

~4p!2 S m

4pTD 2e

~21!F1

e
12g12 log 2G ,

~B12!

XP

1

p2P2TP5
1

~4p!2 S m

4pTD 2eF2 log 2S 1

e
12g D

12 log221
p2

3 G , ~B13!

XP

1

~P2!2TP5
1

~4p!2 S m

4pTD 2e 1

2 F1

e
12g11G ,

~B14!

XP

1

p4 ~TP!25
1

~4p!2S m

4pTD 2eS 2
2

3D
3F ~112 log 2!S 1

e
12g D2

4

3

1
22

3
log 212 log22G . ~B15!

The errors are all of ordere.
It is straightforward to calculate the sum integrals~B11!–

~B15! using the representation~A53! of the functionTP . For
example, the sum integral~B11! can be written

XP

1

P2TP5XP

1

P0
21p2K P0

2

P0
21p2c2L

c

, ~B16!

where the angular brackets denote an average overc as de-
fined in Eq.~A54!. Using the factor ofP0

2 in the numerator to
cancel denominators, this becomes

XP

1

P2TP5K 1

12c2XP S 1

P2 2
c2

P0
21p2c2D L

c

.

~B17!

After rescaling the momentum byp→p/c, the second sum
integral on the right-hand side becomes the same as the
sum integral, and the expression reduces to

XP

1

P2TP5K 12c2112e

12c2 L
c

XP

1

P2 . ~B18!
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Evaluating the average overc, using the expression~B3! for
the sum integral, and expanding in powers ofe, we obtain
the result~B11!. Following the same strategy, all the su
integrals~B11!–~B15! can be reduced to linear combinatio
of the simple sum integrals~B3! and ~B5! with coefficients
that are averages overc. The only difficult integral is the
double average overc that arises from Eq.~B15!:

K c1
312e2c2

312e

c1
22c2

2 L
c1 ,c2

5
112 log 2

3
1S 2

10

9
1

10

9
log 21

2

3
log22D e. ~B19!

3. Simple two-loop sum integrals

The simple two-loop sum integrals that are needed ar

XPQ

1

P2Q2R250, ~B20!

XPQ

1

P2Q2r 25
T2

~4p!2 S m

4pTD 4e 1

12

3F1

e
110212 log 214

z8~21!

z~21! G ,
~B21!

XPQ

q2

P2Q2r 45
T2

~4p!2 S m

4pTD 4e 1

6

3F1

e
1

8

3
12g12

z8~21!

z~21! G , ~B22!

XPQ

q2

P2Q2r 2R25
T2

~4p!2 S m

4pTD 4e 1

9 F1

e
17.521G , ~B23!

XPQ

P•Q

P2Q2r 45
T2

~4p!2 S m

4pTD 4eS 2
1

8D
3F1

e
1

2

9
14 log 21

8

3
g1

4

3

z8~21!

z~21! G ,
~B24!
08501
where R52(P1Q) and r 5up1qu. The errors are all of
ordere.

To motivate the integration formula we will use to eval
ate the two-loop sum integrals, we first present the analog
integration formula for one-loop sum integrals. In a one-lo
sum integral, the sum overP0 can be replaced by a contou
integral inp052 iP0:

XP
F~P!5 lim

h→01

E dp0

2p i Ep
@F~2 ip0 ,p!2F~0,p!#

3ehp0n~p0!, ~B25!

wheren(p0)51/(ebp021) is the Bose-Einstein thermal dis
tribution and the contour runs from2` to 1` above the
real axis and from1` to 2` below the real axis. This
formula can be expressed in a more convenient form by
lapsing the contour onto the real axis and separating
those terms with the exponential convergence factorn(up0u).
The remaining terms run along contours from2`6 i« to 0
and have the convergence factorehp0. This allows the con-
tours to be deformed so that they run from 0 to6 i` along
the imaginaryp0 axis, which corresponds to real values
P052 ip0. Assuming thatF(2 ip0 ,p) is a real function of
p0, i.e. that it satisfiesF(2 ip0* ,p)5F(2 ip0 ,p)* , the re-
sulting formula for the sum integral is

XP
F~P!5E

P
F~P!1E

p
e~p0!n~ up0u!

32ImF~2 ip01«,p!, ~B26!

wheree(p0) is the sign ofp0. The first integral on the right
side is over the (d11)-dimensional Euclidean vectorP
5(P0 ,p) and the second is over the (d11)-dimensional
Minkowskian vectorp5(p0 ,p).

The two-loop sum integrals can be evaluated by usin
generalization of the one-loop formula~B26!:
XPQ
F~P!G~Q!H~R!5

1

3EPQ
F~P!G~Q!H~R!1E

p
e~p0!n~ up0u!2ImF~2 ip01«,p!ReE

Q
G~Q!H~R!U

P052 ip01«

1E
p
e~p0!n~ up0u)2ImF~2 ip01«,p!E

q
e~q0!n~ uq0u)2ImG~2 iq01«,q!

3ReH~R!U
R05 i (p01q0)1«

1~cyclic permutations ofF,G,H !. ~B27!
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The sum over cyclic permutations multiplies the first term
the right side by 3, so there are a total of seven terms. T
formula can be derived in 3 steps. First, express the sum
P0 as the sum of two contour integrals overp0, one that
encloses the real axis Imp050 and another that encloses th
line Im p052Im q0. Second, express the sum overq0 as a
contour integral that encloses the real-q0 axis. Third, sym-
metrize the resulting expression under the six permutat
of F, G, andH. The resulting terms can be combined into t
expression~B27!. The integrals of the imaginary parts th
enter into our calculation can be reduced to

E
p
e~p0!n~ up0u!2Im

1

P2U
P052 ip01«

f ~2 ip01«,p!

5E
p

n~p!

p

1

2 (
6

f ~6 ip1«,p!, ~B28!

E
p
e~p0!n~ up0u!2ImTPU

P052 ip01«

f ~2 ip01«,p!

52E
p
p n~p!

1

2 (
6

^c2312e f ~6 ip1«,p/c!&c .

~B29!

The latter equation is obtained by inserting the express
Eq. ~A53! for TP , using~B28!, and then making the chang
of variablep→p/c to put the thermal integral into a standa
form.

As a simple illustration, we apply the formula~B27! to
the sum integral~B21!. The nonvanishing terms are

XPQ

1

P2Q2r 2 52E
p
n~ up0u!2pd~p0

22p2!E
Q

1

Q2r 2

1E
p
n~ up0u!2pd~p0

22p2!

3E
q
n~ uq0u!2pd~q0

22q2!
1

r 2 . ~B30!

The delta functions can be used to evaluate the integrals
p0 andq0. The integral overQ is given in Eq.~C98! up to
corrections of ordere. This reduces the sum integral to

XPQ

1

P2Q2r 2 5
4

~4p!2 F1

e
1422 log 2Gm2e

3E
p

n~p!

p
p22e1E

pq

n~p!n~q!

pq

1

r 2 .

~B31!

The momentum integrals are evaluated in Eqs.~C5! and
~C6!. Keeping all terms that contribute through ordere0, we
get the result~B21!. The sum integral~B22! can be evaluated
in the same way:
08501
is
er

s

n

er

XPQ

q2

P2Q2r 4 5
2

~4p!2F1

e
22 log 2Gm2eE

p

n~p!

p
p22e

1E
pq

n~p!n~q!

pq

q2

r 4 . ~B32!

The sum integral~B24! can be reduced to a linear combin
tion of Eqs.~B21! and~B22! by expressing the numerator i
the form P•Q5P0Q01(r 22p22q2)/2 and noting that the
P0Q0 term vanishes upon summing overP0 or Q0.

The sum integral~B23! is a little more difficult. After
applying the formula~B27! and using the delta functions t
integrate overp0 , q0, andr 0, it can be reduced to

XPQ

q2

P2Q2r 2R2

5E
p

n~p!

p E
Q

1

Q2R2S p2

r 2 1
q2

r 2 1
q2

p2D U
P052 ip

1E
pq

n~p!n~q!

pq S p2

r 2 1
p2

q2 1
r 2

q2D r 22p22q2

D~p,q,r !
, ~B33!

whereD(p,q,r ) is the triangle function that is negative whe
p, q, andr are the lengths of three sides of a triangle:

D~p,q,r !5p41q41r 422~p2q21q2r 21r 2p2!. ~B34!

After using Eqs.~C104!–~C106! to integrate overQ, the first
term on the right-hand side of Eq.~B33! is evaluated using
Eq. ~C5!. The two-loop thermal integrals on the right-han
side of Eq.~B33! are given in Eqs.~C8!–~C11!. Adding to-
gether all the terms, we get the final result~B23!.

4. Two-loop HTL sum integrals

The two-loop sum integrals involving the HTL functio
TP defined in Eq.~A51! are

XPQ

1

P2Q2r 2TR5
T2

~4p!2 S m

4pTD 4eS 2
1

48D
3F 1

e21S 2212 log 214
z8~21!

z~21! D
3

1

e
219.83G , ~B35!

XPQ

q2

P2Q2r 4TR5
T2

~4p!2 S m

4pTD 4eS 2
1

576D
3F 1

e21S 26

3
2

24

p2 292 log 2

14
z8~21!

z~21! D 1

e
2477.7G , ~B36!
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XPQ

P•Q

P2Q2r 4TR5
T2

~4p!2 S m

4pTD 4eS 2
1

96D
3F 1

e21S 8

p214log 2

14
z8~21!

z~21! D 1

e
159.66G . ~B37!

To calculate the sum integral~B35!, we begin by using the
representation~A53! of the functionTR :
08501
XPQ

1

P2Q2r 2TR5XPQ

1

P2Q2r 2

2XPQ

1

P2Q2K c2

R0
21r 2c2L

c

.

~B38!

The first sum integral on the right-hand side is given by E
~B21!. To evaluate the second sum integral, we apply
sum integral formula~B27!
um
XPQ

1

P2Q2~R0
21r 2c2!

5E
p

n~p!

p S 2ReE
Q

1

Q2~R0
21r 2c2!U

P052 ip1«

1c2312eE
Q

1

Q2R2U
P→~2 ip,p/c!

D
1E

pq

n~p!n~q!

pq S Re
r 2c22p22q2

D~p1 i«,q,rc !
12c2312e Re

r c
22p22q2

D~p1 i«,q,r c!
D , ~B39!

wherer c5up1q/cu. In the terms on the right-hand side with a single thermal integral, the appropriate averages overc of the
integrals overQ are given in Eqs.~C109! and ~C102!,

K c2S 2ReE
Q

1

Q2~R0
21r 2c2!U

P052 ip1«

1c2312eE
Q

1

Q2R2 U
P→(2 ip,p/c)

D L
c

5
1

~4p!2 m2ep22eF 1

4e2 1S 42
7

2
log 2D1

e
1162

13p2

16
28 log 21

17

2
log22G . ~B40!

The subsequent integral overp is a special case of Eq.~C5!:

E
p
n~p!p2122e528e

~1!24e~
1
2 !2e

~1!22e~
3
2 !2e

z~2114e!

z~21!
~egm2!e~4pT!24e

T2

12
, ~B41!

where (a)b5G(a1b)/G(a) is Pochhammer’s symbol. Combining this with Eq.~B40!, we obtain

E
p

n~p!

p S 2 ReE
Q

1

Q2K c2

R0
21r 2c2L

c
U

P052 ip1«

1K c2112eE
Q

1

Q2R2 U
P→(2 ip,p/c)

L
c
D

5
T2

~4p!2 S m

4pTD 4e 1

48F 1

e21S 18212 log 214
z8~21!

z~21! D1

e
1173.30233G . ~B42!

For the two terms in Eq.~B39! with a double thermal integral, the averages weighted byc2 are given in Eqs.~C12! and Eq.
~C15!. Adding them to Eq.~B42!, the final result is

XPQ

1

P2Q2K c2

R0
21r 2c2L

c

5
T2

~4p!2 S m

4pTD 4e 1

48F 1

e21S 6212 log 214
z8~21!

z~21! D1

e
118.66G . ~B43!

Inserting this into Eq.~B38!, we obtain the final result Eq.~B35!.
The sum integral~B36! is evaluated in a similar way to Eq.~B35!. Using the representation~A53! for TR , we get

XPQ

q2

P2Q2r 4TR5XPQ

q2

P2Q2r 42XPQ

q2

P2Q2r 2 K c2

R0
21r 2c2L

c

. ~B44!

The first sum integral on the right-hand side is given by Eq.~B22!. To evaluate the second sum integral, we apply the s
integral formula~B27!:
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XPQ

q2

P2Q2r 2~R0
21r 2c2!

5E
p

n~p!

p S ReE
Q

p21q2

Q2r 2~R0
21r 2c2!U

P052 ip1«

1
1

p2 c2112eE
Q

q2

Q2R2U
P→(2 ip,p/c)

D
1E

pq

n~p!n~q!

pq S q2

r 2 Re
r 2c22p22q2

D~p1 i«,q,rc !
1c2112e

p21r c
2

q2 Re
r c

22p22q2

D~p1 i«,q,r c!
D . ~B45!

In the terms on the right-hand side with a single thermal integral, the weighted averages overc of the integrals overQ are
given in Eqs.~C112!, ~C113!, and~C108!:

K c2S ReE
Q

p21q2

Q2r 2~R0
21r 2c2!

U
P052 ip1«

1
1

p2 c2112eE
Q

q2

Q2R2U
P→(2 ip,p/c)

D L
c

5
1

~4p!2 m2ep22eF 1

48e2 1S 35

36
2

31

24
log 2D1

e
1

313

108
2

247p2

576
2

17

18
log 21

65

24
log22G . ~B46!

After using Eq.~B41! to evaluate the thermal integral, we obtain

E
p

n~p!

p S ReE
Q

p21q2

Q2r 2 K c2

R0
21r 2c2L

c
U

P052 ip1«

1
1

p2 K c112eE
Q

q2

Q2R2 U
P→(2 ip,p/c)

L
c
D

5
T2

~4p!2 S m

4pTD 4e 1

576F 1

e2 1S 146

3
260 log 214

z8~21!

z~21! D1

e
184.72308G . ~B47!

For the two terms in Eq.~B45! with a double thermal integral, the averages weighted byc2 are given in~C14!, ~C17!, and
~C18!. Adding them to Eq.~B47!, the final result is

XPQ

q2

P2Q2r 2K c2

R0
21r 2c2L

c

5
T2

~4p!2 S m

4pTD 4e 1

576F 1

e21S 314

3
2

24

p2 292 log 214
z8~21!

z~21! D 1

e
1270.2G . ~B48!

Inserting this into Eq.~B44!, we obtain the final result~B36!.
To evaluate Eq.~B37!, we use the expression~A53! for TR and the identityP•Q5(R22P22Q2)/2 to write it in the form

XPQ

P•Q

P2Q2r 4TR5XPQ

P•Q

P2Q2r 42XP

1

P2XR

1

r 4TR2
1

2
^c2&cXPQ

1

P2Q2r 2 2
1

2XPQ

1

P2Q2K c2~12c2!

R0
21r 2c2 L

c

.

~B49!

The sum integrals in the first three terms on the right-hand side of Eq.~B49! are given in Eq.~B3!, ~B12!, ~B21!, and~B24!.
The last sum integral before the average weighted byc is given in Eq.~B38!. The average weighted byc2 is given in Eq.
~B43!. The average weighted byc4 can be computed in the same way. In the integrand of the single thermal integra
weighted averages overc of the integrals overQ are given in Eqs.~C111! and ~C103!:

K c4S 2ReE
Q

1

Q2~R0
21r 2c2!

U
P052 ip1«

1c2312eE
Q

1

Q2R2U
P→(2 ip,p/c)

D L
c

5
1

~4p!2 m2ep22eF S 23

6
24 log 2D 1

e
1

104

9
2p223 log 218 log22G . ~B50!

After using Eq.~B41! to evaluate the thermal integral, we obtain
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E
p

n~p!

p S 2ReE
Q

1

Q2K c4

R0
21r 2c2L

c
U

P052 ip1«

1K c112eE
Q

1

Q2R2 U
P→(2 ip,p/c)

L
c
D

5
T2

~4p!2 S m

4pTD 4eF S 23

72
2

1

3
log 2D1

e
11.28872G . ~B51!

For the two terms with a double thermal integral, the averages weighted byc4 are given in~C13! and~C16!. Adding them to
Eq. ~B51!, we obtain

XPQ

1

P2Q2K c4

R0
21r 2c2L

c

5
T2

~4p!2 S m

4pTD 4eF S 17

72
2

1

6p2 2
1

3
log 2D 1

e
20.1917G . ~B52!
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Inserting this into Eq.~B49! along with Eq.~B43!, we get the
final result~B37!.

APPENDIX C: INTEGRALS

Dimensional regularization can be used to regularize b
the ultraviolet divergences and infrared divergences in th
dimensional integrals over momenta. The spatial dimens
is generalized tod5322e dimensions. Integrals are evalu
ated at a value ofd for which they converge and then an
lytically continued tod53. We use the integration measu

E
p
[S egm2

4p D e E d322ep

~2p!322e
. ~C1!

1. Three-dimensional integrals

We require several integrals that do not involve the Bo
Einstein distribution function. The momentum scale in the
integrals is set by the mass parametermD . The one-loop
integrals are

E
p
log~p21m2!52

m3

6p S m

2mD 2eF11
8

3
eG , ~C2!

E
p

1

p21m252
m

4p S m

2mD 2e

@112e#.

~C3!

We also require a two-loop integral:

E
pq

1

p2~q21m2!~r 21m2!

5
1

~4p!2 S m

2mD 4e 1

4 F1

e
12G . ~C4!
08501
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The errors in Eqs.~C2!–~C4! are all one order higher ine
than the smallest term shown.

2. Thermal integrals

The thermal integrals involve the Bose-Einstein distrib
tion n(p)51/(ebp21). The one-loop integrals can all b
obtained from the general formula

E
p

n~p!

p
p2a5

z~212a22e!

4p2

G~212a22e!G~ 1
2 !

G~ 3
2 2e!

3~egm2!eT212a22e. ~C5!

The simple two-loop thermal integrals that we need are

E
pq

n~p!n~q!

pq

1

r 25
T2

~4p!2 S m

4pTD 4eS 2
1

4D
3F1

e
1

14

3
14 log 214

z8~21!

z~21! G ,
~C6!

E
pq

n~p!n~q!

pq

p2

r 45
T2

~4p!2 S m

4pTD 4e

3F1

9
1

1

3
g2

1

3

z8~21!

z~21!
24.855eG .

~C7!

We also need some more complicated two-loop thermal
tegrals that involve the triangle function defined in E
~B34!:
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pq

n~p!n~q!

pq
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q2D~p,q,r !
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T2

~4p!2 S m

4pTD 4e 7

48F 1

e2 1S 22

7
12g12
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z~21!
2

z~3!

35 D 1

e
140.3896G , ~C8!
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pq
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~4p!2 S m

4pTD 4e 1

24F 1

e212S 11g1
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z~21! G , ~C9!
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~4p!2 S m

4pTD 4eS 2
z~3!

240D F1

e
1212

z8~23!
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12

z8~3!

z~3! G , ~C10!

E
pq

n~p!n~q!

pq
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p21q2

D~p,q,r !
5

T2

~4p!2 S m

4pTD 4e 1

48F 1

e21S 14

3
110g26

z8~21!

z~21! D1

e
286.46G . ~C11!

The most difficult thermal integrals to evaluate involve both the triangle function and the HTL average defined in Eq.~A54!.
There are two sets of these integrals. The first set is

E
pq

n~p!n~q!

pq
ReK c2

r 2c22p22q2

D~p1 i«,q,rc !L
c

5
T2

~4p!2 @0.138727#, ~C12!

E
pq

n~p!n~q!

pq
ReK c4

r 2c22p22q2

D~p1 i«,q,rc !L
c

5
T2

~4p!2 S m

4pTD 4eS 2
1

6p2D F1

e
16.8343G , ~C13!

E
pq

n~p!n~q!

pq

q2

r 2ReK c2
r 2c22p22q2

D~p1 i«,q,rc !L
c

5
T2

~4p!2 S m

4pTD 4e p221

24p2 F1

e
115.3782G . ~C14!

The second set of these integrals involve the variabler c5up1q/cu:

E
pq

n~p!n~q!

pq
ReK c2112e

r c
22p22q2

D~p1 i«,q,r c!
L
c

5
T2

~4p!2 S m

4pTD 4eS 2
1

8D F1

e
113.442G , ~C15!

E
pq

n~p!n~q!

pq
ReK c112e

r c
22p22q2

D~p1 i«,q,r c!
L
c

5
T2

~4p!2 S m

4pTD 4eS 2
1

24D F1

e
116.381G , ~C16!

E
pq

n~p!n~q!

pq

p2

q2ReK c112e
r c

22p22q2

D~p1 i«,q,r c!
L
c

5
T2

~4p!2 S m

4pTD 4e 1

48F1

e
16.1227G , ~C17!

E
pq

n~p!n~q!

pq
ReK c112e

r c
2

q2

r c
22p22q2

D~p1 i«,q,r c!
L
c

5
T2

~4p!2 S m

4pTD 4e 528 log 2

144 F1

e
1100.73G . ~C18!
E
e

u

The errors in Eq.~C6!–~C18! are all one order higher ine
than the smallest term shown. The numerical constant in
~C8! can be expressed analytically in terms of the transc
dental numbers appearing in Eqs.~C9! and~C10!. We do not
know how to calculate the numerical constants in Eqs.~C7!,
~C11!, ~C12!–~C18! analytically.

The simplest way to evaluate integrals like~C6! and~C7!
whose integrands factor into separate functions ofp, q, andr
is to Fourier transform to coordinate space where they red
to an integral over a single coordinateR:
08501
q.
n-

ce

E
pq

f ~p!g~q!h~r !5E
R

f̃ ~R!g̃~R!h̃~R!. ~C19!

The Fourier transform is

f̃ ~R!5E
p
f ~p!eip•R, ~C20!

and the dimensionally regularized coordinate integral is
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E
R

5S egm2

4p D 2eE d322eR. ~C21!

The Fourier transforms we need are

E
p
p2aeip•R5

1

8p

G~ 3
2 1a2e!

G~ 1
2 !G~2a!

~egm2!eS 2

RD 312a22e

,

~C22!

E
p

n~p!

p
p2aeip•R5

1

4p

1

G~ 1
2 !

~egm2!eS 2

RD 1/22e

3E
0

`

dpp2a11/22en~p!J1/22e~pR!.

~C23!

If a is an even integer, the Fourier transform~C23! is par-
ticularly simple in the limitd→3:

E
p

n~p!

p
eip•R→ T

4pRS cothx2
1

xD , ~C24!

E
p

n~p!

p
p2eip•R→2

pT3

2R S coth3x2cothx2
1

x3D ,

~C25!

wherex5pRT. We can use these simple expressions onl
the integral over the coordinateR in Eq. ~C19! converges for
d53. Otherwise, we must first make subtractions on
integrand to make the integral convergent.

The integral~C7! can be evaluated directly by applyin
the Fourier transform formula~C19! in the limit e→0. The
integral ~C6!, however, requires subtractions. It can be wr
ten

E
pq

n~p!n~q!

pq

1

r 2 5E
pq

n~p!

p S n~q!

q
2

T

q2D 1

r 2

1TE
p

n~p!

p E
q

1

q2r 2 . ~C26!

In the second term on the right-hand side, the integral oveq
is proportional top2122e, so the integral overp can be
evaluated using Eq.~C5!. This first term on the right-hand
side is convergent ford53 so it can be evaluated easi
using the Fourier transform formula~C19!. The integral over
R reduces to a sum of integrals of the form*0

`dxxmcothnx.
Although the sum of the integrals converges, each of
individual integrals diverges either asx→0 or asx→`. A
convenient way to evaluate these integrals is to use the s
egy in Appendix C of Ref.@1#. The integrals are regularize
by using the substitution

E
0

`

dxxmcothnx→ G~11d!

2d E
0

`

dxxm1dcothnx. ~C27!
08501
if

e

-

e

at-

The divergences appear as poles ind that cancel upon adding
a convergent combination of these integrals.

The integrals~C8!–~C10! can be evaluated by first ave
aging over angles. The triangle function can be expresse

D~p,q,r !524p2q2~12cos2u!, ~C28!

where u is the angle betweenp and q. For example, the
angle average for Eq.~C8! is

K r 4

D~p,q,r !L
p̂•q̂

52
w~e!

8 E
21

11

dx~12x2!212e

3
~p21q212pqx!2

p2q2 . ~C29!

After integrating overx and inserting the result into Eq.~C8!,
the integral reduces to

E
pq

n~p!n~q!

pq

r 4

q2D~p,q,r !

5E
pq

n~p!n~q!

pq S 122e

8e

p2

q41
726e

8e

1

q2D .

~C30!

The integrals overp andq factor into separate integrals tha
can be evaluated using Eq.~C5!. After averaging over
angles, the integrals~C9! and ~C10! reduce to

E
pq

n~p!n~q!

pq

r 2

D~p,q,r !
5

122e

4e E
p

n~p!

p E
q

n~q!

q

1

q2 ,

~C31!

E
pq

n~p!n~q!

pq

p4

q2D~p,q,r !
5

122e

8e E
p

n~p!

p
p2E

q

n~q!

q

1

q4 .

~C32!

The integral~C11! can be evaluated by using the remarkab
identity

K p21q2

r 2D~p,q,r !L
p̂•q̂

5
1

2e K 1

r 4L
p̂•q̂

1
122e

8e

1

p2q2 . ~C33!

The identity can be proved by expressing the angular a
ages in terms of integrals over the cosine of the angle
tweenp andq as in Eq.~C29!, and then integrating by parts
Inserting the identity~C33! into ~C11!, the integral reduces
to

E
pq

n~p!n~q!

pq

p2~p21q2!

r 2D~p,q,r !

5
1

2eEpq

n~p!n~q!

pq

p2

r 41
122e

8e E
p

n~p!

p E
q

n~q!

q

1

q2 .

~C34!
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The integral in the first term on the right-hand side is giv
in Eq. ~C7!, while the second term can be evaluated us
Eq. ~C5!.

To evaluate the weighted averages overc of the thermal
integrals in Eq.~C12!–~C14!, we first isolate the divergen
parts, which come from the regionp2q→0. We write the
product of thermal functions in the form

n~p!n~q!5S n~p!n~q!2
s2n2~s!

pq D1
s2n2~s!

pq
, ~C35!

wheres5(p1q)/2. In the difference term, the HTL averag
over c and the angular average overx5p̂•q̂ can be calcu-
lated in three dimensions:

ReK c2
r 2c22p22q2

D~p1 i«,q,rc !L
c,x

5
1

4pq
log

p1q

up2qu
2

1

2~p22q2!
log~p/q!, ~C36!

ReK c4
r 2c22p22q2

D~p1 i«,q,rc !L
c,x

5
2~p21q2!

3~p22q2!21
1

12pq
log

p1q

up2qu

2
~3p21q2!~p213q2!

6~p22q2!3 log~p/q!, ~C37!

ReK c2
q2

r 2

r 2c22p22q2

D~p1 i«,q,rc !L
c,x

5
q2

3~p22q2!2S 22
1

2
log

up22q2u
pq

2
p21q2

4pq
log

p1q

up2qu

2
p21q2

p22q2log~p/q! D . ~C38!

The remaining two-dimensional integral overp and q can
then be evaluated numerically:

E
pq

S n~p!n~q!

pq
2

s2n2~s!

p2q2 DReK c2
r 2c22p22q2

D~p1 i«,q,rc !L
c

5~5.29231023!
T2

~4p!2 , ~C39!

E
pq

S n~p!n~q!

pq
2

s2n2~s!

p2q2 DReK c4
r 2c22p22q2

D~p1 i«,q,rc !L
c

5~3.29231023!
T2

~4p!2 , ~C40!
08501
gE
pq

S n~p!n~q!

pq
2

s2n2~s!

p2q2 D q2

r 2ReK c2
r 2c22p22q2

D~p1 i«,q,rc !L
c

5~2.82231023!
T2

~4p!2 . ~C41!

The integrals involving then2(s) term in Eq.~C35! are di-
vergent, so the HTL average overc and the angular averag
over x5p̂•q̂ must be calculated in 322e dimensions. The
first step in the calculation of then2(s) term is to change
variables fromp and q to s5(p1q)/2, b54pq/(p1q)2,
andx5p̂•q̂:

E
pq

s2n2~s!

p2q2 f ~p,q,r !5
64

~4p!4F ~egm2!e
G~ 3

2 !

G~ 3
2 2e!

G 2

3E
0

`

dss124en2~s!s2E
0

1

dbb22e~12b!21/2

3^ f ~s1 ,s2 ,r !1 f ~s2 ,s1 ,r !&x , ~C42!

where s65s@16A12b# and r 5s@422b(12x)#1/2. The
two terms inside the average overx come from the regions
p.q and p,q, respectively. The integral overs is easily
evaluated:

E
0

`

dss124en2~s!5G~224e!

3@z~124e!2z~224e!#T224e.

~C43!

It remains only to evaluate the averages overc andx and the
integral overb.

The first step in the calculation of then2(s) term of Eqs.
~C12! is to decompose the integrand into two terms:

r 2c22p22q2

D~p1 i«,q,rc !
52

1

2 (
6

1

~p1 i«6q!22r 2c2 . ~C44!

The weighted averages overc give hypergeometric func-
tions:

K c2

~p1 i«6q!22r 2c2L
c

5
1

322e

1

~p1 i«6q!2FS 3
2 ,1

5
2 2e

U r 2

~p1 i«6q!2D ,

~C45!
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K c4

~p1 i«6q!22r 2c2L
c

5
3

~322e!~522e!

1

~p1 i«6q!2

3FS 5
2 ,1

7
2 2e

U r 2

~p1 i«6q!2D . ~C46!

In the1q case of Eq.~C45!, the i« prescription is unnec-
essary. The argument of the hypergeometric function can
written 12by, wherey5(12x)/2. After using a transfor-
mation formula to change the argument toby, we can evalu-
ate the angular average overx to obtain hypergeometric
functions with argumentb. For example, the average overx
of ~C45! is

K FS 3
2 ,1

5
2 2e

U r 2

~p1q!2D L
x

52
322e

2e FFS 12e, 3
2 ,1

222e,11e
Ub D

2
~1!e~1!22e~2!22e~

3
2 !2e

~1!2e~2!23e
b2eFS 122e, 3

2 2e

223e
Ub D G ,

~C47!

where (a)b is Pochhammer’s symbol which is defined in E
~C127!. Integrating overb, we obtain hypergeometric func
tions with argument 1:
08501
be

.

s2E
0

1

dbb22e~12b!21/2K c2

~p1q!22r 2c2L
c,x

52
1

4e

~1!e~2!22e

~1!2e
F ~1!22e~1!2e

~ 3
2 !22e~2!22e~1!e

3FS 122e,12e, 3
2 ,1

3
2 22e,222e,11e

U1D 2
~1!23e~1!22e~

3
2 !2e

~ 3
2 !23e~2!23e

3FS 123e,122e, 3
2 2e

3
2 23e,223e

U1D G . ~C48!

The integral weighted byc4 can be evaluated in a simila
way. Expanding in powers ofe, we obtain

s2E
0

1

dbb22e~12b!21/2K c2

~p1q!22r 2c2L
c,x

5
p2

24
~113.54518e!, ~C49!

s2E
0

1

dbb22e~12b!21/2K c4

~p1q!22r 2c2L
c,x

5
p2

72
~1110.8408e!. ~C50!

In the 2q case of Eq.~C45!, the argument of the hyper
geometric functions can be written (12by)/(12b6 i«),
wherey5(12x)/2 and the prescriptions1 i« and2 i« cor-
respond to the regionsp.q and p,q, respectively. These
regions correspond to the two terms inside the average ovx
in Eq. ~C42!. In order to obtain an analytic result in terms
hypergeometric functions, it is necessary to integrate oveb
before averaging overx. The integrals overb can be evalu-
ated by first using a transformation formula to change
argument of the hypergeometric function to2b(12y)/(1
2b) and then using the integration formula~C134! to obtain
hypergeometric functions with argumentsy or 12y:
E
0

1

dbb22e~12b!23/2FS 3
2 ,1

5
2 2e

U 12by

12b1 i« D 5
322e

e

~1!22e

~ 1
2 !22e

FS 122e,1

11e
U12yD

2
322e

e

~1!e

~ 1
2 !e

~12y!21/2FS 1
2 22e,1

1
2 1e

U12yD
1

3

2e~123e!
eipe~1!e~

5
2 !2e~12y!2eFS 123e, 3

2 2e

223e
UyD . ~C51!

After averaging overx, we obtain hypergeometric functions with argument 1:
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s2E
0

1

dbb22e~12b!21/2K c2

~p1 i«2q!22r 2c2L
c,x

5
1

4e

~1!22e

~ 1
2 !22e

FS 12e,122e,1

222e,11e
U1D 2

1

2e

~2!22e~1!e~
1
2 !2e

~1!2e~
1
2 !e~

3
2 !22e

FS 1
2 2e, 1

2 22e,1

3
2 22e, 1

2 1e
U1D

1
1
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3
2 !2e

~1!2e~2!23e
FS 12e,123e, 3

2 2e

223e,223e
U1D . ~C52!
r
,

qs.

al
The integral weighted byc4 can be evaluated in a simila
way. Expanding in powers ofe and then taking the real parts
we obtain

Res2E
0

1

dbb22e~12b!21/2K c2

~p1 i«2q!22r 2c2L
c,x

52
p2

24
~110.34275e!, ~C53!

Res2E
0

1

dbb22e~12b!21/2K c4

~p1 i«2q!22r 2c2L
c,x

52
121p2

72
~111.10518e!. ~C54!

Inserting the sum of the integrals~C49! and ~C53! into the
thermal integral ~C42! and similarly for the integrals
weighted byc4, we obtain
08501
E
pq

s2n2~s!

p2q2 ReK c2
r 2c22p22q2

D~p1 i«,q,rc !L
c

5
T2

~4p!2 @0.133434#,

~C55!

E
pq

s2n2~s!

p2q2 ReK c4
r 2c22p22q2

D~p1 i«,q,rc !L
c

5
T2

~4p!2 S m

4pTD 4eS 2
1

6p2D F1

e
17.0292G .

~C56!

Adding these integrals to the subtracted integrals in E
~C39! and ~C40!, we obtain the final results in Eqs.~C12!
and ~C13!.

To evaluate the subtraction in the integral~C41!, we use
the identity q25(r 21q22p222p•q)/2. The integral with
q22p2 in the numerator is purely imaginary. Thus the re
part of the integral can be expressed as

E
pq

s2n2~s!

p2q2

q2

r 2ReK c2
r 2c22p22q2

D~p1 i«,q,rc !L
c

5E
pq

s2n2~s!

p2q2 S 1

2
2

p•q

r 2 D ReK c2
r 2c22p22q2

D~p1 i«,q,rc !L
c

.

~C57!

It remains only to evaluate the intgral withp•q in the nu-
merator. We begin by using the identity
K c2
p•q

r 2

r 2c22p22q2

D~p1 i«,q,rc !L
c,x

52
p21q2

~p22q21 i«!2 ^c2&cK p•q

r 2 L
x

2
1

2 (
6

1

~p1 i«6q!2K p•qc4

~p1 i«6q!22r 2c2L
c,x

.

~C58!

In the first term on the right-hand side, the average overc is a simple multiplicative factor:̂c2&c51/(322e). The average
over x gives hypergeometric functions of argumentb:

K p•q

r 2 L
x

5
1

8
bFFS 12e,1

322e
Ub D 2FS 22e,1

322e
Ub D G . ~C59!

The integral overb gives hypergeometric functions of argument 1:
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s2E
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1

dbb22e~12b!21/2
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~p22q2!2K p•q
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~ 5
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5
2 22e

U1D 2FS 22e,1

5
2 22e

U1D G . ~C60!

Expanding in powers ofe, we obtain

s2E
0

1

dbb22e~12b!21/2
p21q2

~p22q2!2K p•q

r 2 L
x

52
p2

16
@121.02148e#. ~C61!

In the second term of Eq.~C58!, the average overc is given by Eq.~C46!. In the 1q term, the average overx5p̂•q̂ is

K xFS 1,5
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7
2 2e

U r 2

~p1q!2D L
x

5
522e

4e FFS 22e,1,52
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b2eFFS 122e, 5

2 2e

323e
Ub D 2
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FS 222e, 5

2 2e
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Ub D G .

~C62!

Integrating overb, we obtain hypergeometric functions of argument 1:

E
0

1

dbb22e~12b!21/2K p•qc4
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c,x

5
1

4e~322e!
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5
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5
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5
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2
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5

2
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Expanding in powers ofe, we obtain

E
0

1

dbb22e~12b!21/2K p•qc4

~p1q!22r 2c2L
c,x

5
p226

18
~120.0728428e!. ~C64!

In the 2q term in the integral of the second term of Eq.~C58!, we integrate overb before averaging overx. The integral
over b can be expressed in terms of hypergeometric functions of type2F1:

s2E
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1

dbb22e~12b!21/2
4p•q

~p2q!2 K c4

~p1 i«2q!22r 2c2L
c
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1
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3
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2 2e
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UyD . ~C65!
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The phase in the last term ise2 ipe for the f (s1 ,s2 ,r ) term of Eq.~C42!, which comes from thep.q region of the integral,
andeipe for the f (s2 ,s1 ,r ) term, which comes from thep,q region. The average overx5p̂•q̂ can be expressed in terms o
hypergeometric functions of type3F2 evaluated at 1:
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2 !2e

~1!2e~2 1
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3
2 !22e
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2 2e, 1

2 22e,1
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2
22e,2 1

2 1e
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112e
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2 2e, 1
2 22e,1
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16~223e!e
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~C66!
f

t
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The expansion of the real part of the integral in powers oe
is

s2E
0

1

dbb22e~12b!21/2

3ReK 4p•q

~p2q!2

c4

~p1 i«2q!22r 2c2L
c,x

5
92p2

18
@120.796579e#. ~C67!

Inserting Eqs.~C61!, ~C64!, and~C67! into the thermal inte-
gral of Eq.~C58!, we obtain

E
pq

s2n2~s!

p2q2

p•q

r 2
ReK c2

r 2c22p22q2

D~p1 i«,q,rc !L
c

5
T2

~4p!2 S m

4pTD 4e 12p2

24p2 F1

e
113.52098G .

~C68!

Inserting this along with Eq.~C55! into Eq.~C57!, we obtain

E
pq

s2n2~s!

p2r 2 ReK c2
r 2c22p22q2

D~p1 i«,q,rc !L
c

5
T2

~4p!2 S m

4pTD 4e p221

24p2 F1

e
115.302796G .

~C69!
08501
Adding this integral to the subtracted integral in Eq.~C41!,
we obtain the final result in Eq.~C14!.

To evaluate the weighted averages overc of the thermal
integrals in Eqs.~C15!–~C18!, we first isolate the divergen
parts, which arise from the regionq→0. For the integrals
~C15! and ~C16!, a single subtraction of the thermal distr
bution n(q) suffices to remove the divergences:

n~q!5S n~q!2
T

qD1
T

q
. ~C70!

For the integral~C17!, a second subtraction is also needed
remove the divergences:

n~q!5S n~q!2
T

q
1

1

2D1
T

q
2

1

2
. ~C71!

In the last integral~C18!, it is convenient to first use the
identity r c

25p212p•q/c1q2/c2 to expand it into three inte-
grals, two of which are Eqs.~C15! and ~C17!. In the third
integral, the subtraction~C71! is needed to remove the dive
gences. For the convergent terms, the HTL average ovc

and the angular average overx5p̂•q̂ can be calculated in
three dimensions:
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ReK c21
r c

22p22q2

D~p1 i«,q,r c!
L
c,x

5
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4p22q2log
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q
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4pq S p1q
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p
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p2q
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up2qu
p D , ~C72!

ReK c
r c

22p22q2
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L
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5
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q2~4p213q2!
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p
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p
, ~C73!
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5
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6pq
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q
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4p

1
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12p2q~2p2q!2 log
up2qu

4p
. ~C74!

The remaining two-dimensional integral overp andq can then be evaluated numerically:

E
pq
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q
2

T

q2DReK c21
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22p22q2
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L
c

5~25.11331021!
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~4p!2 , ~C75!

E
pq
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q
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L
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E
pq
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q
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q2ReK c
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L
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~4p!2 , ~C77!

E
pq
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p S n~q!

q
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T
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1

2qDp•q

q2
ReK r c

22p22q2

D~p1 i«,q,r c!
L
c

5~23.72931023!
T2

~4p!2 . ~C78!

The integrals involving the terms subtracted fromn(q) in Eqs.~C70! and~C71! are divergent, so the HTL average overc and
the angular average overx5p̂•q̂ must be calculated in 322e dimensions. The first step in the calculation of the subtrac
terms is to replace the average overc of the integral overq by an average overc andx:

E
q

1

qnK f ~c!
r c

22p22q2

D~p1 i«,q,r c!
L
c

5~21!n21
1

8p2e

~1!2e~1!22e

~ 3
2 !2e

~egm2!e~2p!12n22e

3K f ~c!c32n22e~12c2!n2212e(
6

~x7c2 i«!12n22eL
c,x

. ~C79!

The integral overp can now be evaluated easily using either Eq.~B41! or

E
p
n~p!p2222e5

1

2p2

~1!24e

~ 3
2 !2e

z~124e!~egm2!eT124e. ~C80!

It remains only to calculate the averages overc andx. The averages overx give 2F1 hypergeometric functions with argumen
@(17c)/22 i«#21:

^~x7c2 i«!2n22e&x5~17c!2n22eFS 12e,n12e
222e U@~17c!/22 i«#21D , ~C81!

^x~x7c2 i«!2n22e&x5
1

2
~17c!2n22eFFS 12e,n12e

322e U@~17c!/22 i«#21D2FS 22e,n12e
322e U@~17c!/22 i«#21D G . ~C82!
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Using a transformation formula, the arguments can be changed to (17c)/22 i«. If the expressions~C81! and ~C82! are
averaged overc with a weight that is an even function ofc, the1 and2 terms combine to give3F2 hypergeometric functions
with argument 1. For example,

K ~12c2!2e(
6

~x7c2 i«!2122eL
c,x

5
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3e
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3
2 !2e
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1ei2pe
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~1!24e~2!2e
FS 11e,112e,4e

212e,113e U1D J . ~C83!

Upon expanding the hypergeometric functions in powers ofe and taking the real parts, we obtain

ReK ~12c2!2e(
6

~x7c2 i«!2122eL
c,x

5p2@2e12~12 log 2!e2#, ~C84!
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2

9
~223 log 2!e2G , ~C85!
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2

3
e1

2

9
~126 log 2!e2G . ~C87!

If the expressions~C81! and~C82! are averaged overc with a weight that is an odd function ofc, they reduce to integrals o
2F1 hypergeometric functions with argumenty. For example,

K c~12c2!112e(
6

~x7c2 i«!2222eL
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5
~2!22e~

3
2 !2e

~1!2e~1!2e
H 22e2 ipe

~1!3e

~2!2e
E

0

1

dy y22e~12y!11eu122yuFS 12e,e
23e UyD

2
8

3~113e!
e2ipe

~1!23e

~1!24e
E

0

1

dy y11e~12y!11eu122yuFS 212e,114e
213e UyD J .

~C88!
n

g

ac-
The expansions of the integrals of the hypergeometric fu
tions in powers ofe are given in Eqs.~C147! and ~C148!.
The resulting expansions for the real parts of the avera
over c andx are

ReK c~12c2!112e(
6

~x7c2 i«!2222eL
c,x

5211
14~12 log 2!

3
e, ~C89!
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18D e.

~C90!
08501
c-

es

Multiplying each of these expansions by the appropriate f
tors from the integral overq in Eqs. ~C79! and the integral
over p in Eqs.~C80! or ~B41!, we obtain
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Adding these integrals to the subtracted integrals in E
~C75!–~C77!, we obtain the final results in Eqs.~C15!–
~C17!. Combining~C78! with Eqs.~C94! and~C96!, we ob-
tain

E
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~C97!

The final integral~C18! is obtained from Eqs.~C15!, ~C17!,
and ~C97! by using the identityr c

25p212p•q/c1q2/c2.

3. Four-dimensional integrals

In the sum integral formula~B27!, the second term on th
right-hand side involves an integral over four-dimensio
Euclidean momenta. The integrands are functions of the
tegration variableQ and R52(P1Q). The simplest inte-
grals to evaluate are those whose integrands are indepen
of P0:
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~4p!2 m2ep22e2F1
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08501
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3@11~2222 log 2!e#. ~C100!

Another simple integral that is needed depends only onP2

5P0
21p2:

E
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Q2R25
1

~4p!2 ~egm2!e~P2!2e
1

e
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~2!22e
,
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where (a)b is Pochhammer’s symbol which is defined in E
~C127!. We need the following weighted averages overc of
this function evaluated atP5(2 ip,p/c):

K c2112eE
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L
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5
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e
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The remaining integrals are functions ofP0 that must be
analytically continued to the pointP052 ip1«. Several of
these integrals are straightforward to evaluate:

E
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Q2R2U
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50, ~C104!
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E
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~C106!

We also need a weighted average overc of the integral in Eq.
~C104! evaluated atP5(2 ip,p/c). The integral itself is
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The weighted average is
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The most difficult four-dimensional integrals to evalua
involve an HTL average of an integral with denominat
R0

21r 2c2:
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08501
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The analytic continuation toP052 ip1« is implied in these
integrals and in all the four-dimensional integrals in the
mainder of this section.

We proceed to describe the evaluation of the integr
~C109! and~C111!. The integral overQ0 can be evaluated by
introducing a Feynman parameter to combineQ2 and R0

2

1r 2c2 into a single denominator:

E
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4E0
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dxE
r
@~12x1xc2!r 2

12~12x!r•p1~12x!2p22 i«#23/2,

~C114!

where we have carried out the analytic continuation toP0
52 ip1«. Integrating overr and then over the Feynma
parameter, we get a2F1 hypergeometric function with argu
ment 12c2:
E
Q
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~4p!2 ~egm2!ep22e
~1!e

e
eipe
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223e
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The subsequent weighted averages overc give 3F2 hypergeometric functions with argument 1:
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After expanding in powers ofe, the real part is Eq.~C111!.
The integral~C112! has a factor of 1/r 2 in the integrand. After using Eq.~C114!, it is convenient to use a second Feynm

parameter to combine (12x1xc2)r 2 with the other denominator before integrating overr :
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After integrating overr and theny, we obtain 2F1 hypergeometric functions with argumentsx(12c2). The integral overx
gives a 2F1 hypergeometric function with argument 12c2:
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After averaging overc, we get a hypergeometric function with argument 1:

E
Q

1

Q2r 2K c2

R0
21r 2c2L

c

5
1

~4p!2 ~egm2!ep2222e
~1!e

e H 1

322e

~2 1
2 !2e~1!2e

~ 1
2 !22e

2
1

2
eipe

~2 1
2 !2e~1!22e~2!22e

~ 5
2 !22e~1!23e

FS 122e, 1
2 22e,2e

5
2 22e,23e

U1D J . ~C120!

After expanding in powers ofe, the real part is Eq.~C112!.
To evaluate the integral~C113!, it is convenient to first express it as the sum of three integrals by expanding the fac

q2 in the numerator asq25p212p•r1r 2:
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To evaluate the integral withp•r in the numerator, we first combine the denominators using Feynman parameters as
~C118!. After integrating overr and theny, we obtain2F1 hypergeometric functions with argumentsx(12c2). The integral
over x gives 2F1 hypergeometric functions with arguments 12c2:
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After averaging overc, we get a hypergeometric function with argument 1:
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After expanding in powers ofe, the real part is

ReE
Q
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~4p!2 m2ep22eF211 log 2

3e
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2
2

3
log221

p2
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Combining this with Eqs.~C109! and ~C111!, we obtain the
integral ~C113!.

4. Hypergeometric functions

The generalized hypergeometric function of typepFq is
an analytic function of one variable withp1q parameters. In
our case, the parameters are functions ofe, so the list of
parameters sometimes gets lengthy and the standard not
for these functions becomes cumbersome. We therefore
troduce a more concise notation:

FS a1 ,a2 , . . . ,ap

b1 , . . . ,bq
UzD

[ pFq~a1 ,a2 , . . . ,ap ;b1 , . . . ,bq ;z!.

~C125!

The generalized hypergeometric function has a power se
representation:

FS a1 ,a2 , . . . ,ap

b1 , . . . ,bq
UzD5 (

n50

`
~a1!n~a2!n•••~ap!n

~b1!n•••~bq!nn!
zn,

~C126!

where (a)b is Pochhammer’s symbol:

~a!b5
G~a1b!

G~a!
. ~C127!

The power series converges foruzu,1. For z51, it con-
verges if Res.0, where

s5 (
i 51

p21

b i2(
i 51

p

a i . ~C128!

The hypergeometric function of typep11Fq11 has an inte-
gral representation in terms of the hypergeometric funct
of type pFq :

E
0

1

dt tn21~12t !m21FS a1 ,a2 , . . . ,ap

b1 , . . . ,bq
UtzD

5
G~m!G~n!

G~m1n!
FS a1 ,a2 , . . . ,ap ,n

b1 , . . . ,bq ,m1nUzD . ~C129!

If a hypergeometric function has an upper and lower para
eter that are equal, both parameters can be deleted:
08501
ion
in-

es

n

-

FS a1 ,a2 , . . . ,ap ,n
b1 , . . . ,bq ,n UzD5FS a1 ,a2 , . . . ,ap

b1 , . . . ,bq
UzD .

~C130!

The simplest hypergeometric function is the one of ty
1F0. It can be expressed in an analytic form:

1F0~a; ;z!5~12z!2a. ~C131!

The next simplest hypergeometric functions are those of t
2F1. They satisfy transformation formulas that allow an2F1
with argumentz to be expressed in terms of an2F1 with
argumentz/(z21) or as a sum of two2F1’s with arguments
12z or 1/z or 1/(12z). The hypergeometric functions o
type 2F1 with argumentz51 can be evaluated analyticall
in terms of gamma functions:

FS a1 ,a2

b1
U1D5

G~b1!G~b12a12a2!

G~b12a1!G~b12a2!
. ~C132!

The hypergeometric function of type3F2 with argumentz
51 can be expressed as a3F2 with argumentz51 and
different parameters@30#:

FS a1 ,a2 ,a3

b1 ,b2
U1D5

G~b1!G~b2!G~s!

G~a11s!G~a21s!G~a3!

3FS b12a3 ,b22a3 ,s
a11s,a21s U1D ,

~C133!

wheres5b11b22a12a22a3. If all the parameters of a
3F2 are integers and half-odd integers, this identity can
used to obtain equal numbers of half-odd integers among
upper and lower parameters. If the parameters of a3F2 re-
duce to integers and half-odd integers in the limite→0 , the
use of this identity simplifies the expansion of the hyperg
metric functions in powers ofe .

The most important integration formulas involving2F1
hypergeometric functions is Eq.~C129! with p52 and q
51. Another useful integration formula is

E
0

1

dt tn21~12t !m21FS a1 ,a2

b1
U t

12t
zD

5
G~m!G~n!

G~m1n!
FS a1 ,a2 ,n

b1,12mU2zD
1

G~a11m!G~a21m!G~b1!G~2m!

G~a1!G~a2!G~b11m!
~2z!m

3FS a11m,a21m,n1m
b11m,11m U2zD . ~C134!

This is derived by first inserting the integral representat
for 2F1 in Eq. ~C129! with integration variablet8 and then
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evaluating the integral overt to get a 2F1 with argument 1
1t8z. After using a transformation formula to change t
argument to2t8z, the remaining integrals overt8 are evalu-
ated using~C129! to get 3F2’s with arguments2z.

For the calculation of two-loop thermal integrals invol
ing HTL averages, we require the expansion in powers oe
for hypergeometric functions of typepFp21 with argument 1
and parameters that are linear ine. If the power series rep
resentation~C126! of the hypergeometric function is conve
um
am
ge

b

us

08501
gent atz51 for e50, this can be accomplished simply b
expanding the summand in powers ofe and then evaluating
the sums. If the power series is divergent, we must m
subtractions on the sum before expanding in powers oe.
The convergence properties of the power series atz51 are
determined by the variables defined in Eq.~C128!. If s
.0, the power series converges. Ifs→0 in the limit e
→0, only one subtraction is necessary to make the sum c
vergent:
FS a1 ,a2 , . . . ,ap

b1 , . . . ,bp21
U1D5

G~b1!•••G~bp21!

G~a1!G~a2!•••G~ap!
z~s11!

1 (
n50

` S ~a1!n~a2!n•••~ap!n

~b1!n•••~bq!nn!
2

G~b1!•••G~bp21!

G~a1!G~a2!•••G~ap!
~n11!2s21D . ~C135!

If s→21 in the limit e→0, two subtractions are necessary to make the sum convergent:

FS a1 ,a2 , . . . ,ap

b1 , . . . ,bp21
U1D5

G~b1!•••G~bp21!

G~a1!G~a2!•••G~ap!
@z~s11!1t z~s12!#1 (

n50

` S ~a1!n~a2!n•••~ap!n

~b1!n•••~bq!nn!

2
G~b1!•••G~bp21!

G~a1!G~a2!•••G~ap!
@~n11!2s211t ~n11!2s22# D , ~C136!
wheret is given by

t5(
i 51

p
~a i21!~a i22!

2
2 (

i 51

p21
~b i21!~b i22!

2
.

~C137!

The expansion of apFp21 hypergeometric function in
powers ofe is particularly simple if in the limite→0 all its
parameters are integers or half-odd-integers, with equal n
bers of half-odd-integers among the upper and lower par
eters. If the power series representation for such a hyper
metric function is expanded in powers ofe, the terms in the
summand will be rational functions ofn, possibly multiplied
by factors of the polylogarithm functionc(n1a) or its de-
rivatives. The terms in the sums can often be simplified
using the obvious identity

(
n50

`

@ f ~n!2 f ~n1k!#5 (
i 50

k21

f ~ i !. ~C138!

The sums overn of rational functions ofn can be evaluated
by applying the partial fraction decomposition and then
ing identities such as

(
n50

` S 1

n1a
2

1

n1bD5c~b!2c~a!, ~C139!

(
n50

`
1

~n1a!25c8~a!. ~C140!
-
-

o-

y

-

The sums of polygamma functions ofn11 or n1 1
2 divided

by n11 or n1 1
2 can be evaluated using

(
n50

` S c~n11!

n11
2

log~n11!

n11 D52
1

2
g22

p2

12
2g1 ,

~C141!

(
n50

` S c~n11!

n1 1
2

2
log~n11!

n11 D
52

1

2
~g12 log 2!21

p2

12
2g1 , ~C142!

(
n50

` S c~n1 1
2 !

n11
2

log~n11!

n11
D

52
1

2
g224 log 212 log222

p2

12
2g1 ,

~C143!

(
n50

` S c~n1 1
2 !

n1 1
2

2
log~n11!

n11 D
52

1

2
~g12 log 2!22

p2

4
2g1 , ~C144!
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where g1 is Stieltje’s first gamma constant defined in E
~B10!. The sums of polygamma functions ofn11 or n1 1

2

can be evaluated using

(
n50

` S c~n11!2 log~n11!1
1

2~n11! D
5

1

2
1

1

2
g2

1

2
log~2p!, ~C145!

(
n50

` S c~n1 1
2 !2 log~n11!1

1

n11D
5

1

2
g2 log 22

1

2
log~2p!. ~C146!

We also need the expansions ine of some integrals of2F1
hypergeometric functions ofy that have a factor of
u122yu. For example, the following two integrals ar
needed to obtain Eq.~C89!:

E
0

1

dyy22e~12y!11eu122yuFS 12e,e
23e UyD

5
1

6
1S 2

9
1

4

9
log 2D e, ~C147!
08501
. E
0

1

dy y11e~12y!11eu122yuFS 212e,11e
213e UyD

5
1

4
1S 7

12
1

2

3
log 2D e. ~C148!

These integrals can be evaluated by expressing them in
form

E
0

1

dy yn21~12y!m21u122yuFS a1 ,a2

b1
UyD

5E
0

1

dy yn21~12y!m21~2y21!FS a1 ,a2

b1
UyD

12E
0

1/2

dy yn21~12y!m21~122y!FS a1 ,a2

b1
UyD .

~C149!

The evaluation of the first integral on the right-hand si
gives 3F2 hypergeometric functions with argument 1. Th
integrals from 0 to1

2 can be evaluated by expanding th
power series representation~C126! of the hypergeometric
function in powers ofe. The resulting series can be summ
analytically and then the integral overy can be evaluated.
s,

.
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