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Hard-thermal-loop perturbation theory to two loops
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We calculate the pressure for pure-glue QCD at high temperature to two-loop order using hard-thermal-loop
(HTL) perturbation theory. At this order, all the ultraviolet divergences can be absorbed into renormalizations
of the vacuum energy density and the HTL mass parameter. We determine the HTL mass parameter by a
variational prescription. The resulting predictions for the pressure fail to agree with results from lattice gauge
theory at temperatures for which they are available.
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[. INTRODUCTION bands that correspond to varying the renormalization seale
by a factor of two from the central valye=2=T. As suc-
Relativistic heavy-ion collisions allow the experimental cessive terms in the weak-coupling expansion are added, the
study of hadronic matter at energy densities exceeding thairedictions change wildly and the sensitivity to the renormal-
required to create a quark-gluon plasma. A quantitative unization scale grows. It is clear that a reorganization of the
derstanding of the properties of a quark-gluon plasma is egerturbation series is essential if perturbative calculations are
sential in order to determine whether it has been createdo be of any quantitative use at temperatures accessible in
Because QCD is asymptotically free, its running couplingheavy-ion collisions.
constantas becomes weaker as the temperature increases. The free energy can also be calculated nonperturbatively
One might therefore expect the behavior of hadronic matteusing lattice gauge theoiyt]. The thermodynamic functions
at sufficiently high temperature to be calculable using perturfor pure-glue QCD have been calculated with high precision
bative methods. Unfortunately, a straightforward perturbativeby Boyd et al. [5]. There have also been calculations with
expansion in powers af does not seem to be of any quan- N;=2 and 4 flavors of dynamical quark§]. In Fig. 1 the
titative use even at temperatures orders of magnitude highdattice results for the free energy of pure-glue QCD from
than those achievable in heavy-ion collisions.
The problem is evident in the free energyof the quark- 13

gluon plasma, whose weak-coupling expansion has been ca i5
culated through ordex2?[1-3]. For a pure-glue plasma, the 1'1
first few terms in the weak-coupling expansion are '1
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where Figea= — (872/45)T# is the free energy of an ideal

ggs of masslegs gluons aqq:: aS(/jL)_ is the runnlhgﬂ)u- FIG. 1. The free energy for pure-glue QCD as a function of
pling constant in the modified minimal subtractioM$)  1/T_. The weak-coupling expansions through ordegs a2, a2,
scheme. In Fig. 1 the free energy is shown as a function Oilnd a5’2 are shown as bands that correspond to varying the renor-
the temperaturd/T., whereT, is the critical temperature majization scalgs by a factor of two. The diamonds are the lattice
for the deconfinement transition. The Weak -coupling expanresult from Boydet al. [5]. The size of the diamonds indicate the

sions through ordersg, a2?, o2, and «2 are shown as typical error bar.
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Boyd et al. [5] are shown as diamonds. The free energy isp-derivable approximationin which the complete propaga-
very close to zero nedfr. . As the temperature increases, the oy js used as an infinite set of variational paramefeg.
free energy increases and approaches that of an ideal gas-fhe ¢-derivable thermodynamic potentiél is the two par-
massless gluons. We will regard the lattice results as thgcle irreduciable(2P)) effective action, the sum of all dia-
correct results for the thermodynamic functions. One goal Oframs that are 2-particle-irreducible with respect to the com-
any reorganization of perturbation theory is to obtain a freep|ete propagator [13]. The n-loop ®-derivable
energy that agrees within its domain of validity with the 5,5 0ximations, in whicl is the the sum of 2PI diagrams
lattice results. _ _ _ _with up to n loops, form a systematically improvable se-
There is of course little to be gained by just reproducmgquence of variational approximations. Until recently,
the results of lattice gauge theory. A method for reorganizingp_gerivable approximations have proved to be intractable
perturbation theory is of practical use only if it allows the tor re|ativistic field theories except for simple cases in which
calculation of quantities that are not so easily calculated usgq self-energy is momentum independent. However, there
ing lattice gauge theory. There are many observables that afg,5 peen some recent progress in solving the three-loop
difficult or even impossible to calculate using lattice gaugeq_gerivable approximation for scalar field theories. Braaten
theory. First, lattice gauge theory becomes increasingly inefy Petitgirard have developed an analytic method for solv-
ficient at higher temperatures, so some other method is '8ig the three-loopb-derivable approximation for the mass-
quired to extrapolate to higfi. Second, calculations with oo #* field theory[14]. Van Hees and Knoll have devel-

light dynamical quarks require orders of magnitude MOr%ped numerical methods for solving the 3-lodpderivable
computer power than pure-glue QCD. Third, the Monteapproximation for the massive* field theory[15]. They

Carlo approach used in lattice gauge theory fails completely e ajso investigated renormalization issues associated with
at nonzero baryon number density. Finally, lattice gaudena -derivable approximation

theory is only effective for calculating static quantities, but The application of thed-derivable approximation to

many of the more promising signatures for a quark—gluonQCD was first discussed by McLerran and Freedrf).

plasma involve dynamical quantities. One problem with this approach is that the thermodynamic

The only rigorous method available for reorganizing per- ; - ;
- : - ; . potentialQ) is gauge dependent, and so are the resulting ther-
turbation theory in thermal QCD idimensional reductioto modynamic functions. The gauge dependence is the same

an effective 3-dimensional field theofy, 8. The coefficients order inag as the truncation error. However, the most serious

of the terms in the effective Lagrangian are calculated usm%roblem is that even the two-loop-derivable approxima-
perturbation theory, but calculations within the effective fieldtion has proved to be intractable

theory are carried out nonperturbatively using lattice gauge The two-loop d-derivable approximation for QCD has

theory. Dimensional reduction has the same limitations ag . " <o as the starting point for hard-thermal-IgépL)

ordinary lattice gauge theory: it can be applied only to Stat.'cresummationmf the entropy by Blaizot, lancu and Rebhan

Lt S o L 2e10 By b Genst, Uk 1117 and of e pressure by st Th thermoaynar
y gaug Y, Ignt dy q otential(),_,0p is a functional of the complete gluon propa-

require any additional computer power, because they onl :
; - g ator D ,,(P). The HTL resummations of Ref$17] and
v
enter through the perturbatively calculated coefficients in th 18] can be derived in two steps. The first step is to replace

effective Lagrangian. This method has been applied to th e two-loop functional at its variational point by a 1-loop

i s X L :
[D7(j:‘bye screening mass for QQB] as well as the pressure functional evaluated at the two-loop variational point. In the

There are some proposals for reorganizing perturbatioﬁesum.matlon of the pressure of Réi8]' the_ 2-Ioop_ func-
. o , ._“tional is the thermodynamic potential and this step is a weak-

theory in QCD that are essentially just mathematical mampuf:oupling approximation:
lations of the weak coupling expansion. The methods include '
Pade approximates[9], Borel resummatior{10], and self-
similar approximateg11]. These methods are used to con- Q21004 D 1160, 100,0~ L1-100d D vl 60, gm0+ (3)
struct more stable sequences of successive approximations
that agree with the weak-coupling expansion when expande
in powers of @g. These methods can only be applied to
guantities for which several orders in the weak-coupling ex
pansion are known, so they are limited in practice to th
thermodynamic functions.

One promising approach for reorganizing perturbation
theory in thermal QCD is to use a variational framework.

The free energyF is expressed as the variational minimum

fh the resummation of the entropy of REL7], the two-loop

functional is the derivative of); o, With respect toT and

this step is an exact equality. The second step exploits the
f5(P) is an approxi-

mate solution to the variational equati@i,_,,,=0. The

HTL gluon propagator depends on one parammér which

can be interpreted as the Debye screening mass for the gluon.
of a thermodynamic potenti&)(T,a:m?) that depends on The HTL gluon propagator satisfies the variational equation

. . . 2 .
one or more variational parameters that we denote colled© €ading order inxs provided thamp, reduces in the weak-
tively by m?: coupling limit to

f(TvaS):Q(T!as;m2)|(7ﬂlr7m2:0' (2) 5 47TNC
M= a(w) T2, @)

Sact that the HTL gluon propagat@

A particularly compelling variational formulation is the
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with some appropriate choice for the scalesuch asu  mated byD!]", and it is only at this point that the gauge

=27T. Thus we can approximate the solution to the Vafia‘dependence disappears.
tional equation in(3) by D}}"(P): Another difference between HTLPT and the HTL resum-
mation methods of Ref§17] and[18] is in the ranges of
_ HTL observables to which they can be applied. The HTL resum-
Ql"OOF{D/‘”N592-Ioop=°~91"°°F{DW ]|m%=4msT2' ® " mation methods were specifically formulated as approxima-
tions to the thermodynamic functions, so they cannot be eas-
ily applied to other observables. However, they can be used

Thi roxim lution holds wh is given Eq. ; . .
$ approximate SO ution holds enp 1S give i_Jy q to calculate the thermodynamic functions in cases where cal-
(4), however, there is some freedom in the choice of the . . . . o
5 . . culations using conventional lattice gauge theory are difficult
parametemg, as long as it reduces to E@) in the weak-

oL . L or impossible: the high-temperature limit of pure-glue QCD,
coupling limit. It cannot be determined variationally becauseQCD with light quarks, and QCD with nonzero baryon num-
the \_/ariational character _Of the thermo_dy_namic potential Waper density. In contra,st to these methods, HTLPT has the
!OSt in the first Steﬂg_)‘ W'th,the prescrlptlor(zzl), the errors same wide range of applicability as ordinary perturbation
in the thermodynamic fung:Uons are of Ordﬁéllz - The errors  yheory It can be used to calculate the thermodynamic func-
can be reduced to orders by adding anas” term to the  ions but it can also be applied to all the standard signatures
right side of Eq.(4). . o ~of a quark-gluon plasma such as heavy-quark production and

The intractability of d-derivable approximations moti- dilepton production. It has some of the limitations of ordi-
vates the use of simpler variational approximations. Ongary perturbation theory. Calculations can be carried out only
such strategy that involves a single variational param®ter yp to the order at which the magnetic screening problem
haS been Calle@ptimized perturbation theor[ﬁl.9], Va.ria.' causes diagrammatic methods to break down.
tional perturbation theory{20], or the linear 6 expansion In this paper we calculate the thermodynamic functions of
[21]. This strategy was applied to the thermodynamics of theycp to two-loop order in HTLPT. We begin with a brief
masslessp* field theory by Karsch, Patkos and Petreczkysummary of HTLPT in Sec. II. In Sec. IlI, we give the ex-
under the namescreened perturbation theor}22]. The pressions for the one-loop and two-loop diagrams for the
method has also been applied to spontaneously broken fieflermodynamic potential. In Sec. IV we reduce those dia-
theories at finite temperatul[Q?)]. The calculations of the grams to scalar sum integra|s_ We are unable to Compute
thermodynamics of the massless® field theory using those sum integrals, so in Sec. V we evaluate them approxi-
screened perturbation theory have been extended to 3 loopgately by expanding them in powers of,/T. The dia-
[24]. The calculations can be greatly simplified by using agrams are combined in Sec. VI to obtain the final results for
double expansion in powers of the coupling constant anghe two-loop thermodynamic potential up to fifth ordergn
m/T [25]. andmp /T. In Sec. VII we present our numerical results for

HTL perturbation theoryHTLPT) is an adaptation of this  the thermodynamic functions of QCD. There are several Ap-
strategy to thermal QCID26]. The exactly solvable theory pendixes that contain technical details of the calculations. In
used as the starting point is one whose propagators are thgypendix A we give the Feynman rules for HTLPT in
HTL gluon propagators. The variational mass parametgr  Minkowski space to facilitate the application of this formal-
can be identified with the Debye screening mass. The ongsm to signatures of the quark-gluon plasma. The most diffi-
loop free energy in HTLPT was calculated for pure-gluecylt aspect of these calculations was the evaluation of the
QCD in Ref.[26] and for QCD with light quarks in Ref. sym integrals obtained from the expansionnm,/T. We
[27]. At this order, the parameteny cannot be determined give the results for these sum integrals in Appendix B. The
variationally, so the prescriptio) was used. The resulting evaluation of some difficult thermal integrals that were re-
thermodynamic functions have errors of ordey, but the  quired to obtain the sum integrals is described in Appendix
terms of orderag"2 associated with Debye screening are cor-C,
rect. A two-loop calculation is required to reduce the errors
to orderag. At two-loop order, it is also possible to deter- Il. HTL PERTURBATION THEORY
mine mp using a variational prescription.

One difference between HTLPT and the HTL resumma- The Lagrangian density that generates the perturbative ex-
tion methods of Refd.17] and[18] is in how they deal with  pansion for pure-glue QCD can be expressed in the form
gauge invariance. HTLPT is constructed in such a way that
physical observables are gauge invariant order by order in
perturbation theory. Gauge invariance arises in the same way
as in ordinary perturbation theory by cancellations between
diagrams. In the HTL resummation methods of Ré¢fs’]  where G,,=d,A,—d,A,—ig[A, ,A,] is the gluon field
and[18], the two-loop thermodynamic potentifl, o, that  strength andA , is the gluon field expressed as a matrix in
is used as the starting point is gauge dependent. In the firshe SU(N.) algebra. The ghost termig,.; depends on the
step(3) of the derivation (), o, is replaced by a one-loop choice of the gauge-fixing ternfy. Two choices for the
functional Q4_,0p that is gauge invariant, but the variational gauge-fixing term that depend on an arbitrary gauge param-
equationdl),.q0p= 0 is still gauge dependent. In the secondeter ¢ are the general covariant gauge and the general Cou-
step(5), the solution to that variational equation is approxi- lomb gauge:

1
EQCDZ - ETr(GMVG/“}) + ['gf"_ ‘Cghost—" A‘CQCD! (6)
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Lg=— %Tr[(ﬁ“AM)z] covariant, 7) Lnee= = T( TuPud A= 3;; And"AY)
— A~ SMETH| (9,A,= oA,
=— %Tr[(V -A)?] Coulomb. (8) yay
< " &)2>y (A= agA") |. (12

The perturbative expansion in powers gfgenerates ultra-
violet divergences. The renormalizability of perturbative The resulting propagator is the HTL gluon propagator. The
QCD guarantees that all divergences in physical quantitiegemaining terms in Eq(10) are treated as perturbations. The
can be removed by renormalization of the coupling constanEeynman rules for gluon and ghost propagators and the
as=g°/4. There is no need for wave function renormaliza- 3-gluon, ghost-gluon, and 4-gluon vertices are given in Ap-
tion, because physical quantities are independent of the nopendix A.
malization of the field. There is also no need for renormal- The HTL perturbation expansion generates ultraviolet di-
ization of the gauge parameter, because physical quantitis¢rgences. In QCD perturbation theory, renormalizability
are independent of the gauge parameter. If we use dimergonstrains the ultraviolet divergences to have a form that can
sional regularization with minimal subtraction as a renormal-be cancelled by the counterterm Lagrangiffigcp. There
ization prescription, the renormalization can be accomis no proof that the HTL perturbation expansion is renormal-
plished by substituting ac—as+Aag, where the izable, so the general structure of the ultraviolet divergences
countertermA o is a power series ims whose coefficients  is not known. The most optimistic possibility is that HTLPT
have only poles ire: is renormalizable, so that the ultraviolet divergences in
physical quantities can all be cancelled by renormalization of
the coupling constant, the mass parameten? , and the
vacuum energy densit§,. If this is the case, the renormal-
ization of a physical quantity can be accomplished by sub-
(9)  stituting as— ag+Aag and m3—m3+Am3, where Aag
andAm% are counterterms. In the case of the free energy, it

. . . is also necessary to add a vacuum energy countedefgm
Renormalized perturbation theory can be implemented be we use dimensional regularization with minimal subtrac-

including among the interaction terms a counterterm La-

. oo ) ' tion as a renormalization prescription, the form of the coun-
grangianA Lqocp that is given by the change in the first three B 2
terms on the right side of E@6) upon substitutingg— g(1 terterms fordas, (1-8)mp, and& should be the power of

+Aag) 2 (1-9) m% required by dimensional analysis multiplied by a
Hard-thermal-loop perturbation theory is a reorganizatiorPOWer Series ias with coefficients that have only poles in

of the perturbation series for thermal QCD. The Lagrangiarf- 1h€ counterterm fodas should be identical to that in
density is written as ordinary perturbative QCD given in E¢9) with

1IN, , [ 12N 17NZ
_127Teas+ 14472€2  487%€

Aag= a§+ O(ag).

1N, , ,
L=(Lacot Lrmlg gt ALurL- (10 Ohas= = 1orcdast ( 144777 4877€

+0(ad). (13)

oag

121IN? 17N§) s s

The HTL improvement term is

ayp
6l 22 o
(y-D)*/,

The leading term in the delta expansion of #counter-

term A&, was deduced in Ref26] by calculating the free
energy to leading order ia. The &, countertermA &, must

therefore have the form

1
Lun=—5(1-9) m3Tr , (1D

2

— _ ¢ - _ \2m4
whereD , is the covariant derivative in the adjoint represen- Ao (12&726+O(5a3)) (1=0)"mp. (14

tation, y“=(1y) is a light-like four-vector, and . . )y rep- . .
resents the average over the directiong/offhe term(11) To calculate the free energy to next-to-leading ordes,imve

has the form of the effective Lagrangian that would be in_neezd the counterterm&, to order 6 and the counterterm
duced by a rotationally invariant ensemble of colored®Mp to order . We will show that there is a nontrivial
sources with infinitely high momentum. The parametey cancellation of the ultraviolet divergences if the mass coun-
can be identified with the Debye screening mass. HTLPT iderterm has the form

defined by treatingd as a formal expansion parameter. The
free Lagrangian in general covariant gauge is obtained by

Am3 = _ HNe Sagt+0O(8%a?) |[(1-8ms. (15
setting5=0 in Eq. (10): D s s D-

127e
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We use dimensional regularization witl+ 3— 2 spatial di-

' ‘ mensions to regularize ultraviolet divergences. The term of
s N order 8° in the vacuum energy counterterm was determined
in Ref. [26]:
i F Fe F Far 1
c 4
FIG. 2. Diagrams contributing through NLO in HTLPT. The Aogozmmm (19

curly lines with shaded circles are HTL gluon propagators. The . . . .
dashed lines are ghost propagators. The vertices with shaded circlﬁﬁ-ﬂ]ﬁr t?:;rgzd\yv?i‘;rgr']c potential at next-to-leading order in

are HTL vertices. The shaded circle labeldd ™is the insertion of
the HTL self-energy. 2
Qo= QLo+ (Ng=1)[ Fag+ Fagt+ Fgnt Frr ] +A1&
Renormalized perturbation theory can be implemented by P
including a counterterm Lagrangian’,,;, among the inter- +Alm'é —Q0, (20
action terms in Eq(10). Jmp

Physical observables are calculated in HTLPT by expand- ) ]
ing them in powers o, truncating at some specified order, Where A1&, and A;mp are the terms of ordep in the
and then settingg=1. This defines a reorganization of the Vacuum energy density and mass counterterms. The contri-
perturbation series in which the effects of g term in Eq.  Putions from the two-loop diagrams with the 3-gluon and
(12) are included to all orders but then systematically sub4-9luon vertices are
tracted out at higher orders in perturbation theory by the

6m% term in Eq.(11). If we seté=1, the Lagrangiar{10) fsg:&92$ r“(P,Q,R)IT"7(P,Q,R)A**(P)
reduces to the QCD Lagrangidf). If the expansion ind 12 PQ
could be calculated to all orders, all dependencengf X AMN(Q)AP(R) (21)

should disappear when we s&t& 1. However, any trunca-

tion of the expansion i produces results that depend on N

mp. Some prescription is required to determing as a j_-Ag:_Cng: r#v2o(p —P,Q,—Q)A*(P)
function of T and 5. We choose to treanhp, as a variational 8 PQ

parameter that should be determined by minimizing the free X AN(Q) (22)
energy. If we denote the free energy truncated at some order ’

in & by (T, as,mp,9), our prescription is whereR= —(P+ Q). Expressions for the gluon propagator

P tensorA#”, the 3-gluon vertex tensd“**, and the 4-gluon
—Q(T,as,mp,6=1)=0. (16)  vertex tensol™#**“ in Minkowski space are given in Eq.
Jmp (A25) or Egs.(A26), (A32), and (A41). Prescriptions for
translating them into the Euclidean tensors appropriate for
the imaginary time formalism are given in Appendix A. The

rametermp , we will refer to it as thehermodynamic poten- e . )
; ) o . contribution from the ghost diagram depends on the choice
tial. We will refer to the variational equatioil6) as thegap . : .

of gauge. The expressions in the covariant and Coulomb

equation The free energyF is obtained by evaluating the auges are
thermodynamic potential at the solution to the gap equationg 9
Other thermodynamic functions can then be obtained by tak-

SinceQ(T,as,mp,6=1) is a function of a variational pa-

ing appropriate derivatives of with respect tor. fgh:%gzin é %Q#RVAMV(F)) covariant,
Il. DIAGRAMS FOR THE THERMODYNAMIC 23
POTENTIAL
_ Ne 2$ 11 M “(R—R 4
The thermodynamic potential at leading order in HTL per- ~2 9 4upg q? r_2(Q Q-nn¥)( -nn’)
turbation theory is
X A#Y(P)  Coulomb.
Quo=(NZ-1)Fyt Ao, @ " 0

where 7 is the contribution to the free energy from each of

} The contribution from the HTL counterterm diagram is
the color states of the gluon:

1
1 — 14 14
Fy=—= 5%, {(d=Dlogl ~A(P)]+log AL (P)}. fHTL—Ej:P IE(PIAZP). @9
(19 . - >
It can also be obtained by substltut|mg%—>(1—5)mD in
(See Fig. 2. The transverse and longitudinal HTL propaga- the one-loop expressiofy in Eq. (18) and expanding to first
tors At(P) and A (P) are given in Eqs(A49) and (A50).  order iné:
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Fur=3%p (A~ DTI5(P)A+(P) 1, (P)AL(P)].
(26
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gauge and Coulomb gauge. With more effort, we can verify
the equivalence of the covariant gauge expression ith
=0 (Landau gaugeand the Coulomb gauge expression with
£=0. This involves expanding the tenswfny in the cova-

gences at any order id can be cancelled by renormaliza- up» prpy nep* andP“P”, and then applying the Ward

tions of the vacuum energy dens#y, the HTL mass param-
etermZD, and the coupling constamt;. Renormalization of
the coupling constant does not enter until ordér We will

calculate the thermodynamic potential as a double expansion

in powers ofg andmp /T, including all terms through fifth
order. Thedag term in A&, does not contribute until sixth
order in this expansion, so the term of ordein A&, can be

obtained simply by expanding E¢L9) to first order iné:

— Ne—1 4
A180= " ga77c Mo

(27)

identities to the terms involvin@* or P”.

IV. REDUCTION TO SCALAR SUM INTEGRALS

The first step in calculating the thermodynamic potential
is to reduce the sum of the diagrams to scalar sum integrals.
The one-loop diagram in Eq18) and the HTL counterterm
diagram(25) are already expressed in terms of scalar inte-
grals. We proceed to consider the 3-gluon diagram in Eq.
(21), the 4-gluon diagram in Eq22), and the ghost diagram
in Landau gauge which is given in E3). The expression

The remaining ultraviolet divergences must be removed byor the sum of these three diagrams is simpler than that of the

renormalization of the mass parametgs . We will find that
there are ultraviolet divergences in t}:t‘e,méT2 and asmgT3

3-gluon diagram alone. We insert the gluon propagator in the
form (A29) with ¢=0. It has terms proportional taA and

terms, and both are removed by the same counterterddy, whereAy is the combination of transverse and longitu-
Alm%. This provides nontrivial evidence for the renormal- dinal propagators defined in EGA27). When a momentum

izability of HTLPT at this order ind.

P# from the gluon propagator tensor is contracted with a

The sum of the 3-gluon, 4-gluon, and ghost contributions3-gluon or 4-gluon vertex, the Ward identities can be used to

in Egs. (21), (22), and (23) or (24) is gauge invariant. By
inserting the expressiof\25) or (A26) for the gluon propa-
gator tensor and using the Ward identit{@85) and (A42),

reduce it ultimately to expressions involving the inverse
propagator(A20). The termA+/A, can be eliminated in fa-
vor of Ay/A, using the definition(A27). This reduces the

one can easily verify that the sum of these three diagrams isum of the 3-gluon, 4-gluon, and ghost diagrams to the fol-
independent of the gauge parameterin both covariant lowing form:

N
fgg+f4g+fgh=1—§92$pq [F““F“”AT<P>AT<Q>AT<R)—3FMV°FMV°AT<P>AT<Q>Ax<R>

+3I#OT#OA1(P)Ax(Q)Ax(R) = (T'*)?Ax(P)Ax(Q)Ax(R)+3d(d+ 1)Ar(P)A+(Q)

3 ‘R n-QOn-R
—6dA1(P)A(Q)+ 5r°°v°°Ax<P>Ax<Q>+6(%Aﬂp)— %Axm)) - 12(
n-On-R Ax(Q) Ax(R)
AP~ — o2 AX(P))AL(@ AL<R>}'

n-Qng-R

1°R? A(P)

n-Qn-R )AX(Q) 6(n~Qn-RnQ-nR

T QR Ax(P) AL(Q)+ 2 (28)

In the 3-gluon and 4-gluon vertex tensors, we have sup-
pressed the momentum argumeni¥*"*=T*"(P,Q,R)
andI'00=1%0%p —p Q,—Q).

The next step is to insert the Euclidean analogs of the

r#0ra0=p24+ g2+ 4r2+2d(n- P)%+2d(n-Q)?
—d(n-R)2+2m3(27x— Tp— To)

_ +mp 0T, (30)
expressiongA32) and (A41) for the 3-gluon and 4-gluon
vertex tensors. The combinations of terms that appear in Eq. [#00r00= 22+ 2r2— p2—2m3[ 275 — To— Tk
(28) can be simplified using the “Ward identities(A3),
(A34), and (A38) satisfied by the HTL correction tensors: +n-(Q—-R) T+ mg 7+, (31)
(199 2=m5(7°9?, (32)
[AAT#=3d(P?+ Q%+ R?) + my T M+, (29) [00.00= — 270000 (33)
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In the 3-gluon and 4-gluon HTL correction tensors, we have suppressed the momentum argaititésts™"*(P,Q,R) and
70000= 79009 p o —P,—Q). We have also used the short-hafg= — 7°(P,— P) for the 2-gluon HTL correction tensor.
Inserting the expression29)—(33) into Eq.(28) and eliminating 14, (P) in favor of 75, the reduction to scalar integrals is

1
3dR?+ mp 72T |A1(P)A(Q)Ar(R) +[ ~ 29~ 4r?~4d(n-Q)*+d(n-R)?

_NC 2
—4m2D( ZR_ ZQ)—mDE’”OJ nv0 AT(P)AT(Q)Ax(R)+[—p +4r2—2m2Dn'(Q—R)T°°°—4m2D(1p—JR)

1
+mp THOTHP]A1(P) Ax(Q) Ax(R) = 3mp(T)?Ax(P)Ax(Q)Ax(R) +d(d+1)Ar(P)Ar(Q)

1 ‘R
—2dA7(P)Ax(Q)— 3mp T Ax(P)Ax(Q) + Z%Aﬂm{l—[q% m(1-To)1Ax(Q)}
2., M2 n-QnR 2. 2
X{1-=[r +mD(l—TR)]Ax(R)}—Z—QrRrAx(P){l—[q +mp(1-T9)JAx(Q)}

r (2n3-1)q-r
X{l—[r2+m%(l—?&)]Ax<R>}+4qiR2[q2+mé(l—TQﬂAT(P)Ax(Q)—Z‘ZZT
X[q?+mp(1—To)I[r*+ sz(l_TR)]AT(P)AX(Q)AX(R)]- (34)

|
V. EXPANSION IN THE MASS PARAMETER separate them into contributions from hard loop momentum,

{;Pr which some of the components Bfare of orderT, and

The thermodynamic potential has been reduced to scal .
Y P soft loop momenta, for which all the componentsodire of

sum integrals. In Ref.26] the sum integrals for the one-loop : )
free energy were evaluated exactly by replacing the sums b§rder Mo . We will denote these regions b and ).
contour integrals, extracting the polesdnand then reduc- SiNCce the Euclidean energl, is an integer multiple of
ing the momentum integrals to integrals that were at mosg7 1. the soft region requireB,=0.
two-dimensional and could therefore be easily evaluated nu-
merically. It was also shown that the sum integrals could be 1. Hard contributions
expanded in powers ohy /T, and that the first few terms in
the expansion gave a surprisingly accurate approximation to |f P is hard, the denominato®+I1; andp?+1II, in the
the exact result. propagators are of orddr, but the self-energy functiorid ;

If we tried to evaluate the two-loop HTL free energy ex- andIl, are of ordem3. Themg, /T expansion can therefore
aCtly, there are terms such as those invol\li'r"@)"]—“”)‘ that be obtained by expanding in powerslafl_ andHL .

could at best be reduced to five-dimensional integrals that For the one-loop free energy, we need to expand to second
would have to be evaluated numerically. We will thereforeq der in m3:

evaluate the sum integrals approximately by expanding them
in powers ofmp /T. We will carry out themp /T expansion

to high enough order to include all terms through orgieif d—1 1 1

mp /T is taken to be of ordeg. }‘g‘)zTip log(P?) + Em%$P =2
A. One-loop sum integrals 1 4 1 1

The one-loop sum integrals include the leading order free S 4(d-1) mD$P W_szP2

energy given by the sum integral$8) and the HTL coun-
terterm given by Eq(26). The leading order free energy
must be expanded to ordemf /T)® in order to include all
terms through ordeg®. The HTL counterterm has an explicit
factor of m3, so the sum integral for the HTL counterterm
diagram need only to be expanded to ordex,(T)3 to in-  Note that the functior/p cancels from then3 term because
clude all terms through ordey®. of the identity (A12). The values of the sum integrals are

The sum integrals oveP involve two momentum scales: given in Appendix B. Inserting those expressions, the hard
mp andT. In order to expand them in powers i, /T, we  contributions to the leading-order free energy reduce to

2d17+2 ! T+d1(T)2
p4P DTPZP p4 P

. (35
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) ., 1 '(—1) cause there is no momentum scale in the integral @ver
Fg'=— 5T +tog1t|2+2 =1 Thus the soft contribution comes from the longitudinal term
only.

wo\2%€ ’ 1 2 The soft contribution to the leading order free energy is

X|—=| MiT?— | = —7+2y+ —
4mT 12872 3 1
) J-'és)=—Tf log(p?+m3). (39)

- 2 Jp
X ﬁ) mp, (36) . i . . .

77 Using the expression for the integral in Appendix C, we ob-

Wherey is the Euler-Mascheroni constant. Note that the poletaln

in the mD term is cancelled by the countertefi0). © 1
The HTL counterterm diagram has an explicit factor of Fo =~ 124

mD, o) we need only to expand the sum integral to first

order inm? . EliminatingI1+(P) andII, (P) in favor of the ~ The soft contribution to the HTL counterterm is

8
1+ =€

2¢
3 (L) maT. (40)

2mp

function 75, the result is
F= ——mDT J (41)
]:(h):_lm2i i_,_ 1 m4i [ 1 _zi P +m
o 2 P4P P2 2(d—1) P4 [(PY)* “p?P®  Using the expression for the integral in Appendix C, we ob-
1 tain
—-2d 4Tp+2 2 sz+d 7(Tp)? (37)
P PP p* ]—'(S)—Sl m3T. (42)
The values of the sum integrals are given in Appendix B.
Inserting those expressions, the hard contributions to the B. Two-loop sum integrals
HTL counterterm in the free energy reduce to . L .
The sum of the two-loop sum integrals is given in Eq.
") 1, 2, 1 272 (34). Since these integrals have an explicit factogdf we
Feo =~ oMo+ gpa| o~ 7+2y+ 5~ need only expand the sum integrals to ordem,(T)3 to

include all terms through ordey®.
wo\%€ 4 The sum integrals involve two momentum scales; and
X A7T Mp (38 T inorderto expand them in powers ok, /T, we separate
them into contributions from hard loop momenta and soft

Note that the first term in Eq38) cancels the ordes? term  loop momenta. This gives three separate regions which we
in the coefficient ofm%T2 in Eq. (36). We have kept the will denote (hh), (hs), and 69). In the (hh) region, all
order< term in the coefficient o3 T? in Eq. (36) because it three moment#®, Q, R are hard. In thel{s) region, two of

will contribute to the final result through the mass counter-the three momenta are hard and the other is soft. Inglse (

term. region, all three momenta are soft.
2. Soft contributions 1. Contributions from the(hh) region
The soft contribution comes from tHe,=0 term in the If P, Q, Rare all hard, we can obtain tme, /T expansion

sum integral. At soft momentur®=(0,p), the HTL self- simply by expanding in powers (Dfl%. To obtain the expan-
energy functions reduce fd+(P)=0 andII, (P)=m3. The  sion through ordem3/T2, we need only expand to first or-
transverse term vanishes in dimensional regularization beder inm3, with Ay andIl; taken to be of ordem3 :

N,
3“9“24g+gh=zgzim fSdRZAT<P)AT<Q>AT<R)+[—2q2—4r2—4d<n-Q>2+d<n-R)ZJAT<P)AT<Q>AX<R>
+d(d+1>AT<P>AT(Q>—2dAT(P>AX(Q>+2§2R2AT(P)[l 29°Ax(Q)]
n-Qn-R q-r
~2 gzrz Ax(P) T A7 Ar(P)AX(Q) 1. (43)

For hard momenta, the self-energies are suppressaau%lﬂ]2 relative to the propagators, so they can be expanded in powers
of IT; andIl, . Expanding all terms to first order im3 , and using Eqs(A6) and (A7) to eliminateIl+(P) andII, (P) in
favor of 7p, we obtain
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N

+—°22$ (A1) gyt 2(d—2) g eyt 2
3 9 Mogur | 20 Vi (@t 292 2 2R

N 11
hh) __¢.2 _1)\2
fgg+4g+gh_ 4 g $PQ [(d 1) P? Q?

P-Q @ @ 1 1 !
+(d+2) P22 2d P207(12)2 4d P202(1r2)2" 4P2Q2r2R2 Z(d_l)a WTQ_(C]"'— 1)@%
q° P-Q
+4d szz(rz)zTFe‘F 2d PzQz(rz)zﬁ? : (44)
Inserting the sum integrals from Appendix B, this reduces to
2 Nea 1 Nea de
hh) :77_ U, |+ cs/ M 22
30749+0n " 12 37 | 96 e+4'624 37 (477T) m5 T (45)

2. The(hs) contributions

In the (hs) region, the soft momentum can be any one of the three monkei@@aor R. However, we can always permute
the momenta so that the soft momentun®is (0,p). The function that multiplies the soft propagatof(0,p) or Ax(0,p) can
be expanded in powers of the soft momentpmin the case ofA(0,p), the resulting integrals ovey have no scale and
therefore vanish in dimensional regularization. The integration medgseales Iikem% , the soft propagatak «(0,p) scales
like 1/m2D, and every power opf in the numerator scales likay . The only terms that contribute through or@m%T are

Ne
Sovagrgn= 7 9°T prx(omiQ [[—2q2—4p2—4d<n-Q>2+4m2DTQ]AT<Q>AT(R>+[4r2—2q2+4p2]AT<Q>Ax(R>

.0)2
_ZdAT(Q)"_Z(gZ—QR;[l_ZquX(Q)]]- (46)

In the terms that are already of ordg?m%T, we can seR=—Q. In the terms of ordeg?mpT3, we must expand the
sum-integrand to second orderpn After averaging over angles @f the linear terms i vanish and quadratic terms of the
form p'p! are replaced by?s'i/d. We can setp?’=—m3, because any factor proportional fF+m3 will cancel the
denominator of the integral ovex, leaving an integral with no scale. Our expression for ths) (contribution reduces to

. N, 1 1 q? 1 1
So”ag+gnh= 792Tfppz+—m%$(’ [—(d—1)§+2(d—1)w +Nc92m%TL pz+—m%$Q (—(d—4)m
(47)

(d—1)(d+2) g*> 4(d-1) qg*
d (Q%)?* d (QH)Y°

Inserting the sum integrals from Appendix B and the inte-least one such propagator is required in order for the integral
grals from Appendix C, this reduces to to be nonzero. The only terms in E@4) that give nonzero
contributions are

hs) 7 Neag ; 111 N 27_’_2
39+4g+gh:___mD T A | T~ 99 Y N
2 3m 32me 11 L agron=" 9T f {[- 207~ 4r?]A+(0p)A(00)
N a,( m 2¢ m 2e Pq
S maT (48 2 2
37 \4xT) (2mp) ° XAx(0,r)+[—p°+4r°]JA+(0,p)Ax(0,)

3. The(s9) contributions X Ax(00}- 49

The (s contributions come from the zero-frequency After simplifying the integral by dropping terms that vanish
modes of the sum integrals. The HTL correction functionsin dimensional regularization, it reduces to
Tp, T°% and7°%vanish when all the external frequencies
are zero. The self-energy functions at zero frequency are s9 _& ZTZJ
I1+(0,p)=0 andII, (0,p)=m3 . The only scales in the inte- 3g+4g+gh= 7 9 D
grals come from the longitudinal propagators, (0,p)
=1/(p*+ mZD). Therefore in dimensional regularization, at Inserting the integrals from Appendix C, this reduces to

p2+4m%
q P2(g2+ma)(r2+mp)

. (50
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1.3 T T T T T T T

3

1
f(38952r4g+gh:1_6

€

4e
22
3 _2mD) m3T2.  (51)

Ncas( M

VI. THERMODYNAMIC POTENTIAL 1k |

In this section we calculate the thermodynamic potential
Q(T,as,mp,6=1) explicitly, first to leading order in thé
expansion and then to next-to-leading order.

m, /(m,),,

A. Leading order

The complete expression for the leading order thermody- 0.8
namic potential is the sum of the contributions from one-loop
diagrams and the leading ter(@9) in the vacuum energy 07 | .
counterterm. The contributions from the one-loop diagrams,
including all terms through ordey®, is the sum of Eqs(36) - : .

-8 .7 3 -5 |-4 -3 -2 -1
and (40): 10 10 10 10 (x(1201tT) 10 10 10
QO =F 1_1_5ﬁ12 +30m3 FIG. 3. Solution to the gap equatiof®3) as a function of
1oop™ ideal 2P D ay(27T). The shaded band corresponds to variation of the renor-

R malization scalew by a factor of two aroungh=27T.
+451+2| Fo742 +2W2 me (. (52
gl T2l T2yt g mol, (52

order, it is essential for consistency to use thdimensional
expressions for these propagatbrs.

where Figeq is the free energy of an ideal gas bE—1

massless spin-one bosons, B. Next-to-leading order

2 The complete expression for the next-to-leading order
Figea= (N2— 1)( - —T4), (53) Corre_ctio_n to the thermodynamic_potential is the sum of the
45 contributions from the two-loop diagrams, the HTL counter-

terms, and renormalization counterterms. The contributions

andmp and . are dimensionless variables: from the two-loop diagrams, including all terms through or-
derg®, is the sum of Eqs(45), (48), and (51):
- Mp 54
D= 5T N.a 15 A
2mT QZ—Ioop: ﬁdeal%[ - y +45mp
'ZL:%' (55) —£E+4Io'&—7—2|oﬁ1
m g |e “O9 T 1199
Adding the countertern(19), we obtain the thermodynamic . 495[ 1 o A
potential at leading order in the delta expansion: +1.96 m%+ e E+4 IogE—Z logmp
15. A 27 -
QLo:]:ideal{l_?m%+30m% +1—1+27 m%]. (57)
45 IZL 7 m’ ~ 4 The HTL counterterm contribution is the sum of E4398)
+— —=+y+—= .
g\logg— 1Y 3 mD} (56) and (42):
The coefficient ofmg in Eq. (56) differs from the result 0 - 155 453
calculated previously in Ref26]. In that paper the constant HTL™ Fideal 2 Mp ™ Smp
under the logarithm ofu/2 was — £+ y+log 2 instead of . 5
— 2+ y+3m2 The reason for the difference is that the sum s o — 7424 2m7 ) s 59
integral 74 was calculated in Refl.26] using dimensional 4\ € gf YT3 D

regularization to regularize the integral, but using the three-

dimensional expressions for the HTL propagatdrs and

A\ . At leading order, the difference can be absorbed into the we thank E. lancu and A. Rebhan for first bringing this problem
definition of the scaleu. For calculations beyond leading to our attention.
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The ultraviolet divergences that remain after these thred@he complete contribution from the counterterms through
terms are added can be removed by renormalization of théirst order iné is

vacuum energy densit§p and the HTL mass paramete, .

The renormalization contributions at first orderdrare

45. 1691 f (-1
AQz]-‘idew’—m‘,},vL—E{—JrzIog’%+2+2§( )}

Jd > 7
AQ=A1€O+A1m%WQLO, (59) 4e 8 |e {(—1)
D

where A&, and A;m3 are the terms of ordeb in the
vacuum energy counterterm and the mass counterterm. The
expression fol\ & is given in Eq.(27). It cancels the poles N.a

in e proportional tom?, in Egs.(52) and(58). The remaining ><°—Sr‘ng]_ (61)
ultraviolet divergences are poles érproportional tom% and 3m

m% in Eq. (57). If HTL perturbation theory is renormalizable,

both dlverg_ences _must be removed by_ th_e Same mass CO”ﬂading the contributions from the two-loop diagrams in Eq.
terterm. This requires a remarkable coincidence between t 7), the HTL counterterm in Eq(58), and the renormaliza-

coefficients of the two poles, and provides a nontrivial test o ion counterterms in Eq59) and adding them to the leading
renormalizability. The value of the counterterm required is o, thermodynamic potential in E¢56), we obtain the
A sz:_l_l Ncasmz (60) complete expression for the thermodynamic potential at
. 4e 37 O next-to-leading order in HTLPT:

Nty 4991 B g2
37 D 3 | ¢ T4109; ~2109Mp

g 45 7 7\ ., Nead 15 . 16 4o 36 . ~,

QO nto= Fideal 1_15mD_Z Iog§—§+y+? mp + 3 _Z+45mD_T IogE—l—llong—2.001 mp
495I 4 5 s o
+7 0g§+2—2+'y mp| (. (62

C. Gap equation

The gap equation which determinss, is obtained by differentiating62) with respect tomp and setting this derivative
equal to zero yielding

P O A PN L7 PO S P [YSTLI I ) (R
mg 005 —5 Tyt 5 |Mp|= 5 5 | log5 — 77l09mp — 3. mp+ | log5 + o5+ v |mp | (63
|

In Fig. 3 we have plotted the solution to this gap equation A. Pressure
normalized to the leading-order perturbative result in @g. The final results for the LO and NLO HTLPT predictions

as a function ofag(27T). The shaded band indicates the for the free energy of pure-glue QCD are obtained by evalu-
range resulting from varying the renormalization sgaley  ating the thermodynamic potentials6) and (62) at the so-

a factor of two aroungb=27T. From this plot we see that |ytion to the gap equatio(®3). Once the free energ#(T) is

the gap equation solution matches nicely onto the perturbagiven as a function of, all other thermodynamic functions
tive result ases— 0. The solution decreases withy(27T)  are determined. In particular, the press@and the energy
out to aboutrs~0.06 and then begins to increase. It exceedslensity& are

the perturbative result at around~0.18, and then quickly

diverges to+ . P==7 (64)

dF
VII. THERMODYNAMIC FUNCTIONS E=F-Tq7 (65

In this section we compare the thermodynamic functiondn Fig. 4 we have plotted the LO and NLO HTLPT predic-
calculated at next-to-leading order in HTL perturbationtions for the pressure of pure-glue QCD as a function of
theory with those calculated using lattice gauge theory. T/T., whereT, is the deconfinement transition temperature.
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-0.004

-0.005
1

T/T,

FIG. 4. The LO and NLO results for the pressure in HTLPT _ FIG. 5. The LO and NLO results for the trace anomaly in
compared with 4D lattice resultsiamonds and 3D lattice results HTLPT. The LO HTLPT result is shown as a light-shaded band
(dotted lines for various values of an unknown coefficient in the outlined by a dashed line. The NLO HTLPT result is shown as a
3D effective Lagrangian. The LO HTLPT result is shown as a light-dark-shaded band outlined by a solid line. The shaded bands corre-
shaded band outlined by a dashed line. The NLO HTLPT result i$Pond to variations of the renormalization scaleby a factor of
shown as a dark-shaded band outlined by a solid line. The shadd¥0 aroundu=2T.
bands correspond to variations of the renormalization seaby a
factor of two aroundu =2=T. The five dotted lines in Fig. 4 correspond to five possible

values for that coefficient. We assume that the coefficient is
To translateas(27T) into a value ofT/T., we use an ana- sych that the 3D results match on reasonably well to the 4D
lytic approximation to the two-loop running formula for results, such as one of the middle three of the five dotted
pure-glue QCD lines. In that case, the HTLPT prediction for the deviation
from the ideal gas af = 10° T, is only about 59% of the 3D
lattice result. We conclude that HTLPT at this order does not
describe the pressure for pure-glue QCD.

102log(L)
121 |

4

o =—1
s(m) 110

: (66)

whereL =log(u¥A%s) and Ays=0.65T, [28,29.

Thus ay((27T)=0.06 and 0.2 translate intd/T.=415
and 0.906, respectively. The LO and NLO HTLPT results are The combinatiorf— 37 can be written as
shown in Fig. 4 as a light-shaded band outlined by a dashed
line and a dark-shaded band outlined by a solid line, respec- £—3p= —T5d—
tively. The LO and NLO bands overlap all the way down to daT
T=T., and the bands are very narrow compared to the cor-
responding bands for the weak-coupling predictions in Fig.

1. Thus the convergence of HTLPT seems to be dramaticallfhis combination is proportional to the trace of the energy-
improved over naive perturbation theory and the final resulmomentum tensor. In QCD with massless quarks, it is non-
is extremely insensitive to the scale zero only because scale invariance is broken by renormaliza-

In Fig. 4 we have also included the four-dimensional lat-tion effects. We will call it the trace anomaly density. It of
tice gauge theory results of Boyet al. [5] and the three- course vanishes for an ideal gas of massless particles. How-
dimensional lattice gauge theory results of Kajantie €t7dl.  ever, it also vanishes for a gas of quasiparticles whose
The LO and NLO HTLPT predictions differ significantly masses are linear i and whose interactions are governed
from the 4D lattice results of Ref5], even at the highest by a dimensionless coupling constant that is independent of
temperatures for which they are available. ’&5T., the T.

HTLPT prediction for the deviation of the pressure from that In Fig. 5 we have plotted the LO and NLO HTLPT pre-
of the ideal gas is only 45% of the 4D lattice result. In thedictions for the trace anomaly density as a functio 6F . .

high temperature limit, the HTLPT prediction approachesAt large T, the HTLPT prediction is very small and positive.
that of the ideal gas very slowly, in qualitative agreementAs T decreases, the NLO prediction f6r 3P increases to
with the results of the 3D lattice calculations of Rgf].  its maximum value around TQ and then begins decreasing
However the quantitative agreement is not very good. Thand quickly turns negative. The maximum value is less than
results of Ref[7] depend on an unknown coefficient in the about 0.2% of the energy densiye, Of the ideal gas. In
effective Lagrangian for the dimensionally reduced theorycontrast, the 4D lattice result increases to a maximum of

B. Trace anomaly

F

s (67)
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about 70% of€,4.4 at a temperature that is very closeTp  the difficulty is that it is necessary to isolate the infrared
and then decreases rapidly td%). divergent and ultraviolet divergent terms analytically before

evaluating the remaining terms numerically. Qug /T ex-

pansions of the sum integrals might be useful for generating

the necessary subtractions that would allow the scalar sum
We have calculated the free energy of pure-glue QCD aitntegrals to be evaluated numerically.

high temperature to two-loop order using HTL perturbation Our calculations required the development of new meth-

theory (HTLPT). The gauge invariance of the two-loop ex- ods for evaluating sum integrals. The most difficult were

pression was verified explicitly in generalized covarianttwo-loop sum integrals that also involved a HTL angular

gauge and generalized Coulomb gauge. The expression wagerage. These sum integrals may be useful in other applica-

reduced to a relatively compact form involving only scalartions, such as solving the two-losp-derivable approxima-

sum integrals. The numerical evaluation of the scalar suntion for QCD.

integrals would have been extremely difficult. We chose in-

stead to approximate them by expanding in powersi@f T, ACKNOWLEDGMENTS

keeping all terms through fifth order ig and mp/T. The )

ultraviolet divergences in the resulting expression for the E.B. and E.P. were supported in part by Department of

thermodynamic potential can be removed by renormalizatiof=nergy grant DE-FG02-91-ER4069. J.O.A. was supported

of the vacuum energy density and the HTL mass parameté?y the Stichting voor Fundamenteel Onderzoek der Materie

mp . This provides a nontrivial test of the renormalizability (FOM), which is supported by the Nederlandse Organisatie
of HTL perturbation theory to this order. voor Wetenschappelijk Onderzo¢kWO). M.S. was sup-

The two-loop order of HTLPT is the first order at which Ported by U.S. DOE Grants DE-FG02-96ER40945 and DE-

mp can be determined by a variational prescription. The conFG03-97ER41014.
dition thatmp be a stationary point of the thermodynamic
potential provides a “gap equation” fany . The only am- APPENDIX A: HTL FEYNMAN RULES
biguity in the free energy then resides in the sqalassoci-
ated with renormalizations of the vacuum energy density an?
mp . The predictions for the thermodynamic functions are ur
extremely insensitive to the choice gf

The quantitative predictions for the pressure in two-loo
HTLPT are disappointing. In the rangd &< T<20T,., the

VIIl. CONCLUSIONS

In this appendix we present Feynman rules for HTL per-
bation theory in pure-glue QCD. We give explicit expres-
sions for the propagators and for the 3-particle and 4-particle
vertices. The Feynman rules are given in Minkowski space to
pfacilitate applications to real-time processes. A Minkowski

pressure is predicted to be nearly constant with a value Orinonlentum is denoteg=(po,p), and th? inner product is
about 95% of that of an ideal gas of gluons. The HTLPTP 9= Podo—P- 3. The vector that specifies the thermal rest
frame isn=(1,0).

prediction for the deviation from the ideal gas is about 45%
of the result from four-dimensional lattice gauge theory at
T=5T,., the highest temperature for which the lattice result 1. Gluon self-energy
is available. At very hlgh temperature, the approach to the The HTL g|u0n Se|f-energy tensor for a g|u0n of momen-
ideal gas limit is extremely slow, in qualitative agreementyym pis
with the results of 3D lattice gauge theory calculations.
However, assuming that the 3-d results match on reasonably H’“’(p)=m2D[T“V(p,— p)—n#n"]. (A1)
well to the 4D results, the HTLPT prediction for the devia-
tion from the ideal gas &= 10° T, is only about 59% of the The tensorZ7**(p,q), which is defined only for momenta
3D lattice result. that satisfyp+q=0, is

There are many possible reasons for the discrepancy be-
tween the HTLPT predictions and the lattice results. One p-n
possibility is that HTLPT at this order simply fails to de- T""(P,—IO)=<Y"YVW>A- (A2)
scribe with sufficient accuracy the contributions from gluons y
with momenta of ordegT. Another possibility is that the
discrepancy arises from omitting the contributions from ) i ) - L
magnetostatic gluons with momenta of ordg#T, which ~ rections of the light-like vectoy=(1y). The tensor7*" is
would first enter HTLPT as an infrared-divergent contribu-Symmetric inu and» and satisfies the “Ward identity
tion at NNLO. In either of these cases, we would conclude Y )
that two-loop HTLPT is not a quantitatively useful approxi- p.7*"(p,—p)=p-nn". (A3)
mation for thermal QCD. Another possibility is that the prob- . .
lem lies not with HTLPT but with our use of then, /T The self-energy.tensdlf‘ is therefore also symmetric in
expansion to approximate the scalar sum integrals. The sufif'd v and satisfies
integrals that were encountered at fourth and fifth order in

The angular brackets indicate averaging over the spatial di-

mp /T were so difficult to evaluate that it seems hopeless to p,I1#"(p)=0, (A4)
try to expand to higher order. However, it is possible that the , )
scalar sum integrals could be evaluated numerically. Part of 9,117 (p)=—mp. (AS5)
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The gluon self-energy tensor can be expressed in terms of I'(2—2e¢) INCE)
two scalar functions, the transverse and longitudinal self- W(€)= = 2e_ 2 ]
energiedl; andIl, , defined by I"(1-e) F(3T(1-e

(Ale)

+(p)= L( sl—piphITii(p), (A6)  The integral in Eq(A15) must be defined so that it is ana-
d-1 Iytic at pg=-o°. It then has a branch cut running fropg=
—|p| to po=+|p|. If we take the limite— 0, it reduces to

M (p)=—11p), (A7)
wherep is the unit vector in the direction gf. In terms of T%p,—p)= &Io Pot [Pl , (A17)
these functions, the self-energy tensor is 2|p| " po—Ip|

1 which is the expression that appears in the usual HTL self-
v —— mY y7a%
#"(p)=—I+(p)Ty HEHL(p)Lp : (A8) energy functions.

where the tensors, and L, are 2. Gluon propagator

Thrm gav_ pp” - n“n’ A9) The Feynman rule for the gluon propagator is
P 2 2 .
p np I 6abA,u,V(p)v (A18)
LW:”S”S (AL0) where the gluon propagator tensdr,, depends on the
P n2 -’ choice of gauge fixing. We consider two possibilities that
P introduce an arbitrary gauge paramefergeneral covariant
The four—vectom{; is gauge and general Coulomb gauge. In both cases, the inverse
propagator reduces in the limft—« to
n-p
nt=nt——p* All _
Pz P (ALY AZX(pyr=—pPght pipP—II¥(p). (A1)

and satisfiesp-n,=0 and n3=1—(n-p)?/p?. Equation

(A5) reduces to the identity This can also be written

1
(d—1)I(p)+ ?HL(m:mé. (A12) AN (p)r=— . (A20)
p

1
TEY 4 L~
Ar(p) P nsA(p) P

We can express both self-

energy functions in terms of th L )
function 7% defined by(A2): \Q’NhereAT andA, are the transverse and longitudinal propa

gators:
m3
HT(D):W[TOO(D,—P)—1+nS]. (A13) Ar(p)= ! (A21)
p P Ty

[ (p)=mp[1-T%p,~p)]. (AL4)

In the tenso7*"(p,— p) defined in Eq(A2), the angular A(P)=——mm—. (A22)
. Lo~ —ngp“+1I.(p)

brackets indicate the angular average over the unit vector

In almost all previous work, the angular average in &®) _

has been taken id=3 dimensions. For consistency of The inverse propagator for genegals

higher order radiative corrections, it is essential to take the

angular average il=3—2e dimensions and analytically . L1 L, 1 )

continue tod= 3 only after all poles ire have been canceled. AT (p)Hr=AL ()" = EPMP covariant, (A23)
Expressing the angular average as an integral over the cosine

of an angle, the expression for the 00 component of the ten-

soris — A2 Y (p)H— (pH—pen )
w(e) (1 Po ‘
0 _ - _ 7 __ 2\ € vV_n. v
T%p,—p) 5 f_ldc(l c9) oo—Iplc’ X(p’—p-nn’) Coulomb.  (A24)
(A15)

The propagators obtained by inverting the tensors in Egs.
where the weight functiom(e) is (A24) and(A23) are
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AR (p)=—Ar(p)T"+AL(p)ngN;
MV
—¢ P sz covariant, (A25)
(p%)
=~ As(P)TE AP n”
LAV
— p2 P Coulomb. (A26)
(ngp?)?

It is convenient to define the following combination of
propagators:

1
Ax(p)=AL(p)+ ?AT(D)- (A27)

p

Using Egs.(A12), (A21), and(A22), it can be expressed in
the alternative form

Ax(p)=[m3—dIl(p)]A (p)A(p),

which shows that it vanishes in the limihp—0. In the
covariant gauge, the propagator tensor can be written

A*(p)=[—A1(p)g"*"+Ax(p)n*n”]

(A28)

n-p
— — Ax(p)(p*n”+n*p”)

p
(n-p)? up”
Harorr S-S B a29)

PHYSICAL REVIEW 6, 085016 (2002

p-n r-n

p-yq-y_r-yq-y)>'
(A33)

T“”*(p.q.r)=—<y”y”yx(

This tensor is totally symmetric in its three indices and trace-
less in any pair of indicengT/“’”zo. It is odd (even
under oddeven permutations of the momengaq, andr. It
satisfies the “Ward identity”

a,7*"M(p,q,r)=T"(p+q,r) =T (p,r +q).
(A34)

The three-gluon vertex tensor therefore satisfies the Ward
identity

p L#Mp,a,r)=A (@)™ =AY ()™ (A35)

4. Four-gluon vertex

The four-gluon vertex for gluons with outgoing momenta
p, g, r, ands, Lorentz indicesu, v, \, and o, and color
indicesa, b, ¢, andd is

iTEAT(p,0,r,S) = —i9{f apxf xcd( 91977 — g#7g™)

+2mBt TA(TPTCT+ TT°T?) ] 72 (p,q.r,5)}

+2 cyclic permutations, (A36)
where the cyclic permutations are df,¢,b), (r,\,c), and
(s,0,d). The matriced? are the fundamental representation
of the SU(3) algebra with the standard normalization

This decomposition of the propagator into three terms ha&(T°T°)=36%". The tensor7*"” in the HTL correction
proved to be particularly convenient for explicit calculations.term is defined only fop+q-+r+s=0:

For example, the first term satisfies the identity

[_ AT(p)g}LV+ AX(p)nan]A;l(p)W\

A_’_ n-p Ax(p)p n*
P> ngp? Ac(p)H P

(A30)

3. Three-gluon vertex

T#"(p,q.r,9)
p-n
p-yq-y(@+r)-y
(p+a)-n N (p+g+r)-n
q-yr-y(rts):y r-ysy(s+p)-y

= < y“y”y*y"(

o

The three-gluon vertex for gluons with outgoing momentaThis tensor is totally symmetric in its four indices and trace-

p, g, andr, Lorentz indicesu, v, andA, and color indices,
b, andc is

iTEA(p,a,r)=—gfapd “™(p,a,r),  (A31)

where f . is the SU(3) structure constant and the three-

gluon vertex tensor is
I#™(p,g,r)=g*"(p—a)*+g"(q—r)*
+gM(r—p)"=mpT*N(p,a.r).
(A32)

The tensor7#"* in the HTL correction term is defined only
for p+q+r=0:

less in any pair of indicengT”“””‘EO. It is even under
cyclic or anti-cyclic permutations of the momemtag, r, and
s. It satisfies the Ward identity

9. 7*"(p,q.r,8)=T""(p+q.r,8s)

—T"\(p,r+q,s) (A38)
and the Bianchi identity

T*"(p,q,r,s)+ T (p,r,s,q)+ T*"(p,s,q,r) =0.
(A39)

When its color indices are traced in pairs, the four-gluon
vertex becomes particularly simple:
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P& T A (p,q,r,S) confused with a Minkowski vector. The inner product of two
Euclidean vectors iP-Q=PyQy+p-q. The vector that
=—ig®N(NZ—1)I'*"*(p,q,r,5s), (A40)  specifies the thermal rest frame remains(1,0).
) The Feynman rules for Minkowski space given above can
where the color-traced four-gluon vertex tensor is be easily adapted to Euclidean space. The Euclidean tensor

Ao voho vor . in a given Feynman rule is obtained from the correspondin
Lro2(p,a,r,s) =29"g" —g**g"7— g"7g" Mink%wski teﬁsor with raised indices by replacingl;3 ea(:hg
—m3T*(p,s,q,r). (A41) Minkowski energypg by iP o, wherePy is the corresponding
Euclidean energy, and multipying byi for every 0 index.
Note the ordering of the momenta in the arguments of thdhis prescription transform®=(py,p) into P=(Py,p),
tensor7*" which comes from the use of the Bianchi iden- g*” into — *”, andp-q into —P- Q. The effect on the HTL
tity (A39). The tensor(A41) is symmetric under the inter- tensors defined in Eq§A2), (A33), and(A37) is equivalent
change ofu and v, under the interchange of ando, and to substituting p-n——P-N where N=(-i,0), p-y—

under the interchange ofu(v) and (\,o). It is also sym- —P.Y where Y=(—i,§/), andy*—Y*. For example, the
metric under the interchange @f and g, under the inter- Euclidean tensor corresponding to E42) is
change ofr ands, and under the interchange gb,() and
(r,s). It satisfies the Ward identity wrip Py | Vi VP'N

X X X TH(P,—P)=( Y*Y Rk (A48)
p l#"*(p,q,r,s)=T"*(q,r +p,s)-I'""’(q,r,s+p).

(A42)  The average is taken over the directions of the unit ve}z:tor

Alternatively, one can calculate a diagram by using the
5. Ghost propagator and vertex Feynman rules for Minkowski momenta, reducing the ex-

The ghost propagator and the ghost-gluon vertex depengressions for diagrams to scalars, and then make the appro-

on the gauge. The Feynman rule for the ghost propagator iefiate substitutions, such g§— —P? p.q——P-Q, and
n-p—in-P. For example, the propagator functiofs21)
and(A22) become

i
Fé"‘b covariant, (A43)
i A(P)= P, (P)’ (A49)
Waab Coulomb. (A44)
p
A(P)=———=. (A50)
The Feynman rule for the vertex in which a gluon with in- - p*+ 11 (P)

dicesu anda interacts with an outgoing ghost with outgoing

momentumr and color indexc is The expressions for the HTL self-energy functidis(P)

andII, (P) are given by Eqs(A13) and (A14) with nf) re-

—gfaP%#  covariant, (A45)  placed byn=p?/P? and7%%p,—p) replaced by
_qfabcirn_ w(e) (1 iP
gfa(r*—r.nn*) Coulomb. (A46) T— ( )f de(1-c?) e "0 (A51)
2 ) iPo—pc
Every closed ghost loop requires a multiplicative factor of
—-1. Note that this function differs by a sign from the 00 compo-
nent 7°%P,—P) of the Euclidean tensor corresponding to
6. HTL counterterm Eq. (A2):
The Feynman rule for the insertion of an HTL counter- TP, - P)= —7'00(P,—p)|p p=—Tp. (A52)
0—'"o

term into a gluon propagator is

A more convenient form for calculating sum integrals that

s b v
111" (p), (A47) involve the function7p is

Eq. (A8).

wherell#”(p) is the HTL gluon self-energy tensor given in p2
Tp—< > > : (A53)
C

~\ P5+p?c?

7. Imaginary-time formalism
ginary where the angular brackets represent an average wuer

In the imaginary-time formalism, Minkoswski energies fined by
have discrete imaginary valugg=i(27nT) and integrals
over Minkowski space are replaced by sum integrals over
Euclidean vectors (2nT,p). We will use the notatiorP
=(Py,p) for Euclidean momenta. The magnitude of the spa-
tial momentum will be denotegp=|p|, and should not be andw(e) is given in Eq.(A16).

(f(C)>cEW(6)foldc(l—cz)_ef(C) (A54)
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APPENDIX B: SUM-INTEGRALS

1
1+2)=—+y— y,z+0(2?). B10
In the imaginary-time formalism for thermal field theory, 4 ) 2 Tn () (B10

a boson has Euclidean 4-momentu®s=(Pg,p), with P?
=P§+ p?. The Euclidean energP, has discrete values: 2. One-loop HTL sum integrals
Po=2mnT, wheren is an integer. Loop diagrams involve
sums overPy and integrals ovep. With dimensional regu-
larization, the integral is generalized do= 3— 2¢ spatial di-

The one-loop sum integrals involving the HTL function
7Tp defined in Eq(A51) are

mensions. We define the dimensionally regularized sum in- 1 w \2 1\[1 (-1
tegral by N E%:Tz(m> (_ﬂ) E+2g<—1>}’
i (eyMZ)E E d3726p (Bll)
=|l—| T —, Bl
Pl 4n pof(zw)Hf (B 17— 1 wo\2 L 1 2t loq 2
P 0P~ (a2 aaT (=1)|-+2y+2log 2],

whered=3—2e¢ is the dimension of space andis an arbi-

trary momentum scale. The factag”(4#)€ is introduced so (B12)
that, after minimal subtraction of the polesédrdue to ultra- i 1 1 wo\% 1
violet divergencesu coincides with the renormalization b pZPZTP_(477)2(47TT) 2log2 —+2y
scale of theMS renormalization scheme.
2log2+ ™
1. Simple one-loop sum integrals +2 log?2+ 3| (B13)
The simple one-loop sum integrals required in our calcu- 5
lations are 1 1 po71L
7—p: 2 = _+2’y+1 y
, P (P2°P (4m)?\4nT) 2|e
2T 4 (B14)
ip logP 45T , (B2) 2 ,
1 1 €
2¢ : i: —(Tp) =7 ey Y
1, »r 1 (-1 Pp (4m)“\4nT 3
—=T—=| —5|1+|2+2— €|,
PP 47T) 12 (-1 1
(B3) x| (1+2log2)| —+2y|- 3
2
P~ 1. 22
j:P P9z g (B4) +Zlog2+210¢72|. (B15)
2e
t 1 Gl It 1+2 +2 The errors are all of order.
=3 2P2 4 2 AT Y . . .
p (4) ™ € It is straightforward to calculate the sum integré@d.1)—

(B15) using the representatigA53) of the functionZ, . For
, (B5)  example, the sum integréB11) can be written

2 i 17_$ ! / PS B16
777_4’)/1 el. P p2 P~ p P(2)+p2\P(2)+p202C ) ( )

2
+(4+4'y+ T—4yl) €
$ 1 B 1 i 2e
P (P)? (4m)°\4xT
(B6) where the angular brackets denote an average ©wasrde-
p? 1 2¢371 2 fined in Eq.(A54). Using the factor oP3 in the numerator to
i e 5 ’ —|=+2y— =, (B7)  cancel denominators, this becomes
P (P9)° (4m)°\4nwT| 4|e 3

i 17— 1 i 1 c?
(B8) P PP\ 1-c?4P | P2 P2+p2c? -

i p4 B 1 ( m 255
P (P%)? (4m)2 4WT) 8le (B17)

i: 1 231 (B9) After rescaling the momentum hy—p/c, the second sum

P (P)3 (4m)* T? integral on the right-hand side becomes the same as the first
sum integral, and the expression reduces to

The calculation of these sum integrals is standard. The errors

are all one order higher ie than the smallest term shown. 1 1—c¢ 1t2e 1

The numbery; is the first Stielties gamma constant defined j:p p2le= EEE ip p? (B19)

by the equation —C

1+2+
zt2y
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Evaluating the average ovey using the expressiofB3) for
the sum integral, and expanding in powersepfwe obtain
the result(B11). Following the same strategy, all the sum

PHYSICAL REVIEW D66, 085016 (2002

where R=—(P+Q) andr=|p+q|. The errors are all of
ordere.
To motivate the integration formula we will use to evalu-

integrals(B11)—(B15) can be reduced to linear combinations ate the two-loop sum integrals, we first present the analogous

of the simple sum integralB3) and (B5) with coefficients
that are averages over The only difficult integral is the
double average ovarthat arises from EqB15):

Ci+25_ CI23‘+25
ci—c
Cq1.Co

.

3. Simple two-loop sum integrals

1+2log?2
-

10 lOI 5 2| 2
+§Og +§og €.

3 (B19)

The simple two-loop sum integrals that are needed are

1
$PQ WZO’ (B20)
$ 1 B TZ i 4e q
PQ P2Q%2 (4m)%\4nT) 12
1 g'(=1)
X ;+10—12Iog2+4g(_1)},
(B21)
i q2 B T2 m )451
PQ P2Q%* (4m)2\4nT) 6
18 (=1
X ;+§+2’y+2ﬁ , (B22)
q2 T2 m 451 1
b PIQITRE (4m)2\4nT| 9| O (B2
o el el
PQ P2QX* (4m)?\4nT) | 8
L | 8 4(¢(-1)
X E+§+4 ng+§’y+§ﬂ,
(B24)

1
iPQ F(P)G(QH(R)= 5LQF(|°)G(Q)H(R)+ fpe(po)n(|p0|)2|mF(—ip0+s,p)RefQG(Q)H(R)

integration formula for one-loop sum integrals. In a one-loop
sum integral, the sum ové?, can be replaced by a contour
integral inpy=—iPg:

d
3, Fp)= llrg+fZ—ﬁfp[F(—ipo,m—Fw.p)]

(B25)

X e7lp0n( pO)!

wheren(po) =1/(efPo—1) is the Bose-Einstein thermal dis-
tribution and the contour runs from« to +o above the
real axis and from+o to —o below the real axis. This
formula can be expressed in a more convenient form by col-
lapsing the contour onto the real axis and separating out
those terms with the exponential convergence facttp,|).

The remaining terms run along contours freme*ie to 0

and have the convergence factdt’o. This allows the con-
tours to be deformed so that they run from Oztae along

the imaginaryp, axis, which corresponds to real values of
Po= —ipgo. Assuming that~(—ipg,p) is a real function of

Po, i.e. that it satisfies=(—ipg ,p)=F(—ipo,p)*, the re-
sulting formula for the sum integral is

X, 7(P)= | FP)+ | etpomlpa)

X2ImF(—ipgt+e,p), (B26)

wheree(py) is the sign ofpy. The first integral on the right
side is over the d+ 1)-dimensional Euclidean vectd?
=(Py,p) and the second is over thal+{ 1)-dimensional
Minkowskian vectomp=(pg,p)-

The two-loop sum integrals can be evaluated by using a
generalization of the one-loop formulB26):

Po=—ipgte

+fpe(po)n(lpol)ZlmF(—ipo+s,p)fqe(qo)n(lqol)ZlmG(—iqo+e,q)

X ReH(R)

Rp=i(pg+dg)+e

+ (cyclic permutations oF ,G,H).

(B27)
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the right side by 3, so there are a total of seven terms. This PQ W: (4m)
formula can be derived in 3 steps. First, express the sum over

n(p)
2e —2€
e[
Py as the sum of two contour integrals oveg, one that Jr n(p)n(q) q
+ S
Pq

L 2l0g2
PR

2

encloses the real axis Ippy=0 and another that encloses the pq  r* (B32)
line Impy=—1Imqy. Second, express the sum owgyas a
contour integral that encloses the reglaxis. Third, sym-
metrize the resulting expression under the six permutationdhe sum integra(B24) can be reduced to a linear combina-
of F, G, andH. The resulting terms can be combined into thetion of Egs.(B21) and(B22) by expressing the numerator in
expressionB27). The integrals of the imaginary parts that the formP-Q=P,Qq+ (r*~p?—q?®)/2 and noting that the
enter into our calculation can be reduced to PoQo term vanishes upon summing oviég or Q.

The sum integralB23) is a little more difficult. After

1 ) applying the formulgB27) and using the delta functions to
Jpe(po)n(|po|)2Ima f(—ipo+e,p) integrate ovep,, o, andr, it can be reduced to
Po=—ipgte
2
n(p) 1 : j: q
:prEZ f(ilp"‘&‘,p), (828) PQ P2Q2r2R2
fn(p)f 1 (p? 9
: =| Qv | omelz Tzt o2
fe(po)n(lpol)ZlmTp f(~ipo+e,p) p P JQQRAT rpl,
P Pozfip0+a
n(p)n(q)(p?  p* r?\r’-p’-q’
1 _ ) +f —_2+_2+_2—A , (833)
=—fpn(p)§2 (™22 (xip+e,plc))e. pa PO 1100 At ARG
p *

(B29)  whereA(p,q,r) is the triangle function that is negative when
p, g, andr are the lengths of three sides of a triangle:
The latter equation is obtained by inserting the expression
Eq. (A53) for 75, using(B28), and then making the change

:4+4+4_ 22+22+22.
of variablep— p/c to put the thermal integral into a standard Alp.Q.r)=pH g+ = 2(pg7+ 7 r7pT) (B34)

form.
As a simple illustration, we apply the formul@27) to  After using Eqs(C104—(C108 to integrate oveQ), the first
the sum integra(B21). The nonvanishing terms are term on the right-hand side of E(B33) is evaluated using
Eqg. (C5). The two-loop thermal integrals on the right-hand
1 . 1 side of Eq.(B33) are given in Eqs(C8)—(C11). Adding to-
iPQ WzZLndeDZwﬁ(po— p )fQW gether all the terms, we get the final resiB23).

4. Two-loop HTL sum integrals
+f n(|pol)278(p3—p) HoTeop T SEm e |
P The two-loop sum integrals involving the HTL function
1 7Tp defined in Eq(A51) are
% | ndad2maied-a?)%.  (®30 .
q M 1
47TT) (_4_8)

1 T?
2522 R= 2
: . PQ P°Q°T (4)
The delta functions can be used to evaluate the integrals over

andq,. The integral oveR is given in Eq.(C98) up to 1 (=1
Egrrecti?)(;ls of ordeg. This reducgs the surr?integral F:o x|z t|2-12log2t4 {(—1) )
1
j:P i L a-210g2l ><——19.8%, (B35)
Q P“Q“r (4m)“| e €
Xpr—Ze_’_f n(p)n(q) iZ q2 T2 m de 1
P P pa PG T j:PQ PzQZr“TR:(47r)2 477T) <_ ﬁs)
(B31)
1 26 24
The momentum integrals are evaluated in E(5) and Xl @t 3~ 72 92lg2
(C6). Keeping all terms that contribute through or@8r we ,
get the resul{B21). The sum integralB22) can be evaluated n {'(= 1)) } 477 ﬂ (B36)
in the same way: {(=1) /€ I
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i P.-Q . T2 [ w \% 1 i 1 T_i 1
PQ P2QZr* R (4m)?\4nT| | 96 PQ P2Q2r2°R™ 44PQ P2Q2r2
S +4log2 i ! 2
K@t e e PP\ REH A2
(=11 % (B39)
4 ~+59.66. (B3
(1))« (837

The first sum integral on the right-hand side is given by Eq.
To calculate the sum integréB35), we begin by using the (B21). To evaluate the second sum integral, we apply the
representatioriA53) of the functionZg: sum integral formuldB27)

1 n(p)/ j 1 1
= 2Re - +C*3+25f
iPQ P2Q2(R5+r?c?) fp p \ o QA(R§+r?c?) S QQ°R? b ool
n(p)n(q)( r2c2—p?—gq? rZ—p?-q? )
+ Re . +2c7 %2 Re———— |, B39
qu o]e} A(p+ie,q,rc) A(p+ie,q,re) (B39

wherer .= |p+g/c|. In the terms on the right-hand side with a single thermal integral, the appropriate average®btrex
integrals overQ are given in Eqs(C109 and(C102,
Pﬂ(ip,p/c)) >
Cc

o[ o J 1 1
“1 %) QARG+ 17y
17
—8log 2+ 7|ogzz

4 C—3+2€J
QQ2R2

772

Pozfiers

i L1l
4¢€? € 16

— 2€

— —2€
@m2H p

4 7I 2

. (B40)
The subsequent integral ovpris a special case of E4C5):

g (D-ad3)2c {(—1+4e) T

RN I CE GRS v (841
—2e\2)-€

fn(p)p’1’2€=2
p

where @)p=1"(a+b)/T"(a) is Pochhammer’s symbol. Combining this with E§40), we obtain

n(p) J’ 1< c? > < . 1
— 2Re| | =55 +(c ”ff o2
L p ( QQ*\ RG+r%c?| QR e ip eyl

LR (-1
:(4w)2(m> 28 —D —+173.30233. (B42)

€
For the two terms in Eq(B39) with a double thermal integral, the averages weighte@¢bgre given in Eqs(C12) and Eq.
(C15. Adding them to Eq(B42), the final result is

Pozfiera

18-12log 2+4

—+
62

-
62

(=11
6—12log2+4 ;+18.6 . (B43)

i 1 c? B T? ( M )46
PQ P?Q*\Ry+r2c?|  (4m)°\4aT 48 {=1

Inserting this into Eq(B38), we obtain the final result E4B35).
The sum integra(B36) is evaluated in a similar way to E¢B35). Using the representatiq\53) for 7, we get

q2 q2 q2 C2
i WTR:i W—i 2072\ RZ 7202 ) - (B44)
PQ P-Q“r PQ P“Q“r PQ P-Q“r Ro+rcc

The first sum integral on the right-hand side is given by B22). To evaluate the second sum integral, we apply the sum
integral formula(B27):
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i q° :Jn(p) ReJ p*+q? +£C_1+2EI q>
PQ P2Q%r3(R5+r%c?) Jp p o Q%r2(R5+r2c?) : Q
0

2p2
Po=—ipte P QR Pa(ip,p/c))

+J n(p)n(a)(a? _rec’—p?- q2+c,1+25p2+r§ . re-pt-q? )
pa PO \r? TA(p+ie,qg,rc) 9> A(p+ie,q.re)

(B45)

In the terms on the right-hand side with a single thermal integral, the weighted averagesaivbe integrals over are
given in Eqgs.(C112, (C113, and(C108:
>C

2 2
Po=

2
+i20*1+2€f a
Q

2p2
—ip+e p Q R P—(—ip,p/c)
1 pe—2e 1 N 35 31 1 313 24772 17I ot 65I 2 BAE
“@m2* P Tase 36 24%92) T 108 576 189927 24002 (B46)
After using Eq.(B41) to evaluate the thermal integral, we obtain
[ el ot el |, ool )
p P Q QF \R0+r ¢* Po=—ip+e Q'R P=(=ip.plc)/¢
L B e N L TP s ) +84.72308. B4
T @m2\aaT) 5762 09T (B47)

For the two terms in Eq(B45) with a double thermal integral, the averages weighte¢bgre given in(C14), (C17), and
(C18. Adding them to Eq(B47), the final result is

$ q2 / CZ >
PO P22 2\ D2 L 27
Q P?Qr*\ Ri+r%c?/.

TZ(,LL

T (4m?\aaT

€11 (314 24 (=11
57g =2 ?——2—92Iog2+4§( D —+270. (B48)

Inserting this into Eq(B44), we obtain the final resulB36).
To evaluate Eq(B37), we use the expressigqA53) for 7 and the identity?- Q= (R?>— P?—Q?)/2 to write it in the form

$PQ %ﬁzim PZQ2 e $P P? iR R 2 <C Je iPQ P2Qr% Zin P?Q%) Rzirc‘j)>c .

The sum integrals in the first three terms on the right-hand side ofBZ9) are given in Eq(B3), (B12), (B21), and(B24).

The last sum integral before the average weightea i/ given in Eq.(B38). The average weighted o/ is given in Eq.
(B43). The average weighted hy* can be computed in the same way. In the integrand of the single thermal integral, the
weighted averages overof the integrals ovef are given in Eqs(C111) and(C103:

(B49)

1 1
c* 2Ref VT S T +073+25f 252
< ( o Q4RG+rc?) Py=—ip+e QR R ippio) .
1, (23 1 104
=Gt |5 —4log2| + 5 -7 —3log 2+ 8 log?2|. (B50)

After using Eq.(B41) to evaluate the thermal integral, we obtain
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n(p) J 1 < c* 1

j— 2Re 2\ 52 2 2 + Cl+2€f 22

p P ( Q Q°\Ro+roct), Py=—ipte QQR e ip pro) c
_ T k)28 Log2|t+1.2887 B51
T @am?\aaT) [\727 399 ' (55

For the two terms with a double thermal integral, the averages weightefi dme given in(C13 and(C16). Adding them to
Eqg. (B51), we obtain

j: S N S I | S A R B52
Po PPQ?\RE+ 22| (4m?\anT) |72 6a2 ~3°9%) e T OO (B52)

Inserting this into Eq(B49) along with Eq.(B43), we getthe  The errors in Eqs(C2)—(C4) are all one order higher ia
final result(B37). than the smallest term shown.

APPENDIX C: INTEGRALS 2. Thermal integrals

Dimensional regularization can be used to regularize both e thermal integrals involve the Bose-Einstein distribu-
the ultraviolet divergences and infrared divergences in threg;, n(p)=1/(efP—1). The one-loop integrals can all be
dimensional integrals over momenta. The spatial dimensiogptained from the general formula
is generalized tal=3—2e dimensions. Integrals are evalu-
ated at a value ofl for which they converge and then ana-
lytically continued tod=3. We use the integration measure

)

1. Three-dimensional integrals

fn(p) L. {(2+2a—2¢) T(2+2a—26)1(})
b P D am TG —e

eVMZ EJ~ d3*2€p (Cl) X(e’u2)€T2+2a_25. (C5)
A (277_)3—26'

The simple two-loop thermal integrals that we need are

We require several integrals that do not involve the Bose-
Einstein distribution function. The momentum scale in these
integrals is set by the mass parametas. The one-loop f n(pn(a@) 1 T2 [ p \* 1
integrals are Y 2 (4m)2\ 4nT 4

1 14
;+—+4Iogz+4

3 2 8 X g,(_l)}
m € )
flog(p2+m2)=—6—w(%) 1+3e,  (C2 3 (=1
P (Co)
f t m(”)26[1+2]
p PZHM? 47| 2m & f n(pn(@) p?_ T2 [ p \%
(C3 oq PQ  rt (4m)?*\4nAT
We also require a two-loop integral: 11 101D
X 9+3y 30-1) 4.855
f L (€7
pg P*(G°+m?)(r*+m?)
e We also need some more complicated two-loop thermal in-
_ 1 Rl } }+2 (Ca) tegrals that involve the triangle function defined in Eq.
(4m)?\2m/) 4le | (B34):
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Jpqn(pgz(m q2A<r:,q,r>:<4T:)2(4/;T)4641212"*(272”“2%:,((—_11)) o +4°389% 9
qun(p;r;(q) A(r:,;,r):(41:)2(4ZT)46214 12+2 Tyt é((_l)) Sratart ;2_471

*4(1”)2(—_11))+2i“”<(—_11))}’ 9

Jpqn(p;z(q) qZA(Z“,q,r):(4T:)2(4ZT)4E( 52(:,(;)[ et Zi“(( 3))+2i“,((:))}’ 10

[ e A B o

The most difficult thermal integrals to evaluate involve both the triangle function and the HTL average definedAB4qg.
There are two sets of these integrals. The first set is

n(Q) q? T2
pq p+|s g, rc) (477)2[0.138721, (C12

Jpqn(p n(q).\e< p+_|52q_?;> (4T7:)2(4ZT>46( —%z %+6.834%, (C13
quw 2Re< r(zi—i::?;}: :(4T7:)2(4ZT>4E;:_21 s 378% (C14

The second set of these integrals involve the variapte|p+g/c|:
quwR%C_meMpﬂs d, rc)> :(45)2(4ZT)46(—% %+13.44%, (C15
qu (p)n(q) e< 1+26A(p+|8qr > :(4T;)2(4ZT)46<_2_14 %+16.38+ -
quw Z_ERE< CHZEA(er?s_qqr )>c :(4T7:)2(4l;T)46_8 %+6'122%’ (C17)
quw%&lmg A(IDJrls o.re > :(4T772-)2(4ZT)465 illzgz{%ﬂoo'?%' (C18

The errors in Eq(C6)—(C18) are all one order higher ia -
than the smallest term shown. The numerical constant in Eq. f f(p)g(Q)h(f)Zf f(R)g(R)h(R).  (C19
(C8) can be expressed analytically in terms of the transcen- b R
dental numbers appearing in E¢E9) and(C10. We do not
know how to calculate the numerical constants in EGS),
(C11), (C12—(C18 analytically.

The simplest way to evaluate integrals lie6) and(C7) T(R):f f(p)elPR, (C20
whose integrands factor into separate functiong, @f, andr p
is to Fourier transform to coordinate space where they reduce
to an integral over a single coording®e and the dimensionally regularized coordinate integral is

The Fourier transform is
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J-

The Fourier transforms we need are

(C2)  a convergent combination of these integrals.
The integrals(C8)—(C10 can be evaluated by first aver-
aging over angles. The triangle function can be expressed as

e’u?
4

)—EJ - The divergences appear as polegitihat cancel upon adding
d> ““R.

. A A(p,q,r)=—4p?g*(1—cos0), (C29
ijaeipR:i (2 @ 6) (ey/.LZ)E - .
p 87 T'(H)T(—a) R ' where 6 is the angle betweep and q. For example, the
(C22 angle average for ECS) is
4 +1
npP) ,, e 1 1 J? Hee <—r > =—W—(6)f dx(1—x?) 1€
Jp 5 p2ee'P R=Er(l)(e“/,u2) (ﬁ) A(p.a.n)/ 54 g ),
2
- (p*+9°+2pgx)?
a —e X . C29
Xfo dpp* " Y27 n(p) Iy (PR p°a’ (€29

(C23  After integrating ovex and inserting the result into E(C8),
the integral reduces to
If « is an even integer, the Fourier transfof@23) is par-

ticularly simple in the limitd— 3: f n(p)n(a) re
n(p) T 1 | P9 GARAT)
JpTelp-R_} m(cothx— ;), (C24) _f n(p)n(q)/l—Ze p2+ 7—6€ 1
“Jw pa | 8 q* 8e g
np) , g 71 1) (C30
jpr PR — oo cothx — cothx 3|

(C25 The integrals ovep andq factor into separate integrals that
can be evaluated using E@C5). After averaging over
wherex=7RT. We can use these simple expressions only ifangles, the integral&C9) and(C10 reduce to
the integral over the coordinakein Eq. (C19 converges for
d=3. Otherwise, we must first make subtractions on the f n(p)n(q)  r? _1—26J n(p)J n(q) 1
pq p P Jq

integrand to make the integral convergent. pq A(p,q,r)  4e q EZ
The integral(C7) can be evaluated directly by applying (C31)
the Fourier transform formuléC19) in the limit e—0. The
Lntegral (C6), however, requires subtractions. It can be writ- f n(p)n(q) p - 1_26f n(p) Zf n(q) 1
en > = 7-
pq P4 g°A(p.q.r) 8e Jp p qg d g
f n(p)n(q) izf n(p)<n(q)_l)i (C32
) PA 17 Jpgp L a  q’fr? The integral(C11) can be evaluated by using the remarkable
n(p) 1 identity
Tf— ——. C26
o p qq2r2 ( )

pP+g® |\ 11 1-2¢ 1

d The identity can be proved by expressing the angular aver-
ages in terms of integrals over the cosine of the angle be-

In the second term on the right-hand side, the integral qver
is proportional top~172¢, so the integral ovep can be
evaluated using EqC5). This first term on the right-han

side is convergent fod=3 so it can be evaluated easily : X .
using the Fourier transform formu(€19). The integral over tweenp andq as in Eq.(C29, and then integrating by parts.

R reduces to a sum of integrals of the forffidxxcottf. Inserting the identityC33) into (C11), the integral reduces

Although the sum of the integrals converges, each of the
individual integrals diverges either as-»0 or asx—o. A
convenient way to evaluate these integrals is to use the strat-
egy in Appendix C of Ref[1]. The integrals are regularized

by using the substitution

1 [ n(p)n(q) p* 1-2e(n(p) (n(q) 1
T'(1+6) _ZJpq pg  1* ' 8e fp p fq q 9

” +6
>3 J’o dxx™"°cotH'x. (C27) (C34

f n(p)n(a) pA(p+q?
pq P4 r*A(p,q,r)

f mdxxmcotH‘x—>
0
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The integral in the first term on the right-hand side is given
in Eqg. (C7), while the second term can be evaluated usmg

Eqg. (C5).

To evaluate the weighted averages ovesf the thermal
integrals in Eq.(C12—(C14), we first isolate the divergent
parts, which come from the regign—g—0. We write the
product of thermal functions in the form

s’n’(s)
pa

2n2(s)) .

Pq - (C39

n(p)n(q)= ( n(p)n(q)—

wheres=(p+q)/2. In the difference term, the HTL average

over ¢ and the angular average overp-q can be calcu-
lated in three dimensions:

o

2~2 2 2
, rc°=p°—q
A(p+ie,q,rc) .,

LiogP b ogpra) (C36
“4pq Clp—d| 2(p*- ) '
Re<c4 r202_-p2_qZ>
A(ptis,q,re)/
_2p*+g’) 1 AL
3(p*—a®? 12pq “|p—q
(3p2+q2)(p +3q2)
Re<02q_2 rzcz—pz—q2>
r A(p+ie,q,rc) e
q? 1 |p*—q¥ p2+q p+q
=207 g22| 27 5109
3(p°—0g°) 2 pq p—q|
2 2
p?+q

The remaining two-dimensional integral ovprand q can
then be evaluated numerically:

f (n(p)n(q)_sznz(S))Re<C2 r’c®—p*-q >
pq pPq p*q’ A(p+ie,qg,re)/,
2
=(5.292¢107) 7, (C39
f (n(p)n(q)_sznz(S))Re<C4 r2c2—p2—q2>
P pPq p*q’ A(p+ie,qg,re) /.
2
=(3.202¢10°°) 75, (C40

PHYSICAL REVIEW 6, 085016 (2002

n(p)n(q) s?n(s)| g? r2c?—p?—g?
——27 | 2Re P
pq P ) r A(p+ie,qg,re) |,
2
=(2.822x10°3) (C41)

(4m)%

The integrals involving th@?(s) term in Eq.(C35 are di-
vergent, so the HTL average ovemland the angular average

over x=p-q must be calculated in 32¢ dimensions. The
first step in the calculation of the?(s) term is to change
variables fromp and q to s=(p+Qq)/2, B=4pg/(p+q)?,
andx=f)~é|:

I'3)

2
r'(3 6)]

% jwdss’l.—4en2(s)52fldﬂﬁ—Ze(l_ﬁ)—1/2
0 0

s?n?(s)

—pzaz—(pCI)

X{(f(s;,s_,r)+f(s_,S:,M)y, (C42

wheres.=g[1+1—B] andr=s[4—28(1—x)]*2 The
two terms inside the average oweicome from the regions
p>q and p<q, respectively. The integral overis easily
evaluated:

f:dssl—“fnz(s) =T'(2—4¢)

X[L(1—4e)—{(2—4e)]T? 4«
(C43

It remains only to evaluate the averages ovandx and the
integral overp.

The first step in the calculation of the(s) term of Egs.
(C12 is to decompose the integrand into two terms:

1
(p+iexq)®—rc*

r2(:2_pZ_q2
A(p+ie,q,rc)

(Ca4

1
=-32

The weighted averages over give hypergeometric func-
tions:

C2
<(p+isiq)2—r2C2>c

1 1 [z r2
~ 3-2e(ptiexq)? g_e(anisiq)z ’
(C49
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C4
<(p+isiq)2—r202>c

B 3 1
- (3—2¢)(5—2¢) (ptie*Qq)?

2

Nl

1
XF
I-c

In the +q case of Eq(C45), theie prescription is unnec-

r

essary. The argument of the hypergeometric function can be

written 1— By, wherey=(1—x)/2. After using a transfor-
mation formula to change the argumeniap, we can evalu-

ate the angular average overto obtain hypergeometric

functions with argumenB. For example, the average owver

of (C45 is

- 3,1‘ r2
5 l(pta)?

__3—26 (1—6,%,1
T 2e |26+ 4"
_(1)6(1)—25(2)—26(%)—6 e 1_26,2_5
(1)—5(2)—35 2—3e '

(C47

where @), is Pochhammer’s symbol which is defined in Eq.
(C127. Integrating over3, we obtain hypergeometric func-

tions with argument 1:

Nlw

1

5S¢ 1-B+ie]|

f 1dB325(1—B)3’2F(
0

3-2e (1),

€ (2

T 2e(1-3¢)

€ (%)*26

1-py )_ 3-2¢ (1) .

(1—y)‘1’2F( .

ei"<1>5<%>6<1—y>¢(

PHYSICAL REVIEW D66, 085016 (2002

2 [ty pp-2e ~112 c?
a1 i)

(1)_2(1)_
(%)725(2)725(1)5

1] - (1)—36(1)—25(3)—5
(%)—36(2)—36

1) ] . (C48

The integral weighted bg* can be evaluated in a similar
way. Expanding in powers of, we obtain

2 [y pp-2e ~172 c?
SJ'Odﬁ,B (1-p8) <(p+q)2_r202>c'x

T 4e

1 (1d2) s
M.

1—26,1—6,%,1

X F
% —2€,2—2€,1+ €
1—3¢€,1— 2k, % —€
XF
% —3¢,2—3€

2

o
= (1+3.54518), (C49
SZfldBﬁ—Ze(l_ﬁ)—llz C—4
0 (p+q)?—r’c? e
2
= 25 (1+10.8408). (C50

In the — q case of Eq(C45), the argument of the hyper-
geometric functions can be written €18y)/(1—B=*ig),
wherey=(1—x)/2 and the prescriptionsic and—ie cor-
respond to the regiong>q and p<(q, respectively. These
regions correspond to the two terms inside the averagexover
in Eq. (C42). In order to obtain an analytic result in terms of
hypergeometric functions, it is necessary to integrate gver
before averaging ovet. The integrals ovep can be evalu-
ated by first using a transformation formula to change the
argument of the hypergeometric function to8(1—y)/(1
— ) and then using the integration formyl@134 to obtain
hypergeometric functions with argument®r 1—y:

1-2¢,1
1+e€

.

%—26,1

.

1-3¢,%—¢

2—3e

5 te

y) . (C5))

After averaging over, we obtain hypergeometric functions with argument 1:
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52J01dBB—25(1_18)—1/2<

_i (1)*26

46(

1—€,1-2¢,1
2—2¢,1+¢€

1
5)—26

1

1
1| -—-— =
) 26(1)—6(%)6(%)—26

iﬂ_s(z)fZe(l)fZe(l)e(%)*E

R 2 2~2
(pt+ie—q)-—r<c >C'X

5 —6,%—26,1

(2)—26(1)6(%)—6F %
3 _2e t+e

.

T 8e(1-30) ¢

The integral weighted bg* can be evaluated in a similar
way. Expanding in powers af and then taking the real parts,
we obtain

2 [t 26 —12 c?
Res fodﬁﬁ (1-58) <(p+i€_q)2_r202>(:’x

2

r
= — —(1+0.34275),

54 (C53

C4

: 2 2-2
(pt+ie—q)c—r-c >C’X

RestldBB—Ze(l_ﬂ)—1/2<
0

77_2

12+
72

(1+1.10518). (C54)

Inserting the sum of the integral€49 and (C53) into the
thermal integral (C42) and similarly for the integrals
weighted byc?, we obtain

>C,X

p?+q’
)2 <Cz>c<

,Pq r’c®—p*-g?

¢ r2 A(p+ie,q,rc)

|

In the first term on the right-hand side, the average avisra
over x gives hypergeometric functions of argumeht

(52 -3l

(pP—q?+ie

1

8 3—2¢

(1)-e(2) -3

m> B
I'2
X

1—¢,1

1—¢€,1— 3¢, % —€
2—3€,2—3€

1) . (C52

f SR 2 TP ) Ty s
w0 P27 O\ A(prieare)] | (amZLO13343%
(C5H
J~ SZnZ(S)D C4 I,202_p2_qZ>
pg P°9° "\ A(p+ie,qg,re)),
BN L 7029
T @m2\4aT) | e T 0
(C56)

Adding these integrals to the subtracted integrals in Egs.
(C39 and (C40, we obtain the final results in Eq§C12
and(C13.

To evaluate the subtraction in the integ(@i41), we use
the identity 9= (r?+q°—p?—2p-q)/2. The integral with
q?—p? in the numerator is purely imaginary. Thus the real
part of the integral can be expressed as

2

——— —Re ¢
qu p’q® r e< >C
n%(s)(1 p-q e< , r202_pz_qz>
f —2 7|5~ 5 |RecC :
pg PQ°\2 2 A
(C57)

A(p+ie,q,rc)
It remains only to evaluate the intgral witht q in the nu-
merator. We begin by using the identity
>C,X

(C58

SZnZ(S) q2 ) I,202_p2_qZ

A(p+ie,qg,rc)

1

2

1 / p-qc?
(p+i8iQ)2\(p+isiq)2—r202

>

*

simple multiplicative factor{c?).=1/(3—2¢). The average
2—¢€,1
B|—F Bl

3 2¢ (C59

The integral overB gives hypergeometric functions of argument 1:
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24 g2 1(2)_ 2—2€,1—€,1 2—2€,2—€,1]
fdﬁﬁ e gyt Pt <pq>:__(3) 26 F(3 |- )
(p*—a%)° L 8(3) gl |3-2€3-2¢ 3 —26,3-2¢
1(3)_, 1-¢1 2—¢€1
+— ‘| F 1|-F 1]]. C60
128, 5 -2¢ 5 -2¢ (C60
Expanding in powers o€, we obtain
l 2
szf dBB 2 (1—p) 2o pr+a” [pa 3 =—7T—[1—1.0214se]. (C61)
0 (p*—q°)* 16

In the second term of EC58), the average over is given by Eq.(C46). In the +q term, the average over=p-q is

_ 13 5—26[F< 2—€12 ]
X =
1_¢ 4e | 3 26146’ g

+i(1)6(1)—26(3)—26(%)—6 -~ E 1_2612_6
4e (1)-e(3)-3e 3-3e

r2

(p+a)?

1—6,1,%
-F
3—2¢,1+¢€

Integrating overB, we obtain hypergeometric functions of argument 1:

p.qc4 B 1 (2)_2E 2—26,2_6,1,g
(pra)?—r2c?| ~— 4€(3=26) (3)_,.| | §-263-2¢1+¢

|

2—26,1—6,1,§
1/—F
% —2€¢,3—2¢€,1+€

|

f ldBB‘ZE(l—ﬁ)‘”Z<
0

1 (DdY-ad®add)-| 273617265 e
be(273e) (1)) $—3¢,3-3e

2—3€,2—2e, 2 —€

1-2¢
- F 5 1. (C63
1-e =363 3¢
2 -
Expanding in powers o€, we obtain
1 . C4 2_6
f dpp 21— p) Vo — =T 2(1-0.0728428). (C64)
0 (p+a)?-re? 18

In the —q term in the integral of the second term of EG58), we integrate ovepB before averaging ovet. The integral
over B can be expressed in terms of hypergeometric functions of ${fae

2 [* —2€/1 _ p\—1/2 4p-q ct
Sfodﬁﬁ (1-p8) (-0 (p+is—q)2—r2C20

_ 1 (2) -2 2-2¢,1 1 (1), | 27261
B 2(3 26)6( ) 26(1 2y)F 1+e 1=y _4(3—26)6(_%) (1=2y) (1=y) =F S 1=y
1 cime 3 . 2—3¢,3—¢€
taaagl W2y -y F| T T Ty (65
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The phase in the last termés '™ for the f(s,. ,s_ ,r) term of Eq.(C42), which comes from th@>q region of the integral,

ande'™ for thef(s_,s, ,r) term, which comes from the<(q region. The average over=p-q can be expressed in terms of
hypergeometric functions of typgF, evaluated at 1:

. 4
& Joldﬁﬁ‘zf(l—ﬁ>—1’2< s : >

(p_q)2 (p+i8—q)2—l’2C2

1 (2)_5.| [1—€2-2¢,1 (2_6,2_26,1
= —F
4(3—26)6(%)726 3—2¢,1+€ 3—2¢,1+€

J

_1_ ,l_z 1
1 (D32l D) R | Aree %—e,%—ze,ll
- 3
(3729)e (1)~ DBz | 5-2e,-3+e 2017 | $-2¢,— 3 +e
. 1 eim(1)6(2)—25(2)—25(3)—6 1-€2-3€3 ¢ | 1—6F 2—€,2-3¢€,5 € L
16(2—3¢)e (1)-e(3) -3 3-3¢,3- 3¢ 1-2e | 3-3¢3-3¢ '

(C66)

The expansion of the real part of the integral in powerg of Adding this integral to the subtracted integral in EG41),
is we obtain the final result in EqC14).

To evaluate the weighted averages owef the thermal
integrals in Eqs(C15—(C18), we first isolate the divergent
parts, which arise from the regiap—0. For the integrals
(C15 and(C16), a single subtraction of the thermal distri-
« e< 4p-q ct > butionn(qg) suffices to remove the divergences:

C,X

(p_q)z (p+i8_q)2_r2C2

Szfldﬂﬁize(l_ﬁ)illz
0

9— 7?2

.
_ . (C70
18

q

T
[1-0.796579¢]. (C67) n(Q)=(n(q)—a

Inserting Eqs(C61), (C64), and(C67) into the thermal inte-
gral of Eq.(C58), we obtain

- o o o For the integralC17), a second subtraction is also needed to
J s“n“(s) p'qDe< , I°c°—p°—q > remove the divergences:
p c

N C .
q P°Q° 2 A(p+ie,q,re)
L b T o1, T 1

(C68)

Inserting this along with Eq.C55) into Eq.(C57), we obtain
$2n%(s) r2c2— p?—g? In the last integral(C18), it is convenient to first use the
f > Re< c? . > identity r2=p?+2p- g/c+q?/c? to expand it into three inte-

pa P°T A(ptie,qre), grals, two of which are Eq¥C15 and (C17). In the third

T2 w \dem21[1 integral, the subtractiofC71) is needed to remove the diver-
= 2( ) 5 _+15_30279%_ gences. For the convergent terms, the HTL average over
(4m)“\ 47T 24m” | € and the angular average OVK&FE)-E{ can be calculated in

(C69  three dimensions:
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rz—pz—q2> 1 2p 1 [p+tq _pt+tg p-q _ |p—q
Rel c 1 —— = log—+ —— lo -~ lo , C72
e< Mp+iearo),, 4p—a? °q 4pa\2p+q 0 p  2p-q 0 p (€72
ri—p?—g? 1 q%(4p*+30%)  2p (p+Q)(4p*+2pg+q?)  p+q
C - = st 7 100—+ 3 log
A(ptie,q,re),  6(4p°—Qq9)  3(4p°—Q) q 12pq(2p+q) p
(p—q)(4p*—2pg+q?) |p—q
- lo , C73
12pq(2p—q)° S €73
Re<|6-c} re—p*-q’ > _ 1 auzt-e’)  dp (p+a)(2p’-2pa-q?) pg
A(p+ie,are), 6pa 6p(4p*—g”)* " g 12p°q(2p+a)® " 4p
(p—9)(2p°+2pq—q°) |p—q|
lo . C7
12p%q(2p—q)2 09 4p (©74
The remaining two-dimensional integral oyeandq can then be evaluated numerically:
n(p)(n(q) T) e< o, e PP > LT
— | = - S|Rd et~} =(=5.113x 10 Y)——, c7
qu pla ¢ Aprieard) ¢ Sy €79
n(p)(n(q) T)e< rﬁ—pz—q2> T
— = R e ) =(—2.651X10"})——, C76
qu pla o A(p+ie,q,re) ), ( )(477) €78
n(p)(n(q) T 1 pze< rg_pz_q2> L, T?
— e 4+ | 5Re e ) =(2.085<107%)——, c7
Jpq Pl a g 29/g" "\ TA(ptie,a.re/, ( Yy (€7
n(p)<n(q) T 1)p-q €< ri—pz—q2> L, T
— =S+ =R : =(—3.729¢ 10 %)—. C78
qu bl a @ 2a] @ \A(prisarg] Sy €78

The integrals involving the terms subtracted frafg) in Eqs.(C70 and(C71) are divergent, so the HTL average oweaind

the angular average overp-q must be calculated in32¢ dimensions. The first step in the calculation of the subtracted
terms is to replace the average oeeof the integral oveiq by an average over andx:

1 ri—p?-q? ol (D)D) o
fq$<“c>m>f(‘l’ Be 3y (em@mTre

X < f(c)cd N"2¢(1—c2)" 22> (xFc—jg)lTN"2€) | (C79

C,X

The integral ovep can now be evaluated easily using either EBg1) or

1 (1)_g,
fpn(p)p‘2‘25=ﬁ Dt 1) (erud) T (C80

2)—€

It remains only to calculate the averages ow@ndx. The averages overgive ,F; hypergeometric functions with argument
[(1Fc)2—ie] L

C O n_2e — N—n—2e 1—e€,n+2¢
((x¥c—ig) "2, =(1%c) " ZF( 2 2¢

[(1:c)/2—is]1), (C8Y)

2—€,N+2€
3—2¢

1—€,n+2¢
3—2¢

[(110)/2—is]‘1)—F( [(1:c)/2—i8]—1”. (C82

(X(x7F C—i8)_n_2€>x:;(1ic)—ﬂ—2€[F(
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Using a transformation formula, the arguments can be changed¥a)(2—is. If the expressiongC81) and (C82 are
averaged ovet with a weight that is an even function ofthe + and — terms combine to givgF, hypergeometric functions
with argument 1. For example,

y

2) (L3 [ o (1-2e1-
<(1—cz)252 (x:c—is)-l-zf> =%—( )\ L)) [—e-'“—(l)“(l) 2¢ (1 celmee

(1)fe(1)fe (1)25(2)*6 2_6’1_36
2 (1) 31) [(1+€,1+2€,4¢
T D @ (2+26.1+3e 1)] (83

Upon expanding the hypergeometric functions in powers ahd taking the real parts, we obtain

Re<(1—c2)262 (xIc—is)125> =7 —e+2(1-log2)€?], (C84)
, 1 2
Re<02(1—02)252 (xic—ls)125> =2 —§e+§(2—3|092)62 , (C85
Re<(1—02)2+252 (Xic—i8)325> = 72 —262 , (C86)
, 2 2
Re<x(1—c2)l*262 (xic—la)225> =72 —§e+§(1—6I092)62 . (C87)

C,X

If the expression$C81) and(C82) are averaged overwith a weight that is an odd function af they reduce to integrals of
,F1 hypergeometric functions with argumentFor example,
g

(@23
.
)
(C88

1-¢€,€

—j (1)35 1 _ (
_ ime >~/ 9€ 2€/1 _\\1+e€l1__

<c(1—c2)1+252 (x:c—is)—2—2€>

8 L, (1), 2+2¢,1+4e

1
_ +erq 1+e€lq
31130 ° (1) .. fodyyl (1=y)" 1 2y|F( 243

The expansions of the integrals of the hypergeometric funcMultiplying each of these expansions by the appropriate fac-
tions in powers ofe are given in Eqs(C147 and (C148. tors from the integral oveg in Egs.(C79 and the integral
The resulting expansions for the real parts of the averagesverp in Egs.(C80 or (B41), we obtain

over c andx are

f n(p) iRe<c—1+25 ri—p?—q? >
Re<0(1—02)1+252 (XIC—is)_2_2€> pg PO A(p+ie,q,re)),
- C,X T M 4e 1
14(1—log 2) :W(m> (—§ ;+2+4Iog(277)},
=—1l+———¢ (C89
’ (C91)
2_ N2 A2
NP (20 e
- c.x pg P9 A(p+ie,q,re) ),
—2(1_|092)+ 4+8I ) 4I 22+772 T w \* 1\[1 8 4 loa2
=T 3 TlgtgloeZglogzt gje “@m? 2T | T 2a)|c T 3T Alod2Zm)),
(C90 (C92
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n(p) p* oo Te P07 I SR
[ & e Srteara) Jogire=amse 2| ri2en?
) 1 (C99
:(477)2( B 1_2) ’ (€93 1
fQZ 1= 477.)2/"’ p 2_25(_2)
f n(p) p-a_ | ,. re—p*—d
b P g ¢ A(ptisaro), X[1+(—2-2log2)e]. (C100
T ( 1% )46 11 | Another simple integral that is needed depends onlyPén
_W m 2—;4—?4‘4 09(277) , (C94) :Pg+p2: p g p
—p?-q’
7 e< ize > e LA (D),
pq p A<p+'8qrc> fquz—m @mz P T,
] |25+ Fom2ra -
(477) a7T) | 2a)|c 3T 392" 45( nJ

(C95 where @), is Pochhammer’s symbol which is defined in Eq.
(C127. We need the following weighted averages owef
this function evaluated &= (—ip,p/c):

f n(p) p-q e< ,. Te—p?—q? >
pa Pg® A(p+ie,q,re)),

) 4 <Cl+2€f Q21R2
_ T It ‘ 1 Q P—(—ip,p/c)
‘<4w)2(4ﬂ) ( E)[(l 1092 °
) 1 251 1 N 2log?2
1 14 1 H2p 2
. +4§ EHy, T (C96) " (4m)? 4l e
(=1 12
37?
. . ) ) +2log?2+ —/|, (C102
Adding these integrals to the subtracted integrals in Egs. 4

(C79—(C77, we obtain the final results in Eq$C15-
(C17. Combining(C78) with Egs.(C94) and(C96), we ob-

tain <Cl+25f 21 , >
) QQ R P—(—ip,p/c)/c
_n2_ (2
f n(p)n(q) p~qRe<CZE rep°-q > L 11
g PA @? A(p+ie,q,re) ), (477)2“ ‘p? —+2log2|. (C103
T2 #5-2log2[1
- 2( - ) 2=, 668% N .
(4m)“\4=nT 72 The remaining integrals are functions Bf that must be

(C97) analytically continued to the poilRy=—ip+e. Several of
these integrals are straightforward to evaluate:

The final integralC18) is obtained from Eqs.C15), (C17),
and(C97) by using the identityr 2= p?+2p-g/c+q?/c?. f 92

QW =0, (C109

Po=—ip

3. Four-dimensional integrals

In the sum integral formuléB27), the second term on the
right-hand side involves an integral over four-dimensional f q
Euclidean momenta. The integrands are functions of the in- QQr°R?|,
tegration variableQ and R=—(P+ Q). The simplest inte-
grals to evaluate are those whose integrands are independent 1 S 1 1-2log2
of Py: “an2H P (=1 —

2

0="1P

1

j 1 — 2e *262 1 2
QQZrZ_(47T)21u p €

7
+4-2log2|, (C99 +10-2 log 2+ 2 log?2— i} (C105

12
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j 1 RJ 1 ct
—5 55 e
QTR ) oQ?\R3+12c?|
1 1 1 |5 6IogZ 52
—2-2¢l — _ = 2e - 7 4
(C10 2
9 4 log?2— % , (C11D
We also need a weighted average awvef the integral in Eq.
(C109 evaluated aP=(—ip,p/c). The integral itself is
q° Rf 1 c?
fQW P—(—ip,p/c) Q2 i Ro+r ¢
1 (De 1(1)_ (1) 1, _2_2( 1jj1,4, 2
= ¥, 2\€p2—2e 1€ — /7€ TIT€ = € fl - = ++—|02,
@2 O P ), @m2# P 37 3%
(C112
2 —2+2€/14 _ ~2\—€
X 3_26+c c (1—c)™~ (C107
The weighted average is . f q? c?
€ oQ%r? R§+r2c2c
2
<Cl+zeJQQ2R2 P~>(ip,p/C)> 1, _,[13-16log2 29 19
¢ _(477)2'u P 12¢ +§_1_8
1 1[1 2(10+3log2) 4
_ 2en2—2€ - 8 4
(42 P 4J?+ 3e 9 ><I092+§I0922—§772}. (C113

2

40 37
+glog2+2 log?2+ —1|.

i (C108

The analytic continuation t8,= —ip + ¢ is implied in these
The most difficult four-dimensional integrals to evaluate'me.grals and_m all t_he four-dimensional integrals in the re-
involve an HTL average of an integral with denominatormalrlder of this section.

R2+ r2¢2 We proceed to describe the evaluation of the integrals
0 (C109 and(C111). The integral ovef), can be evaluated by
1 c2 introducing a Feynman parameter to combi@é and R3
RefQ@< m> +r2c? into a single denominator:
C
1 [2—2 log 2 1 11
—_ 2€~—2¢€
S — = = i8-4log2 f :_f f vt xc?) 2
(4) COARET 123 4 ), 9% [ X+
2
+4|0922_7T7} (C109 +2(1—x)r-p+(1—x)%p—ie] %2
(C119
Ref 1 c?(1-c?)
QQ° R(%Jrrzc2 A where we have carried out the analytic continuatiorPtp
1 11 20 =—ip+e. Integrating over and then over the Feynman
Qe —2e™ v parameter, we get gF, hypergeometric function with argu-
(4m)2H P o3t 6log2|, (C110 ment 1—c?
|
1 1 (1)5 (1)—26(1)—6 261 €
e” 2\€n—2€ e|7Te 2 = 1_02 . C11
fQQ Re o) (am? & H)P @5 T s (113

The subsequent weighted averages avgive sF, hypergeometric functions with argument 1:
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1/ ¢ 1 Dl (D)D) 2l [1-26,3—26,1-€
fT 2, .22 ~ 5(e7u?)p 2e—= ¢ F
QQ7\ Ro+r%e?) (4m) € 3 (3)-22)_3, 5 —2€,2—3¢

1) , (C116

J
After expanding in powers of, the real part is Eq(C111).

The integral(C112 has a factor of 7 in the integrand. After using E4C114), it is convenient to use a second Feynman
parameter to combine (Ax+xc?)r? with the other denominator before integrating over

1/c?(1-c? 1 (D)2 (3)-d1)2d2)_p. [2-2€3—2€,1—€
f_z 2. .22 — 2(ey,U«2)Ep 2e—= _—glme F
QQ?\ RG+r%c? [ (4m) €157 () 2d2)-s ? —2€2-3¢

(C117)

1 311 1
- _F _ 2 2 _ 2,2 . W22 i 7-5/2
fQ erz(RSJrrzcz) SJOdX(l x+xc)J0dyy1 Jr[(l X+XC)re+2y(1—=x)r-p+y(l—x)p—ie] >~
(C118

After integrating over and theny, we obtain,F; hypergeometric functions with argumentél —c?). The integral ovex
gives a,F, hypergeometric function with argument-?:

[ 11 L WfEH D 3 (D),
0 OXARET 12 (w2 )P c 3. 20+20° (D).
X<1—c’—')-fF(E e 1—62)]- (119

After averaging ovec, we get a hypergeometric function with argument 1:

! C2 = 1 2\€e 72725(1)6 1 (_ %)76(1)75
fQ Q2r2\ R(%+r202>c _(477)2(87/.L )P 7{3_26 (%)725

T aiTme

2 (3)_5d1)_s.

1) } . (C120
After expanding in powers of, the real part is Eq(C112.
To evaluate the integrdlC113, it is convenient to first express it as the sum of three integrals by expanding the factor of
g? in the numerator ag®= p?+2p-r+r2:

(— %)—6(1)—26(2)_26F( 1-2¢,3—2¢,—€

5 —2¢,—3€

1
Q%(R5+r3c?)’

2

p
—+
r? 2

p-r
> +1

e (C121)
r

q2
fo QZFZ(RSHZCZ):IQ

To evaluate the integral with-r in the numerator, we first combine the denominators using Feynman parameters as in Eq.
(C118. After integrating over and theny, we obtain,F; hypergeometric functions with argument&l — c?). The integral
overx gives ,F, hypergeometric functions with arguments- &2:

p-r 1 L] G- (D) 1) ) (5—25—6
= e¥u?2)ep~2¢€ _ 1+ glme 1—c2)¢F| 2 ) 1-¢c2|}.
fo AR A SR | T T e T D2 O s
(C122
After averaging ovec, we get a hypergeometric function with argument 1:
f pr/ ¢ \ 1 W] 1 -
QQZI’2 Rg+r2c20 —(477)2(6 ~)P Zezl 3—2¢ (%)—25
1. (3)-dD) 21) 5 [1-26€,5 —26,-
+3em : ZF( AR (C123
3 (3)-2d(1) -5 $—2e,1-3¢
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After expanding in powers of, the real part is ay,ay, ...,V
1811 P ,Bq,V

): (al,az, PP ,lep

Bi, - By

(C130

p-r c?
Re f ]
Q%2 \Ro+rece.
The simplest hypergeometric function is the one of type

1 —1+log2 20 14 Fo. It can be expressed in an analytic form:
= 2€n—2el_ — 9= T 070 1Fo- :
“@amt P [ 3¢ 9 992
2 . 1Fola; ;2)=(1-2)"“. (C131)
—_ Zlan2
3Iog 2+ 36l (C129

The next simplest hypergeometric functions are those of type

Combining this with Eqs(C109 and (C111), we obtain the 2'_:1- They satisfy transformation fqrmulas that allow @!ﬁl

integral (C113. with argumentz to be expressed in terms _of aif; with

argumentz/(z— 1) or as a sum of twgF4’s with arguments

1—z or 1/z or 1/(1-2). The hypergeometric functions of

type ,F; with argumentz=1 can be evaluated analytically
The generalized hypergeometric function of typle, is  in terms of gamma functions:

an analytic function of one variable wiht q parameters. In

our case, the parameters are functionsepfso the list of

parameters sometimes gets lengthy and the standard notation F

for these functions becomes cumbersome. We therefore in-

troduce a more concise notation:

4. Hypergeometric functions

aq,0)

B

_ (B (B1—ar1—ay)
F(B1—a))l(B1—az)’

(C132

The hypergeometric function of typg-, with argumentz

ay,ay, ... ,ap =1 can be expressed as g, with argumentz=1 and
F Bi, - Bq different parameterg30]:
Equ(al,azy...,api,Bl,...,,Bq;Z). F(al,az,as ): T(B)T(B,)T(S)
(C125 B1.B2 T(a;+8)T(a+5)T (as)
The generalized hypergeometric function has a power series B1—agz,Br— az,s
representation: xXF a s a,+s 1),
F(“l-“Zv BRI 34 )_ - (al)n(a'Z)n"'(a'p)nzn (C133
B ) e ,ﬁ o = e n! !
' a i=0 (Bu)n- (Bl (Cl2g  Wheres=pBi+B,—a1—a,—as. If all the parameters of a
sF, are integers and half-odd integers, this identity can be
where @), is Pochhammer’s symbol: used to obtain equal numbers of half-odd integers among the
upper and lower parameters. If the parameters gF a re-
I'(a+b) duce to integers and half-odd integers in the ligit 0 , the
(@)p= I'(a) (€127 use of this identity simplifies the expansion of the hypergeo-
metric functions in powers of .
The power series converges flaj<1. Forz=1, it con- The most important integration formulas involving-,
verges if Re>0, where hypergeometric functions is EqC129 with p=2 andq
=1. Another useful integration formula is
p-1 P
s=i21 Bi—zl a;. (C128 ) 1 lanal t
< = v—1gq e
fodtt (1-1) F 8. _1—'[2)
The hypergeometric function of typg, ;F,., has an inte-
gral representation in terms of the hypergeometric function T(w)I'(v) (al,az,v —z)
of type ,Fq: C TI'(p+v) \Brl-—pu
1 IN'ai+w)(as+w)T -
f dttvl(l_t)ﬂlF(al,az, ol (ayt p)(ap+p)I(B)I( M)(_Z)M
0 Blv e 1Bq F(al)r(az)r(ﬂl+/~l’)
F(w)'(v) _[ a;,a,, ...,ap,v‘ ) xF(a1+M’a2+M’V+M —z) (C139
o M'u+v) |\ B1, --.,,Bq,,u,-l—vz . (C129 B1t w1t u

If a hypergeometric function has an upper and lower paramThis is derived by first inserting the integral representation
eter that are equal, both parameters can be deleted: for ,F, in Eqg. (C129 with integration variablg¢’ and then

085016-35



ANDERSEN, BRAATEN, PETITGIRARD, AND STRICKLAND PHYSICAL REVIEW D66, 085016 (2002

evaluating the integral ovdrto get a,F; with argument 1  gent atz=1 for e=0, this can be accomplished simply by

+t'z. After using a transformation formula to change theexpanding the summand in powersefnd then evaluating

argument to—t’z, the remaining integrals ovéf are evalu- the sums. If the power series is divergent, we must make

ated usingC129 to get 5F,’s with arguments-z. subtractions on the sum before expanding in powerg.of
For the calculation of two-loop thermal integrals involv- The convergence properties of the power series=at are

ing HTL averages, we require the expansion in powers of determined by the variable defined in Eq.(C128. If s

for hypergeometric functions of typg-,, 1 with argument1 >0, the power series converges. 4f-0 in the limit e

and parameters that are lineardnIf the power series rep- —0, only one subtraction is necessary to make the sum con-

resentatio(C126 of the hypergeometric function is conver- vergent:

ay,ap, .. ap \ T(By)--T'(Bp-1)
F( ﬂl! P ,l[)’p,l 1)_ F(al)r(az). . .F(ap) §(5+1)
’ (@y)n(a@z)n - (ap)n  T(B1)---T(Bp-1) sl>

If s——1 in the limit e—0, two subtractions are necessary to make the sum convergent:

ap,ap, .. .,Qp ): I'(B1)-- F(Bp 1) ((al n(a@2)n- - (ap)y
F( Bur Bl T Tapl(ay) - I(a )E(S“)““S*Z)”g (Bun - (Boa!
_ F(ﬁl)"'r(ﬁp 1 s—1 s— 2)
(@)l (a,) - T(a p)[(n+1) +t(n+1) 5 7] (C1396
|
wheret is given by The sums of polygamma functions of-1 orn+ 3 divided

by n+1 orn+ 3% can be evaluated using

P e~ (a;—2) " (Bi—1)(Bi—2
Z )(a)z(ﬁ)z(ﬁ) )

C13 _ N A
(C137 nZ'o n+1 n+1 27 T2 M

The expansion of g,F,_; hypergeometric function in (C141
powers ofe is particularly simple if in the limite— 0 all its
parameters are integers or half-odd-integers, with equal num- o
bers of half-odd-integers among the upper and lower param- E
eters. If the power series representation for such a hypergeo- n=0
metric function is expanded in powers of the terms in the
summand will be rational functions of possibly multiplied
by factors of the polylogarithm functiogi(n+a) or its de-
rivatives. The terms in the sums can often be simplified by
using the obvious identity

H(n+1) Iog(n+1))_ 1 w?

y(n+1) log(n+1)
nti  n+l

2

= —('y+2 log 2)2+ PR (C142

oo

k—1 E

p(n+3) log(n+1)

E [f(m=f(n+k)]=3 f().  (C138 Aol n+lo ned
w2
The sums oven of rational functions oh can be evaluated ) 57 —4log2+2log2— 75 12 T
by applying the partial fraction decomposition and then us-
ing identities such as (€143
> (L - =y(b)—y(a),  (C139 o [ #(n+3) log(n+1)
n+a n+b 2 T
n=0 n+ s n+1
. 1 1 w?
2 e Y'(a). (C140 =—5(y+2log Z)Z—T—yl, (C144
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where vy, is Stieltje’s first gamma constant defined in Eq. 1 . - 2+2¢l1+€
(B10). The sums of polygamma functions oft 1 or n+ 3 fo dy y*<(1-y) €|1—ZY|F( 24 3¢ Y)
can be evaluated using
- 1 e | 2]e (C148
_ og
- 12 3
Z #(n+1)—log(n+1)+ TSN
1 1 These integrals can be evaluated by expressing them in the
Sy —Iog(27r) (C14y5  form
2 2
" 1 _ _ aq,a
1 [Cayy -y 1|1—2y|F( 8, y)
E Y(n+3)—log(n+1)+ ——+ 0 1
n=0 n+1
1 a,a
1 1 =f dyy”‘l(l—y)“‘l(Zy—l)F( 1[,, ? y)
=57 log 2— Elog(2w). (C1406 0 1
1/2 s . ay,a;
We also need the expansionsdinf some integrals ofF ; +2 . dyy"" H(1-y)* (1-2y)F 8, Y]
hypergeometric functions ofy that have a factor of
|1—2y|. For example, the following two integrals are (C149

needed to obtain EqC89):
The evaluation of the first integral on the right-hand side

) gives 3F, hypergeometric functions with argument 1. The
y integrals from 0 to; can be evaluated by expanding the
power series representatid€126 of the hypergeometric
function in powers of. The resulting series can be summed
analytically and then the integral ovgrcan be evaluated.

€, €

fdyy 2(1-y)tr1- ZVIF( 5

6

2
5 9Iog 2) (C147
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