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Perturbative approach to higher derivative theories with fermions

Tai-Chung Cheng, Pei-Ming Ho,* and Mao-Chuang Yeh
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We extend the perturbative approach developed in an earlier work to deal with Lagrangians which have
arbitrary higher order time derivative terms for both bosons and fermions. This approach enables us to find an
effective Lagrangian with only first time derivatives order by order in the coupling constant. As in the pure
bosonic case, to the first order, the quantized Hamiltonian is bounded from below whenever the potential is. We
show in the example of a single complex fermion that higher derivative interactions result in an effective mass
and change of vacuum for the low energy modes. The supersymmetric noncommutative Wess-Zumino model
is considered as another example. We also comment on the higher derivative terms in Witten’s string field
theory and the effectiveness of level truncation.
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I. INTRODUCTION

It is generally assumed that the equation of motion fo
bosonic variable is a second order differential equation,
that for a fermionic variable is first order. Problems ar
immediately when modifications by higher derivative term
are introduced. For example, even in the classical regi
acausal behavior or runaway solutions appear for char
point particles due to the radiation reaction which is a th
derivative term. In general, the canonical formulation@1# al-
ways leads to a spectrum which is unbounded from be
for higher derivative theories. For quantum field theori
higher derivatives often imply nonrenormalizability or viol
tion of unitarity. However, there are counterexamples@2#,
and in fact higher derivatives can be used to improve
behavior of quantum field theories by regularizing the ult
violet divergences@3#. Moreover, apart from the technica
difficulty, there is no known physical reason why natu
should abhor higher derivative interactions. We are justifi
to ignore higher derivatives only in the low energy limit, an
it would be a great puzzle if we never need higher derivat
terms in formulating fundamental theories. In fact, in stri
field theory there are indeed infinite higher derivatives. F
instance, in Witten’s bosonic open string field theory@4#, any
field f appears in the interaction as@5#

f̃ [ea2]m]m
f , ~1!

wherea25 ln(3A3/4)a8. See@6# for references to higher de
rivative ~and nonlocal! theories and their applications.

In a previous work@6#, we considered a perturbative a
proach to higher derivative theories, which is equivalent
the approach of@7#. It deals with Lagrangians whose kinet
term is the same as that for ordinary free fields, and
higher derivative terms appear only in the interaction term
In a perturbative expansion of the coupling constant, hig
derivative terms are replaced by lower derivative terms.
effective Lagrangian is obtained in the end with only fi
derivatives, and its quantization is straightforward. This f
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mulation is closely related to the approach of Yang and Fe
man@8# which directly deals with the equations of motion
the quantum level. Recently, it was shown that the pertur
tive treatment of field theories on noncommutative spacet
in the spirit of @8# is unitary @9,10#.

The physical motivation for the perturbative approach
the following. To extend the range of validity of a physic
model to higher energies, we might need to add new in
action terms with higher derivatives. However, no mat
how small the coupling is, this would imply a sudden i
crease in the dimension of phase space according to the
nonical formulation. Furthermore, the Hamiltonian alwa
becomes unbounded from below. It is thus natural to ca
out a projection back to the original phase space, which
called the ‘‘reduced phase space,’’ so that the new interac
term will not abruptly change the theory into a complete
new theory that we do not know how to handle. We show
that the Hamiltonian on the reduced phase space is boun
from below at least to the first order@6# ~whenever the po-
tential is!.

To demonstrate the physical meaning of the perturba
approach more explicitly, we showed in the example o
coupled spring system@6# that the perturbative approac
gives the correct description of the normal mode with low
natural frequency while ignoring the other normal mode w
higher natural frequency.

The purpose of this paper is to extend our previous w
to include fermions, and to examine the effects of high
derivative interactions on fermionic fields. Interesting resu
are obtained. Because of the anticommutativity of fermio
the effect of higher derivative terms is more severely
stricted than bosons in the perturbative approach.

For the case of a single complex fermion in 011 dimen-
sion, we find that, to all orders, the effect of arbitrary high
derivative interactions is always equivalent to a change
vacuum and an effective mass.

A natural question about higher derivative theories
whether supersymmetry can cure the problem of the Ham
tonian being unbounded from below. We will show in a
example that in the canonical formulation, the quantizat
of fermions with higher derivatives will destroy the reali
conditions. Thus the superchargeQ will not be Hermitian,
©2002 The American Physical Society15-1
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and we can not conclude thatH>0 from the supersymmetric
~SUSY! algebraH;Q2. We will apply the perturbative ap
proach to the 111-dimensional supersymmetric noncomm
tative Wess-Zumino model@11# as an example. The pertu
bative approach not only provides a consistent quantiza
but also preserves supersymmetry.

Another interesting observation we make in this pape
that the higher derivatives in Eq.~1! effectively increase the
interaction strength for fields of higher levels. This makes
technique of level truncation less effective for fluctuati
modes compared with the zero modes in the string fi
theory.

This paper is organized as follows. We show in Sec
that higher derivative terms introduce a different problem
fermions in the canonical formulation. The problem is th
canonical quantization is not consistent with the reality~Her-
miticity! condition on fields. In Sec. III, we extend our pr
vious work to the generic case with arbitrary numbers
bosons and fermions. Explicit results to the first order
given, showing that the Hamiltonian becomes bounded fr
below when the potential is. We describe how to carry
this procedure to an arbitrary order. We prove that the p
turbative approach is consistent to all orders and that
effect of higher derivative terms is properly preserved in t
approach. The case of a single complex fermion in 011
dimension is considered as a simple example. We find
the effect of any higher derivative interactions for this ca
sums up to a change of vacuum and an effective mass
arbitrary orders. We also consider the noncommutative W
Zumino model to the first order as another example.
Witten’s open string field theory, we find that the higher d
rivatives in Eq.~1! make level truncation less effective fo
fluctuation modes. These examples are given in Sec. IV.
nally, in Sec. V, we further extend our approach to a lar
reduced phase space which contains fields with derivat
up to any finite order.

II. CANONICAL FORMULATION

Consider the canonical formulation with higher time d
rivatives for both bosons and fermions. The Lagrangian

L0~Fa
( i ) ,Ca8

( j )
!, ~2!

where Fa
( i ) (Ca8

( j )) is the i ( j )th time derivative of the
a(a8)th boson ~fermion!, a(a8)51•••MB(MF) and i ( j )
51•••NB(NF).

Let us apply the formalism of@12#. The variation of the
action

S5E
t i

t f
dt L0

with respect toFa ,Ca8 is found to be the time integral o
the Euler-Lagrange equations

(
i 50

NB S 2
d

dtD
i ]L0

]Fa
( i )

50, ~3!
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(
j 50

NF S 2
d

dtD
j ]L0

]Ca8
( j )50 ~4!

multiplied by dFa , dCa8 from the right, plus a boundary
term

F (
a51

MB

(
i 50

NB21

PaidFa
( i )1 (

a851

MF

(
j 50

NF21

Qa8 jdCa8
( j )G

t i

t f

, ~5!

wherePai andQa8 j are the conjugate momenta ofFa
( i ) and

Ca8
( j ) given by

Pai5 (
k50

NB2 i 21 S 2
d

dtD
k ]L0

]Fa
( i 1k11)

, ~6!

Qa8 j5 (
h50

NF2 j 21 S 2
d

dtD
h ]L0

]Ca8
( j 1h11) . ~7!

In the above,]/]C is defined to be the derivative with re
spect toC from the right. The symplectic structure can b
directly read off from the boundary term~5! as

V5 (
a51

MB

(
i 50

NB21

dPaidFa
( i )1 (

a851

MF

(
j 50

NF21

dQa8 jdCa8
( j ) . ~8!

Note thatdF ’s are anticommuting variables whiledC ’s are
commuting variables.

In the canonical formulation, the Hamiltonian is

H5 (
a51

MB

(
i 50

NB21

PaiFa
( i )1 (

a851

MF

(
j 50

NF21

Qa8 jCa8
( j )

2L0 , ~9!

assuming that the action is nondegenerate, that is, the
nition of Pa(NB21) in Eq. ~6! can be used to solveFa

NB as a

function of Pa(NB21) andF ’s. This implies that the Hamil-

tonian is unbounded from below because it is linear in allPai
for i ,(NB21). Thus we expect violation of unitarity afte
standard quantization of the system.

Now we consider the fermions. The classical Hamiltoni
of a fermion is typically unbounded from below even wit
out higher derivatives. Yet canonical quantization leads t
spectrum which is bounded from below by filling the Dira
sea. This difference between the bosons and fermions ra
a question. What happens if we have a higher deriva
theory with supersymmetry, where the bosonic spectr
should be identical to the fermionic spectrum?

It turns out that the problem of femions with higher tim
derivatives is that the canonical quantization is inconsist
with the reality conditions, and thus violation of unitarity
also expected. Let us consider the simplest example of a
fermion c in 011 dimension with the Lagrangian

L05 icċ1 igċc̈. ~10!

The symplectic form is
5-2
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V5 i ~dfdf1gdċdċ2g2dc̈dc̈ !, ~11!

wheref[c2gc̈. The Poisson brackets are

~f,f!5 i , ~ ċ,ċ !5 i /g, ~ c̈,c̈ !52 i /g2. ~12!

Upon quantization, we replace Poisson brackets by antic
mutators for fermions, up to a factor of6 i . For the two
possible choices of sign,

$•,•%5 i ~•,• ! or $•,•%52 i ~•,• !, ~13!

we will have either

f2,0 or c̈2,0, ~14!

which is inconsistent with the fact thatc is real. This implies
that the superchargeQ is not Hermitian. In fact the quanti
zation is simply inconsistent. Hence we find that the probl
for fermions with higher derivative Lagrangians can be ev
more serious than bosons.

III. PERTURBATIVE APPROACH

In this paper we focus on Lagrangians of the form

L5LB1LF2lV, ~15!

wherel is the coupling constant,LB andLF are the free field
Lagrangians for bosons and fermions, andV is the interac-
tion piece where higher derivative terms reside. More exp
itly, we have

LB5(
a

1

2
Ḟa

22(
a

1

2
mab

B FaFb , ~16!

LF5(
a8

i
1

2
Ca8Ċa82 (

a8,b8
i
1

2
ma8b8

F Ca8Cb8 ,

~17!

V5V~Fa
( i ) ,Ca8

( j )
!, ~18!

wheremB is symmetric andmF is antisymmetric. We will
give the prescription for the perturbative approach for su
Lagrangians in this section.

To be general, let us consider the cases with infinite or
time derivatives. Under variation the action is

dS52E dtS (a
~EOMB!adFa1(

b8
~EOMF!b8dCb8D

1F (
k50

`

PakdFa
(k)1 (

h50

`

Qb8hdCb8
(h)G

t i

t f

, ~19!

where the equations of motion for bosons and fermions
08501
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~EOMB!a[F̈a1(
b

mab
B Fb

1l(
i 50

` S 2
d

dtD
i ]V

]Fa
( i )

, ~20!

~EOMF!a8[ i Ċa82 i(
b8

ma8b8
F Cb8

1l(
i 50

` S 2
d

dtD
i ]V

]Ca8
( i ) . ~21!

According to Eqs.~6! and ~7!, the canonical momentaPa
andQb8 are

Pak5Ḟadk02l (
i 5k11

` S 2
d

dtD
( i 2k21) ]V

]Fa
( i )

, ~22!

Qa8k5
1

2
Ca8dk02l (

i 5k11

` S 2
d

dtD
( i 2k21) ]V

]Ca8
( i ) .

~23!

The symplectic two-form is given by Eq.~8!.

A. First order approximation

Following @6#, we will construct the effective action with
out higher derivatives for a reduced phase space whic
appropriate for the low energy, weak coupling regime. W
will keep C for fermions andF,Ḟ for bosons as the vari
ables for our reduced phase space. Our strategy is to us
equations of motion to replace higher derivative terms
lower derivative ones. To the lowest order,

Fa
(n).H (

b
Mab

B(n/2)Fb ~n5even!,

(
b

Mab
B[(n21)/2]Ḟb ~n5odd!,

Ca8
(n).(

b8
Ma8b8

F(n)Cb8 , ~24!

where

Mana0

B(n)[5 (
an21

•••(
a1

~2manan21

B !•••~2ma1a0

B ! ~n>2!,

2ma1a0

B ~n51!,

dana0
~n50!;

~25!
5-3
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Ma
n8a

08
F(n)

[5 (
an218

•••(
a18

~ma
n8a

n218
F

!•••~ma
18a

08
F

! ~n>2!,

ma
18a

08
~n51!,

da
n8a

08
~n50!.

~26!

The symplectic two-form~8! reduces to

@V#15(
a

dpa0 dFa1dpa1 dḞa1(
a8

dqa8 dCa8 ,

~27!

where

pa05Ḟa2lja0 , pa152lja1 ,

qa85
i

2
Ca82lja82 , ~28!

and

ja05 (
b51

MB

(
j 50

`

(
i 52 j 11

`

Mab
B( j )F S 2

d

dtD
i 22 j 21 ]V

]Fb
( i )G

1

,

~29!

ja15 (
b51

MB

(
j 50

`

(
i 52 j 12

`

Mab
B( j )F S 2

d

dtD
i 22 j 22 ]V

]Fb
( i )G

1

,

~30!

ja825 (
b851

MF

(
j 50

`

(
i 5 j 11

`

Mb8a8
F( j ) F S 2

d

dtD
i 2 j 21 ]V

]Cb8
( i )G

1

.

~31!

Here @•#1 refers to the replacement of higher derivati
terms by functions ofF, Ḟ, andĊ via Eq. ~24!.

Explicitly, the symplectic two-form is

@V#15(
ab

H F2dab1lS ]ja0

]Ḟb

2
]jb1

]Fa
D GdFa dḞb

1l
]ja0

]Fb
dFa dFb1l

]ja1

]Ḟb

dḞa dḞbJ
1 (

a8b8
F i

da8b8
2

2l
]Rja82

]Cb8
GdCa8 dCb8

1 (
a,a8

H lS ]Rja0

]Ca8

2
]ja82

]Fa
D dFa dCa8

1lS ]Rja1

]Ca8

2
]ja82

]Ḟa
D dḞa dCa8J . ~32!

Inverting the symplectic two-form, we find the Poisso
brackets to the lowest order inl
08501
~Fa ,Ḟb!5dab1lS ]jb0

]Ḟa

2
]ja1

]Fb
D , ~33!

~Fa ,Fb!5lS ]ja1

]Ḟb

2
]jb1

]Ḟa
D , ~34!

~Ḟa ,Ḟb!5lS ]ja0

]Fb
2

]jb0

]Fa
D , ~35!

~Ca8 ,Cb8!52 ida8b82lS ]jb82

]Ca8

1
]ja82

]Cb8
D , ~36!

~Fa ,Cb8!52 ilS ]jb82

]Ḟa

2
]ja1

]Cb8
D , ~37!

~Ḟa ,Cb8!5 ilS ]jb82

]Fa
2

]ja0

]Cb8
D . ~38!

Remarkably, by a simple change of variables

wa5Fa1lja1 , pa5Ḟa2lja0 ,

ca85Ca81 ilja82 , ~39!

the Poisson brackets can be put in the standard form

~wa ,pb!5dab , ~ca8 ,cb8!52 ida8b8 , ~40!

with all other Poisson brackets vanishing.
The Hamiltonian for the reduced phase space variable

defined as

H̃15F(a
~pa0Ḟa1pa1F̈a!1(

a8
qa8Ċa82LG

1

. ~41!

In terms of the new variablesw, p, andc, it is

H̃15(
a

1

2
pa

21(
a,b

1

2
mab

B wawb1 (
a8,b8

i

2
ma8b8

F ca8cb8

1l@V#1~w,p,c!. ~42!

Note that, if the potentialV is bounded from below, the
first order Hamiltonian is also bounded from below. One c
check that the Hamilton equations

ẇa5~wa ,H̃1!, ṗa5~pa ,H̃1!, ċa85~ca8 ,H̃1!
~43!

reproduce the equations of motion~20! and ~21! to the first
order inl.

For the reduced phase space, the effective Lagrangian
responding to the Hamiltonian~43! is found to be
5-4
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L̃15
1

2 (
a

ẇa
22(

a,b

mab
B

2
wawb1(

a8

1

2
ica8ċa8

2 (
a8b8

1

2
ima8b8

F ca8cb82l@V#1~w,ẇ,c!. ~44!

Its Euler-Lagrange equation agrees with the original sys
to the first order inl. For this construction of the effectiv
Lagrangian to be self-consistent, we also need the conju
momenta ofw andc defined from the effective Lagrangia
~44! to agree with Eq.~39!. While the consistency for the
fermions is trivial, for the bosons we need to use the iden

ja01@ j̇a1#15
]@V#1

]Ḟa

, ~45!

which can be verified using Eqs.~29! and ~30!. Since the
final expression of the Lagrangian~44! contains only first
derivatives, its quantization is straightforward.

The general result Eq.~44!, is very useful. It says that, to
the first order approximation, in terms of some new va
ables, the effective Lagrangian is formally the same as s
ply reducing all higher dervative terms in the original L
grangian to lower derivatives according to the free fie
equations.
m

-

08501
m

te

y

-
-

As Lagrangians are only defined up to total derivativ
let us comment on the difference total derivative terms c
make. Starting with two Lagrangians differing from ea
other only by total derivatives, their effective actions~44!
will appear to be different. But this difference simply orig
nates from a different definition of the variablesw,c, and the
effective Lagrangians are in fact equivalent.

B. Higher order approximation

For higher order corrections, we first iterate the equatio
of motion ~20! and ~21! up to a certain orderO(gn). For
example, to the first order,

F̈a→2(
b

mab
B Fb2l(

i 50

` F S 2
d

dtD
i ]V

]Fa
( i )G

1

, ~46!

Ċa8→(
b8

ma8b8
F Cb81 il(

j 50

` F S 2
d

dtD
j ]V

]Ca8
( j )G

1

. ~47!

Higher derivatives ofFa ,Ca8 can also be replaced by func
tions of Fa , Ḟa , and Ca8 up to the same order inl by
differentiating with respect to time and repeatedly using E
~46! and ~47! as
Fa
(n).5 (

b S Mab
B(n/2)Fb2l(

l 51

n/2

(
k50

` FMab
B(n/22 l )S 2

d

dtD
k12l 22 ]V

]Fb
(k)G

1
D ~n5even!,

(
b S Ma,b

B(n21)/2Ḟ1l (
l 51

(n21)/2

(
k50

` FMab
B[(n21)/22 l ] S 2

d

dtD
k12l 21 ]V

]Fb
(k)G

1
D ~n5odd!,

~48!

Ca8
(n).(

b8
S Ma8b8

(n) Cb81 il(
j 50

`

(
l 51

n FMa8b8
F(n2 l )S 2

d

dtD
j 1 l 21 ]V

]Cb8
( j )G

1
D . ~49!
of
on
In general, we can always have allFa
(n) ,Ca8

(n) expressed as

functions ofFa , Ḟa , andCa8 only, up to any given order
O(lp). This helps us to derive the effective symplectic for
from Eq. ~8!

@V#p5 (
a,a8

@dPai dFa
( i )1dQa8 i dCa8

( i )
#p , ~50!

where the bracket@•#p means to replace all higher deriva
tives of Fa andCb by functions ofFa , Ḟa , andCb up to
orderlp. The final Hamiltonian is defined by Eq.~41! with
@•#1 replaced by@•#p . The Hamilton equations will give the
equations of motion up toO(lp11).
C. To all orders: A formal proof

Now we give a formal proof for the self-consistency
the perturbative formulation. From the equations of moti
~20! and~21!, assume that one can find an exact solution~to
all orders inl)

F̈a5ha~Fb ,Ḟb ,Cb8!, Ċa85 f a8~Fb ,Ḟb ,Cb8! ~51!

for certain functionsf andh by infinite iteration~or inspira-
tion!. From this, higher derivatives ofFa and Ca8 can be
written as functions on the reduced phase space

Fa
( i )5hai~Fb ,Ḟb ,Cb8!, Ca8

( i )
5 f a8 i~Fb ,Ḟb ,Cb8!. ~52!

The functionshai and f a8 i can be obtained recursively
5-5
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ha( i 11)5F d

dt
haiG5S ]hai

]Fb
Ḟb1

]hai

]Ḟb

hb1
]hai

]Cb8

f b8D , ~53!

f a8( i 11)5F d

dt
f a8 i G5S ] f a8 i

]Fb
Ḟb1

] f a8 i

]Ḟb

hb1
] f a8 i

]Cb8

f b8D ,

~54!

where we used the Einstein’s summation convention and
notation

@A#[Au$Fa
( i )5hai ,C

a8
( i )

5 f a8i %
. ~55!

A few identities that will come in handy in the proof ar
the following. From Eqs.~6! and ~7! we find

Ṗai5
]L0

]Fa
( i )

2Pa( i 21) , Q̇a8 i5
]L0

]Ca8
( i ) 2Qa8( i 21) . ~56!

For an arbitrary functionA on the total phase space, we ha
the following identities:

d

dt
@A#5@Ȧ#1

]@A#

]Ḟa

~F̈a2ha!1
]@A#

]Ca8

~Ċa82 f a8!,

~57!

]@A#

]Ca8

5F ]A

]Fb
( i )G ]hbi

]Ca8

1F ]A

]Cb8
( i )G ] f b8 i

]Ca8

, ~58!

where one can also replace]/]Ca8 by ]/]Fa or ]/]Ḟa in
the last formula. The effective conjugate momentap0a , p1a ,
andqa8 are defined by

F (
a,a8,i

PaidFa
( i )1Qa8 idCa8

( i )G
5 (

a,a8
p0adFa1p1adḞa1qa8dCa8 , ~59!

and they are

p0a5FPb j

]hb j

]Fa
1Qb8 j

] f b8 j

]Fa
G , ~60!

p1a5F Pb j

]hb j

]Ḟa

1Qb8 j

] f b8 j

]Ḟa
G , ~61!

qa85F Pb j

]hb j

]Ca8

1Qb8 j

] f b8 j

]Ca8
G . ~62!

The effective Hamiltonian is

H5@p0aḞa1p1aF̈a1qa8Ċa82L#. ~63!

The Hamilton equations based on the symplectic struc
~50! are
08501
e

re

~p0a! .52S p1b

]hb

]Fa
1qb8

] f b8
]Fa

D1
]@L#

]Fa

1
]p1b

]Fa
~F̈b2hb!1

]qb8
]Fa

~Ċb82 f b8!, ~64!

~p1a! .52S p1b

]hb

]Ḟa

1qb8

] f b8

]Ḟa
D 1

]@L#

]Ḟa

1
]p1b

]Ḟa

~F̈b2hb!1
]qb8

]Ḟa

~Ċb82 f b8!2p0a ,

~65!

~qa8!
.52S p1b

]hb

]Ca8

1qb8

] f b8

]Ca8
D 1

]@L#

]Ca8

1
]p1b

]Ca8

~F̈b2hb!2
]qb8

]Ca8

~Ċb82 f b8!. ~66!

With the help of Eqs.~56!–~58!, one can show from Eqs
~60!, ~61!, and ~62! that Eq.~64! is automatically satisfied
and that Eqs.~65! and~66! are equivalent to the equations o
motion ~51!.

IV. EXAMPLES

A. A single complex fermion

Let us consider the case of a single complex fermion
011 dimension as a simple example. Remarkably, in t
case we can describe the effect of arbitrary higher deriva
interactions to all orders. Assume that the Lagrangian is
the following form:

L5
i

2
~C̄Ċ1CĊ̄!2mC̄C2lV~C̄ ( i ),C ( i )!, ~67!

where C̄ is the complex conjugation ofC. Instead of de-
composing the complex fermion into two real fermions, w
will maintain the complex structure. By applying integratio
by parts to the action, we can always rewrite the Lagrang
in such a way thatC↔C̄ is a symmetry.

The equations of motion are

i Ċ2mC2l(
i 50

n S 2
d

dtD
i ]LV

]C̄ ( i )
50, ~68!

and its complex conjugation. The subscriptL of ]L refers to
differentiation from the left.

It is straightforward to see that, by iterating the equatio
of motion order by order inl, the functionf defined in Eq.
~51! will be of the following form:

S Ċ

Ċ̄
D 5S R1 R2

R̄2 R̄1
D S C

C̄
D ~69!
5-6
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for some constantsR1 ,R2PC due to the anticommutativity
of the fermions. This is not the only solution to the exa
equations of motion. In general, the equation of motion c

be nonlinear, including terms likeC̄ĊĊ̄, etc., but these
terms will not appear in the iteration procedure outlined
previous sections. Analogous to Eq.~52!, for higher deriva-
tives we have

S C (n)

C̄ (n)D 5S R1
(n) R2

(n)

R̄2
(n) R̄1

(n)D S C

C̄
D , ~70!

where

S R1
(n) R2

(n)

R̄2
(n) R̄1

(n)D [S R1 R2

R̄2 R̄1
D n

. ~71!

Note that the effective conjugate momenta~62! must be
linear in C andC̄:

qC5 i Flb2C1S 1

2
1lb1D C̄ G ,

qC̄5 i F S 1

2
1lb̄1DC1lb̄2C̄ G , ~72!

because there is no nonvanishing cubic term inC and C̄.
We have imposed the relationq̄C52qC̄ becauseqCdC

1qC̄dC̄ should be Hermitian. The symplectic two-form o
the reduced phase space is thus of the form

V5 i ~@11l~b11b̄1!#dC̄ dC1lb2 dC dC

1lb̄2 dC̄ dC̄!, ~73!

for some constantsb1 ,b2PC.
By a change of variables

c5g1C1g2C̄, c̄5ḡ2C1ḡ1C̄, ~74!

whereg1 ,g2 satisfy1

ug1u21ug2u2511l~b11b̄1!, g1ḡ25lb2 , ~75!

we haveV5 idc̄dc and so the Poisson bracket is standa

~ c̄,c!52 i , ~76!

and others are zeros.
To derive the Hamiltonian, we note that by substituting

derivatives of the fermions according to Eq.~70!, the poten-
tial becomes

@V#5cc̄c ~77!

1A solution to Eq. ~75! exists if 2ulb2u,11l(b11b̄1). This
holds whenl is sufficiently small. Otherwise the perturbative a
proach breaks down.
08501
t
n

l

for some real constantc up to a constant. The effectiv
Hamiltonian~63! is also a function ofc, c̄, which are the
only two variables in the reduced phase space. Hence

H5m8c̄c, ~78!

where the effective massm8 is given by

m85$m1l@c1 i ~b1R12b̄1R̄12b2R21b̄2R̄2!#%

3~ ug1u22ug2u2!21. ~79!

The effective Lagrangian is thus

L̃5 i c̄ċ2m8c̄c, ~80!

which is simplified by integration by parts.
Notice that the change of variables, Eq.~74!, similar to a

Bogoliubov transformation, results in a change of vacu
upon quantization. If the coefficients of higher derivati
terms depend on some background fields, variation of
background fields will induce the creation of particles. T
higher derivative terms also contribute to the effective m
m8.

In the above we see that for two real fermions only t
quadratic terms in the potential have some effect in the p
turbative approach. In general, if the number of independ
fermion degrees of freedom is finite, sayN, in the perturba-
tive potential we can ignore all interaction terms with mo
thanN factors of fermions since they will all vanish on th
reduced phase space. Hence it is possible that a lot of in
mation is lost in the perturbative expansion.

B. Supersymmetric spacetime noncommutative field theory

Noncommutative field theories@13# have attracted much
attention in recent years because of their natural appear
in string theory as the low energy description of D-branes
a B field background@14#. Compared with spatial noncom
mutativity, field theories with spacetime noncommutativ
are much less understood@15#, but also particularly interest
ing in the context of string theory@16#. In terms of the Moyal
product, spacetime noncommutativity means infinite time
rivatives. In @6#, a perturbative approach is applied to th
spacetime noncommutative field theory of a scalar field
would be interesting to consider noncommutative field th
ries with supersymmetry@17,18# since supersymmetry tend
to cure the UV-IR connection problem in the quantum theo
@19#. As an example, consider the Wess-Zumino model
111-dimensional noncommutative spacetime for a real s
lar field F and Majorana fermionC with the Lagrangian
density

L52
1

2
]mF* ]mF2

i

2
C̄* gm]mC2

1

2
~mF1lF* F!* 2

2
i

2
mC̄* C2S i

2
lC̄* C* F1H.c.D , ~81!

wheregm5( is2,s1) ands i are the Pauli matrices.
5-7
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The * -product is defined by

f * g~x!5e( i /2)umn]m]n8 f ~x!g~x8!ux85x ~82!

and so

@ t,x#* 5 iu. ~83!

Up to total derivatives which do not change the action,
Lagrangian~81! can be simplified as

L52
1

2
]mF ]mF2

i

2
C̄gm ]mC2~mF1lF* F!2

2
i

2
mC̄C2 il~C̄* C!F. ~84!

By a field redefinition analogous to Eq.~39!, to the lowest
order the effective Lagrangian is given by

L̃.2
1

2
]mw ]mw2

i

2
c̄gmth]mc2~mw1lw *̄ w!2

2
i

2
mc̄c2 il~c̄ *̄ c!w, ~85!

where the*̄ -product is defined as the* in Eq. ~82! with the
replacement

] t
nw→H ~]x

22m2!n/2w ~n5even!,

~]x
22m2!(n21)/2] tw ~n5odd!,

] t
nc→H ~]x

22m2!n/2c ~n5even!,

~]x
22m2!(n21)/2g0~g1]x1m!c ~n5odd!,

Note that* is related to*̄ by the equations of motion a
the lowest order. This means that the supersymmery of
~81! guarantees the supersymmetry of Eq.~85! on shell to the
first order if we take the new fieldsw,c to transform in the
same way asF,C.

As we mentioned in Sec. II, the Hamiltonian is alwa
unbounded from below in the canonical formulation, and
thus in contradiction with the usual belief that the Ham
tonian is positive definite as a result of the superalgebraH
;Q2. The only place that could go wrong in the usual arg
ment is the assumption of the superchargeQ to be Hermitian.
Indeed, in an example in Sec. II we showed that quantiza
of the fermions destroys reality conditions. Here we see
the perturbative approach not only provides a consis
quantization but also preserves supersymmetry order by
der perturbatively.

C. String field theory

As we mentioned in the Introduction, all fields in the i
teraction term in Witten’s bosonic open string field theory@4#
are modified by

f→ f̃ [ea2]m]m
f , ~86!
08501
e

q.

s

-

n
at
nt
r-

where a25 ln(3A3/4)a8. Similarly, in the bosonic closed
string field theory@20#, the same form~86! appears witha2

5 1
2 ln(3A3/4)a8 @21#.
The exponent]•].E22p2 implies that, after Wick rota-

tion, contribution from the UV excitations of string theory
suppressed. It helps string theory to avoid the UV div
gences present in most ordinary field theories. Another w
to look at the effect of Eq.~86! is to view f̃ as the funda-
mental field variable, and its propagator is modified,

1

pE
21m2

→ 1

pE
21m2

e22a2pE
2
, ~87!

which also implies a suppression of high energy mod
However, the appearance of the higher derivative terms
means that we are not sure how to treat this theory exa
@7#.

For Witten’s bosonic open string field theory, the tec
nique of level truncation was shown to be very effective
the calculation of tachyon potential@5,22#. In this calculation
only the zero mode of each field has to be considered
possible, although only weakly supportive reason why
level truncation technique is effective is that the coupli
constants are suppressed by a factor of 4/3A3.0.77 when
we increase the level number@5#.

According to the perturbative approach, to the lowest
der, we simply replace the factor]m]m in Eq. ~86! by the
mass squared of the fieldf. For instance, the level~0,0! trun-
cation gives the tachyon potential

V52
1

2a8
F21

1

3 S 3A3

4 D 3

F̃3→ 1

2a8
w21

1

3
w3, ~88!

where we have used our results of first order approxima
in the perturbative approach to replaceF by w according to
Eq. ~39! and ]•] by m2521/a8 for the tachyon fieldF.
Note that this replacement is not suitable for the zero m
of F because the zero mode is determined solely by
potential term, and is thus a nonperturbative effect. In pr
ciple, the zero mode should be treated first before the pe
bative approach is applied. Here we are considering fluc
tions around the false vacuum.

For a field withm25n/a8, from Eq. ~86! we have

ea2]m]m→S 3A3

4 D n

. ~89!

This implies that the interaction for higher excitation mod
are strengthened by factors of 3A3/4 when we increase th
level number. Therefore, combined with the decrease in c
pling, fluctuation modes other than the zero modes will ha
roughly the same effective interaction when we increase
level number. If the reason why level truncation works f
tachyon potential is really the one mentioned above, we w
not expect level truncation to be effective for fluctuatio
modes.
5-8
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V. EXTENSION OF THE PERTURBATIVE APPROACH

In this section we generalize our formal proof of all orde
in Sec. III C to the situation where the reduced phase spa
allowed to keep derivatives of fields up to an arbitrary giv
order. For each field~boson or fermion! qa we specify an
integer Ka.1 so thatqa ,q̇a , . . . ,qa

(Ka21) are kept in the
reduced phase space. Using the equations of motion, in p
ciple we can rewrite theKath derivative ofqa as a function
on the reduced phase space

qa
(Ka)

5 f a~qb
( j )!, ~90!

wherej is less thanKb , analogous to Eq.~51!.
Higher derivatives ofqa can be derived from Eq.~90!,

qa
( i )5 f ai~qb

( j )!, ~91!

and the functionsf ai can be obtained recursively,

f a( i 11)5F d

dt
f aiG

5(
b

(
j 50

kb22
] f ai

]qb
( j )

qb
( j 11)1(

b

] f ai

]qb
(Kb21) f b , ~92!

where we used the notation

@A#[Auq
a
( i )5 f ai

. ~93!

From Eqs.~22! and ~23!, we find

ṗai5
]L0

]qa
( i )

2pa( i 21) , ~94!

wherepai is the i th canonical momentum ofqa .
For an arbitrary functionA on the phase space, we find th

following identities:

d

dt
@A#5@Ȧ#1(

a

]@A#

]qa
(Ka21) ~qa

(Ka)
2 f a!, ~95!

]@A#

]qa
( i )

5 (
b51

(
j 50

F ]A

]qb
( j )G ] f b j

]qa
( i )

. ~96!

The perturbative momentumPai can be read off from

(
b, j

pb jdqb
( j )5(

a
(
i 50

Ka21

Paidqa
( i ) , ~97!

and we find

Pai5(
b, j

F pb j

]qb
( j )

]qa
( i )G . ~98!

The Hamiltonian is
08501
is

in-

H5F(
a

(
i 50

Ka21

Paiqa
( i 11)2LG . ~99!

The symplectic structure is

V5(
b, j

dpb j dqb
( j )

5(
a

(
i 50

Ka21

dPai dqa
( i )

5(
a

(
i 50

Ka21

(
b

(
j 50

Kb21

dqa
( i ) ~21!a

2

3S ~21!a•b
]Pb j

]qa
( i )

2
]Pai

]qb
( j ) D dqb

( j )

5(
a

(
i 50

Ka21

(
b

(
j 50

Kb21

dqa
( i ) Vaibj

dqb
( j ) , ~100!

where

Vaibj
5

~21!a

2 S ~21!a•b
]Pb j

]qa
( i )

2
]Pai

]qb
( j ) D . ~101!

In the above, whena,b appear as the power of (21), they
are identified with 0 or 1 depending on whetherqa is a
boson or fermion.

The Hamilton equations based on the symplectic struc
~101! are

~Pai!
.5(

b
H 2S Pb(Kb21)

] f b

]qa
( i )D

1~21!(a•b)
Pb(Kb21)

]qa
( i ) ~qb

(Kb)
2 f b!J

1
]@L#

]qa
( i )

2Pa( i 21) . ~102!

With the help of Eqs.~94!–~96!, one can show from Eq.~98!
that Eq.~102! is equivalent to the relation~90! for iÞ0, and
the casei 50 gives only an identity.
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