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Perturbative approach to higher derivative theories with fermions
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We extend the perturbative approach developed in an earlier work to deal with Lagrangians which have
arbitrary higher order time derivative terms for both bosons and fermions. This approach enables us to find an
effective Lagrangian with only first time derivatives order by order in the coupling constant. As in the pure
bosonic case, to the first order, the quantized Hamiltonian is bounded from below whenever the potential is. We
show in the example of a single complex fermion that higher derivative interactions result in an effective mass
and change of vacuum for the low energy modes. The supersymmetric noncommutative Wess-Zumino model
is considered as another example. We also comment on the higher derivative terms in Witten’s string field
theory and the effectiveness of level truncation.
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[. INTRODUCTION mulation is closely related to the approach of Yang and Feld-
man[8] which directly deals with the equations of motion at
It is generally assumed that the equation of motion for ahe quantum level. Recently, it was shown that the perturba-
bosonic variable is a second order differential equation, andve treatment of field theories on noncommutative spacetime
that for a fermionic variable is first order. Problems arisein the spirit of[8] is unitary[9,10].
immediately when modifications by higher derivative terms  The physical motivation for the perturbative approach is
are introduced. For example, even in the classical regimehe following. To extend the range of validity of a physical
acausal behavior or runaway solutions appear for chargeghodel to higher energies, we might need to add new inter-
point particles due to the radiation reaction which is a thirdaction terms with higher derivatives. However, no matter
derivative term. In general, the canonical formulatjahal- how small the coupling is, this would imply a sudden in-
ways leads to a spectrum which is unbounded from belowrease in the dimension of phase space according to the ca-
for higher derivative theories. For quantum field theories,nonical formulation. Furthermore, the Hamiltonian always
higher derivatives often imply nonrenormalizability or viola- becomes unbounded from below. It is thus natural to carry
tion of unitarity. However, there are counterexampl2  out a projection back to the original phase space, which is
and in fact higher derivatives can be used to improve thealled the “reduced phase space,” so that the new interaction
behavior of quantum field theories by regularizing the ultra-term will not abruptly change the theory into a completely
violet divergenceg3]. Moreover, apart from the technical new theory that we do not know how to handle. We showed
difficulty, there is no known physical reason why naturethat the Hamiltonian on the reduced phase space is bounded
should abhor higher derivative interactions. We are justifiedrom below at least to the first ord¢6] (whenever the po-
to ignore higher derivatives only in the low energy limit, and tential is.
it would be a great puzzle if we never need higher derivative To demonstrate the physical meaning of the perturbative
terms in formulating fundamental theories. In fact, in stringapproach more explicitly, we showed in the example of a
field theory there are indeed infinite higher derivatives. Forcoupled spring systenmi6] that the perturbative approach
instance, in Witten’s bosonic open string field thep#); any  gives the correct description of the normal mode with lower

field f appears in the interaction §5] natural frequency while ignoring the other normal mode with
_ 2 higher natural frequency.
f=e*%u"f, (1) The purpose of this paper is to extend our previous work

to include fermions, and to examine the effects of higher
wherea?=In(3./3/4)a’. See[6] for references to higher de- derivative interactions on fermionic fields. Interesting results
rivative (and nonlocal theories and their applications. are obtained. Because of the anticommutativity of fermions,
In a previous worlf6], we considered a perturbative ap- the effect of higher derivative terms is more severely re-
proach to higher derivative theories, which is equivalent tostricted than bosons in the perturbative approach.
the approach of7]. It deals with Lagrangians whose kinetic ~ For the case of a single complex fermion ir-Q dimen-
term is the same as that for ordinary free fields, and alkion, we find that, to all orders, the effect of arbitrary higher
higher derivative terms appear only in the interaction termsderivative interactions is always equivalent to a change of
In a perturbative expansion of the coupling constant, highevacuum and an effective mass.
derivative terms are replaced by lower derivative terms. An A natural question about higher derivative theories is
effective Lagrangian is obtained in the end with only firstwhether supersymmetry can cure the problem of the Hamil-
derivatives, and its quantization is straightforward. This for-tonian being unbounded from below. We will show in an
example that in the canonical formulation, the quantization
of fermions with higher derivatives will destroy the reality
*Email address: pmho@phys.ntu.edu.tw conditions. Thus the superchar@will not be Hermitian,
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and we can not conclude thidt=0 from the supersymmetric Ng d\l aL,
(SUSY) algebraH~Q?. We will apply the perturbative ap- _ (— a) —= (4)
proach to the ¥ 1-dimensional supersymmetric noncommu- 1=0 AV

tative Wess-Zumino modéglll] as an example. The pertur- o )
bative approach not only provides a consistent quantizatioultiplied by 6®,, 5, from the right, plus a boundary

but also preserves supersymmetry. term

Another interesting observation we make in this paper is Mg Ng-1 Mg Ne-1 t
that the higher derivatives in E€L) effectively increase the 2 E P spM 4 2 2 Q L op® (5)
interaction strength for fields of higher levels. This makes the eI = S e e B
technique of level truncation less effective for fluctuation b
modes compared with the zero modes in the string field , &)
theory. whereP,; andQ,; are the conjugate momenta &f,’ and

This paper is organized as follows. We show in Sec. ||\I’(a’,) given by

that higher derivative terms introduce a different problem for

fermions in the canonical formulation. The problem is that Ne_!~t d\k aLg

canonical quantization is not consistent with the redliter- Pai= kZO T dt W (6)
miticity) condition on fields. In Sec. I, we extend our pre- a

vious work to the generic case with arbitrary numbers of Ne—j—1 Y

bosons and fermions. Explicit results to the first order are Qui= 2 (_ _) 0 @)
given, showing that the Hamiltonian becomes bounded from R e dt) ggUrhy)

below when the potential is. We describe how to carry out

this procedure to an arbitrary order. We prove that the perin the abovegd/d¥ is defined to be the derivative with re-
turbative approach is consistent to all orders and that thepect toW from the right. The symplectic structure can be
effect of higher derivative terms is properly preserved in thisdirectly read off from the boundary ter(s) as

approach. The case of a single complex fermion 10
dimension is considered as a simple example. We find that . .
the effect of any higher derivative interactions for this case €= 21 ,ZO dP,dd Y+ 2 ZO dQa;d¥Y . (8)
sums up to a change of vacuum and an effective mass, to a=s 1= a'=1 1=

arbitrary orders. We also consider the noncommutative Wes§qote thatdd’s are anticommuting variables whité¥’s are
Zumino model to the first order as another example. FO'E:ommuting variables.

Witten’s open string field theory, we find that the higher de- | the canonical formulation, the Hamiltonian is
rivatives in Eq.(1) make level truncation less effective for

Mg Ng—1 Mg Ng—1

fluctuation modes. These examples are given in Sec. IV. Fi- Mg Ng—1 Mg Ne—1 _
nally, in Sec. V, we further extend our approach to a larger ~ H=Y, > P,®{+ > > Q. ¥V-L,, (9
reduced phase space which contains fields with derivatives a=1 i=0 a’'=1 1=0

up to any finite order.
P y assuming that the action is nondegenerate, that is, the defi-

nition of Py, -1y in Eq. (6) can be used to solv@gB as a
function ofPa(NB,l) and®’s. This implies that the Hamil-

tonian is unbounded from below because it is linear ifPg||
for i<(Ng—1). Thus we expect violation of unitarity after
standard quantization of the system.

Now we consider the fermions. The classical Hamiltonian
0 () - o ) o of a fermion is typically unbounded from below even with-
where @3’ (¥.7) is the i(j)th time derivative of the oyt higher derivatives. Yet canonical quantization leads to a
a(a’)th boson (fermion), a(a’)=1---Mg(Mg) andi(j)  spectrum which is bounded from below by filling the Dirac

II. CANONICAL FORMULATION

Consider the canonical formulation with higher time de-
rivatives for both bosons and fermions. The Lagrangian is

Lo(@®,wl)), (2)

=1---Ng(Ng). sea. This difference between the bosons and fermions raises
Let us apply the formalism df12]. The variation of the a question. What happens if we have a higher derivative
action theory with supersymmetry, where the bosonic spectrum
should be identical to the fermionic spectrum?
[ It turns out that the problem of femions with higher time
S=| dtLg . ) . o .
t derivatives is that the canonical quantization is inconsistent

with the reality conditions, and thus violation of unitarity is
with respect tod,, ¥, is found to be the time integral of also expected. Let us consider the simplest example of a real

the Euler-Lagrange equations fermion ¢ in 0+ 1 dimension with the Lagrangian
Y d)|iaL, Lo=igg+igyy. (10
2\ T dt) 0 O ©
=0 Py The symplectic form is
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Q=i(dpdp+gdydy—g?didy), (11 (EOMg),=b,+ S, mB.b,
where ¢=yy—gi. The Poisson brackets are o g av
L +x2(—&)ﬁ, (20
(p.d)=i, (p,p)=ilg, (,)=—ilg". (12) =0 Py
Upon quantization, we replace Poisson brackets by anticom-
mutators for fermions, up to a factor afi. For the two (EOMp) =iV, —i>, erbr‘Pb'
possible choices of sign, '
: . LoV
{1 d=iC) or {oh==i(-,), (13) ) 7
+>\|§O i) @ (22)

we will have either

. According to Egs.(6) and (7), the canonical momentR
$’<0 or §°<0, (14) 9 as(6) @) é

andQy, are
which is inconsistent with the fact thdtis real. This implies .
that the supercharg® is not Hermitian. In fact the quanti- —d,5 2 d\0-k"1 gv 29
zation is simply inconsistent. Hence we find that the problem Pak= ko~ A =\ dt Ok (22
for fermions with higher derivative Lagrangians can be even a
more serious than bosons.
d\(-k1 yv
Ill. PERTURBATIVE APPROACH Qark= \Pa'éko )\I %1 ( dt) L;,\I,(i)'
a/
In this paper we focus on Lagrangians of the form (23
L=Lg+Lg—AV, (15  The symplectic two-form is given by E@8).

where\ is the coupling constant,g andLg are the free field ) o
Lagrangians for bosons and fermions, ands the interac- A. First order approximation

tion piece where higher derivative terms reside. More explic- Following [6], we will construct the effective action with-

itly, we have out higher derivatives for a reduced phase space which is

appropriate for the low energy, weak coupling regime. We

1. 1 i i i ;
N T2 N T B will keep ¥ for fermions and®,® for bosons as the vari-
Le=2 5032 5m 6P, (16) ables for our reduced phase space. Our strategy is to use the
equations of motion to replace higher derivative terms by

1 _ . lower derivative ones. To the lowest order,

LF:E’ iE\Par\Par E’ | a,b,\lfarqur,

) " (17) > ME™d,  (n=even,
P = ’

v(@&),wg)), (18) Eb MBI D2, (n=odd),

wherem® is symmetric andn® is antisymmetric. We will

give the prescription for the perturbative approach for such

Lagrangians in this section. P~ E MED W, (24)
To be general, let us consider the cases with infinite order

time derivatives. Under variation the action is

where
5s=—f dt(E (EOMg) 6P 4+ >, (EOMF)b,aqu,)
a b/
> - 2( my, )--(=mi,) (n=2),
ts an_1 1 190
(k) (h) B(n) —
E PakoPy +2 Qp hN L ) (19 Mag —mglao (n=1),

5ana0 (n=0);

where the equations of motion for bosons and fermions are (25
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22 (M )o(myy) (n=2),
Fy ) &1 a
M =
ar;a(’) ma]r-a(r) (n=1),
Oarar (N=0).
(26)

The symplectic two-form{8) reduces to

[Q]lzg dpao dq)a"'dpal dcba"’E an’ d\Ifa,,
a/

27
where
paO:d)a_)\gaOv Pa1=—Aéa1,
i
qa’ziqfa’_)\ga’b (28)
and
Mg = © r d i—2j-1 &V -
= M B (__) |
$a0 bzl jEOi:§+1 ab i dt (M)g)-l
(29
Ms = [ g\i—2-2 gy ]
= MB(J) (__) |
bar= 21 ]EO| §+2 I dt éxq)g)_l
(30
- d\ =it ov
- (-8
far2™ b,zl ,Zo.,Zﬂ bra’\ | dt o)
1
(3D

Here [ -], refers to the replacement of higher derivative

terms by functions ofp, &, and ¥ via Eq. (24).
Explicitly, the symplectic two-form is

a0 9ép1
— Oapt N\
ab ( (7CD b (9®a

gaod(b LD+ —2 Oa
o

dd, dd,

a

[ml=2b [

224, dd,

‘9 b

. 5arbl

2
+2

{ )\( aRfaO
a’a’ &‘I’ar
)\( Iréa1

AV,

- aRga’Z

Ty

0"§a'2
b

+2

a’'b’

1d\lfa, dw,,

)dCD dw,,

5§a'2
b,

)d(b d\pa,] . (32)

Inverting the symplectic two-form, we find the Poisson

brackets to the lowest order in

PHYSICAL REVIEW D66, 085015 (2002

. o 9&a1
b, P Oap+N| —— , 33
(®a,Pp)=bap b, 9Dy (33
Jd J
((I)a,CDb):)\( far_ 9 (34)
by 0D,
d€a0 f7§bo
((I)arq)b) )\( q)b &(I)a (35)
) dépra  d&ar2
\I}/,‘I’/:_|5//_)\ + y 36
(Var, W) a’b (awa, v, (36)
dépro  9&ar
O, ¥V, )=—i\ - , 3
(P, Vyr) (r?fba v, (37
- [ 92 a0
O, ¥V,)=i\ -—. 38
(dg, W) (ﬁq)a o (38)
Remarkably, by a simple change of variables
=Pt Ny, ma=Dy— Ny,
Yar=Wa+iNéas, (39

the Poisson brackets can be put in the standard form

(@a )= 06ap, (Yar,p)=—10a1p, (40)

with all other Poisson brackets vanishing.
The Hamiltonian for the reduced phase space variables is
defined as

le Ea: (paod)a+ palc'ba)"_z qa’q,a’_l— (41)
a 1
In terms of the new variables, =, and, it is
~ 1, 1 . I
HFZ _7Ta+2 5 MapPa®pnt E _ma'bllr/fa"//b'
a 2 a,b 2 a’,b’ 2
TAV]i(e, 7 ¢). (42)

Note that, if the potentiaV is bounded from below, the
first order Hamiltonian is also bounded from below. One can
check that the Hamilton equations

bar=(a aﬁl)
(43

(Pa:(<Pa1H1)v Wa:('ﬂ'avﬁl)y

reproduce the equations of moti¢20) and (21) to the first
order in\.

For the reduced phase space, the effective Lagrangian cor-
responding to the Hamiltonia@3) is found to be
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~ 1 . mgb 1 . As Lagrangians are only defined up to total derivatives,
Li=5 > 2= T<pa<pb+2 St let us comment on the difference total derivative terms can
a a.b a’ make. Starting with two Lagrangians differing from each
1 . ) other only by total derivatives, their effective actio(®)
-2 Elma,b,z//a,z//b,—)\[V]l(go,cp,z/f). (44) will appear to be dlfferenlt._l_.%ut this dlﬁergnce simply origi-
a’'b nates from a different definition of the variablesy/,, and the
effective Lagrangians are in fact equivalent.
Its Euler-Lagrange equation agrees with the original system
to the first order in\. For this construction of the effective
Lagrangian to be self-consistent, we also need the conjugate
momenta ofe and ¢ defined from the effective Lagrangian ~ For higher order corrections, we first iterate the equations
(44) to agree with Eq(39). While the consistency for the of motion (20) and (21) up to a certain orde©(g"). For
fermions is trivial, for the bosons we need to use the identityexample, to the first order,

B. Higher order approximation

. - d\' oV
- V] b,—— > mEd,—\ (——) — 46
§a0+[§al]1:fa (45) a—”’ Zb ab®Pb i:EO at &@g) 1 (46)
a
which can be verified using Eq$29) and (30). Since the o i
final expression of the Lagrangiad4) contains only first oS WS, (_i) av‘ @
derivatives, its quantization is straightforward. a ey b b =0 dt (9\1,2) .

The general result Eq44), is very useful. It says that, to
the first order approximation, in terms of some new vari- o
ables, the effective Lagrangian is formally the same as simHligher derivatives ofb,, ¥, can also be replaced by func-
ply reducing all higher dervative terms in the original La- tions of ®,, ®,, and ¥, up to the same order ik by
grangian to lower derivatives according to the free fielddifferentiating with respect to time and repeatedly using Egs.
equations. (46) and (47) as

n2 d\k+2-2 gy
MBMp )\ MB(n/2|)< . _) n=even,
Eb: ab b 2:1 k§=:0 ab dt &(I)E)k) . ( r)
(N
Pg"= (n-1)2 = d\k+2-1 gy (48)
MB(nfl)IZq')_’_)\ MB[(nl)/2|]( _ _) n=odd),
2| Mk 2 & | M dt |, (n=o0dd
«® n i —
v=> [ MO, Py +in MF,‘”T')( - —) — 49
. bE arbrTh 120121 ar dt v 49
|
In general, we can always have @f” , W) expressed as C. To all orders: A formal proof
functions of®,, ®,, and¥,, only, up to any given order Now we g_ive a forma! proof for the self-c_onsistency _of
O(\P). This helps us to derive the effective symplectic formthe perturbative formulation. From the equations of motion
from Eq. (8) (20) and(21), assume that one can find an exact solutton
all orders in\)
[Q],= > [dP,ddP+dQ,,; dwi)],, (50) Co=ha(Pp, Py, V), Var=Ffa(Pp,Pp,Vy) (51
a,a’

for certain functiond andh by infinite iteration(or inspira-
tion). From this, higher derivatives ob, and ¥, can be
where the brackeft- ], means to replace all higher deriva- written as functions on the reduced phase space
tives of @, and ¥, by functions of®,, ®,, and¥, up to _ i , .
order\P. The final Hamiltonian is defined by E41) with D =h(Dy,Dp, V), ‘I’g,):fari(@b,@b,‘l’br). (52
[- 11 replaced by - ],. The Hamilton equations will give the
equations of motion up td@(AP*1). The functionsh,; andf,,; can be obtained recursively
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d ohy. ohy  oh,
Nagi+1)= ahai = I, 8(i)bhb+ b,fb’ , (53
d I fan Ofa
fa’(i+1)_[&fa’i}_ i P bt &‘Pb,fb’ ;
(54)

where we used the Einstein’s summation convention and the

notation

[AI=Al 0=, 1=, ®9
a

A few identities that will come in handy in the proof are
the following. From Eqs(6) and(7) we find

. . al,
Pai= ali-1)» Qa’i:&Tg,)_Qa’(i—l)' (56)

o)

For an arbitrary functiom\ on the total phase space, we have
the following identities:

dA—A+a[A]6'I'> h+(9[A]\'If f
gil A=A acba( a—Na) a,( ar—far),
(57)
A oA | ohy Ifpri
[ ]: : bi - b’i ’ (58)
PRI L TN A VIR A GO )

where one can also replacéd¥,, by 3/9®, or 3/dd, in
the last formula. The effective conjugate momepgg, pia,
andq,s are defined by

2 Poo®{)+Qqi o)

aal

= 2 PoadP,+ plaé(i)a"' Oar 64/, (59)
a,a’
and they are
&hbJ dfpr;
Poa= Pb] 9D, b’j_aq)a : (60)
dhy; Iy
=P ri—, 61
Pia b]&q)a bjﬁq)a ( )
da I bl ALY Qv Ja‘lfa, (
The effective Hamiltonian is
H:[pOa(-Da+ plad.)a"' Qa’q,a’_l—]- (63)

The Hamilton equations based on the symplectic structur
(50) are

PHYSICAL REVIEW D66, 085015 (2002

| ah, of | d[L]
(pOa) plb 5(1) +qb’ ﬁ(D + (I)a
plb
((I)b hb)+ (‘Ifbr for), (64
ahy, oty L]
= + ’ + -
(P1a) (plba b, Jb " G,
IP1p
(D h +_ \I, P f 1) 5
a( b~ hp) ﬁfba( b~ for) — Poa
(65)
ah, of | L]
1) = ’ +
(Gar) (plbmlra, b 0\Ifa,) I,
IP1p dQpr
b, —h)— W, —f 66
(®Pp—hp) mlfa,( p—fpr). (66)

a’

With the help of Eqs(56)—(58), one can show from Egs.

(60), (61), and (62) that Eq.(64) is automatically satisfied,

and that Eqs(65) and(66) are equivalent to the equations of
motion (51).

IV. EXAMPLES
A. A single complex fermion

Let us consider the case of a single complex fermion in
0+1 dimension as a simple example. Remarkably, in this
case we can describe the effect of arbitrary higher derivative
interactions to all orders. Assume that the Lagrangian is of
the following form:

- — o
?ww+wwymww=xwwﬂwmx (67)

whereW is the complex conjugation o¥. Instead of de-
composing the complex fermion into two real fermions, we
will maintain the complex structure. By applying integration
by parts to the action, we can always rewrite the Lagrangian

in such a way thatV — W is a symmetry.
The equations of motion are

-

and its complex conjugation. The subsciipbf J, refers to
differentiation from the left.

It is straightforward to see that, by iterating the equations
of motion order by order in\, the functionf defined in Eq.
(51) will be of the following form:

d
dt

PAY;

iU —m¥— ij T

=0

=0, (68)

4 (Rl

R>

R,

al

Ry

v

v

e (69)

¥
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for some constantR;,R, e C due to the anticommutativity for some real constant up to a constant. The effective

of the fermions. This is not the only solution to the exactHamiltonian (63) is also a function Ofl//, J! which are the
equations of motion. In general, the equation of motion camnly two variables in the reduced phase space. Hence

be nonlinear, including terms Iiké_f\if\i_f, etc., but these

terms will not appear in the iteration procedure outlined in H=m'yy, (78)
previous sections. Analogous to E&2), for higher deriva- ) o
tives we have where the effective mass’ is given by
(w)) (Rg”) Ré“’) ( \p) m’'={m+A[c+i(b;R;—b;R;—b,R,+b,R,) ]}
vl ARY R\ W X(|71=1 72?7t (79
where The effective Lagrangian is thus
(n) (n) - _
RI" RY _ R, R,\" - L=igy—m gy, (80)
& ") T\R R )
2 ! which is simplified by integration by parts.

Bogoliubov transformation, results in a change of vacuum

linear in and: upon quantization. If the coefficients of higher derivative

1 _ terms depend on some background fields, variation of the
Qy=1i|\b, ¥+ §+)\b1)‘lf}, background fields will induce the creation of particles. The
higher derivative terms also contribute to the effective mass

m’.
qy=i EH\E 1[/_|_)\qu_; , (72 In the above we see that for two real fermions only the
2 quadratic terms in the potential have some effect in the per-

) o i . — turbative approach. In general, if the number of independent
because there is no nonvanishing cubic termbirand V. fermion degrees of freedom is finite, shlyin the perturba-
We have imposed the relatiogy = —qy becauseqy 6W tive potential we can ignore all interaction terms with more
+qq75§ should be Hermitian. The symplectic two-form on thanN factors of fermions since they will all vanish on the
the reduced phase space is thus of the form reduced phase space. Hence it is possible that a lot of infor-

mation is lost in the perturbative expansion.
Q=i([1+N\(by+by)]d¥ dW¥ + b, d¥ dW¥
B. Supersymmetric spacetime noncommutative field theory

FADy A ), 73 Noncommutative field theorigs 3] have attracted much
for some constants; ,b, e C. attention in recent years because of their natural appearance
By a change of variables in string theory as the low energy description of D-branes in
a B field background 14]. Compared with spatial noncom-
p=y U+ U, =y, ¥+, P, (74) ~ mutativity, field theories with spacetime noncommutativity
are much less understodtl5], but also particularly interest-
wherey, , v, satisfy} ing in the context of string theofy1.6]. In terms of the Moyal

L . product, spacetime noncommutativity means infinite time de-

|12+ |y2l?=1+N(by+by), 7yi1y,=Ab,, (75  rivatives. In[6], a perturbative approach is applied to the

o spacetime noncommutative field theory of a scalar field. It

we haveQ)=idydy and so the Poisson bracket is standardwould be interesting to consider noncommutative field theo-
. ries with supersymmetrf17,18 since supersymmetry tends

(g, p)=—1, (76)  to cure the UV-IR connection problem in the quantum theory

[19]. As an example, consider the Wess-Zumino model on

and others are zeros. 1+ 1-dimensional noncommutative spacetime for a real sca-

To derive the Hamiltonian, we note that by substituting all|ar field ® and Majorana fermion¥ with the Lagrangian
derivatives of the fermions according to E@0), the poten-  density
tial becomes

1 i— 1
_ _ 2
[V]=cyy (77) L——Eaﬂrb*&"(b—E\P*y"aM\If—E(m@Jr)\(I)*(I))*
[[— [
— —-mYxP—| \NP*¥xP+H.c.|, 81
IA solution to Eq.(75) exists if 2\by/<1+\(b;+b;). This 2 2 (81)
holds when\ is sufficiently small. Otherwise the perturbative ap- .
proach breaks down. wherey*=(io?,0t) andg' are the Pauli matrices.
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The *-product is defined by where a®=In(3y3/4)a’. Similarly, in the bosonic closed
e string field theory[20], the same forni{86) appears witta?
frg(x)=eP?"uluf (x)g(x") |y =x (82  =1In(3y3/4)a’ [21].

The exponent- 9=E?—p? implies that, after Wick rota-
tion, contribution from the UV excitations of string theory is
suppressed. It helps string theory to avoid the UV diver-
gences present in most ordinary field theories. Another way

Up to total derivatives which do not change the action, thd© 100k at the effect of Eq(86) is to view_? as the funda-
Lagrangian(81) can be simplified as mental field variable, and its propagator is modified,

and so

[t,x],=i6. (83

1 1

2, 2 2,2
pz+m?2  pZ+m

1 i
L=—50,0 =W+ 9,V —(md+AD* D)2 e~ 2a%Pg (87)

| J— J—
— oMY —In(P*T)D. (84 which also implies a suppression of high energy modes.
However, the appearance of the higher derivative terms also
By a field redefinition analogous to E(R9), to the lowest ~Mmeans that we are not sure how to treat this theory exactly
order the effective Lagrangian is given by [7].

For Witten's bosonic open string field theory, the tech-
~ i— — nique of level truncation was shown to be very effective in
L=—50up "= 5dy"thd, = (Me+Ae* @) the calculation of tachyon potentigd,22]. In this calculation

only the zero mode of each field has to be considered. A

[ possible, although only weakly supportive reason why the

N Em‘/"ﬂ_”‘(‘/’* e, 89 |evel truncation technique is effective is that the coupling
constants are suppressed by a factor 0f/8/30.77 when

where thex-product is defined as thein Eq. (82) with the ~ we increase the level numbgs].

replacement According to the perturbative approach, to the lowest or-
der, we simply replace the factar,¢ in Eq. (86) by the
(32—m?)"2p  (n=even, mass squared of the fiefdFor instance, the levéD,0) trun-
Neo— (ai—mz)(”*l)’zaﬁp (n=odd), cation gives the tachyon potential
2_ 22 _ 1 1/343\3. 1 1
s (95 m°)"  (n=even, V:__,(D2+§(%_) CI)3—>—’(p2+§qp3, (88)
U (FE-mA) YRyl myy (n=odd), 2a 2a

Note that* is related tox by the equations of motion at where we have used our results of first order approximation
the lowest order. This means that the supersymmery of Edqn the perturbative approach to repladeby ¢ according to
(81) guarantees the supersymmetry of E&f) on shell to the  Ed. (39) and 9-9 by m*=—1/a’ for the tachyon fieldd.
first order if we take the new fields, s to transform in the  Note that this replacement is not suitable for the zero mode
same way a>, V. of ® because the zero mode is determined solely by the

As we mentioned in Sec. I, the Hamiltonian is always potential term, and is thus a nonperturbative effect. In prin-
unbounded from below in the canonical formulation, and isciple, the zero mode should be treated first before the pertur-
thus in contradiction with the usual belief that the Hamil- bative approach is applied. Here we are considering fluctua-
tonian is positive definite as a result of the superalgébra tions around the false vacuum.
~Q2. The only place that could go wrong in the usual argu- For a field withm?=n/a’, from Eq.(86) we have
ment is the assumption of the superchagy® be Hermitian.

Indeed, in an example in Sec. Il we showed that quantization 2. 343\"

of the fermions destroys reality conditions. Here we see that O — 4 -

the perturbative approach not only provides a consistent

guantization but also preserves supersymmetry order by o
der perturbatively.

(89

[I:his implies that the interaction for higher excitation modes
are strengthened by factors of/3/4 when we increase the
level number. Therefore, combined with the decrease in cou-
pling, fluctuation modes other than the zero modes will have
As we mentioned in the Introduction, all fields in the in- roughly the same effective interaction when we increase the
teraction term in Witten’s bosonic open string field thepty  level number. If the reason why level truncation works for
are modified by tachyon potential is really the one mentioned above, we will
- not expect level truncation to be effective for fluctuation
f - F=e2"7uf, (86)  modes.

C. String field theory
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V. EXTENSION OF THE PERTURBATIVE APPROACH Ka—1
E E Mgl "ML (99)

In this section we generalize our formal proof of all orders
in Sec. Il C to the situation where the reduced phase space is
allowed to keep derivatives of fields up to an arbitrary giventhe symplectic structure is
order. For each fieldboson or ferm|oln qa1 we specify an
integer K,>1 so thatgy,d,, - . . ,qa ) are kept in the (0
reduced phase space. Using the equations of motion, in prin- Q= E dpp, day
ciple we can rewrite th& ,th derivative ofg, as a function

on the reduced phase space Koo 1
- = dIl,; dgl)
Al =1,(qf)), (90) 2 2, diladd]
wherej is less tharK,, analogous to Eq51). Ka—1 Kp— (_ )
Higher derivatives ofy, can be derived from Eq90), => > 2 Z dq (.)
a 1=0 =0
P=fa(ai", (91)
1 Mei 9Mai) | )
and the functiond,; can be obtained recursively, X (=D aga® o) %
Ua dp
fagi+1)= dgfai ot & et
t =2 2 > 2 ddl g dgd, (100
kp—2 ry a i=0
al +1)
=0 r?qﬁ,j +2 (Kb 1)fb’ ®2 here
where we used the notation (=1)2 Iy 9l
Qap = |V G w100
[Al=Alg -1, (93) 9a’ 99
From Eqgs.(22) and(23), we find In th.e abpye, Whera,b appear as thg power of(1), Fhey
are identified with 0 or 1 depending on whethey is a
IL boson or fermion.
Pai=——m ~Pai-1) (94) The Hamilton equations based on the symplectic structure
d05 (101) are

wherep,; is theith canonical momentum afj, .
For an arbitrary functiom on the phase space, we find the __ 2 fp
(ITg) = b(Ky—1) T ()

following identities: q(l)
J[A] My -
[A] [A]+2 K —1)( (Ka) fa) (95 +(_1)(a~b)M (Kp) _ —fy)
dt aql) 9
a
d[A] [an aL] —T; 102
8qg)—bz Z aq(” Bq(l) (96) (90](') a(i—1)- ( )

The perturbative momentuii,; can be read off from With the help of Eqs(94)—(96), one can show from Eq98)
that Eq.(102) is equivalent to the relatio(®0) for i # 0, and

Ka—1 the casdé =0 gives only an identity.

E pb,ﬁq(”—Z E 1,69, (97)
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