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Local boundary conditions for spinor fields are expressed in terms of a 1-parameter family of boundary
operators, and find applications ranging frdsupersymmetric quantum cosmology to the bag model in
guantum chromodynamics. The present paper proves that, for massless spinor fields on the Euclidean ball in
dimensionsd=2,4,6, the resulting(0) value is independent of suchéaparameter, while the various heat-
kernel coefficients exhibit & dependence which is eventually expressed in a simple way through hyperbolic
functions and their integer powers.
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[. INTRODUCTION imposeSU,(N;)-breaking boundary conditions to trigger a
chiral symmetry breaking. On investigating how the various

The choice of boundary conditions in the theories of fun-correlators depend on the parametercharacterizing the
damental interactions has always attracted the interest of théoundary conditions one then finds that bag boundary con-
oretical physicists, not only as a part of the general progranglitions are a substitute for small quark masgks.
aimed at deriving the basic equations of physics from a few More precisely, in theories of Euclidean bags, chiral sym-
guiding principled 1-8], but also as a tool for studying con- metry breaking is triggered by imposing the boundary con-
crete problems in quantum field theory and global analysiglitions[13,17]

[9-11].

In particular, we are here interested in studying local
boundary conditions for massless spgirfields, whose main
motivations may be summarized as folloji,13.

(i) The Breitenlohner-Freedman-Hawkif#,19 bound-  on the spinor fieldy. Here we focus on the-dimensional
ary conditions for gauged supergravity theories in anti-de=yclidean ball, which is the portion of flat-dimensional
Sitter space are local and are expressed, for §fields, in  gyclidean space bounded by t88-1 sphere. The eigen-

terms of a projection operator. The rigid supersymmetrygninors of the Dirac operator on the ball have the 8]
transformations between massless linearized fields of differ-

1
O=m o =5(1+ie07575ym)¢ (1.2)

M M

ent spins map classical solutions of the linearized field equa- C iJnsa2(kn)ZM(Q)
tions, subject to such boundary conditions at infinity, to clas- Py = (d—2)/2( ") ) . (1.2
sical solutions for an adjacent spin, subject to the same r &dn+(a-2)2(kNZE7(Q)

family of boundary conditions at infinit{12].

(i) In simple supergravity the spatial tetrad and a projec- B C [edni@-2knZ™M(Q)
tion formed from the spatial components of the spipo- lﬂ(i )= @22\ iJ k) ZM(Q
tential transform into each other under half of the local su- r N+ arKNZZ7(0)
persymmetry transformations at the bounddib6]. The . o _
supergravity action functional can also be made invarian}’_vhere C s a nc()r:;”nallzatlon con_stant,s=i1, n
under this class of local supersymmetry transformations. On 01,2...., andZ:’(Q2) are the spinor modes on the
considering the extension to supergravity models based ofPhere[19]. In Eq. (1.1), the boundary operator reduces to
the groupO(N), the supersymmetry transformation laws the matrix
show that,for spin+ fields only the same projector should oy
be specified on the boundary as in the Breitenlohner- } 1 ~—ie
Freedman-Hawking case. 2\ie ? 1)

(i) The work in Ref.[13] has shown that, instead of
quantizing gauge theories on a sphere or on a torus one camd its application to Eqg1.2) and (1.3 yields the eigen-
guantize them in an even-dimensional Euclidean bag andalue condition20]

) , (1.3

Insan(K)—£€%J,. gp1(k)=0 (1.4
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Jnran(K)tee 3, go_1(k)=0 (1.5 The asymptotic expansion we are interested in holdsrfor
—0" and has the forn9]
for ), wherer has been set to 1 for convenier{&. By
eigenvalue condition we mean the equation obeyed by the ~
eigenvalues by virtue of the boundary conditions, which TrLz(e”P)NT*d/ZZ ™%a,(P,B), (1.12
yields them only implicitly[3]. Equations(1.4) and (1.5 n=0
lead eventually to the eigenvalue condition in nonlinear

form. i.e where the heat-kernel coefficierdas,(P,B) are said to de-
T scribe the globalintegrated asymptotics and consist of an
Jﬁm/zf 1(k)—67293§+d/2(k)=0, (1.6) interior partc,,(P) and a boundary pald,»(P,5), i.e.
J2. o1 (K)—€2032, L (K)=0. (1.7) anp( P, B) =Cpjo( P) +bnyo( P, B). (1.13

Of course, it is enough to deal with one of these equationg & deeper level, we might introduce a smearing function

. ) ) . . . 7TP .
while the contributions from the other follow by replacisg ~and consider instead the? trace offe” ™", with f a smooth
with — 6. function onM. This takes into account the distributional be-

Recently, ind=2 dimensions, the spectral asymmetry fol- havior of the heat kernel from the point of view of invariance

lowing from the boundary conditior{d.1) was considered in  theory[here “invariance” refers to the invariants of the or-
[21]. Asymmetry properties are encoded in the eta functioffhogonal group, which determine completely the functional
which was analyzed using contour integral methods, see e.{;‘?rm of a,,(P,B) [9]]. However, mode-by-mode calcula-
[11]. lons like the ones we are going to consider can be performed
Instead, we study heat-kernel asymptotics for the square\H'thOUt expl0|t|n_g the introduction of, and_ hence we I_|m|t
Dirac operator on the-ball with eigenvalue conditiondl.6) ~ ourselves to using Eq¢1.1)—(1.13. Section Il describes
and(1.7) which is related to an analysis of the zeta function.the £-function algorithm in Ref[22] on the Euclideard-ball
Strictly, one can actually obtain two second-order operator§23], and Sec. lil generalizes the work in RE22] by show-

and (1.7) do not affect the conformal anomaly. The hardest
P,=DD" and P,=D'D, part of our analysis is then presented in Secs. IV and V,

where heat-kernel coefficients are studied for arbitrary di-
whereD " denotes thé¢formal) adjoint of D. The existence of mensiond, with several explicit formulas id=2,4,6. Con-
both P; andP, is crucial for index theory5] in generalsee  cluding remarks and open problems are described in Sec. VI,
Ref.[12] for the mode-by-mode version & andP, on the ~ While relevant details can be found in the Appendix.
4-ball). To be self-contained, recall that, given the second-
order elliptic operatoP, the heat kernel can be defined as the IIl. THE MOSS ALGORITHM FOR THE d-BALL
solution, for7>0, of the associated heat equation

The starting point in our investigation of the eigenvalue
condition (1.7) for the purpose of heat-kernel asymptotics is
U(y,z;7)=0, (1.8)  the use of the function at largex, which was first described
in Ref. [22] with application to 4-dimensional background
geometries. However, since we are interested in the Euclid-
ean d-ball, we put no restriction on the dimension bf,

&+P
ar

subject to the initial conditiof(M,g) being the background

geometry denoted byd as in Sec. I, and we follow the general proce-
dure as outlined by DowkdR23]. First we point out that on
lim f U(y,z;7)p(z) ydetg dz= ¢(y), (1.9 replacing the eigenvalués, of P by \,+x? (x being a large
7—0JM

real parametey one has the& function at largex in the form

and to suitable boundary conditions

l 0
LUs,x3)=, ()\n+xz)752@f U (7)dT,
BU(y,z; =0, 1.1 n 0
[BU(Y.Z:7)Jou (110 21
which preserve ellipticity and lead to self-adjointness of the i ] .
boundary-value problefi9—11]. The functionalor L2) trace having defined the integrated heat kerfwl functional trace
of the heat kernel is obtained by considering the heat-kernélf the heat kernel at large) as
diagonalU(y,y; 1), taking its fiber trace TYU(y,y; 7) [since
U(y,z;7) carries (implicit) group indices in the case of

— *(}\n+X2)T: —x27
gauge theoridsand integrating such a fiber trace oWyi.e. Ux( T)_zn: € e U 2.2

Troe TPZI TrVU(y,y;r)\/ﬁdy. (1.12 _By virtue of thg asymptotic expansion already encountered
M in the Introduction, i.e.
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U(n=2, e M~ a,,r" 92 as 7—0*, (2.3
n n=0

we therefore find

1 o0
2y )
£(s,x?) F(s)z‘o anol (x;s,n,d), (2.4
having defined
I(x;s,n,d)zf St d)2g—xtrg (2.5
0

Now we distinguish two cases, depending on whethés
even or odd. In the former, we considers such thats
—1-d/2=0, i.e. s=1+d/2 which implies (on defining
™@?=2)

_ o n
I(x;s,n,d)zf Tn/zexzde:anr(1+§ , (2.6
0
and hence yields, fod=2k,k=0,1,2 ...
i1+ n
d 2 - 2 -n—2
Zl 1+ E’X ano app—T—v . 2.7
r 1+§
In the latter, we consides='s such that
(d=1) -~
s=1+ 5 =g,
which implies
~ ® 1+n
|(x;s,n,d)=f r(”1)’2eX27dT=x"1l“(—2 .
0
(2.8

On the other hand, since the function expressing the ei-

genvalue conditior(1.7) admits a canonical product repre-
sentation(see the Appendjx one can prove, on setting
=n-+d/2 for d even, the identity

r 1+d 1+d 2
2)¢\ 1t
* d+n—-2 1 d 1+d/2
__q\dR2 di2—1 - =
=1 ,1202 n )(Zx dx)

xlog[ (ix) "2~ D(I5_, (ix) —e?3%(ix))], (2.9

where 22 is the dimensiord, of spinor space, and demj(
=3d, ﬁ*”’z) is the degeneracy associated with the implicit
eigenvalue conditioril.7). Thus, the heat-kernel coefficient
ay» is equal to IW(1+1/2) [respectively W((1+1)/2)]
times the coefficient ok ~'~2 (respectivelyx ' ~1) in the
asymptotic expansion of the right-hand side of E9) in

PHYSICAL REVIEW D 66, 085014 (2002

even(respectively odddimension. On focusing for definite-
ness on the eved case, we now exploit the identity

3, 1=K+ 23,(K), (2.10
and obtain
V2
I2_ (i) —€?032(ix) = 3,2(ix) — | — +e*” | I3(ix)
X
2v .
+KJV(IX)J;(IX). (2.11

Thus, on defininga,=\»?+x? and using the uniform
asymptotic expansions df,(ix) andJ;(ix) summarized in
the Appendix we find

2 2012 (iX)Z(V_l) 2 2v log( )
i _ H —_ a,~n—2vIiog(v+a,
J5_4(ix)—e”?39(ix) oo aeTe
X[S2A4(t) +32+2t3,3,],
(2.12
where we have defined
14
t=—, (2.13
aV
Ay(t)=1+(t2—1)(1—e??). (2.19

As expected, our formulas reduce,éat 0, to the asymptotic
expansions used in Rgfl2]. From now on we need to recall
that the functions; and %, have asymptotic series in the
form

- t

s~ 3 20 (219
k=0 1
- t

s~ 3 O (216
k=0 v

whereu, andv, are the Debye polynomials given in Ref.
[24]. The asymptotic expansions on the right-hand sides of
Egs.(2.195 and(2.16) can be reexpressed as

o Ul 5 3

2 52 () (2.17)

SSRGS LC]

2 2 ()l (2.18
where

t
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Now the asymptotic expansid2.12 suggests defining
S=32A,t)+32+2t3,3,, (2.20

and hence studying the asymptotic expansion ofipgf the
relation to be used in Eq2.9), i.e.
log[ (ix) 2"~ 1(37_; —e*"35)(ix)]

~—log(2m)+loga,+2a,—2vlog(v+a,)+logs.

(2.22
From the relationg2.13—(2.20 3 has the asymptotic ex-
pansion
2.2
2. )p (2.22
where the first fewc, coefficients read
Co=Ay+1+2t, (2.23
C1:231A€+ 2bl+ 2t(al+ bl)! (224)
Co=(2a,+a2)A,+ (2b,+b2) +2t(a,+by+asby),
(2.295
C3=2(a3+ alaz)Ag+ 2(b3+ b1b2)
+2t(ag+bs+a,b,+asb). (2.2
Now defining
s
3= o’ (2.27
and making the usual expansion
log(1+f =Z 1*1].—, (2.28
valid asf—0, we find
logS =logcy+logS ~logcy+ 2 (2.29

y)”

where explicit formulas can be given for &}, . In particular

c

A= 1 (2.30
Co
c, 1 )

o= = 5(A, (2:3D
C3 1 3

Az= A~ g (A1) (2.32

Using the definition

PHYSICAL REVIEW D56, 085014 (2002

f(t)=1+ (1—e?Y), (2.33

(t-1)
2

jointly with our previous formulas and the explicit form of
Debye polynomials[24], a lengthy calculation yields as
manyA, terms as are needed. For examfae Ref.[12]),

(2
A_1 5, 7D -
SRR PO (239
2
Q. (t
- k( )k, (2.39
k=0 (fy(t))
3
(1)
A= , (2.36
TS0 (Fyt)
where
3. 5
____2 _ 44
Qo(t)=5 - 5+ gt*, (2.37)
t 5, t° 5,
Ql(t)——§+ gt +§—§t (23&
12 4
()= a5t (2.39
25 531, 221 1105 o4
@)= 515" 3500 " 64t 76" (2.40
t 5. 3. 49
- 42 43 44 T 45, T 746
o0="76"16T 2" g 16" 16t "l
(2.4
ot 52t354t5 5 . -
wz(t)——1—6+1—6t +§—§t —l—6+l—6t ( . 2
1 2 t* 8
w3(t)= 24+ ) + 54" (2.43

In the calculation, all factors 4t in the denominators of
A;, A, andA; have cancelled against factors in the numera-
tors, as in the9=0 case[12]. Moreover, a simple but non-
trivial consistency check shows that, @0, Eqs.(2.34—
(2.43 yield A;, A, andA; in agreement with Ref.12].

As a result of all these formulas we find

|og[(ix)—z<v—1>(35_l_e2033)<ix)]~;1 S(v,a,(x),

(2.49

where the first few function§: read(cf. Ref.[12])
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éls —logm+2a,, (2.45 with me corresponding to the third derivativeﬁf, for all i.
The termsW., contribute toa, in 4 dimensions only up to
S,=—(2v—1)log(v+a,)+logf (1), (2.4 i=5, and hence only their analysis is presented hereafter.
~ A A. Contribution of W and W2
S=—, (2.47 L
v The termW,, is given by

3= (2.48 Wl—i 2 L d)° | +2 3.2

4 a]z}’ ) oc_m:O (m _m) gd_x (_ Og(ﬂ-) a’m): ( . )
- A which is unaffected by#-dependent boundary conditions.
S5=—. (249  Thus, we know from Ref[12] that Egs.(2.50 and (2.51)

aV

imply vanishing contribution t@(0).

2 —
Expanding deg{) in powers ofn, the infinite sum oven in The termW., reads(heret=m/ay,)

the expressiofi2.9) can be evaluated with the help of formu-

. . . . . i * 1 d 3
las derived using contour integration, i[@2]: W2=S (mi—m) = —
m=0 2x dx
1 I 1
- Flk+3Tz72 X[~ (2m—1)log(Mm+ ay) +10g f ,(1)]
2 kaa—Zk—|~ 1-1 k=12
~ p | il 14 "y _ 2A 2,B
P=e 2r( k+ 5 WA+ W22, (3.3
(250  whereW?” is the 6-independent part whilév>® denotes the
part involving logf,(t). From Ref.[12] we know thatWw?”
rl s A E+ r contributes
- xS 2 2 212 22
—1-1 =
2 Pyt = 2 B T ” 11 1
2T §+§) I4 (0)——m+ ﬂ-_ % (34)
ra The logf, is dealt with by definin
X oS, (2.51) gt y g
- 5 ~ 51(1—e20)=—e“’sinh0 (3.5
Herel is a real number larger than 1 alg=1B,=¢,B, Y=2 ’ '
= — 25 etc. are Bernoulli numbers. In arbitrary dimensihn
the expansion of deg{ in powers ofn is cumbersome and a Y
systematic formula suitable for allis given in Eq.(4.3). B= -y —tanho, (3.6)

As a first application, we show how thg0) calculation _q
of Ref.[12] is extended to our boundary conditions involv- log fy=log(1—y)+log(1+Bmay,"). 3.7)
ing 6, leading in turn to the eigenvalue conditiofis6) and ) . ) .
(1.7). Only calculations for Eq(1.7) are presented, but the At this stage we can exploit Eq2.28, with f=gma,
full £(0) value, which expresses the conformal anomaly for<1 sinceap is always evaluated at large and hence we
a massless Dirac spihield (we do not study the coupling find
of spinor fields to gauge fields, which would lead us instead
to the subject of chiral anomaligsreceives a contribution

©

wi'B=1 > (—1)X(k+2)(k+4)B¢

from Eq.(1.6) obtained by replacing with — 6 in the result 8 &1
from Eq.(1.7).
In 4 dimensions, Sec. Il shows thit0)=a, is equal to; - e
times the coefficient ok~ ® in the asymptotic expansion of szzo (mHK—mt K)o K0, (3.8
the right-hand side of E¢2.9) at d=4. On settingm=n
+2 the latter readfhere apm(x) = ym*+x] where the interchange of the orders of summation is made
m 1 4132 o possible by uniform convergence. Interestingly, this sum
. . . . . 76 . .
m2—m| — — SMma(x)~S W contributes infinitely many™® terms with equal magnitude
mZ:O ( ) 2X dX) .21 S(m. am(x)) 21 * and opposite sign, so th&f0) is unaffected. More precisely,

(3.1 we consider odd and even valueskodnd hence define
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— 2k+3 —2k—7
F]_: m am

0

IM s

_n
N
[
M s

m?k+2q 277 k=012..., (3.9
m=0
F3Emz:0 m2k+2a;12k76’
Fa=> m**tlg 26 k—12 . (310
m=0

By virtue of Eq.(2.51), F, contributes tox ® with zero
weight for allk because of the cos{#2) coefficient. More-
over, F, is proportional tox # by virtue of Eq.(2.50. The
sumF; is instead proportional ta~3 [again by Eq(2.50],

while F, is such that its contributioﬁF4(x;k) to £(0) reads

L1 T3 T(4)
dr 0= 1538 poh- | <o,
(3.10)
1 r4) I
(3.12

and infinitely many other relations along the same lines.

B. Effect of W3 ,w* and W2
The termW: is equal to

1d

3’1 . 5
2x dx

4%m

Wi= 2 (m*—m)
m=0

+11 L (m?1
E( Y) a—ﬁ]a—

m

(1+/3m01m1)_1]

=WAAEWEE+ W+ WEP (3.13
whereW3” and W38 are the first two g-independent sums,
while W3€ andW3P are the sums depending érthroughy
and 3. By virtue of the largex nature of the whole analysis,
we can expand (% ,fo’mozr;l)*l according to

o0

(1+3ma;11)*1=k20 (—1)*Bmka X,

(3.19
Upon exploiting the identity
L) 1|| 2)(I1+4)a,,'"%, (31
xdx) @m = gl+2(+4ay 7, (319
we find thatW3” and W28 do not contribute toz(0) by
virtue of Egs.(2.50 and(2.51). The same holds fonv3 and

PHYSICAL REVIEW D56, 085014 (2002

W= (1) 1S, (148K (k) ket 7)
=0

oo

X > (mt—m3)mka, 0.
m=0

(3.1

Looking at even and odd values kfthis suggests defining

oo
— 2k+4  —2k—9
G1=2 m ) !
m=

G,=> m**t3q 2% k=012..., (3.17
m=0

G3EmE:o m2k+5a,;]2k—10’

Gu= >, m2kt4q 210 k=012 ... (3.18
m=0

Now G; and G, are proportional tax™# and x™° respec-
tively by virtue of Eq.(2.50, and hence do not contribute to
£(0). G, containsx ® weighted by a coefficient propor-
tional to cos(/2), for all k, and hence does not contribute to
£(0). Last,G3 is such that its contributioﬁe3(x;k) to £(0)

reads

(T(52 _T'(4) I(5)
—2e it = | =0,
T(52 “T(4) T(5)

(3.19

1
96,(x;0)=— I

jointly with infinitely many other relations along the same
lines.
The termW?3P is given by

WIP= (1) 1S (- 1Bt L(k+ 3)(k+5)
k=0

(3.20

< 2 (m2+k_m1+k)ar;k77'
m=0

Here, too, we split the sum ovérinto sums over all even
and odd values df. We find therefore, exploiting Eq&2.50
and(2.51), either contributions proportional to 4 andx 5,
or x~ © terms weighted by cos(2), or the contributions re-

sulting from

Hy= > m**3q %8 k=012..., (3.20
m=0

W3P | but the proof requires more intermediate steps, as folwhich occur with opposite signs for &l

lows. The termW?3< is given by

The general formula fow? reads

085014-6
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- d\3A,
_ 2_ — | =
mZO (m m( d ) a2

N|,_\

[ o

2
2 H 2r —2r
20 Jorm™ an
r=

Q.lo_

= i (mz—m)(i

m=0 2
4

1512 Jaman+

J

=WiA+WEB+ WiC, (3.22

wherejo,, j1, andj,, are the coefficients in the polynomi-

als Qg, Q, and Q, respectively[see Egs.(2.37)—(2.39],
and negative powers df, are expanded by exploiting

oo

I'(k+s)
—S__ _ k k _
(1+1) _k§=)0( 1) I(!F(S)f as f—0. (3.23
Since
1 2
p :—52 jor(2r+2)(2r+4)(2r+6)
XE (m2r+2_m2r+1) —2r— 8' (324)

m=0

the basic formula$2.50 and (2.51) imply a contribution to
£(0) equal to

2
20 jor=0. (3.25

N| =

Moreover, since

1 L
WeP=—g(1=n 72 o 2 (1) B (ktr+2)

X (K+T+4)(K+r+86)

[}

< 2 (mZ_m)mk+ra;]k—r—8’
m=0

(3.2

1 S
W= —5(1=9 22 jo, 2 (- D(k+1)
r=0 k=0

X BY(k+2r +2)(k+2r +4)(k+2r +6)

[}

XE (m2(r+1)+k_m2r+k+1) —k—2r— 8, (3.27)
m=0

repeated application of Eq&.50 and(2.51) yields contri-
butions toZ(0) equal to

1 4
1= THA+B) Y 11,=0, (3.28

and

PHYSICAL REVIEW D 66, 085014 (2002

1 0 2
5(1_7)2(2 (—1>k(k+1>/3k)2 j2r=0, (329
k=0 r=0

respectively. The resul{8.25, (3.28 and(3.29 are all van-
ishing because of the peculiar properties of the, j,, and
J 2, coefficients.

Last, the general formula fon> reads

m=0

5— J— —_———
we= 2 (m? m)<2XdX) 3

- 1 d)\3

-3, mm| 5 )

><|a3

6 3

3 6
20 (rozmzra,;zr +f ;120 crl’rmrar;]r
r= r=

+ f(;zzl Uzvrmra;,r-i-fgszo Us’szrar—an“
r= r=

= WA+ WRB+WEC+WEP (3.30

whereog o, 01,, 02, and oz are the coefficients in the
polynomials wg, w1, w, and w5 respectively [see Egs.
(2.40—(2.43)], and alsof ,* is expanded by exploiting Eq.
(3.23. Now the termW>*, which is thed-independent part
of Eqg. (3.30, yields a nonvanishing contribution t(0)
equal to

1

1 3
32, os) 380

while the terms W2 W€ and W3P | resulting from
f,1, f,2 andf, respectively, give vanishing contribution
obtained as follows:

(3.31)

1 6
5(1—7)_1(1+,3)_1(—2 01,r)
r=0
=0 from W38, (3.32
1 o 6
5(1—7)2(2 (—l)k(k+1),3k)(—2 Uz,r)
k=0 r=1
=0 from W>C, (3.33
1 “ k+1)(k+2 3
§<1—7>‘3(2 . )( 2 os )
o <
=0 from W2P, (3.39

by repeated application of EgR.50 and (2.51).
By virtue of Egs.(3.4), (3.25, (3.29, (3.29, (3.3)-
(3.39 we find

( 1 1 ) 11
£{0)=2 30 360

180’ (3.35
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for a massless Dirac field on the 4-ball, bearing in mind that

also the eigenvalue conditidii.6) should be considered. In-

terestingly, such (0) value in 4 dimensions is independent

of #, and agrees with the result in R¢1.2], where a mass-

less spins field with half as many components as a Dirac

field was instead considered.
The proof of vanishing contributions t§(0) from the

infinite sumskF,, G; andH; can be made more systematic

PHYSICAL REVIEW D56, 085014 (2002

1
o ) 109+ ¥(t=1)

(k+2j—2)1

k!

k+l

_J°°
)E(

X Vkﬁka;kfzj .

and elegant by remarking that a recursive scheme exists for

which

X d
H3:<1+m& F4, (33@
X
G3_(1 20k 4) dx>H3' (3.39

so that one only needs to look & [see Eq.(3.10], which
can be evaluated exactly as a functionxdbr all k by ex-
ploiting the Euler-Maclaurin formul@3,12).

IV. HEAT-KERNEL COEFFICIENTS IN GENERAL
DIMENSION d

As we have seen in Secs. Il and lIl, to deal with thg
contributions, we need terms of the type

(ii v
2x dx/ (14 y(t—1)")a’
—ﬂ 1 S _ UF(I+U) u_ u+i
2 1y 2 YT
(Uu+i+p+2j—2)!! -

(U+i+p-2)n %

The relevant case is=1+d/2 and the contribution of each

Our aim in this section is to apply the formalism in such aterm to the zeta function is found by summing owetaking

way that in principle all heat-kernel coefficients in any di-

mensiond can be obtained. Therefore we will need the large-

x expansion ofsee Eqs(2.21) and(3.5)]

d 1+d/2
) 2a,—(2v—1)log(v+ «,,)

(5&

+log(1+ y(t—l))+2 (4.1

V)

The first complication compared tb=4 is that now, dealing
with arbitrary dimensiord, we need an arbitrary number of
derivatives. This is easily generalized in some cases, i.e.

1 d)\ (2j—3)N .
- —(_q\jtr1272 T 1-2)

in others at least in the form of a large; expansion,

j
(Zx ax log(v+ a,)

1 . ~ (=1
~ (=it
5 (=1 T (a, 7+ 5

- (k+2j—2)n

_nk+12 =k —k—2j

x2 (1) T

the degeneracy into account.
Let us now show how the general procedure works in the
case of thex, term. The contribution t@(1+d/2x?) is

d o0
o qydi2 s
B=(-1"5riram &, xdx| 2

v

1+d/2
n )

d+n—2)< 1 d

(d—1)n 1

>

n=0

21+d/21"

d+n-— 2)

1d
3

(d—1)1! d+n-2

d
1+d/2 e
2 F(1+ 2)

:ds E (V2+X2)_(1+d)/2,

4.2

of which we need the large-expansion. A simple expansion
in inverse powers ok is not allowed; instead we employ a
Mellin integral representation. As is clear from the above
equation, the Barnes zeta functif?b—2§

+n—2
(n+a)~s

“ d
§B(s,a)5n20 (

=2 (@atmyt---+myq)7S,
m=0
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will play a crucial role. We need to separate theandx  The sum and integral may be interchanged upon choosing
dependence in E@4.2), more generally in expressions of the Rc>(j+d—1)/2 and we find

form
) 1 1 (c+i= s+j
penz 19~ sy oz, derer] 5 o]
2

Y On shifting the contour to the left we pick up the lange-

% f dttstR-1g= (At expansion ofc(j,s). In order to finda,,,, we are interested
0 in the term that behaves as" 2 and need to evaluate the
residue ab=(s+j—n—2)/2. In all cases we encounter, the

The » andx dependence is separated by employing far only relevant pole will come frondz and for these cases

>0,

s+j—n
. r -1
2, 1 c+ic

e Vi=—
2l

dal'(a)v— 22t C(j,s)~

i d
For fRs large enough we continue X Resgg(s— n_z'g)xnzﬂrrelevant.

) 1 “ (d+n—2\ 1 4.3
C(j.s)= St] HZO n Ly From here, e.g., one obtains
I 2
Cc+iow oo Tl 1+ n
Xf dar(a)v_zaf dt t(sti2-a-1g-xt 1 d=1-n d 2
c—ioe 0 B= dI" Reslz d—1—n, - |—F/———+
m 2 2 r 1+OI
§ d+n-2\ 1 2
- s+ij\ o Yo
2 The procedure just outlined can be applied to all terms in Eq.

chin . (4.1). The following list summarizes for each term on the left
XJ daTl (a)v™ ZaF( +l a>x2a—s—j_ the contribution to the heat-kernel coefficieat, on the

c—io right (¢ and — 6 contributions are summegd

2a,—2vlog(v+a,))—

ds (d_n_l>Res (d—l—n 9)
2\/;(d—n) 2 §B 12 1

de d—-n+1
log(v+a,)—

r
2\/m(d—n) 2

d
Res g,@(d—n,z),

ds [d— d
Iog(1+y(t—1))—>—F( )(cosH‘ "9—1)Res gB(d n, 2)
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tl ds
aP(1+ y(t—1))" 4e'’coshe

Res {z

d d
+p—n,§

d+i+p—n)
2 I[+1 | d+i+p—n 1 p+i
F |+p 3 2( 2 !Ey 2 yE, 2 ,tanhzﬁ
2
d+i+p+1l—-n
| tanha . I+11 I d+i+p+1l-n 3 p+i+l 20
+itan i+p+w 3F2| 5 1% 5 2 '3 m@n
r
2
+6——0.
|
For the calculation of heat-kernel coefficients, note that only 1 tanh@arcsintanty
a finite number of terms contributes. The poles of the Barnes ,F;(1,1,1/2,tanhg) = 7
zeta function are located at=1, ... d—1, and depending 1-tantfe  (1-tantfo)
on the values ofi andp only a finite number of terms needs =cosR (1 + arcsintantgsinhg).
to be evaluated. In general, to evaluatg,, we need to
include all terms up tp=n—1 [12]. Mathematica will not always replace automatically the hy-

The above results resemble very much the structure of thpergeometric functions by this kind of hyperbolic combina-
results found for different boundary conditions given intions. Since this is essential for further simplifications of fi-
[23,29-32. In particular, a reduction of the analysis from the nal answers, the implementation of some of the Gauss
ball to the sphergin form of the Barnes zeta functioneas  relations is necessary. We have used
been achieved. Indeed, instead of using the presented algo- 1
rithm we could equally well have used the contour integral _
method developed if33,29,3Q. The starting point for the 2Palat 1A+ 1y +12)= a(l—z){yzFl(a’ﬂ’y’z)

zeta function associated with the eigenvalues from(Ec) o
in this approach reads (y—a)Fi(e,p+1y+12)}

’}/ZFl(a’iﬁv’yvz):(’y— C() 2Fl(a1B!7+laz)

* dk B J +C¥2F1(C¥+1,B,’y+l,2).
£9)=3, degn) [ 3k 2Nz a(K)
"= 4 These relations guarantee that ultimately all hypergeometric
—e2932_ . (K)) functions are given in very explicit terms and that huge sim-
n+d/2 ' i . ..
plifications can be performed explicitly. In Sec. V we have
summarized our findings id=2,4,6 dimensions giving final

the contoury enclosing all eigenvalues of E¢L.7). One  'esults up to the coefficiersy, .
then uses the uniform asymptotic expansion in order to ex-
tract the pieces that can contribute to the heat kernel coeffi- V. LIST OF HEAT-KERNEL COEFFICIENTS

cients. Performing thé integrals, results analogous to the : .
above are found and final answers, of course, agree. We list hereafter the general results we have obtained. The

Given the explicit results in the above list where all in- lower coefficients have quite a simple form in all dimensions

gredients are known, the algorithm can be cast in a fornﬁ’ind the leading three coefficients are as follows:

suitable for application of Mathematica. As far as this pro-
cess is concerned, some remarks are in order. We have pre-, _ ds (5.1)

sented the results in terms of hypergeometric functions, and d d\’

as far as we can see keepithgn arbitrary this is the best one 27T 1+ 2

can do. However, as soon as one considers particular values

of d andn, the hypergeometric functiogF, “collapses” to Jd

oF1, which, at the particular values needed, is simply given g, ,= ——((coshg)d~1-1), (5.2
as an algebraic combination of hyperbolic functions. For ex- ZdF(g)

ample one has 2
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(2d-5)d,  d,
a1: +

d
3 2dr<§) 2dr(

d-1 1 )
d) 2F1 1,7;5;(tanh6)

2

d+1 3
—(d—1) 2F1( 1,—;5;(tanhe)2

5 ] . (5.3

Moreover, to show the applicability of our algorithms to ar-
bitrary dimensions and in principle to any coefficient we give

the following collection of results.

d=2:
ds
ap= Z, (54)
d
ayp= %(coshe— 1), (5.5
ds
a;=— 17 (5.6
d=4:
ds
A= 35 (5.7
Jrd
ay,= ¢ ((cosht)*~ 1), (5.9
ds
a;=— 1—6003h 2, (5.9
_ mds % 15+ 20cosh— 11cosh @
aa/z—m sec > ( cos cosh @),
(5.10
_ 11dg 61
2= 720" (5.19
d=6:
_ & 5.1
0= 382° (5.12
Jrd
ay,= g ((cOSh®)®~1), (5.13
% e h® h 4 5.1
a; = @( +6cosh ¥+ cosh 49), (5.19

Jrds 6\ \*
sech = || (153+212coshw+ 35cosh &

8312~ 98304 2
—32cosh#—8cosh¥), (5.195
d
a,= —cosh 2, (5.16

96
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Jmdg

0 10
Agp= — m& SGC"G 5) ) (311902

+495474cost9+ 172792cosh 8+ 14845cosh 8

—21590cosh #4—2159cosh 9), (5.17
~191d, 61
4=~ 60480 (513

Of course, the result5.11) for a, in dimension four
agrees with Eq(3.35, upon bearing in mind thal, is then
equal to 4. Ford=0 the results agree with the results found
previously in[18,34,3Q.

VI. CONCLUDING REMARKS

Motivated by quantum cosmology and the problems of
quark confinement, we have studied heat-kernel asymptotics
for the squared Dirac operator on the Euclidean ball, with
local boundary conditiong1.1) leading to the eigenvalue
conditions(1.6) and (1.7). We have first proved that on the
4-ball the £(0) value is #-independent. Furthermore, arbi-
trary values ofd have been considered, and several explicit
formulas for heat-kernel coefficients in dimensids 2,4,6
have been obtained in Secs. IV and V. Interestingly; is
always #-independent, while several other heat-kernel coef-
ficients depend o through hyperbolic functions and their
integer powers.

As far as we can see, the key task is now the analysis of
heat-kernel asymptotics with local boundary conditi¢hd)
on general Riemannian manifoldsi(g) with boundarydM.

One has then to consider the smooth functicaC”(M)
mentioned after Eq1.13, which is replaced by

an/2(f1P=B):Cn/2(f1P)+bn/2(f7P16)- (61)

The interior partc,, vanishes for all odd values af,
whereas the boundary part only vanishea#0. The inte-
rior part is obtained by integrating ov&f a linear combina-
tion of local invariants of the appropriate dimension, where
the coefficients of the linear combination armeiversal con-
stants independent ofl. Moreover, the boundary pdbt,, is
obtained upon integration ovéM of another linear combi-
nation of local invariants. In that case, however, the structure
group isO(d—1), and the coefficients of linear combination
will depend ond and 6 [20] and so they will be universal
functions, as it happens if the boundary operator involves
tangential derivativef31,35—37. This is indeed the case for
the boundary conditiofi1.1). To see this define

. 5
x=ie"" y>yn
and introduce the “projections”

II —1 1+
i_z( *Xx)-

In the bulk of our article we considered the operd®awith
domain
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domain{P)={¢e C*(V):I1_ | ,q®I1_D |, =0}. * Kk
7 12 Fo(k)= 72kn+d/2_ 1egz(k)H ( 1— _) eklvi (A2)
We calculate that i=1 Vi

IT_D | s = (IT% Viy+ Y Yal1X VO IL L 4] o In Egs.(Al) and(A2), vy, and vy, are constantsy; andg,

) o ) N are entire functions, thg; are the zeros af; and thev; are

a being a tangential index, which for Hermitiai. (6  the zeros ofF,. The general theory described in Rp42]
=0) would reduce to standard mixed boundary conditionste||s ys thatF; and.F, are entire functions whose canonical
However, as is easily seen, this is not the casedte0 and product has genus 1. In other words, by virtue of the

tangential derivatives occur in the boundary conditions sucfsymptotic behavior of the eigenvalues, one finds that
that the boundary conditions considered could be termed of

mixed oblique type. It is thus expected, that the general form i i_w and i i_oo
of a,, contains all possible local invariants built frofn =N =L

Riemann curvatur®&; ., of M, bundle curvaturé) ., (in case

a gauge theory, with vector bundle o, is studied, ex-  whereas>;" ,(1/ui|® and =" ,(1/v|?) are convergent.

trinsic curvatureK;; of JM, endomorphisnE (i.e. potential  This is why the exponentialg/*i ande*i must appear in
term) coming from the differential operatd®?, combinations  Eqs.(A1) and (A2), which are called the canonical-product
of y-matrices coming from the boundary operator, and thgepresentations of"; and F,. The genus of the canonical
covariant derivatives of all these geometric objects, eventuproduct for F, is the minimum integerh such that
ally integrating their linear combinations ovét and dM = (U mi|"1) converges, and similarly fofF,, replacing
[5,8,9,3&3. All these local invariants are multiplied by univer- ;- \ith .. If the genus is equal to 1, this ensures that no
sal functions which might depend orand 6. As anext step,  higher powers ok/u; andk/v; are needed in the argument
the presented special case calculation together with varioysy the exponential. Moreover, even for nonvanishing values
other ingredients such as conformal transformat{@®%, in-  of ¢ it remains true that the zeros &% are minus the zeros

dex theory[40], redefinition of the covariant derivatiél] ¢ Fy:m=—w,, for alli [12]. Hence one finds eventually
will serve to find results valid for arbitrary Riemannian ' v

manifolds and bundle curvatures. 2

K
1-=
Mi

, (A3)

]:( k) :';/kZ(ner/Zfl)H
i=1
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APPENDIX J (iX)~ Ma—lmea,,e— V|0g(V+0(V)21 (A4)
14 \/ﬁ v 1
The functionF on the left-hand side of Eq1.7) is the (ix)7 1
. . . . . . IX v—
product of the entire function§.e. functions analytic in the 3(ix)~ @ Petve ol a)y (A5)
whole complex plane v om 7
— _af
F1=Inraz-17€Inrae where the function¥; ands, admit the asymptotic expan-
and sions
_ ‘9 oo o]
F2=dnvarn-1t € Jnran, 21~k2 (vl a,)l vk, 22~k2 vi(vla,)I vk,
=0 =0

which can be written in the form
K valid uniformly in the orderv as|x|—c~. The functionsu,
( 1— _> edri (A1) andv are polynomials, given by Eq€.3.9 and(9.3.13 on

Fi(K)= kn+d/2—1egl(k)
1(K)=7 H p. 366 of Ref[24].
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