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Local boundary conditions for spinor fields are expressed in terms of a 1-parameter family of boundary
operators, and find applications ranging from~supersymmetric! quantum cosmology to the bag model in
quantum chromodynamics. The present paper proves that, for massless spinor fields on the Euclidean ball in
dimensionsd52,4,6, the resultingz(0) value is independent of such au parameter, while the various heat-
kernel coefficients exhibit au dependence which is eventually expressed in a simple way through hyperbolic
functions and their integer powers.
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I. INTRODUCTION

The choice of boundary conditions in the theories of fu
damental interactions has always attracted the interest of
oretical physicists, not only as a part of the general progr
aimed at deriving the basic equations of physics from a
guiding principles@1–8#, but also as a tool for studying con
crete problems in quantum field theory and global analy
@9–11#.

In particular, we are here interested in studying lo
boundary conditions for massless spin-1

2 fields, whose main
motivations may be summarized as follows@12,13#.

~i! The Breitenlohner-Freedman-Hawking@14,15# bound-
ary conditions for gauged supergravity theories in anti–
Sitter space are local and are expressed, for spin-1

2 fields, in
terms of a projection operator. The rigid supersymme
transformations between massless linearized fields of di
ent spins map classical solutions of the linearized field eq
tions, subject to such boundary conditions at infinity, to cl
sical solutions for an adjacent spin, subject to the sa
family of boundary conditions at infinity@12#.

~ii ! In simple supergravity the spatial tetrad and a proj
tion formed from the spatial components of the spin-3

2 po-
tential transform into each other under half of the local
persymmetry transformations at the boundary@16#. The
supergravity action functional can also be made invari
under this class of local supersymmetry transformations.
considering the extension to supergravity models based
the group O(N), the supersymmetry transformation law
show that,for spin-12 fields only, the same projector shoul
be specified on the boundary as in the Breitenlohn
Freedman-Hawking case.

~iii ! The work in Ref. @13# has shown that, instead o
quantizing gauge theories on a sphere or on a torus one
quantize them in an even-dimensional Euclidean bag
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†Electronic address: kirsten@mis.mpg.de
0556-2821/2002/66~8!/085014~13!/$20.00 66 0850
-
e-

m
w

is

l

e

y
r-
a-
-
e

-

-

t
n

on

r-

an
d

imposeSUA(Nf)-breaking boundary conditions to trigger
chiral symmetry breaking. On investigating how the vario
correlators depend on the parameteru characterizing the
boundary conditions one then finds that bag boundary c
ditions are a substitute for small quark masses@13#.

More precisely, in theories of Euclidean bags, chiral sy
metry breaking is triggered by imposing the boundary co
ditions @13,17#

05p2c U
]M

5
1

2
~11 ieug5

g5gm!cU
]M

~1.1!

on the spinor fieldc. Here we focus on thed-dimensional
Euclidean ball, which is the portion of flatd-dimensional
Euclidean space bounded by theSd21 sphere. The eigen
spinors of the Dirac operator on the ball have the form@18#

c6
(1)5

C

r (d22)/2S iJn1d/2~kr !Z1
(n)~V!

«Jn1(d22)/2~kr !Z1
(n)~V!

D , ~1.2!

c6
(2)5

C

r (d22)/2S «Jn1(d22)/2~kr !Z2
(n)~V!

iJn1d/2~kr !Z2
(n)~V!

D , ~1.3!

where C is a normalization constant,«[61, n
50,1,2, . . . ,̀ , and Z6

(n)(V) are the spinor modes on th
sphere@19#. In Eq. ~1.1!, the boundary operator reduces
the matrix

1

2 S 1 2 ieu

ie2u 1 D ,

and its application to Eqs.~1.2! and ~1.3! yields the eigen-
value condition@20#

Jn1d/2~k!2«euJn1d/221~k!50 ~1.4!

for c6
(1) , and
©2002 The American Physical Society14-1



th
ich

a

n

l-

io
e

r

n
to

nd
he

th

rn

f

r

n

ion

e-
ce
r-
al
-
ed

st
V,

di-

. VI,

ue
is

d
lid-

e-

red

GIAMPIERO ESPOSITO AND KLAUS KIRSTEN PHYSICAL REVIEW D66, 085014 ~2002!
Jn1d/2~k!1«e2uJn1d/221~k!50 ~1.5!

for c6
(2) , wherer has been set to 1 for convenience@3#. By

eigenvalue condition we mean the equation obeyed by
eigenvalues by virtue of the boundary conditions, wh
yields them only implicitly @3#. Equations~1.4! and ~1.5!
lead eventually to the eigenvalue condition in nonline
form, i.e.

Jn1d/221
2 ~k!2e22uJn1d/2

2 ~k!50, ~1.6!

Jn1d/221
2 ~k!2e2uJn1d/2

2 ~k!50. ~1.7!

Of course, it is enough to deal with one of these equatio
while the contributions from the other follow by replacingu
with 2u.

Recently, ind52 dimensions, the spectral asymmetry fo
lowing from the boundary conditions~1.1! was considered in
@21#. Asymmetry properties are encoded in the eta funct
which was analyzed using contour integral methods, see
@11#.

Instead, we study heat-kernel asymptotics for the squa
Dirac operator on thed-ball with eigenvalue conditions~1.6!
and~1.7! which is related to an analysis of the zeta functio
Strictly, one can actually obtain two second-order opera
of Laplace type out of the Euclidean Dirac operatorD, i.e.

P1[DD† and P2[D†D,

whereD† denotes the~formal! adjoint ofD. The existence of
bothP1 andP2 is crucial for index theory@5# in general~see
Ref. @12# for the mode-by-mode version ofP1 andP2 on the
4-ball!. To be self-contained, recall that, given the seco
order elliptic operatorP, the heat kernel can be defined as t
solution, fort.0, of the associated heat equation

S ]

]t
1PDU~y,z;t!50, ~1.8!

subject to the initial condition@(M ,g) being the background
geometry#

lim
t→0

E
M

U~y,z;t!w~z!Adetg dz5w~y!, ~1.9!

and to suitable boundary conditions

@BU~y,z;t!#]M50, ~1.10!

which preserve ellipticity and lead to self-adjointness of
boundary-value problem@9–11#. The functional~or L2) trace
of the heat kernel is obtained by considering the heat-ke
diagonalU(y,y;t), taking its fiber trace TrVU(y,y;t) @since
U(y,z;t) carries ~implicit! group indices in the case o
gauge theories#, and integrating such a fiber trace overM, i.e.

TrL2e2tP5E
M

TrVU~y,y;t!Adetg dy. ~1.11!
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The asymptotic expansion we are interested in holds fot
→01 and has the form@9#

TrL2~e2tP!;t2d/2(
n50

`

tn/2an/2~P,B!, ~1.12!

where the heat-kernel coefficientsan/2(P,B) are said to de-
scribe the global~integrated! asymptotics and consist of a
interior partcn/2(P) and a boundary partbn/2(P,B), i.e.

an/2~P,B!5cn/2~P!1bn/2~P,B!. ~1.13!

At a deeper level, we might introduce a smearing funct
and consider instead theL2 trace of f e2tP, with f a smooth
function onM. This takes into account the distributional b
havior of the heat kernel from the point of view of invarian
theory @here ‘‘invariance’’ refers to the invariants of the o
thogonal group, which determine completely the function
form of an/2(P,B) @9##. However, mode-by-mode calcula
tions like the ones we are going to consider can be perform
without exploiting the introduction off, and hence we limit
ourselves to using Eqs.~1.11!–~1.13!. Section II describes
thez-function algorithm in Ref.@22# on the Euclideand-ball
@23#, and Sec. III generalizes the work in Ref.@12# by show-
ing that, on the 4-ball, nonvanishing values ofu in Eqs.~1.6!
and ~1.7! do not affect the conformal anomaly. The harde
part of our analysis is then presented in Secs. IV and
where heat-kernel coefficients are studied for arbitrary
mensiond, with several explicit formulas ind52,4,6. Con-
cluding remarks and open problems are described in Sec
while relevant details can be found in the Appendix.

II. THE MOSS ALGORITHM FOR THE d-BALL

The starting point in our investigation of the eigenval
condition~1.7! for the purpose of heat-kernel asymptotics
the use of thez function at largex, which was first described
in Ref. @22# with application to 4-dimensional backgroun
geometries. However, since we are interested in the Euc
ean d-ball, we put no restriction on the dimension ofM,
denoted byd as in Sec. I, and we follow the general proc
dure as outlined by Dowker@23#. First we point out that on
replacing the eigenvaluesln of P by ln1x2 (x being a large
real parameter!, one has thez function at largex in the form

z~s,x2![(
n

~ln1x2!2s5
1

G~s!
E

0

`

ts21Ux~t!dt,

~2.1!

having defined the integrated heat kernel~or functional trace
of the heat kernel at largex) as

Ux~t![(
n

e2(ln1x2)t5e2x2tU~t!. ~2.2!

By virtue of the asymptotic expansion already encounte
in the Introduction, i.e.
4-2
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U~t![(
n

e2lnt; (
n50

`

an/2t
(n2d)/2 as t→01, ~2.3!

we therefore find

z~s,x2!;
1

G~s! (n50

`

an/2I ~x;s,n,d!, ~2.4!

having defined

I ~x;s,n,d![E
0

`

ts211(n2d)/2e2x2tdt. ~2.5!

Now we distinguish two cases, depending on whetherd is
even or odd. In the former, we considers5 s̄ such thats̄
212d/250, i.e. s̄[11d/2 which implies ~on defining
tx2[z)

I ~x; s̄,n,d!5E
0

`

tn/2e2x2tdt5x2n22GS 11
n

2D , ~2.6!

and hence yields, ford52k,k50,1,2, . . .

zS 11
d

2
,x2D; (

n50

`

an/2

GS 11
n

2D
GS 11

d

2D x2n22. ~2.7!

In the latter, we considers5 s̃ such that

s511
~d21!

2
[ s̃,

which implies

I ~x; s̃,n,d!5E
0

`

t (n21)/2e2x2tdt5x2n21GS 11n

2 D .

~2.8!

On the other hand, since the function expressing the
genvalue condition~1.7! admits a canonical product repre
sentation~see the Appendix!, one can prove, on settingn
[n1d/2 for d even, the identity

GS 11
d

2D zS 11
d

2
,x2D

5~21!d/2(
n50

`

2d/221S d1n22

n D S 1

2x

d

dxD
11d/2

3 log@~ ix !22(n21)
„Jn21

2 ~ ix !2e2uJn
2~ ix !…#, ~2.9!

where 2d/2 is the dimensionds of spinor space, and deg(n)
5 1

2 ds(n
d1n22) is the degeneracy associated with the impli

eigenvalue condition~1.7!. Thus, the heat-kernel coefficien
al /2 is equal to 1/G(11 l /2) @respectively 1/G„(11 l )/2…]
times the coefficient ofx2 l 22 ~respectivelyx2 l 21) in the
asymptotic expansion of the right-hand side of Eq.~2.9! in
08501
i-

t

even~respectively odd! dimension. On focusing for definite
ness on the evend case, we now exploit the identity

Jn21~k!5Jn8~k!1
n

k
Jn~k!, ~2.10!

and obtain

Jn21
2 ~ ix !2e2uJn

2~ ix !5Jn8
2~ ix !2S n2

x2
1e2uD Jn

2~ ix !

1
2n

ix
Jn~ ix !Jn8~ ix !. ~2.11!

Thus, on definingan[An21x2 and using the uniform
asymptotic expansions ofJn( ix) andJn8( ix) summarized in
the Appendix we find

Jn21
2 ~ ix !2e2uJn

2~ ix !;
~ ix !2(n21)

2p
ane2ane22n log(n1an)

3@S1
2Au~ t !1S2

212tS1S2#,

~2.12!

where we have defined

t[
n

an
, ~2.13!

Au~ t ![11~ t221!~12e2u!. ~2.14!

As expected, our formulas reduce, atu50, to the asymptotic
expansions used in Ref.@12#. From now on we need to reca
that the functionsS1 and S2 have asymptotic series in th
form

S1;(
k50

`
uk~ t !

nk
, ~2.15!

S2;(
k50

`
vk~ t !

nk
, ~2.16!

whereuk and vk are the Debye polynomials given in Re
@24#. The asymptotic expansions on the right-hand sides
Eqs.~2.15! and ~2.16! can be reexpressed as

(
k50

`
uk~ t !

nk
;(

j 50

`
aj~ t !

~an! j
, ~2.17!

(
k50

`
vk~ t !

nk
;(

j 50

`
bj~ t !

~an! j
, ~2.18!

where

ai~ t !5
ui~ t !

t i
, bi~ t !5

v i~ t !

t i
, ; i>0. ~2.19!
4-3
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Now the asymptotic expansion~2.12! suggests defining

S̃[S1
2Au~ t !1S2

212tS1S2 , ~2.20!

and hence studying the asymptotic expansion of log(S̃) in the
relation to be used in Eq.~2.9!, i.e.

log@~ ix !22(n21)~Jn21
2 2e2uJn

2!~ ix !#

;2 log~2p!1 logan12an22n log~n1an!1 log S̃.

~2.21!

From the relations~2.13!–~2.20! S̃ has the asymptotic ex
pansion

S̃; (
p50

`
cp

~an!p
, ~2.22!

where the first fewcp coefficients read

c05Au1112t, ~2.23!

c152a1Au12b112t~a11b1!, ~2.24!

c25~2a21a1
2!Au1~2b21b1

2!12t~a21b21a1b1!,

~2.25!

c352~a31a1a2!Au12~b31b1b2!

12t~a31b31a1b21a2b1!. ~2.26!

Now defining

S[
S̃

c0
, ~2.27!

and making the usual expansion

log~11 f !5(
j 50

`

~21! j 11
f j

j
, ~2.28!

valid as f→0, we find

log S̃5 logc01 logS; logc01 (
p51

`
Ap

~an!p
, ~2.29!

where explicit formulas can be given for allAp . In particular

A15
c1

c0
, ~2.30!

A25
c2

c0
2

1

2
~A1!2, ~2.31!

A35
c3

c0
2A1A22

1

6
~A1!3. ~2.32!

Using the definition
08501
f u~ t ![11
~ t21!

2
~12e2u!, ~2.33!

jointly with our previous formulas and the explicit form o
Debye polynomials@24#, a lengthy calculation yields a
manyAp terms as are needed. For example~cf. Ref. @12#!,

A15
1

4
2

5

12
t21

1

2
~ t221!

f u~ t !
, ~2.34!

A25 (
k50

2
Vk~ t !

„f u~ t !…k
, ~2.35!

A35 (
k50

3
vk~ t !

„f u~ t !…k
, ~2.36!

where

V0~ t !5
1

8
2

3

4
t21

5

8
t4, ~2.37!

V1~ t !52
t

8
1

5

8
t21

t3

8
2

5

8
t4, ~2.38!

V2~ t !52
1

8
1

1

4
t22

1

8
t4, ~2.39!

v0~ t !5
25

512
2

531

320
t21

221

64
t42

1105

576
t6, ~2.40!

v1~ t !52
1

16
2

t

16
1

5

4
t21

3

8
t32

49

16
t42

5

16
t51

15

8
t6,

~2.41!

v2~ t !52
t

16
1

5

16
t21

t3

8
2

5

8
t42

t5

16
1

5

16
t6, ~2.42!

v3~ t !52
1

24
1

t2

8
2

t4

8
1

t6

24
. ~2.43!

In the calculation, all factors 11t in the denominators of
A1 , A2 andA3 have cancelled against factors in the nume
tors, as in theu50 case@12#. Moreover, a simple but non
trivial consistency check shows that, atu50, Eqs.~2.34!–
~2.43! yield A1 , A2 andA3 in agreement with Ref.@12#.

As a result of all these formulas we find

log@~ ix !22(n21)~Jn21
2 2e2uJn

2!~ ix !#;(
i 51

`

S̃i„n,an~x!…,

~2.44!

where the first few functionsS̃i read~cf. Ref. @12#!
4-4
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S̃1[2 logp12an , ~2.45!

S̃2[2~2n21!log~n1an!1 log f u~ t !, ~2.46!

S̃3[
A1

an
, ~2.47!

S̃4[
A2

an
2

, ~2.48!

S̃5[
A3

an
3

. ~2.49!

Expanding deg(n) in powers ofn, the infinite sum overn in
the expression~2.9! can be evaluated with the help of formu
las derived using contour integration, i.e.@22#:

(
p50

`

p2kap
22k2 l;

GS k1
1

2DGS l

2
2

1

2D
2GS k1

l

2D x12 l , k51,2, . . . ,

~2.50!

(
p50

`

pap
212 l;

x12 l

Ap
(
r 50

`
2r

r !
B̃rx

2r

GS r

2
1

1

2DGS l

2
2

1

2
1

r

2D
2GS 1

2
1

l

2D
3cos

rp

2
. ~2.51!

Here l is a real number larger than 1 andB̃051,B̃25 1
6 ,B̃4

52 1
30 etc. are Bernoulli numbers. In arbitrary dimensiond,

the expansion of deg(n) in powers ofn is cumbersome and
systematic formula suitable for alld is given in Eq.~4.3!.

III. CONFORMAL ANOMALY ON THE 4-BALL

As a first application, we show how thez(0) calculation
of Ref. @12# is extended to our boundary conditions invol
ing u, leading in turn to the eigenvalue conditions~1.6! and
~1.7!. Only calculations for Eq.~1.7! are presented, but th
full z(0) value, which expresses the conformal anomaly
a massless Dirac spin-1

2 field ~we do not study the coupling
of spinor fields to gauge fields, which would lead us inste
to the subject of chiral anomalies!, receives a contribution
from Eq.~1.6! obtained by replacingu with 2u in the result
from Eq. ~1.7!.

In 4 dimensions, Sec. II shows thatz(0)5a2 is equal to1
2

times the coefficient ofx26 in the asymptotic expansion o
the right-hand side of Eq.~2.9! at d54. On settingm[n
12 the latter reads@heream(x)[Am21x2]

(
m50

`

~m22m!S 1

2x

d

dxD
3

(
i 51

`

S̃i„m,am~x!…;(
i 51

`

W`
i ,

~3.1!
08501
r

d

with W`
i corresponding to the third derivative ofS̃i , for all i.

The termsW`
i contribute toa2 in 4 dimensions only up to

i 55, and hence only their analysis is presented hereafte

A. Contribution of W`
1 and W`

2

The termW`
1 is given by

W`
1 5 (

m50

`

~m22m!S 1

2x

d

dxD
3

„2 log~p!12am…, ~3.2!

which is unaffected byu-dependent boundary condition
Thus, we know from Ref.@12# that Eqs.~2.50! and ~2.51!
imply vanishing contribution toz(0).

The termW`
2 reads~heret[m/am)

W`
2 5 (

m50

`

~m22m!S 1

2x

d

dxD
3

3@2~2m21!log~m1am!1 log f u~ t !#

5W`
2,A1W`

2,B , ~3.3!

whereW`
2,A is theu-independent part whileW`

2,B denotes the
part involving logfu(t). From Ref.@12# we know thatW`

2,A

contributes

z2,A~0!52
1

120
1

1

24
5

1

30
. ~3.4!

The logfu is dealt with by defining

g[
1

2
~12e2u!52eusinhu, ~3.5!

b[
g

~12g!
52tanhu, ~3.6!

and hence writing@see Eq.~2.33!#

log f u5 log~12g!1 log~11bmam
21!. ~3.7!

At this stage we can exploit Eq.~2.28!, with f [bmam
21

,1 sinceam is always evaluated at largex, and hence we
find

W`
2,B5

1

8 (
k51

`

~21!k~k12!~k14!bk

3 (
m50

`

~m21k2m11k!am
2k26 , ~3.8!

where the interchange of the orders of summation is m
possible by uniform convergence. Interestingly, this s
contributes infinitely manyx26 terms with equal magnitude
and opposite sign, so thatz(0) is unaffected. More precisely
we consider odd and even values ofk and hence define
4-5
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F1[ (
m50

`

m2k13am
22k27 ,

F2[ (
m50

`

m2k12am
22k27 , k50,1,2, . . . , ~3.9!

F3[ (
m50

`

m2k12am
22k26 ,

F4[ (
m50

`

m2k11am
22k26 , k51,2, . . . . ~3.10!

By virtue of Eq. ~2.51!, F1 contributes tox26 with zero
weight for all k because of the cos(3p/2) coefficient. More-
over, F2 is proportional tox24 by virtue of Eq.~2.50!. The
sumF3 is instead proportional tox23 @again by Eq.~2.50!#,
while F4 is such that its contributiondF4

(x;k) to z(0) reads

dF4
~x;1!52

1

12
x26S G~3!

G~3!
2

G~4!

G~4! D50,

~3.11!

dF4
~x;2!2dF4

~x;1!52
1

12
x26S 2

G~4!

G~4!
1

G~5!

G~5! D50,

~3.12!

and infinitely many other relations along the same lines.

B. Effect of W`
3 ,W`

4 and W`
5

The termW`
3 is equal to

W`
3 5 (

m50

`

~m22m!S 1

2x

d

dxD
3F1

4
am

212
5

12
m2am

23

1
1

2
~12g!21S m2

am
3

2
1

am
D ~11bmam

21!21G
5W`

3,A1W`
3,B1W`

3,C1W`
3,D , ~3.13!

whereW`
3,A andW`

3,B are the first two,u-independent sums
while W`

3,C andW`
3,D are the sums depending onu throughg

andb. By virtue of the large-x nature of the whole analysis
we can expand (11bmam

21)21 according to

~11bmam
21!215 (

k50

`

~21!kbkmkam
2k . ~3.14!

Upon exploiting the identity

S 1

2x

d

dxD
3

am
2 l52

1

8
l ~ l 12!~ l 14!am

2 l 26 , ~3.15!

we find thatW`
3,A and W`

3,B do not contribute toz(0) by
virtue of Eqs.~2.50! and~2.51!. The same holds forW`

3,C and
W`

3,D , but the proof requires more intermediate steps, as
lows. The termW`

3,C is given by
08501
l-

W`
3,C52

1

16
~12g!21(

k50

`

~21!kbk~k13!~k15!~k17!

3 (
m50

`

~m42m3!mkam
2k29 . ~3.16!

Looking at even and odd values ofk, this suggests defining

G1[ (
m50

`

m2k14am
22k29 ,

G2[ (
m50

`

m2k13am
22k29 , k50,1,2. . . , ~3.17!

G3[ (
m50

`

m2k15am
22k210,

G4[ (
m50

`

m2k14am
22k210, k50,1,2 . . . . ~3.18!

Now G1 and G4 are proportional tox24 and x25 respec-
tively by virtue of Eq.~2.50!, and hence do not contribute t
z(0). G2 containsx26 weighted by a coefficient propor
tional to cos(p/2), for all k, and hence does not contribute
z(0). Last,G3 is such that its contributiondG3

(x;k) to z(0)
reads

dG3
~x;0!52

1

12
x26S G~5/2!

G~5/2!
22

G~4!

G~4!
1

G~5!

G~5! D50,

~3.19!

jointly with infinitely many other relations along the sam
lines.

The termW`
3,D is given by

W`
3,D5

1

16
~12g!21(

k50

`

~21!kbk~k11!~k13!~k15!

3 (
m50

`

~m21k2m11k!am
2k27 . ~3.20!

Here, too, we split the sum overk into sums over all even
and odd values ofk. We find therefore, exploiting Eqs.~2.50!
and~2.51!, either contributions proportional tox24 andx25,
or x26 terms weighted by cos(p/2), or the contributions re-
sulting from

H3[ (
m50

`

m2k13am
22k28 , k50,1,2, . . . , ~3.21!

which occur with opposite signs for allk.
The general formula forW`

4 reads
4-6
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W`
4 5 (

m50

`

~m22m!S 1

2x

d

dxD
3 A2

am
2

5 (
m50

`

~m22m!S 1

2x

d

dxD
3H am

22F (
r 50

2

j 0,rm
2ram

22r

1 f u
21(

r 51

4

j 1,rm
ram

2r1 f u
22(

r 50

2

j 2,rm
2ram

22r G J
5W`

4,A1W`
4,B1W`

4,C , ~3.22!

where j 0,r , j 1,r and j 2,r are the coefficients in the polynom
als V0 , V1 and V2 respectively@see Eqs.~2.37!–~2.39!#,
and negative powers off u are expanded by exploiting

~11 f !2s5 (
k50

`

~21!k
G~k1s!

k!G~s!
f k as f→0. ~3.23!

Since

W`
4,A52

1

8 (
r 50

2

j 0,r~2r 12!~2r 14!~2r 16!

3 (
m50

`

~m2r 122m2r 11!am
22r 28 , ~3.24!

the basic formulas~2.50! and ~2.51! imply a contribution to
z(0) equal to

1

2 (
r 50

2

j 0,r50. ~3.25!

Moreover, since

W`
4,B52

1

8
~12g!21(

r 51

4

j 1,r (
k50

`

~21!kbk~k1r 12!

3~k1r 14!~k1r 16!

3 (
m50

`

~m22m!mk1ram
2k2r 28 , ~3.26!

W`
4,C52

1

8
~12g!22(

r 50

4

j 2,r (
k50

`

~21!k~k11!

3bk~k12r 12!~k12r 14!~k12r 16!

3 (
m50

`

~m2(r 11)1k2m2r 1k11!am
2k22r 28 , ~3.27!

repeated application of Eqs.~2.50! and ~2.51! yields contri-
butions toz(0) equal to

1

2
~12g!21~11b!21(

r 51

4

j 1,r50, ~3.28!

and
08501
1

2
~12g!22S (

k50

`

~21!k~k11!bkD (
r 50

2

j 2,r50, ~3.29!

respectively. The results~3.25!, ~3.28! and~3.29! are all van-
ishing because of the peculiar properties of thej 0,r , j 1,r and
j 2,r coefficients.

Last, the general formula forW`
5 reads

W`
5 5 (

m50

`

~m22m!S 1

2x

d

dxD
3 A3

am
3

5 (
m50

`

~m22m!S 1

2x

d

dxD
3

3H am
23F (

r 50

3

s0,2rm
2ram

22r1 f u
21(

r 50

6

s1,rm
ram

2r

1 f u
22(

r 51

6

s2,rm
ram

2r1 f u
23(

r 50

3

s3,2rm
2ram

22r G J
5W`

5,A1W`
5,B1W`

5,C1W`
5,D , ~3.30!

wheres0,2r , s1,r , s2,r and s3,2r are the coefficients in the
polynomials v0 , v1 , v2 and v3 respectively @see Eqs.
~2.40!–~2.43!#, and alsof u

23 is expanded by exploiting Eq
~3.23!. Now the termW`

5,A , which is theu-independent part
of Eq. ~3.30!, yields a nonvanishing contribution toz(0)
equal to

1

2 S 2(
r 50

3

s0,2r D 52
1

360
, ~3.31!

while the terms W`
5,B , W`

5,C and W`
5,D , resulting from

f u
21 , f u

22 and f u
23 respectively, give vanishing contributio

obtained as follows:

1

2
~12g!21~11b!21S 2(

r 50

6

s1,r D
50 from W`

5,B , ~3.32!

1

2
~12g!22S (

k50

`

~21!k~k11!bkD S 2(
r 51

6

s2,r D
50 from W`

5,C , ~3.33!

1

2
~12g!23S (

k50

`

~21!k
~k11!~k12!

2
bkD S 2(

r 50

3

s3,2r D
50 from W`

5,D , ~3.34!

by repeated application of Eqs.~2.50! and ~2.51!.
By virtue of Eqs. ~3.4!, ~3.25!, ~3.28!, ~3.29!, ~3.31!–

~3.34! we find

z~0!52S 1

30
2

1

360D5
11

180
, ~3.35!
4-7
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for a massless Dirac field on the 4-ball, bearing in mind t
also the eigenvalue condition~1.6! should be considered. In
terestingly, such az(0) value in 4 dimensions is independe
of u, and agrees with the result in Ref.@12#, where a mass-
less spin-12 field with half as many components as a Dir
field was instead considered.

The proof of vanishing contributions toz(0) from the
infinite sumsF4 , G3 andH3 can be made more systemat
and elegant by remarking that a recursive scheme exists
which

H35S 11
x

2~k13!

d

dxDF4 , ~3.36!

G35S 11
x

2~k14!

d

dxDH3 , ~3.37!

so that one only needs to look atF4 @see Eq.~3.10!#, which
can be evaluated exactly as a function ofx for all k by ex-
ploiting the Euler-Maclaurin formula@3,12#.

IV. HEAT-KERNEL COEFFICIENTS IN GENERAL
DIMENSION d

Our aim in this section is to apply the formalism in such
way that in principle all heat-kernel coefficients in any d
mensiond can be obtained. Therefore we will need the larg
x expansion of@see Eqs.~2.21! and ~3.5!#

S 1

2x

d

dxD
11d/2F2an2~2n21!log~n1an!

1 log„11g~ t21!…1 (
p51

`
Ap

~an!pG . ~4.1!

The first complication compared tod54 is that now, dealing
with arbitrary dimensiond, we need an arbitrary number o
derivatives. This is easily generalized in some cases, i.e

S 1

2x

d

dxD
j

an5~21! j 11
~2 j 23!!!

2 j
an

122 j ,

in others at least in the form of a large-an expansion,

S 1

2x

d

dxD
j

log~n1an!

;
1

2
~21! j 11G~ j !an

22 j1
~21! j

2 j

3 (
k51

`

~21!k11
~k12 j 22!!!

k!!
nkan

2k22 j ,
08501
t

or

-

S 1

2x

d

dxD
j

log„11g~ t21!…

;
~21! j

2 j (
k51

`

~21!k11
~k12 j 22!!!

k!!

3nkbkan
2k22 j .

As we have seen in Secs. II and III, to deal with theAp
contributions, we need terms of the type

S 1

2x

d

dxD
j t i

„11g~ t21! l
…an

p

5
~21! j

2 j

1

~12g! l (
u50

`

~21!u
G~ l 1u!

u!G~ l !
bunu1 i

3
~u1 i 1p12 j 22!!!

~u1 i 1p22!!!
an

2u2 i 2p22 j .

The relevant case isj 511d/2 and the contribution of each
term to the zeta function is found by summing overn, taking
the degeneracy into account.

Let us now show how the general procedure works in
case of thean term. The contribution toz(11d/2,x2) is

B5~21!d/2
ds

2G~11d/2! (
n50

` S d1n22

n D S 1

2x

d

dxD
11d/2

2an

5ds

~d21!!!

211d/2GS 11
d

2D (
n50

` S d1n22

n Dan
212d

5ds

~d21!!!

211d/2GS 11
d

2D (
n50

` S d1n22

n D ~n21x2!2(11d)/2,

~4.2!

of which we need the large-x expansion. A simple expansio
in inverse powers ofx is not allowed; instead we employ
Mellin integral representation. As is clear from the abo
equation, the Barnes zeta function@25–28#

zB~s,a![ (
n50

` S d1n22

n D ~n1a!2s

5 (
mW 50

`

~a1m11•••1md21!2s,
4-8
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will play a crucial role. We need to separate then and x
dependence in Eq.~4.2!, more generally in expressions of th
form

C~ j ,s!ª(
n50

` S d1n22

n D n jan
2 j 2s

5
1

GS s1 j

2 D (
n50

` S d1n22

n D n j

3E
0

`

dtt(s1 j )/221e2(n21x2)t.

The n andx dependence is separated by employing, forRc
.0,

e2n2t5
1

2p i Ec2 i`

c1 i`

daG~a!n22at2a.

For Rs large enough we continue

C~ j ,s!5
1

GS s1 j

2 D (
n50

` S d1n22

n D n j
1

2p i

3E
c2 i`

c1 i`

daG~a!n22aE
0

`

dt t(s1 j )/22a21e2x2t

5
1

GS s1 j

2 D (
n50

` S d1n22

n D n j
1

2p i

3E
c2 i`

c1 i`

daG~a!n22aGS s1 j

2
2a D x2a2s2 j .
08501
The sum and integral may be interchanged upon choo
Rc.( j 1d21)/2 and we find

C~ j ,s!5
1

GS s1 j

2 D
1

2p i Ec2 i`

c1 i`

daG~a!GS s1 j

2
2a D

3x2a2s2 jzBS 2a2 j ,
d

2D .

On shifting the contour to the left we pick up the largex
expansion ofC( j ,s). In order to findan/2 , we are interested
in the term that behaves asx2n22 and need to evaluate th
residue ata5(s1 j 2n22)/2. In all cases we encounter, th
only relevant pole will come fromzB and for these cases

C~ j ,s!;

GS s1 j 2n

2
21D

2GS s1 j

2 D GS 11
n

2D

3ReszBS s2n22,
d

2D x2n221 irrelevant.

~4.3!

From here, e.g., one obtains

B5
1

4Ap
dsGS d212n

2 DReszBS d212n,
d

2DGS 11
n

2D
GS 11

d

2D .

The procedure just outlined can be applied to all terms in
~4.1!. The following list summarizes for each term on the le
the contribution to the heat-kernel coefficientan/2 on the
right (u and2u contributions are summed!:
„2an22n log~n1an!…→ ds

2Ap~d2n!
GS d2n21

2 DRes zBS d212n,
d

2D ,

log~n1an!→ ds

2Ap~d2n!
GS d2n11

2 DRes zBS d2n,
d

2D ,

log„11g~ t21!…→ds

4
GS d2n

2 D ~coshd2nu21!Res zBS d2n,
d

2D ,
4-9
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t i

an
p
„11g~ t21!…l

→2
ds

4elucoshlu
Res zBS d1p2n,

d

2D

3H GS d1 i 1p2n

2 D
GS i 1p

2 D 3F2S l 11

2
,

l

2
,
d1 i 1p2n

2
;
1

2
,
p1 i

2
;tanh2u D

1 l tanhu

GS d1 i 1p112n

2 D
GS i 1p11

2 D 3F2S l 11

2
,11

l

2
,
d1 i 1p112n

2
;
3

2
,
p1 i 11

2
;tanh2u D J

1u→2u.
nl
ne

s

th
in
e

al
ra

e
ef
e

n-
rm

ro
p

an

lu

e
ex

y-
a-
fi-
uss

tric
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For the calculation of heat-kernel coefficients, note that o
a finite number of terms contributes. The poles of the Bar
zeta function are located ats51, . . . ,d21, and depending
on the values ofn andp only a finite number of terms need
to be evaluated. In general, to evaluatean/2 , we need to
include all terms up top5n21 @12#.

The above results resemble very much the structure of
results found for different boundary conditions given
@23,29–32#. In particular, a reduction of the analysis from th
ball to the sphere~in form of the Barnes zeta functions! has
been achieved. Indeed, instead of using the presented
rithm we could equally well have used the contour integ
method developed in@33,29,30#. The starting point for the
zeta function associated with the eigenvalues from Eq.~1.7!
in this approach reads

zu~s!5 (
n50

`

deg~n!E
g

dk

2p i
k22s

]

]k
ln„Jn1d/221

2 ~k!

2e2uJn1d/2
2 ~k!…,

the contourg enclosing all eigenvalues of Eq.~1.7!. One
then uses the uniform asymptotic expansion in order to
tract the pieces that can contribute to the heat kernel co
cients. Performing thek integrals, results analogous to th
above are found and final answers, of course, agree.

Given the explicit results in the above list where all i
gredients are known, the algorithm can be cast in a fo
suitable for application of Mathematica. As far as this p
cess is concerned, some remarks are in order. We have
sented the results in terms of hypergeometric functions,
as far as we can see keepingd,n arbitrary this is the best one
can do. However, as soon as one considers particular va
of d andn, the hypergeometric function3F2 ‘‘collapses’’ to
2F1, which, at the particular values needed, is simply giv
as an algebraic combination of hyperbolic functions. For
ample one has
08501
y
s

e

go-
l

x-
fi-

-
re-
d

es

n
-

2F1~1,1,1/2,tanh2u!5
1

12tanh2u
1

tanhuarcsintanhu

~12tanh2u!3/2

5cosh2u~11arcsintanhusinhu!.

Mathematica will not always replace automatically the h
pergeometric functions by this kind of hyperbolic combin
tions. Since this is essential for further simplifications of
nal answers, the implementation of some of the Ga
relations is necessary. We have used

2F1~a11,b11,g11,z!5
1

a~12z!
$g 2F1~a,b,g,z!

2~g2a! 2F1~a,b11,g11,z!%,

g 2F1~a,b,g,z!5~g2a! 2F1~a,b,g11,z!

1a 2F1~a11,b,g11,z!.

These relations guarantee that ultimately all hypergeome
functions are given in very explicit terms and that huge si
plifications can be performed explicitly. In Sec. V we ha
summarized our findings ind52,4,6 dimensions giving fina
results up to the coefficientad/2 .

V. LIST OF HEAT-KERNEL COEFFICIENTS

We list hereafter the general results we have obtained.
lower coefficients have quite a simple form in all dimensio
and the leading three coefficients are as follows:

a05
ds

2dGS 11
d

2D , ~5.1!

a1/25
Apds

2dGS d

2D „~coshu!d2121…, ~5.2!
4-10
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a15
~2d25!ds

3 2dGS d

2D 1
ds

2dGS d

2D H 2F1S 1,
d21

2
;
1

2
;~ tanhu!2D

2~d21! 2F1S 1,
d11

2
;
3

2
;~ tanhu!2D J . ~5.3!

Moreover, to show the applicability of our algorithms to a
bitrary dimensions and in principle to any coefficient we gi
the following collection of results.
d52:

a05
ds

4
, ~5.4!

a1/25
Apds

4
~coshu21!, ~5.5!

a152
ds

12
. ~5.6!

d54:

a05
ds

32
, ~5.7!

a1/25
Apds

16
„~coshu!321…, ~5.8!

a152
ds

16
cosh 2u, ~5.9!

a3/25
Apds

4096 S sechS u

2D D 4

~15120coshu211cosh 2u!,

~5.10!

a25
11ds

720
. ~5.11!

d56:

a05
ds

384
, ~5.12!

a1/25
Apds

128
~~coshu!521!, ~5.13!

a152
ds

384
~2216cosh 2u1cosh 4u!, ~5.14!

a3/25
Apds

98304S sechS u

2D D 4

~1531212coshu135cosh 2u

232cosh 4u28cosh 5u!, ~5.15!

a25
ds

96
cosh 2u, ~5.16!
08501
a5/252
Apds

805306368S sechS u

2D D 10

~311902

1495474coshu1172792cosh 2u114845cosh 3u

221590cosh 4u22159cosh 5u!, ~5.17!

a352
191ds

60480
. ~5.18!

Of course, the result~5.11! for a2 in dimension four
agrees with Eq.~3.35!, upon bearing in mind thatds is then
equal to 4. Foru50 the results agree with the results foun
previously in@18,34,30#.

VI. CONCLUDING REMARKS

Motivated by quantum cosmology and the problems
quark confinement, we have studied heat-kernel asympto
for the squared Dirac operator on the Euclidean ball, w
local boundary conditions~1.1! leading to the eigenvalue
conditions~1.6! and ~1.7!. We have first proved that on th
4-ball the z(0) value isu-independent. Furthermore, arb
trary values ofd have been considered, and several expl
formulas for heat-kernel coefficients in dimensiond52,4,6
have been obtained in Secs. IV and V. Interestingly,ad/2 is
alwaysu-independent, while several other heat-kernel co
ficients depend onu through hyperbolic functions and the
integer powers.

As far as we can see, the key task is now the analysi
heat-kernel asymptotics with local boundary conditions~1.1!
on general Riemannian manifolds (M ,g) with boundary]M .
One has then to consider the smooth functionf PC`(M )
mentioned after Eq.~1.13!, which is replaced by

an/2~ f ,P,B!5cn/2~ f ,P!1bn/2~ f ,P,B!. ~6.1!

The interior partcn/2 vanishes for all odd values ofn,
whereas the boundary part only vanishes ifn50. The inte-
rior part is obtained by integrating overM a linear combina-
tion of local invariants of the appropriate dimension, whe
the coefficients of the linear combination areuniversal con-
stants, independent ofd. Moreover, the boundary partbn/2 is
obtained upon integration over]M of another linear combi-
nation of local invariants. In that case, however, the struct
group isO(d21), and the coefficients of linear combinatio
will depend ond and u @20# and so they will be universa
functions, as it happens if the boundary operator involv
tangential derivatives@31,35–37#. This is indeed the case fo
the boundary condition~1.1!. To see this define

x[ ieug5
g5gm

and introduce the ‘‘projections’’

P65
1

2
~16x!.

In the bulk of our article we considered the operatorP with
domain
4-11
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domain~P!5$cPC`~V!:P2cu]M % P2Dcu]M50%.

We calculate that

P2Dcu]M5~P1* ¹m1gmgaP2* ¹a!P1cu]M ,

a being a tangential index, which for HermitianP6 (u
50) would reduce to standard mixed boundary conditio
However, as is easily seen, this is not the case foruÞ0 and
tangential derivatives occur in the boundary conditions s
that the boundary conditions considered could be terme
mixed oblique type. It is thus expected, that the general fo
of an/2 contains all possible local invariants built fromf,
Riemann curvatureRbcd

a of M, bundle curvatureVab ~in case
a gauge theory, with vector bundle overM, is studied!, ex-
trinsic curvatureKi j of ]M , endomorphismE ~i.e. potential
term! coming from the differential operatorP, combinations
of g-matrices coming from the boundary operator, and
covariant derivatives of all these geometric objects, even
ally integrating their linear combinations overM and ]M
@5,8,9,38#. All these local invariants are multiplied by unive
sal functions which might depend ond andu. As a next step,
the presented special case calculation together with var
other ingredients such as conformal transformations@39#, in-
dex theory@40#, redefinition of the covariant derivative@41#
will serve to find results valid for arbitrary Riemannia
manifolds and bundle curvatures.
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APPENDIX

The functionF on the left-hand side of Eq.~1.7! is the
product of the entire functions~i.e. functions analytic in the
whole complex plane!

F1[Jn1d/2212euJn1d/2

and

F2[Jn1d/2211euJn1d/2 ,

which can be written in the form

F1~k!5g1kn1d/221eg1(k))
i 51

` S 12
k

m i
Dek/m i, ~A1!
d

08501
.

h
of

e
u-

us

N
-
r

F2~k!5g2kn1d/221eg2(k))
i 51

` S 12
k

n i
Dek/n i. ~A2!

In Eqs. ~A1! and ~A2!, g1 and g2 are constants,g1 and g2
are entire functions, them i are the zeros ofF1 and then i are
the zeros ofF2. The general theory described in Ref.@42#
tells us thatF1 andF2 are entire functions whose canonic
product has genus 1. In other words, by virtue of t
asymptotic behavior of the eigenvalues, one finds that

(
i 51

`
1

um i u
5` and (

i 51

`
1

un i u
5`,

whereas( i 51
` (1/um i u2) and ( i 51

` (1/un i u2) are convergent.

This is why the exponentialsek/m i and ek/n i must appear in
Eqs. ~A1! and ~A2!, which are called the canonical-produ
representations ofF1 and F2. The genus of the canonica
product for F1 is the minimum integerh such that
( i 51

` (1/um i uh11) converges, and similarly forF2, replacing
m i with n i . If the genus is equal to 1, this ensures that
higher powers ofk/m i andk/n i are needed in the argumen
of the exponential. Moreover, even for nonvanishing valu
of u, it remains true that the zeros ofF1 are minus the zeros
of F2 :m i52n i , for all i @12#. Hence one finds eventually

F~k!5g̃k2(n1d/221))
i 51

` S 12
k2

m i
2D , ~A3!

whereg̃[g1g2 , m i
2 are the positive zeros ofF(k), and the

sum (g11g2)(k) can be shown to vanish exactly as in Se
IV of Ref. @12#.

In our paper we use uniform asymptotic expansions
regular Bessel functionsJn and their first derivativesJn8 . On
making the analytic continuationx→ ix and then defining
an[An21x2, one can write

Jn~ ix !;
~ ix !n

A2p
an

21/2eane2n log(n1an)S1 , ~A4!

Jn8~ ix !;
~ ix !n21

A2p
an

1/2eane2n log(n1an)S2 , ~A5!

where the functionsS1 andS2 admit the asymptotic expan
sions

S1;(
k50

`

uk~n/an!/nk, S2;(
k50

`

vk~n/an!/nk,

valid uniformly in the ordern as uxu→`. The functionsuk
andvk are polynomials, given by Eqs.~9.3.9! and~9.3.13! on
p. 366 of Ref.@24#.
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