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Commutative Yang-Mills theories in£1 dimensions exhibit an interesting interplay between geometrical
properties andJ (N) gauge structures: in the exact expression of a Wilson loop mwitlindings a nontrivial
scaling intertwines andN. In the noncommutative case the interplay becomes tighter owing to the merging of
space-time and “internal” symmetries in a larger gauge grél(pe). We perform an explicit perturbative
calculation of such a loop up ©(g®); rather surprisingly, we find that in the contribution from the crossed
graphs(the genuine noncommutative ternibe scaling we mentioned occurs for langandN in the limit of
maximal noncommutativityy=cc. We present arguments in favor of the persistence of such a scaling at any
perturbative order and succeed in summing the related perturbative series.
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[. INTRODUCTION Noncommutative field theories have been widely explored
in recent years. Although their basic motivation relies, in our
One of the most interesting and intriguing features of non-opinion, on their relation with string theorid§—7, they
commutative field theories is the merging of space-time anaften exhibit curious new features and are therefore fascinat-
“‘internal” symmetries in a larger gauge group(=) [1,2].  ing on their own[8,9].
Peculiar topological properties can find their place there and The simplest way of turning ordinary theories into non-
be conveniently described under the general frame providedommutative ones is to replace the usual multiplication of
by K theory[3]. fields in the Lagrangian with the Moyat product. This
On the other hand, some interplay occurs also when thegroduct is constructed by means of a real antisymmetric ma-
ries are defined on commutative spaces[4hit has been trix 6*” which parametrizes the noncommutativity of
shown that in two space-time dimensions a nontrivial ho-Minkowski space-time:
lonomy concerning the base manifold and the fibKiN)

appears when considering a Wilson loop windingimes [x*x"]=io*",  wu,v=0,...D—1. 2
around a closed contour, leading to a peculiar scaling law

|ntertW|n|ng the two |nteger9 andN: The x prOdUCt of two fleld&f)l(X) and ¢2(X) can be defined

by means of Weyl symbols
Wl AN =W (EA-n M a4 !
n ’ - N N ’ ¢1*¢2(X) f (2 )2D eX% p,uelu-qu

W being the exact expression of the Wilson loop atidhe X expipx) 1(p—0q) b(q). ()]
enclosed area. When going around the loop the non-Abelian

character of the gauge group is felt. The resulting action obviously makes the theory nonlocal.

One may wonder whether similar relations are present in A particularly interesting situation occurs W(N) gauge
the noncommutative case and, in the affirmative, what theyheories defined in one-space, one-time dimensions

can teach us concerning the tighter merging occurring if{Y My4).
such a situation. The classical Minkowski action reads

1
- _ = 2 3%
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Fruv=0,Av= A, —19(AXA,—AxA,) ) W[C]= %J ’DAeiS[A]f d?xTrP,
andA, is aNXN Hermitian matrix.

The action in Eq(4) is invariant undetJ (N) noncommu-
tative gauge transformations

XeXP( iQLA+(X+ §(S))d§+(s)> (1D

A=, N—Ig(AFN—N*A ). (6) WwhereC is a closed contour in noncommutative space-time
parametrized by(s), with 0ss<1, £(0)=¢(1) and P,
We quantize the theory in the light-cone gaugeA,=A denotes noncommutative path ordering alouig) from left

=0, the vecton,, being light-like,n“= (1/y2)(1,—1). This tp right with relspec.t to increas_ir@of * prodycts of func- _
gauge is particularly convenient since Faddeev-Popov ghosfions. Gauge invariance requires integration over coordi-
decouple even in a noncommutative contgb@), while the nates, which is trivially realized when considering vacuum

field tensor is linear in the field with only one nonvanishing verages23}. _
componenfF_ . =d_A, . The perturbative expansion 3 C], expressed by Eq.

In this gauge twddifferent prescriptions are obtained for (11), reads
the vector propagator in momentum space: namely,

W[CJ=3 > (ig)" 1dsl...
N =0 0

D =i[k=*]py Y
1 : .
and Xf ds,X_(Sq) - - -X_(Sp)
Sn—1
D =ilk-+iek,]™ ® X (0| TrT AL (X(Sp) . . . %A, (X(52)]]0),
PV denoting the Cauchy principal value. The two expres- (12)

sions above are usually referred to in the literature as the

Hooft [11] and Wu-Mandelstam-LeibbranétVML) [12,13 And it is shown to be an even power serieg,irso that we

: can write
propagators. They correspond to two different ways of quan-
tizing the theory, namely by means of a light-front or of an WIC]=1+02Wo+ g*Wy+ g We+ - - - . (13
equal-time algebrgl4—16, respectively and, obviously, co-
incide with the ones in the commutative case. If we considem windings around the loop, the result can be

The WML propagator can be Wick-rotated, thereby allow-easily obtained by extending the intervak8<n, &(s) be-
ing for an Euclidean treatment. A smooth continuation of thecoming a periodic function os.
propagator to the Euclidean region is instead impossible The main conclusion of20] was that a perturbative Eu-
when using the PV prescription. clidean calculation with the WML prescription is feasible
In the commutative case, a perturbative calculation for aand leads to a regular result. We found indeed pure area
closed Wilson loop, computed with the 't Hooft propagator, dependencéwe recall that invariance under area preserving
coincides with the exact expression obtained on the basis Qﬁffeomorphisms holds also in a nhoncommutative context
a purely geometrical proceduf6,17] and continuity in the limit of a vanishing noncommutative
parameter. The limiting case of a large honcommutative pa-
rameter(maximal noncommutativityis far from trivial: as a
: ©) matter of fact the contribution from the nonplanar graph does
not vanish in the larg@- limit at odds with the result in

The use instead of the WML propagator leads to a dif“ferent,higher dimension@]. o . ,
More dramatic is the situation when considering the 't

genuinely perturbative expression in which topological ef- ! .
fects are disregarddd8,19 Hooft’s form of the free propagator. In the noncommutative

case the presence of the Moyal phase produces singularities
which cannot be curefi20]. As a consequence 't Hooft's
L 1(9%A), (10)  context will not be further considered.
Another remarkable difference between 't Hooft's and
WML formulations in commutative Yang-Mills theories was
L{", being a Laguerre polynomial. noticed in[4]. When consideringn windings around the
One can inquire to what extent these considerations caclosed loop, a nontrivial holonomy concerning the base
be generalized to a non-commutatit N) gauge theory, manifold and the fibef U(N)] [Eqg. (1)] took place in the
always remaining in + 1 dimensions. This was explored in exact solution. The behavior of the WML solution was in-
Ref. [20] by performing a fourth order perturbative calcula- stead fairly trivial (4—n2A), as expected in a genuinely

1
W= exp( - EgzNA

1 1 )
WWML:NeX _Eg A

tion of a closed Wilson loop. perturbative treatment. However, it is amazing to notice that
In the noncommutative case the Wilson loop can be deexpression(10) with n windings, when restricted tplanar
fined by means of the Moyal product g&l1,22,1 diagrams, becomes
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* (—g2An2N)™ dence is partly based on a numerical evaluation of an integral
WWBIL: _— occurring in the calculation of diagrams with a double cross-
m=0 m!(m+1)! ing (see Appendix B
1 We present arguments in favor of the persistence of such a
_ [ o, scaling in the limits O,N,#)—« at any perturbative order
- \/m‘h(z g An°N). (14 anq eventually succeed in summing the related perturbative
series.
] ] As soon as we move away from the extreme valdes
Scaling(1) is recovered. o _ =0,=, corrections appear which are likely to interpolate
In the noncommutative case this issue acquires a mUCQmootth between small-and larged behaviors.
deeper interest thanks to the merging of space-time and “in- |, sec. I we present thé(g*) calculation; the®(g®)
ternal” symmetries in a large gauge groUt{=), or, better,  reqyits are reported in Sec. Il together with our conjecture
in its largest completiordcp(H) [2]. Also for the WML ¢5ncerming the leading terms at lamgN and @ at any per-

formulation we expect a nontrivial intertwining betwean  y,ihative order. The details of the calculations are deferred to
andN, which might help in clarifying some features of this he aAppendices. Final considerations are discussed in the
merging. Actually this is the main motivation of the presentcqnciusions.

research.

Lacking a complete solution, we limit ourselves to a per-
turbative context. A little thought is enough to be convinced Il. THE FOURTH ORDER CALCULATION
that the functionV, in Eq. (13) is reproduced by the single-
exchange diagram, which is exactly the same as in the com- We concentrate our attention owﬁff) and resort to a
mutative U(N) theory. Actually all planar graphs contribu- Euclidean formulation, generalizing towindings the results
tions coincide with the corresponding ones of thereported in[20].
commutative casg¢l8], being independent of [see Eq. By exploiting the invariance ofV under area-preserving
(14)]. Although they dominate for largel andn, they are a  diffeomorphisms, which holds also in this noncommutative
kind of “constant” background, which is uninteresting in this context, we consider the simple choice of a circular contour
context. Therefore in the following we will concentrate our-

selves in calculating and discussing the properties of nonpla- X(S)=(X4(8),Xa(s))=r(cog27s),sin(27s)). (15
nar graphs/ (" in the WML (Euclidean formulation.
The contributions/V " and W with n windings will ~ Were it not for the presence of the Moyal phase, a tremen-

be presented in detail. Af=0 the commutative result is dous simplification would occur between the factor in the

recovered, together with its trivial perturbative scaling, themeasure x_(s)x_(s’) and the basic correlator
result being continuouéout probably not analytic there (AL(s)A,(s")) [18]. The Moyal phase can be handled in an
Surprisingly, atd= and at©(g*), we recover the non- easier way if we perform a Fourier transform, namely if we
trivial scaling law(1) of the exact solution in the commuta- work in the momentum space. The momenta are chosen to be
tive case; however, for the sake of clarity, we stress that sucRuclidean and the noncommutative parameter imagirgary
a scaling is here realized in a quite different mathematical—i#. In this way all the phase factors do not change their
expression. AtO(g®) the scaling receives corrections, de- character.
creasing at large; as a consequence we can say that it holds We use WML propagators in the Euclidean forrky (
only at larged and largen. We also realize that diagrams —ik,) 2 and parametrize the vectors introducing polar vari-
with a single crossing of propagators dominate, making posables in order to perform symmetric integratiofi,18.
sible the extension to higher perturbative orders. This eviThen we are led to the expression

n n n n 'xdp dq 2
wgm:r“f dslf dszf ds3J ds4J — — | dydyexp(—2i(g+ x))exp2ip sing sinm(s;—S3))
0 Sy S5 S3 o P QqJo
o 0 , [0
X exp(2iq siny sinm(s,—S4))ex |r—zpq5|r{1p—)(+77(52+s4—51—53)] =A°F Z,n . (16

Integrating overy andp, we get, after a trivial rescaling

1_Ze—in'n'a'
=dq dz , z
W(cr):ﬂ_r4n4f ds J_§ ._efqsm[nﬂn-(s4732)](zfl/z)—?, 1
N [dsly 0 q Jig-1iz° 1—yze" 17)
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whereo=s;+s3;—s,—s, and

n24?2 n34% s8n*A44/ 1 175 1
W = — +i + —+
0q 4 8w° 8w’0 3m°¢°|256 3072n°n?
Y 2r%sinnm(s;—sy)]’ +0O(073). (22)
1 1 1 1
f [ds]s= fo dleldSZJ’szdSSLsdsél- We notice that the largé-limit [first term in Eq.(22)]

obeys the scalingl), which, in the commutative case, was
We can further integrate ovez, obtaining a series of presentin the exact solution for the gauge gral(N). This
Bessel functions. Integration ovgrand resummation of the scaling is different from the trivial one a&=0.
series[24] lead to

1 2 o [ll. THE SIXTH ORDER CALCULATION AND BEYOND
§+Eg(exr[|,85|na]—l o . . .

The motivation for exploring the sixth order is to see
whether the scaling law we have found in the fourth order
result atd=-oo still persists in higher orders. In the affirma-
tive case one would be strongly encouraged to resum the
series in order to inquire about the persistence of such a

Wff”=2n4A2f [ds],

—iBsina)

* ; P m
:2n4A2f [ds], 1+ % > (igsina)” , scaling beyond a perturbation expansion. This, in turn, might
2 pTm=2 m! have far-reaching consequences on the interpretation of the

(18 theory in the extreme noncommutative limit.
We organize the sixth order loop calculation according to
the possible topologically different diagrams one can draw. If
a=Nm(S1+S3—S,—Sy), we order the six vertices on the circle from 1 to 6, we denote
by Wiijyiymn the contribution of the graph corresponding
. . to three propagators joining the verticag)((kl),(mn), re-
B= —5SiNnm(s,—Sp) Jsinnm(s3—sy)]. 19 gpectively. ThUSV 14)(25)(36) COITesponds to the maximally
crossed diagrart.e., the one in which all propagators crigss
It is an easy calculation to check that the functiéris  then we have three diagrams with double crossing, namely
continuous(but probably not analyticat 6=0 with F(0) W14 (26)(35) W(13)(25)(46) @aNdW,15)(24)36)- Finally we have
=n*24, exactly corresponding to the value of the commu-six diagrams with a single crossingVi2)(ss)(4e)
tative case obtained with the WML propagaf@8]. Wite)2a)35) Wis)(23)46) Wiis)(26)(3ay YW(13)(26)45) and
The first order correction i can also be singled out Wi13)(24)(s6)- Diagrams without any crossing are not interest-
ing since they are not affected by the Moyal phase; they

where

1 2
Wﬁcr):Zn"’AZJ [ds]sl = — _Isina ) (200  indeed coincide with the corresponding ones in the commu-
2 B tative case.
The calculation is sketched in Appendix A and the result is The d|a?grams' V.V'th a single crossing can be fairly easily
evaluated; surprisingly the most difficult diagrams are the
(1) n‘A?2 n® ones with double crossing. All integrations can be performed
24 4 analytically, except for a single one concerning the doubly
crossed diagrams, which has been performed numerically.
One might recover the trivial scalingl—.4n? provided ¢ The details of such a heavy calculation are described in
— 6n; however, this is ruled out by the largebehavior we  Appendix B. Here we only report the starting point and the
are going to explore. final results.
The largeé behavior can be obtained starting from Eq. As an example of singly crossed diagram we consider
(18); the first terms in the expansion turn out to be Wi16)(24)(35)
Oni6 =dp dq dk (27 . o _
Wiie)2ayas= —F "Nn° | [ds]g . F F rak dopdyxdyexp(—2i(¢p+ x+ ¢))exp2ip sing sinnwsg
. . . - - . . - . 0 . + +
+2iq siny sinnmrs,,+ 2ik siny sinnars;s)expy i r—zqksw[ Y—x+Nnm(Ss—Soa)] ], (23

wheres;; =s;*s;.

The doubly crossed diagraiV,;s)(24(3¢)l€ads to the expression

085012-4



SCALING PROPERTIES OF THE PERTURBATE. . . PHYSICAL REVIEW D 66, 085012 (2002

=dp dqdk (27

W(15)(24)(36)=—r6Nn6J [ds]e oo Ko dpdyxdy exp(— 2i(p+ x+ i))exp(2ip sin¢ sinnws;y)

0
X exp(2iq siny sinns,,) X exp(2ik siny sinnﬂ-s%)ex;( i r—z(pksir[¢—X+ N7 (S5~ S1s) ]

+gksin y—x+ nw(sefe—szl)]))- (24)

Finally the maximally crossed diagrah¥4)(2s)(3¢) reads

»dp dqg dk

2
W14 (25)(36] —r6Nn6f [ds]efO o ?Jo dpdydy exp(—2i(p+ x+ i))exp(2ip sin¢ sinnsy,)

0
X exp(2iq siny sinnars,s) X exp( 2ik siny sinnws&)ex;{ i (pgsin¢— i+ N7(Sys—S14) ]

+pksir{¢—x+nw<s;6—sm]+qksirw—x+nw<s§6—s;5>]>). (25

We notice that théJ (N) factor is the same in all three con- exhibits the scalingl). It comes only from diagrams with a
figurations. single crossing. Diagrams with such a topological configura-

The sum of the diagrams with a single crossing and tion can also be computed in higher orders; for instance, at
windings contributes afi= with the following expression:  O(g®) they lead to the result

L AS3Nn*
VA )(g:oo): Y

o (=)=~ AN o 30

The integral over the loop variables provides a factor,
turning the trivialn®, due to the kinematical rescaling, into
FENE: the factorn®. Details are reported in Appendix C.
WB (=)= — (27) We are led to argue that the dominant term at then(2
u +4)th perturbative order increases withno faster than

The maximally crossed diagram in turn leads to

n2™*2_In turn it exhibits the highest(N) contribution,
Finally the diagrams with double crossing give behaving likeN™
AN gP" WD, 4(0=)=Kn(NN)™(g?An) ™2, (31)
WR(h=w)= 157 (1+0.2088. (28)

which obeys the scalingl).

Further we conjecture that diagrams with a single crossing

As we have anticipated, the last term has been evaluategl . inate: then the weights,, can be evaluatetsee Appen-
numerically. Itsn dependence has been checked umto ;. D) ana lead to m

=6, within the incertitude due to the numerical integration

(see Appendix B 92m+4VV(2$12)+4(0:°°)
Summing together all the contributions of diagrams with
crossed propagators, we get (g?An)? 1 (—g®ANn)™
o T 477 ml (m+2)!
cr _
A3Nn* 1 (35 _ , ,
=22 \1 T hz2 §—0.417 . (290  the related perturbative series can be easily resummed
g°A
We remark that the leading term at lange WEN(g=o0)=— sz(Z\/ngnzN)- (33
A°NR? If we compare Eq(32) with the corresponding term due to

WE (=)= " ; : . i
6 247 planar diagrams, which are insensitivettfsee Eq(14)], we
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notice that, in the 't Hooft’s limitN— o with fixed g°N, the  values of#, might be taken instead as a serious indication

planar diagrams dominate by a facttiN?, as expected. thatn andN separately are not perhaps the best parameters to
Our conjecture is open to more thorough perturbative testbe chosen unless large values for baihd for §!) are con-

as well as to possible non-perturbative derivations whictsidered. In such a situation, perhaps surprisingly, the relation

might throw further light on its ultimate meaning and related(1) is recovered.

consequences. For recent papers on nonperturbative ap- Equations(14), (32) are concrete realizations of the more

proaches, seg25-27. general structure

IV. CONCLUSIONS Woms 2= (AN?N)™2f _(n,N), (34

e o oo bing & symmetc funion of s argumerts: W st
Abe,lian nature ofg:he auge group in the non(E)('iummutativethat Eq.(14) concems onhplanar diagrams; crossed graph
case is felt, even in a gertugrba%ive Ealculation making use o ontributions in the commutative case cannot be put in the
' hinap ng orm (34) and violate the relatioril).! In the noncommuta-
the WML prescription for the vector propagator. This is due,. . .
to the merging of space-time properties with “internal” sym- tive case, for largen,N e_mq maximal noncommutauwtya(
=), the structurg(34) is instead restored for the leading

metries in a large invariance grolftp(%) [2,27. contribution ofcrosseddiagrams. The presence of the func-

One gets the c!ear impression that in a noncommutatlv%on £, in the WML context might be thought of as a sign of
formulation what is really relevant are not separately the

space-time properties of the “base” manifold and of the “fi- the merging O.f ;pace-nme a}nd. internal §ymmetr|es. .

» ) All these difficult, but intriguing questions are worthy in
ber” U(N), but rather the overall algebraic structure of the - } C 2 X
resulting invariance group (). To properly understand our opinion of thorough investigations and promise further
: gn grouficpd 7). properly . exciting, unexpected developments.
its topological features is certainly beyond any perturbative
approach. Rather one should possibly resort to suitAble
truncations of the Hilbert space in the form of matrix models
leading to the invariance groups(/N).

It is not clear how many perturbative features might even-

tually be singled out in those contexts, especially in view of We thank Matteo Viel for help in the numerical calcula-
the difficulty in performing the inductive limif— . tion. One of ugA.B.) acknowledges a partial support by the

For this reason we think that our perturbative results areEuropean Community network HPRN-CT-2000-00149.
challenging. They indicate that the intertwining betweagn
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controlling the_ space-time_ geometry, ahtl related to th(_e APPENDIX A: SMALL @ LIMIT
gauge group, is far from trivial. The presence of corrections
to the scaling laws occurring at=0 and atf=o, while The first significant term in the sma#l expansion is the

frustrating at first sight in view of a generalization to all second one in Eq20), that is theO(#9) term in Wﬁfr),

siMnm(s;+S3—S,—S4)]
simn(s;—S,) Isinm(s3—S;) ]

1
W9=—in4A7T0f [ds]
0

=—in*Amal, (A1)

with measurd ds]|=ds;ds,ds;ds,0(s,—S3) 0(S3—S5) 6(S,—S1). Integrating inds; andds, leads to

| 1 fld ds.0 ) | sinnws, 1 | sinns; 2
=7, S,ds36(s3—S,)] —Nnmcog 2nm(s3—s;) | Szogm +(1-s3) Ogm +sin 2nm(s3
27125,(1—s5) + log|si log| SN T(Ss=%) | log|si - A2
S;) ]| —n*m®s,(1—s3) +log|sinnar(s;—s,)|log Sinnws,sinnasy| og|sinnws,|log|sinnarsg| | {=11+15,, (A2)

wherel, andl, refer to the first and second square brackets in(Eg), respectively. The two integrals in coincide. They
can be easily performed leading to
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2. The doubly crossed diagram

(A3) Integrating Eq(24) over ¢ andp, and then overs andq,

we get
Concerningl,, the first term is trivial, and provides us with

en

1 1
1=~ Gne T A/

a factor 1/(&°#°) — 1/(12n ), whereas in the remaining in- Wis) 246~ — NN J [ds]6f°°dk dz
tegrals it is more convenient to integrate first on one variable lzl=1 iz°
and then to add the integrands together before performing the
final integration, i.e. 1— y_e—mw’
X efksin[nw(ssfs3)](zf 1/z)>< : .
l B l 1 J~ d 1_7/Zénwo
2T 8’7 1w 2n3 3], dssinns ,
Y —inmo’
. 1-—e
X[2nms cosnrs log|sinnrs| z
X no, gnwo’ ? (B4)
+sinnars(log|sinnars|— 1) ] 1-9"z¢
1 1 (Ad) where
=133 Ton -
an*7>  12nw , . , ok
g :Sl 55_83_861 Y = 7 - — )
Adding Egs.(A3) and(A4) and taking Eq(A1) into account, 2resinnm(ss—sy)]
Eq. (21) follows.
q ( ) W " " 6k
TTSTSTS TS Y T g s, )]
APPENDIX B: SIXTH ORDER CALCULATION 47
1. The singly crossed diagram We  consider the identity e *SnMSTNER)

=[(e Xsnh(%~%)N("12) _ 1)+ 1] in Eq. (B4); in the first

We show in some detail the formulas f(;6)(24 (35, the term it is possible to send to infinity in the integrand,
other five diagrams being simply obtainable by renaming th%btalnlng the result

variables.
Integrating Eq.(23) over ¢ andp we recover an expres- réNné 3 (2ot 26 oo
sion analogous to Eq16). Therefore we can use the result - TJ [ds]ee?™! (253" 2% 517557527 %4)  (B5)

obtained ai?(g*) to get
The other contribution can be exactly integrated avandk,

Wiae)(24)(3s) leading to the sum of two expressions
1 2 r6Nné
— _ o643 . i 2l ain o’ Nn°2
2n%4 Nf [dsle| 5 + B,Z(exmﬁ sina’] _ ™ f[ds]eexp(—l(xwLw))
X A—o)]® B6
—1-ig'sina’)|, (B1) [cosh ~w)] (B6)
and
where now |r6Nn627r
f[ds]eexp(—|(>\+w))
a'=nm(Sy+S,—S3—Ss),
d
i + c exp(i()\—w)))
B'=—silnm(s,~splsinm(ss—sy)].  (B2) XT3 [sinh—w)P,  (B7)
~lc exp(i(A — w))
The large# limit is easily derived from this formula; sum-
where

ming all the singly crossed diagrams we find

L c=—sinnm(s;—ss)]exp —inmo’)=|clexpiow),

A7*n*  2472n?

— A3NR® (B3)

d=—sinMnm(s,—ss) ]exp(—inmo”)=|d|exp(iN).
The integrals(B5) and (B6) can be easily computed; when

The structureg(34) is shared also by the exact geometrical solu-summed with the corresponding ones frdM4)26)(3s5 and
tion of the commutative cadd]. Wi13)(25)(a6) they give
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A. BASSETTO, G. NARDELLI, AND A. TORRIELLI
A3NN? a sum numerically, fon=1, ... ,6. Wepresent the result in
ot (B8)  the form

47r®Nn?
3 XJINUM » (B9)

Expression(B7) instead, together with the corresponding

ones fromV,14y(26)(35) aNd W(13)(25)(46), 1S difficult to deal
with. We can prove their sum is real and have evaluated suciWwhere

Jnum(n=1)=1.3223680+37)x 10 3,
J n=1
Jnum(n=2)=0.33049+ 16) X 10" 3, % —0.33059201+ 93) X 10" 3,

J n=1
Jnum(n=3)=0.14697+35)x 103, % =0.14692980+41) X 102,

J n=1
Jnum(n=4)=0.0817+29)x 103, %6) =0.08264800+ 23) X 103,

J n=1
Jnum(n=5)=0.0510+40)x 103, %5) =0.05289472+ 15)x 103,

J n=1
Jnum(n=6)=0.0388+79) x 1073, % =0.03673245+10)x 10 2.

All the errors are three standard deviations. Within the numerical elgr scales as h?.

3. The maximally crossed diagram

Integrating Eq.(25) over ¢ andp, and then ovel andk, we get, after a simple rescaling,

=dq (2 . qr?
W(14)(25)(36):—r6Nn62772f [ds]ef Ef dy exp(—2igexp 4i —singsininm(s,—ss)]
0 0
4

02 4| r 2 in m 4 r in m
+8r4a2/32 ex P Im(e"™ aB) —Tlm(e T aB)—1]],

the bars denote complex conjugation and

N| -
2R
3Ry

(B10)

whereo” =s;+S,— S3— Sg,
a=siNnm(s;—5,4) ]+ qexpi(y+nw(S;+S,—S,—S5)),

B=sinnm(s;—Sg) ] —qexpi(y+nm(s3+Sg—S,—Ss)).

We can recognize in EqB10) the same structure we have found in Etg). We rewrite it as follows:

=dq (27 r2
W(14)(25)(36)=—r6Nn62w2f [ds]ﬁf Eq d¢exp(—2i¢)><exr{4i qTSinwsir[nw(sz—ss)])exp(—2i(ya+ Yg)
0 0

s-2
} [sin(nma” =y, +yp) I°

1

onme"— 2y +2 +1f”+imdr ity HellBIr®
ECOS{ nwTo Yat27p) pry i sl'(—s)e —

X
(B11)

2<u<3,
where we have defined=|a|exp(y,) and 3=|B|exp(y,).
One can prove that, in the largelimit, the last integral goes to zero. Then, in this limit, E§11) can be easily evaluated
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6Nn6 3
2 2s,+2 2 2s1+2 2 2s3+2
W(l4)(25)(36)—>ﬁﬂ30 j [dS] (e inm(2sy+2s5—51—S4—S3— 56)+e inm(2s,+2s4—sy—Sg—S3— 56)+e inm(2s3+2sg—S1—S4—Sp— 55))

_ A°NR? 512
= e B2

Here we notice that the integrand is completely symmetric irThe integrals ove£ andy can be easily performed giving, of
the three propagatord4)(25)(36), as it should. course, a polynomial iy

APPENDIX C: HIGHER ORDERS 1
7=, C/ f Y cog 2mny]dy. (C5)
r 0

First we prove that singly crossed diagrams behave in the
large limit at least as Ti? or subleading in the limit of a

large number of windings. We start by realizing that we can |ntegrating by parts, we realize that only even inverse powers
always express the integral of a generic diagram with of n are produced, starting from™2.

propagators and a single crossing generalizing(E8). Now we turn our attention to theJ(N) factors. A direct
L . Z y cgmputation of the trace; involved. in the diagrams with a

IEJ' dtf dzf dyf dxf [dS]om_4 single, a double or the triple crossif@(g®)), shows that

0 0 0 0 they all share the common factbi® [our normalization be-

ing t°=1/\N, Tr(t3%") = 5% a,b=1,... N°~1]. As the
Wilson loop is normalized wittN™1, at O(g®) the single
factor N ensues.

xco§2mn(x+z—y—t)], (Cy

[dS]om-4 being a measure depending oqy,z,t only

; - . It is now trivial to realize that any insertion ofi— 3 lines
through the extremes of integration. As a matter of fact, it |s
no matter where in such diagrams, prowded that further
always possible to single out the variables linked to the

propagators which cross, suitably rearranging the other k|neCrOSSIngS are avoided, produces the fabtdr*

matical integrations. These integrations lead to polynomials
APPENDIX D: COMPUTATION OF THE WEIGHTS

1 t z y In the previous appendix we have shown thatritteepen-
I:f dtf dzf dyf dx dence of singly crossed diagrams in the laggbmit takes
the formE —1CpN ~2P_ To find the leading contribution at
largen we have to evaluate;. This can be done as follows:

K1y KoKtk
Xklggk‘l Chiykokgh, X 1Y 227517 at O(g®™" %) we start drawing a cross and then add the re-
maining m propagators in such a way they do not further
xco§2mn(x+z—y—1t)]. (C2)  cross. From Eq9(C2)—(C5) one can realize that, is differ-

) ent from zero only for a particular subset of these diagrams:
Now we perform the change of variables=y+Xx, 8=y  if we label the four sectors in which the cross divides the

=X, y=t+z, 6=tz circular loop as Nortlithe sector containing the origin of the
loop variabless;), West, South and East, then only diagrams
1 2-6 (y—8)I2 y—6-8 with r propagator in the southern sector amd-r in the
I‘f d5j d?’f d f da northern one contribute to;; moreover, these contributions

are all equal. Therefore we can evaluate this integral once
and then multiply it by the number of configurations in this

X E C,qlq2q3q4aqlﬁq2'yq35q4co~{an(ﬁ"' 0)] subset.
1920394 We choose as representative the diagram with allnthe
(C3 nonintersecting propagators in the northern sector, starting
from the origin and connecting, with s,, . .., Sopy,_1 With
and then integrate ovex. Changing again variables % s, . In this way the crossed variables asgy. 1, ...,
=p+4, {&=6— B, we end up with Som+ 4. We obtain the integral
o (n//+§)/2 I:(_W)m+2(gr)2m+4Nmn2m+4
= Jou ] e
¥ By—-9l2 1 t z y x2m
8 J'o dtfodzfo dyJ'o dX(Zm)!
X 2 CpppPrEP2yPco§2mny].  (C4)
P1P2P3 Xcog§2mn(x+z—y—t)]. (DY)
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Following the procedure described in Appendix C we get o 1)
29T\ r+ =
_ +2 2m+4 2
:( ™)™ A(gr)m N2+ S, = 1 _ (D5)
(2m)! F(E I(r+2)

1 1
< [y L= g
o~ (2m+1)(2m+2) The m—r propagators in the northern sector lead to the
X cog 2mni] (D2)  WeightS;y_r) times the number of possible insertions of the
origin, namely[2(m—r)+1]. The number of relevant dia-
and finally grams is therefore

(_QZAnZ)m+2 1 1
— m R
=N mr2n gz O

Now we have to count. We denote By, the ways in which
ther propagators in the southern sector can be arranged with-

. (D3) m
) Nm=r§0 Sy Som-nl2(m—r)+1]

3
22M2(m+ 1)1“( m-+ —)

out crossing. A little thought provides the recursive relation 2 (06)
= T )
r
F(— I'(m+3)
So=1, Sur=2, Sac2Ser-a (D4) 2
which can easily be solved Multiplying Egs. (D3) and (D6) we are led to Eq(32).
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