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Commutative Yang-Mills theories in 111 dimensions exhibit an interesting interplay between geometrical
properties andU(N) gauge structures: in the exact expression of a Wilson loop withn windings a nontrivial
scaling intertwinesn andN. In the noncommutative case the interplay becomes tighter owing to the merging of
space-time and ‘‘internal’’ symmetries in a larger gauge groupU(`). We perform an explicit perturbative
calculation of such a loop up toO(g6); rather surprisingly, we find that in the contribution from the crossed
graphs~the genuine noncommutative terms! the scaling we mentioned occurs for largen andN in the limit of
maximal noncommutativityu5`. We present arguments in favor of the persistence of such a scaling at any
perturbative order and succeed in summing the related perturbative series.
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I. INTRODUCTION

One of the most interesting and intriguing features of n
commutative field theories is the merging of space-time
‘‘internal’’ symmetries in a larger gauge groupU(`) @1,2#.
Peculiar topological properties can find their place there
be conveniently described under the general frame prov
by K theory @3#.

On the other hand, some interplay occurs also when th
ries are defined on commutative spaces; in@4# it has been
shown that in two space-time dimensions a nontrivial h
lonomy concerning the base manifold and the fiberU(N)
appears when considering a Wilson loop windingn times
around a closed contour, leading to a peculiar scaling
intertwining the two integersn andN:

Wn~A;N!5WNS n

N
A;nD , ~1!

W being the exact expression of the Wilson loop andA the
enclosed area. When going around the loop the non-Abe
character of the gauge group is felt.

One may wonder whether similar relations are presen
the noncommutative case and, in the affirmative, what t
can teach us concerning the tighter merging occurring
such a situation.
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Noncommutative field theories have been widely explo
in recent years. Although their basic motivation relies, in o
opinion, on their relation with string theories@5–7#, they
often exhibit curious new features and are therefore fasci
ing on their own@8,9#.

The simplest way of turning ordinary theories into no
commutative ones is to replace the usual multiplication
fields in the Lagrangian with the Moyal! product. This
product is constructed by means of a real antisymmetric
trix umn which parametrizes the noncommutativity
Minkowski space-time:

@xm,xn#5 iumn, m,n50, . . . ,D21. ~2!

The! product of two fieldsf1(x) andf2(x) can be defined
by means of Weyl symbols

f1!f2~x!5E dDpdDq

~2p!2D expF2
i

2
pmumnqnG

3exp~ ipx!f̃1~p2q!f̃2~q!. ~3!

The resulting action obviously makes the theory nonloca
A particularly interesting situation occurs inU(N) gauge

theories defined in one-space, one-time dimensi
(Y M111).

The classical Minkowski action reads

S52
1

4E d2xTr~Fmn!Fmn! ~4!

where the field strengthFmn is given by
©2002 The American Physical Society12-1
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Fmn5]mAn2]nAm2 ig~Am!An2An!Am! ~5!

andAm is a N3N Hermitian matrix.
The action in Eq.~4! is invariant underU(N) noncommu-

tative gauge transformations

dlAm5]ml2 ig~Am!l2l!Am!. ~6!

We quantize the theory in the light-cone gaugenmAm[A2

50, the vectornm being light-like,nm[(1/A2)(1,21). This
gauge is particularly convenient since Faddeev-Popov gh
decouple even in a noncommutative context@10#, while the
field tensor is linear in the field with only one nonvanishi
componentF215]2A1 .

In this gauge twodifferentprescriptions are obtained fo
the vector propagator in momentum space: namely,

D115 i @k2
22#PV ~7!

and

D115 i @k21 i ek1#22, ~8!

PV denoting the Cauchy principal value. The two expr
sions above are usually referred to in the literature as th
Hooft @11# and Wu-Mandelstam-Leibbrandt~WML ! @12,13#
propagators. They correspond to two different ways of qu
tizing the theory, namely by means of a light-front or of
equal-time algebra@14–16#, respectively and, obviously, co
incide with the ones in the commutative case.

The WML propagator can be Wick-rotated, thereby allo
ing for an Euclidean treatment. A smooth continuation of
propagator to the Euclidean region is instead imposs
when using the PV prescription.

In the commutative case, a perturbative calculation fo
closed Wilson loop, computed with the ’t Hooft propagat
coincides with the exact expression obtained on the bas
a purely geometrical procedure@16,17#

W5expS 2
1

2
g2NAD . ~9!

The use instead of the WML propagator leads to a differe
genuinely perturbative expression in which topological
fects are disregarded@18,19#

WWML5
1

N
expS 2

1

2
g2ADLN21

(1) ~g2A!, ~10!

LN21
(1) being a Laguerre polynomial.

One can inquire to what extent these considerations
be generalized to a non-commutativeU(N) gauge theory,
always remaining in 111 dimensions. This was explored i
Ref. @20# by performing a fourth order perturbative calcul
tion of a closed Wilson loop.

In the noncommutative case the Wilson loop can be
fined by means of the Moyal product as@21,22,1#
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W@C#5
1

NE DAeiS[A]E d2x Tr P!

3expS igE
C
A1„x1j~s!…dj1~s! D , ~11!

whereC is a closed contour in noncommutative space-ti
parametrized byj(s), with 0<s<1, j(0)5j(1) and P!

denotes noncommutative path ordering alongx(s) from left
to right with respect to increasings of ! products of func-
tions. Gauge invariance requires integration over coo
nates, which is trivially realized when considering vacuu
averages@23#.

The perturbative expansion ofW@C#, expressed by Eq
~11!, reads

W@C#5
1

N (
n50

`

~ ig !nE
0

1

ds1 . . .

3E
sn21

1

dsnẋ2~s1! . . . ẋ2~sn!

3^0u Tr T@A1„x~s1!…! . . . !A1„x~sn!…#u0&,

~12!

and it is shown to be an even power series ing, so that we
can write

W@C#511g2W21g4W41g6W61••• . ~13!

If we considern windings around the loop, the result can b
easily obtained by extending the interval 0<s<n, j(s) be-
coming a periodic function ofs.

The main conclusion of@20# was that a perturbative Eu
clidean calculation with the WML prescription is feasib
and leads to a regular result. We found indeed pure a
dependence~we recall that invariance under area preserv
diffeomorphisms holds also in a noncommutative conte!
and continuity in the limit of a vanishing noncommutativ
parameter. The limiting case of a large noncommutative
rameter~maximal noncommutativity! is far from trivial: as a
matter of fact the contribution from the nonplanar graph do
not vanish in the large-u limit at odds with the result in
higher dimensions@8#.

More dramatic is the situation when considering the
Hooft’s form of the free propagator. In the noncommutati
case the presence of the Moyal phase produces singula
which cannot be cured@20#. As a consequence ’t Hooft’s
context will not be further considered.

Another remarkable difference between ’t Hooft’s a
WML formulations in commutative Yang-Mills theories wa
noticed in @4#. When consideringn windings around the
closed loop, a nontrivial holonomy concerning the ba
manifold and the fiber@U(N)# @Eq. ~1!# took place in the
exact solution. The behavior of the WML solution was i
stead fairly trivial (A→n2A), as expected in a genuinel
perturbative treatment. However, it is amazing to notice t
expression~10! with n windings, when restricted toplanar
diagrams, becomes
2-2
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W WML
(pl) 5 (

m50

`
~2g2An2N!m

m! ~m11!!

5
1

Ag2An2N
J1~2Ag2An2N!. ~14!

Scaling~1! is recovered.
In the noncommutative case this issue acquires a m

deeper interest thanks to the merging of space-time and
ternal’’ symmetries in a large gauge groupU(`), or, better,
in its largest completionUcpt(H) @2#. Also for the WML
formulation we expect a nontrivial intertwining betweenn
andN, which might help in clarifying some features of th
merging. Actually this is the main motivation of the prese
research.

Lacking a complete solution, we limit ourselves to a p
turbative context. A little thought is enough to be convinc
that the functionW2 in Eq. ~13! is reproduced by the single
exchange diagram, which is exactly the same as in the c
mutativeU(N) theory. Actually all planar graphs contribu
tions coincide with the corresponding ones of t
commutative case@18#, being independent ofu @see Eq.
~14!#. Although they dominate for largeN andn, they are a
kind of ‘‘constant’’ background, which is uninteresting in th
context. Therefore in the following we will concentrate ou
selves in calculating and discussing the properties of non
nar graphsW (cr) in the WML ~Euclidean! formulation.

The contributionsW 4
(cr) andW 6

(cr) with n windings will
be presented in detail. Atu50 the commutative result is
recovered, together with its trivial perturbative scaling, t
result being continuous~but probably not analytic there!.

Surprisingly, atu5` and atO(g4), we recover the non-
trivial scaling law~1! of the exact solution in the commuta
tive case; however, for the sake of clarity, we stress that s
a scaling is here realized in a quite different mathemat
expression. AtO(g6) the scaling receives corrections, d
creasing at largen; as a consequence we can say that it ho
only at largeu and largen. We also realize that diagram
with a single crossing of propagators dominate, making p
sible the extension to higher perturbative orders. This e
08501
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dence is partly based on a numerical evaluation of an inte
occurring in the calculation of diagrams with a double cro
ing ~see Appendix B!.

We present arguments in favor of the persistence of su
scaling in the limits (n,N,u)→` at any perturbative orde
and eventually succeed in summing the related perturba
series.

As soon as we move away from the extreme valuesu
50,u5`, corrections appear which are likely to interpola
smoothly between small-u and large-u behaviors.

In Sec. II we present theO(g4) calculation; theO(g6)
results are reported in Sec. III together with our conject
concerning the leading terms at largen,N andu at any per-
turbative order. The details of the calculations are deferre
the Appendices. Final considerations are discussed in
Conclusions.

II. THE FOURTH ORDER CALCULATION

We concentrate our attention onW 4
(cr) and resort to a

Euclidean formulation, generalizing ton windings the results
reported in@20#.

By exploiting the invariance ofW under area-preserving
diffeomorphisms, which holds also in this noncommutati
context, we consider the simple choice of a circular cont

x~s![„x1~s!,x2~s!…5r „cos~2ps!,sin~2ps!…. ~15!

Were it not for the presence of the Moyal phase, a trem
dous simplification would occur between the factor in t
measure ẋ2(s) ẋ2(s8) and the basic correlato
^A1(s)A1(s8)& @18#. The Moyal phase can be handled in a
easier way if we perform a Fourier transform, namely if w
work in the momentum space. The momenta are chosen t
Euclidean and the noncommutative parameter imaginaru
→ iu. In this way all the phase factors do not change th
character.

We use WML propagators in the Euclidean form (k1
2 ik2)22 and parametrize the vectors introducing polar va
ables in order to perform symmetric integrations@12,18#.
Then we are led to the expression
W 4
(cr)5r 4E

0

n

ds1E
s1

n

ds2E
s2

n

ds3E
s3

n

ds4E
0

`dp

p

dq

q E
0

2p

dcdx exp„22i ~c1x!…exp„2ip sinc sinp~s12s3!…

3exp„2iq sinx sinp~s22s4!…expS i
u

r 2pq sin@c2x1p~s21s42s12s3!# D5A 2FS u

A ,nD . ~16!

Integrating overc andp, we get, after a trivial rescaling

W 4
(cr)5pr 4n4E @ds#4E

0

`dq

q R
uzu51

dz

iz3e2q sin[np(s42s2)](z21/z)

12
g

z
e2 inps

12gzeinps , ~17!
2-3
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wheres5s11s32s22s4 and

g5
uq

2r 2sin@np~s32s1!#
,

E @ds#45E
0

1

ds1E
s1

1

ds2E
s2

1

ds3E
s3

1

ds4 .

We can further integrate overz, obtaining a series o
Bessel functions. Integration overq and resummation of the
series@24# lead to

W 4
(cr)52n4A 2E @ds#4F1

2
1

2

b2 ~exp@ ib sina#21

2 ib sina!G
52n4A 2E @ds#4F1

2
1

2

b2 (
m52

`
~ ib sina!m

m! G ,

~18!

where

a5np~s11s32s22s4!,

b5
4A
pu

sin@np~s42s2!#sin@np~s32s1!#. ~19!

It is an easy calculation to check that the functionF is
continuous~but probably not analytic! at u50 with F(0)
5n4/24, exactly corresponding to the value of the comm
tative case obtained with the WML propagator@18#.

The first order correction inu can also be singled out

W 4
(cr).2n4A 2E @ds#4F1

2
2

2i

b
sinaG . ~20!

The calculation is sketched in Appendix A and the result

W 4
(cr).

n4A 2

24
1 iu

n3A
4

. ~21!

One might recover the trivial scalingA→An2 providedu
→un; however, this is ruled out by the large-u behavior we
are going to explore.

The large-u behavior can be obtained starting from E
~18!; the first terms in the expansion turn out to be
08501
-

.

W 4
(cr)52

n2A 2

8p2 1 i
n3A 3

8p2u
1

8n4A 4

3p2u2 S 1

256
1

175

3072

1

n2p2D
1O~u23!. ~22!

We notice that the large-u limit @first term in Eq.~22!#
obeys the scaling~1!, which, in the commutative case, wa
present in the exact solution for the gauge groupU(N). This
scaling is different from the trivial one atu50.

III. THE SIXTH ORDER CALCULATION AND BEYOND

The motivation for exploring the sixth order is to se
whether the scaling law we have found in the fourth ord
result atu5` still persists in higher orders. In the affirma
tive case one would be strongly encouraged to resum
series in order to inquire about the persistence of suc
scaling beyond a perturbation expansion. This, in turn, mi
have far-reaching consequences on the interpretation of
theory in the extreme noncommutative limit.

We organize the sixth order loop calculation according
the possible topologically different diagrams one can draw
we order the six vertices on the circle from 1 to 6, we den
by W( i j )(kl)(mn) the contribution of the graph correspondin
to three propagators joining the vertices (i j ),(kl),(mn), re-
spectively. ThusW(14)(25)(36) corresponds to the maximall
crossed diagram~i.e., the one in which all propagators cross!;
then we have three diagrams with double crossing, nam
W(14)(26)(35)W(13)(25)(46), andW(15)(24)(36). Finally we have
six diagrams with a single crossingW(12)(35)(46),
W(16)(24)(35), W(15)(23)(46), W(15)(26)(34), W(13)(26)(45), and
W(13)(24)(56). Diagrams without any crossing are not intere
ing since they are not affected by the Moyal phase; th
indeed coincide with the corresponding ones in the comm
tative case.

The diagrams with a single crossing can be fairly eas
evaluated; surprisingly the most difficult diagrams are
ones with double crossing. All integrations can be perform
analytically, except for a single one concerning the dou
crossed diagrams, which has been performed numerical

The details of such a heavy calculation are described
Appendix B. Here we only report the starting point and t
final results.

As an example of singly crossed diagram we consi
W(16)(24)(35)
W(16)(24)(35)52r 6Nn6E @ds#6E
0

`dp

p

dq

q

dk

k E
0

2p

dfdxdc exp„22i ~f1x1c!…exp~2ip sinf sinnps16
2

12iq sinc sinnps24
2 12ik sinx sinnps35

2 !expS i
u

r 2qk sin@c2x1np~s35
1 2s24

1 !# D , ~23!

wheresi j
65si6sj .

The doubly crossed diagramW(15)(24)(36) leads to the expression
2-4
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W(15)(24)(36)52r 6Nn6E @ds#6E
0

`dp

p

dq

q

dk

k E
0

2p

dfdxdc exp„22i ~f1x1c!…exp~2ip sinf sinnps15
2 !

3exp~2iq sinc sinnps24
2 !3exp~2ik sinx sinnps36

2 !expS i
u

r 2 „pk sin@f2x1np~s36
1 2s15

1 !#

1qk sin@c2x1np~s36
1 2s24

1 !#…D . ~24!

Finally the maximally crossed diagramW(14)(25)(36) reads

W(14)(25)(36)52r 6Nn6E @ds#6E
0

`dp

p

dq

q

dk

k E
0

2p

dfdxdc exp„22i ~f1x1c!…exp~2ip sinf sinnps14
2 !

3exp~2iq sinc sinnps25
2 !3exp~2ik sinx sinnps36

2 !expS i
u

r 2 „pq sin@f2c1np~s25
1 2s14

1 !#

1pk sin@f2x1np~s36
1 2s14

1 !#1qk sin@c2x1np~s36
1 2s25

1 !#…D . ~25!
-

at

on

ith

ra-
, at

o

2

ing

o

We notice that theU(N) factor is the same in all three con
figurations.

The sum of the diagrams with a single crossing andn
windings contributes atu5` with the following expression:

W (1)~u5`!5
A 3Nn4

24p2 S 12
6

n2p2D . ~26!

The maximally crossed diagram in turn leads to

W (3)~u5`!52
A 3Nn2

64p4 . ~27!

Finally the diagrams with double crossing give

W (2)~u5`!5
A 3Nn2

12p4 ~110.2088!. ~28!

As we have anticipated, the last term has been evalu
numerically. Its n dependence has been checked up ton
56, within the incertitude due to the numerical integrati
~see Appendix B!.

Summing together all the contributions of diagrams w
crossed propagators, we get

W 6
(cr)~u5`!

5
A 3Nn4

24p2 X12
1

n2p2 S 35

8
20.4176D C. ~29!

We remark that the leading term at largen

W 6
(cr)~u5`!.

A 3Nn4

24p2
08501
ed

exhibits the scaling~1!. It comes only from diagrams with a
single crossing. Diagrams with such a topological configu
tion can also be computed in higher orders; for instance
O(g8) they lead to the result

W 8
(cr)~u5`!.2

A 4N2n6

192p2 1O~n4!. ~30!

The integral over the loop variables provides a factorn22,
turning the trivialn8, due to the kinematical rescaling, int
the factorn6. Details are reported in Appendix C.

We are led to argue that the dominant term at the (m
14)th perturbative order increases withn no faster than
n2m12. In turn it exhibits the highestU(N) contribution,
behaving likeNm

g2m14W2m14
(cr) ~u5`!.Km~nN!m~g2An!m12, ~31!

which obeys the scaling~1!.
Further we conjecture that diagrams with a single cross

dominate; then the weightsKm can be evaluated~see Appen-
dix D! and lead to

g2m14W2m14
(cr) ~u5`!

.2
~g2An!2

4p2

1

m!

~2g2ANn2!m

~m12!!
;

~32!

the related perturbative series can be easily resummed

W (cr)~u5`!52
g2A

4p2N
J2~2Ag2An2N!. ~33!

If we compare Eq.~32! with the corresponding term due t
planar diagrams, which are insensitive tou @see Eq.~14!#, we
2-5
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notice that, in the ’t Hooft’s limitN→` with fixed g2N, the
planar diagrams dominate by a factorn2N2, as expected.

Our conjecture is open to more thorough perturbative te
as well as to possible non-perturbative derivations wh
might throw further light on its ultimate meaning and relat
consequences. For recent papers on nonperturbative
proaches, see@25–27#.

IV. CONCLUSIONS

Summarizing our perturbative investigation, we can s
that, when windingn times around the Wilson loop, the non
Abelian nature of the gauge group in the noncommuta
case is felt, even in a perturbative calculation making use
the WML prescription for the vector propagator. This is d
to the merging of space-time properties with ‘‘internal’’ sym
metries in a large invariance groupUcpt(H) @2,27#.

One gets the clear impression that in a noncommuta
formulation what is really relevant are not separately
space-time properties of the ‘‘base’’ manifold and of the ‘‘
ber’’ U(N), but rather the overall algebraic structure of t
resulting invariance groupUcpt(H). To properly understand
its topological features is certainly beyond any perturbat
approach. Rather one should possibly resort to suitablN
truncations of the Hilbert space in the form of matrix mod
leading to the invariance groupsU(N).

It is not clear how many perturbative features might ev
tually be singled out in those contexts, especially in view
the difficulty in performing the inductive limitN→`.

For this reason we think that our perturbative results
challenging. They indicate that the intertwining betweenn,
controlling the space-time geometry, andN, related to the
gauge group, is far from trivial. The presence of correctio
to the scaling laws occurring atu50 and atu5`, while
frustrating at first sight in view of a generalization to a
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values ofu, might be taken instead as a serious indicat
thatn andN separately are not perhaps the best paramete
be chosen unless large values for both~and foru!! are con-
sidered. In such a situation, perhaps surprisingly, the rela
~1! is recovered.

Equations~14!, ~32! are concrete realizations of the mo
general structure

W2m145~An2N!m12f m~n,N!, ~34!

f m being a symmetric function of its arguments. We stre
that Eq.~14! concerns onlyplanar diagrams; crossed grap
contributions in the commutative case cannot be put in
form ~34! and violate the relation~1!.1 In the noncommuta-
tive case, for largen,N and maximal noncommutativity (u
5`), the structure~34! is instead restored for the leadin
contribution ofcrosseddiagrams. The presence of the fun
tion f m in the WML context might be thought of as a sign
the merging of space-time and internal symmetries.

All these difficult, but intriguing questions are worthy i
our opinion of thorough investigations and promise furth
exciting, unexpected developments.
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APPENDIX A: SMALL u LIMIT

The first significant term in the smallu expansion is the
second one in Eq.~20!, that is theO(u) term in W 4

(cr) ,
Wu52 in4ApuE
0

1

@ds#
sin@np~s11s32s22s4!#

sin@np~s42s2!#sin@np~s32s1!#

[2 in4ApuI , ~A1!

with measure@ds#5ds1ds2ds3ds4u(s42s3)u(s32s2)u(s22s1). Integrating inds1 andds4 leads to

I 5
1

n2p2E
0

1

ds2ds3u~s32s2!H 2np cos@2np~s32s2!#Fs2logU sinnps2

sinnp~s32s2!
U1~12s3!logU sinnps3

sinnp~s32s2!
UG1sin@2np~s3

2s2!#F2n2p2s2~12s3!1 logusinnp~s32s2!u logU sinnp~s32s2!

sinnps2sinnps3
U1 logusinnps2u logusinnps3uG J [I 11I 2 , ~A2!

whereI 1 and I 2 refer to the first and second square brackets in Eq.~A2!, respectively. The two integrals inI 1 coincide. They
can be easily performed leading to
2-6
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I 152S 1

6np
1

1

4n3p3D . ~A3!

ConcerningI 2, the first term is trivial, and provides us wit
a factor 1/(8n3p3)21/(12np), whereas in the remaining in
tegrals it is more convenient to integrate first on one varia
and then to add the integrands together before performing
final integration, i.e.

I 25
1

8n3p3 2
1

12np
2

1

2n3p3E
0

1

dssinnps

3@2nps cosnps logusinnpsu

1sinnps~ logusinnpsu21!#

5
1

4n3p3 2
1

12np
. ~A4!

Adding Eqs.~A3! and~A4! and taking Eq.~A1! into account,
Eq. ~21! follows.

APPENDIX B: SIXTH ORDER CALCULATION

1. The singly crossed diagram

We show in some detail the formulas forW(16)(24)(35), the
other five diagrams being simply obtainable by renaming
variables.

Integrating Eq.~23! over f andp we recover an expres
sion analogous to Eq.~16!. Therefore we can use the resu
obtained atO(g4) to get

W(16)(24)(35)

522n6A 3NE @ds#6F1

2
1

2

b82
~exp@ ib8sina8#

212 ib8sina8!G , ~B1!

where now

a85np~s21s42s32s5!,

b85
4A
pu

sin@np~s42s2!#sin@np~s52s3!#. ~B2!

The large-u limit is easily derived from this formula; sum
ming all the singly crossed diagrams we find

2A 3Nn6F 1

4p4n42
1

24p2n2G . ~B3!

1The structure~34! is shared also by the exact geometrical so
tion of the commutative case@4#.
08501
le
he

e

2. The doubly crossed diagram

Integrating Eq.~24! overf andp, and then overc andq,
we get

W(15)(24)(36)52r 6Nn6p2E @ds#6E
0

`dk

k R
uzu51

dz

iz3

3e2k sin[np(s62s3)](z21/z)3

12
g8

z
e2 inps8

12g8zeinps8

3

12
g9

z
e2 inps9

12g9zeinps9
, ~B4!

where

s85s11s52s32s6 , g85
uk

2r 2sin@np~s52s1!#
,

s95s21s42s32s6 , g95
uk

2r 2sin@np~s42s2!#
.

We consider the identity e2k sin[np(s62s3)](z21/z)

[@(e2k sin[np(s62s3)](z21/z)21)11# in Eq. ~B4!; in the first
term it is possible to sendu to infinity in the integrand,
obtaining the result

2
r 6Nn6p3

3 E @ds#6e2p i (2s312s62s12s52s22s4). ~B5!

The other contribution can be exactly integrated overz andk,
leading to the sum of two expressions

2
r 6Nn62p3

3 E @ds#6exp„2 i ~l1v!…

3@cos~l2v!#3 ~B6!

and

ir 6Nn62p3

3 E @ds#6exp„2 i ~l1v!…

3

S 11UdcUexp„i ~l2v!…D
S 12U d

c Uexp„i ~l2v!…D @sin~l2v!#3, ~B7!

where

c52sin@np~s12s5!#exp~2 inps8!5ucuexp~ iv!,

d52sin@np~s22s4!#exp~2 inps9!5uduexp~ il!.

The integrals~B5! and ~B6! can be easily computed; whe
summed with the corresponding ones fromW(14)(26)(35) and
W(13)(25)(46), they give

-

2-7
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A 3Nn2

12p4 . ~B8!

Expression~B7! instead, together with the correspondin
ones fromW(14)(26)(35) andW(13)(25)(46), is difficult to deal
with. We can prove their sum is real and have evaluated s
08501
ch

a sum numerically, forn51, . . . ,6. Wepresent the result in
the form

4pr 6Nn4

3
3JNUM , ~B9!

where
:

JNUM~n51!51.32236~80637!31023,

JNUM~n52!50.330~49616!31023,
JNUM~n51!

4
50.330592~01693!31023,

JNUM~n53!50.146~97635!31023,
JNUM~n51!

9
50.146929~80641!31023,

JNUM~n54!50.08~17629!31023,
JNUM~n51!

16
50.082648~00623!31023,

JNUM~n55!50.05~10640!31023,
JNUM~n51!

25
50.052894~72615!31023,

JNUM~n56!50.03~88679!31023,
JNUM~n51!

36
50.036732~45610!31023.

All the errors are three standard deviations. Within the numerical error,JNUM scales as 1/n2.

3. The maximally crossed diagram

Integrating Eq.~25! over f andp, and then overx andk, we get, after a simple rescaling,

W(14)(25)(36)52r 6Nn62p2E @ds#6E
0

`dq

q E
0

2p

dc exp~22ic!expS 4i
qr2

u
sinc sin@np~s22s5!# D F1

2

ā

a

b̄

b

1
u2

8r 4a2b2 S expS 4ir 2

u
Im~einps-āb! D2

4ir 2

u
Im~einps-āb!21D G , ~B10!

wheres-5s11s42s32s6, the bars denote complex conjugation and

a5sin@np~s12s4!#1q expi „c1np~s11s42s22s5!…,

b5sin@np~s32s6!#2q expi „c1np~s31s62s22s5!….

We can recognize in Eq.~B10! the same structure we have found in Eq.~18!. We rewrite it as follows:

W(14)(25)(36)52r 6Nn62p2E @ds#6E
0

`dq

q E
0

2p

dc exp~22ic!3expS 4i
qr2

u
sinc sin@np~s22s5!# Dexp„22i ~ga1gb!…

3F1

2
cos~2nps-22ga12gb!1

1

p i Em2 i`

m1 i`

dsG~2s!e2 i (p/2)sF4uauubur 2

u Gs22

@sin~nps-2ga1gb!#sG ,
2,m,3, ~B11!

where we have defineda5uauexp(iga) andb5ubuexp(igb).
One can prove that, in the large-u limit, the last integral goes to zero. Then, in this limit, Eq.~B11! can be easily evaluated
2-8
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W(14)(25)(36)→u→`2
r 6Nn6p3

3 E @ds#6~e2inp(2s212s52s12s42s32s6)1e2inp(2s112s42s22s52s32s6)1e2inp(2s312s62s12s42s22s5)!

52
A 3Nn2

64p4 . ~B12!
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Here we notice that the integrand is completely symmetric
the three propagators~14!~25!~36!, as it should.

APPENDIX C: HIGHER ORDERS

First we prove that singly crossed diagrams behave in
large-u limit at least as 1/n2 or subleading in the limit of a
large number of windingsn. We start by realizing that we ca
always express the integral of a generic diagram withm
propagators and a single crossing generalizing Eq.~18!

I[E
0

1

dtE
0

t

dzE
0

z

dyE
0

y

dxE @ds#2m24

3cos@2pn~x1z2y2t !#, ~C1!

@ds#2m24 being a measure depending onx,y,z,t only
through the extremes of integration. As a matter of fact, i
always possible to single out the variables linked to
propagators which cross, suitably rearranging the other k
matical integrations. These integrations lead to polynomi

I5E
0

1

dtE
0

t

dzE
0

z

dyE
0

y

dx

3 (
k1k2k3k4

ck1k2k3k4
xk1yk2zk3tk4

3cos@2pn~x1z2y2t !#. ~C2!

Now we perform the change of variablesa5y1x, b5y
2x, g5t1z, d5t2z

I5E
0

1

ddE
d

22d
dgE

0

~g2d!/2
dbE

b

g2d2b

da

3 (
q1q2q3q4

c8q1q2q3q4
aq1bq2gq3dq4cos@2pn~b1d!#

~C3!

and then integrate overa. Changing again variables toc
5b1d, j5d2b, we end up with

I5E
0

1

dcE
2c

c

djE
(3c2j)/2

22(c1j)/2

dg

3 (
p1p2p3

Cp1p2p3
cp1jp2gp3cos@2pnc#. ~C4!
08501
n

e

s
e
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s

The integrals overj andg can be easily performed giving, o
course, a polynomial inc

I5(
r

Cr8E
0

1

c rcos@2pnc#dc. ~C5!

Integrating by parts, we realize that only even inverse pow
of n are produced, starting fromn22.

Now we turn our attention to theU(N) factors. A direct
computation of the traces involved in the diagrams with
single, a double or the triple crossing„O(g6)…, shows that
they all share the common factorN2 @our normalization be-
ing t051/AN,Tr(tatb)5dab; a,b51, . . . ,N221]. As the
Wilson loop is normalized withN21, at O(g6) the single
factor N ensues.

It is now trivial to realize that any insertion ofm23 lines
no matter where in such diagrams, provided that furt
crossings are avoided, produces the factorNm23.

APPENDIX D: COMPUTATION OF THE WEIGHTS

In the previous appendix we have shown that then depen-
dence of singly crossed diagrams in the large-u limit takes
the form (p51

P cpn22p. To find the leading contribution a
largen we have to evaluatec1. This can be done as follows
at O(g2m14) we start drawing a cross and then add the
maining m propagators in such a way they do not furth
cross. From Eqs.~C2!–~C5! one can realize thatc1 is differ-
ent from zero only for a particular subset of these diagra
if we label the four sectors in which the cross divides t
circular loop as North~the sector containing the origin of th
loop variablessi), West, South and East, then only diagram
with r propagator in the southern sector andm2r in the
northern one contribute toc1; moreover, these contribution
are all equal. Therefore we can evaluate this integral o
and then multiply it by the number of configurations in th
subset.

We choose as representative the diagram with all them
nonintersecting propagators in the northern sector, star
from the origin and connectings1 with s2 , . . . , s2m21 with
s2m . In this way the crossed variables ares2m11 , . . . ,
s2m14. We obtain the integral

I5~2p!m12~gr !2m14Nmn2m14

3E
0

1

dtE
0

t

dzE
0

z

dyE
0

y

dx
x2m

~2m!!

3cos@2pn~x1z2y2t !#. ~D1!
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Following the procedure described in Appendix C we ge

I5
~2p!m12~gr !2m14

~2m!!
Nmn2m14

3E
0

1

dc
1

~2m11!~2m12!
c~12c!2m12

3cos@2pnc# ~D2!

and finally

I52Nm
~2g2An2!m12

~2m12!! X 1

4p2n2 1OS 1

n4D C. ~D3!

Now we have to count. We denote byS2r the ways in which
ther propagators in the southern sector can be arranged w
out crossing. A little thought provides the recursive relati

S051, S2r5 (
k51

r

S2k22S2r 22k , ~D4!

which can easily be solved
a-

rg

gh

rgy

ys

08501
h-

S2r5

22rGS r 1
1

2D
GS 1

2DG~r 12!

. ~D5!

The m2r propagators in the northern sector lead to t
weightS2(m2r ) times the number of possible insertions of t
origin, namely@2(m2r )11#. The number of relevant dia
grams is therefore

Nm5(
r 50

m

S2rS2(m2r )@2~m2r !11#

5

22m12~m11!GS m1
3

2D
GS 1

2DG~m13!

. ~D6!

Multiplying Eqs. ~D3! and ~D6! we are led to Eq.~32!.
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