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Clash of discrete symmetries for the supersymmetric kink on a circle
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We consider thé&N=1 supersymmetric kink on a circle, i.e., on a finite interval with boundary or transition
conditions which are locally invisible. For Majorana fermions, the single-particle Dirac Hamiltonian as a
differential operator obeys simultaneously the three discrete symmetries of charge conjugation, parity, and time
reversal. However, no single locally invisible transition condition can satisfy all three. When calculating sums
over zero-point energies by mode number regularization, this gives a new rationale for a previous suggestion
that one has to average over different choices of boundary conditions, such that for the combined set all three
symmetries are obeyed. In particular it is shown that for twisted periodic or twisted antiperiodic boundary
conditions separately both parity and time reversal are violated in the kink sector, as manifested by a delocal-
ized momentum that cancels only in the average.
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[. INTRODUCTION amount to putting the system on a circle without introducing
a point where a boundary is present: The kink solution
Subtleties in the application of the discrete symmetriespy(X)= ¢otanhfnx2) is invariant under the simultaneous
charge conjugatio@, parity P, and time reversal to Ma-  transformatiorx=_L/2—x= —L/2 and¢x— — ¢« . Thus the
jorana fermions have long been a topic of intefds®]. Past  pointsx= =L/2 may be identified. The action for the SUSY
discussions generally have dealt with local processes arkink
properties, but the main aim of the present work is to study
an anomalous global behavior of these discrete symmetries =~ 1 , 1 1 " 1 —
in a model with a topological structure. For this we consider £~ = 5(9,¢)" = 5UN(d) = 54y"d,= SU ()i

the simplest possible system: the supersymmée®idSY) (3)

kink with what would seem to be natural boundary condi-

tions. with U(¢)=U(— ¢) is invariant under the transformation
Some time ago the concept of locally invisible boundary

conditions was introducel®,4]: for a two component Majo- b——d, p—e Yy, (4

rana fermion in a kink background in a box of lengththe

twisted periodic(TP) boundary conditions which is compatible with the Majorana condition f@r=0 or

7 whereas for Dirac fermions an arbitrary phase would be
P (—LI2)=o(LI2),  ho(—LI2)=hy(LI2) (1) allowed. Here we use a Majorana representation of the Dirac
matrices withy’=—io,, y'=03, ¥*=0;. In these terms,
the TP and TAP boundary conditions in E¢$),(2) are sim-
ply y— =+ y3y, clearly satisfying Eq(4). As a consequence
there is no visible boundarymeaning no locally observable
Y (—LI2)=—n(L12), o(—LI2)=—y1(L/12) (2)  discontinuity or cuspatx= *+L/2. Note that it is not neces-
sary in these considerations to assume that the center of the
kink is located at the point=0. That will be helpful later on

and twisted antiperiodi€TAP) boundary conditions

*Electronic address: goldhab@insti.physics.sunysb.edu in defining the parity operation in a simple manner, but for
TElectronic address: rebhana@hep.itp.tuwien.ac.at any other purpose the matching point for the transition or
*Electronic address: vannieu@insti.physics.sunysb.edu jump conditions(4) may be chosen arbitrarily, as befits a
SElectronic address: rwimmer@hep.itp.tuwien.ac.at locally invisible boundary.
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The TP and TAP boundary conditions arise naturally if

one begins with a kink-antikink system with periodiE)
boundary conditions, and looks at the valuesygf ¢, be-
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To cancel out localized boundary energy, one needs to
average over the results of a twisted and an untwisted bound-
ary condition. In this paper we shall show that there is a

tween the kink and antikink. One finds then that for P con-reason to average also over the two twisted boundary condi-
ditions for the kink-antikink system, the fermions satisfy ei- tions, because a singl@ea) twisted boundary condition
ther TP or TAP conditions. In this article we also consider apreaks parityP (as well as7’), giving rise to delocalized
natural extension of these ideas: we begin with antiperiodignomentum proportional to the ultraviolet cutoff, which can-
(AP) boundary conditions for the kink-antikink system, and cels only in the averagéln the case of imaginary boundary
find then that if the fermionic modes are written as planeconditions, a similar phenomenon arises with IP/IAP in the
wavese ™ (“'"¥%) far away from the kink-antikink system, trivial sector) This was overlooked in Ref4], which had
then in between the kink and antikink they satisfy imaginaryassumed parity invariance for the spectrum and incorrectly
twisted periodic(ITP) boundary conditions claimed the appearance of delocalized energy.
] . One might expect that one can find other boundary con-
i(—=LI2)=ip(L12), hp(—=LI2)=i4(LI2) (5  ditions in the kink sector which preserve parity. Indeed, the
) ) ) o _Invisible boundary conditions ITP and ITAP havePaand 7
a}nd imaginary twisted antiperiodi¢TAP) boundary condi-  jnyariant spectrum, but instead violatdand thusCPT ), so
tions that these mode functions do not allow one to build a local
. guantum field theory with Majorana fields. Becadsselects
Yi(=LI2)==iyp(L12), different locally invisible boundary condition from® and 7,
it follows that there is no choice which preserves all three
symmetries simultaneously. This obstruction occurs despite
the fact that the action as a local expression in Bose and
Fermi fields is invariant under all the symmetries. Hence,

o —LI2)=—iyn(LI2),
(6)

where ¢, , now refer to the fermionic mode functions as
opposed to the complete field. If one prefers to avoid work
ing with complex boundary conditions for the Majorana fer-

mions, one may take the real and imaginary parts of th

distorted plane waves, but this then leads to then-
local boundary conditions € 92+ m?)Y2y, (—L/2)=*(dy
—m),(L/2) and similar conditions fogs,(—L/2). In the

following we consider only the algebraic boundary condi-

tions (5) and (6). For periodic boundary conditions on the

kink-antikink system, one finds only the real boundary con

ditions for a single kink given in Eqgl) and (2), whether
one uses complex or real mode functions.

ne encounters here a phenomenon which we call with some

esitation a discrete symmetry anomaly, induced by the kink.
There is no local counterterm which can remove this
anomaly. One can, of course, choose as boundary conditions
=0 in which case there are no problems with the discrete
symmetries, but then one has localized boundary energy, and
our aim here is to study the discrete symmetries in the pres-

ence of invisible boundary conditions, which means with the
kink put on a circle.
The possibility that a nontrivial structure of spacetime can

In the trivial sector, P and AP boundary conditions are
invisible boundary conditions, and, having introduced ITP
and ITAP it seems only natural to also include imaginary
periodic (IP) boundary conditions

lead to anomalies in discrete symmetries has been studied
before. For example, in Ref5] aCP7 anomaly was claimed
to arise by compactification of some dimensions of-(B3)
spacetime.

In our example, both a nontrivial space-time and a non-
trivial field topology is present. In Ref6], it was found that
in 2+1 dimensions there arise chiral fermions living on a
SUSY kink domain wall; these fermions are massless in 2
+1 dimensions(their energy is equal to the momentum
along the domain walland they correspond to fermionic
zero modes of the susy kink i1l dimensions. In this case

With imaginary boundary conditions, one finds a generalthe spectrum is again parity nonsymmeftite massless fer-
ized Majorana identity, in which the adjoint of the field for mions on the domain wall move in one direction but not in
one of the two boundary conditions is equal to the field forthe othef but now this is not due to boundary conditions but
the other boundary condition, so that only if one averagesather due to the presence of the kink, in accordance with the
over both conditions is it meaningful to describe the fermi-general results of Ref§7,8]. In Ref.[9] the connection be-
ons as Majorana particles. tween instantons and the breaking of supersymmetry and the

In Ref.[4] it was found that for a single kink one has to discrete symmetrie§,P,7 was considered.
consider suitable averages over subsets of the mentioned Our paper is organized as follows. In Sec. Il we discuss
boundary conditions to obtain the correct SUSY kink masshow the symmetrie€, P and 7 act on the boundary condi-
because for particular individual cases one encounters locations in the kink and in the trivial sector. In Sec. Il we work
ized boundary energy. This localized energy is due to boundeut the fermionic spectra for the 16 sets of boundary condi-
ary conditions which distort the field at the boundary andtions (8 sets in the kink sector, and 8 sets in the trivial sec-
may be called visible boundary conditions. In the kink sectortor). We also determine how the total mass and momentum
the P/AP and IP/IAP boundary conditions are visible,of the kink depend on the choice of boundary conditions. We
whereas in the trivial sector, the twisted versions are visibleregulate by mode regularization, i.e., requiring equal num-

Yi(—LI2)=iys(L12), ¢o(—LI2)=iyp(LI2) (72

and imaginary antiperiodidAP) boundary conditions

Pi(—LI2)=—i1(L12), (= LI2)=—iep(LI2).
(7b)

085010-2



CLASH OF DISCRETE SYMMETRIES FOR TH. . . PHYSICAL REVIEW D 66, 085010 (2002

bers of modes in the trivial and kink sector, counting fermi-the matrix o3 implies e'“— —(e')*, and againa= =+ /2
onic zero modes according to the rules derived in REf.In  (ITP and ITAP are left unchanged.

Sec. IV we comment on our results. The purely real TP and TAP conditions commute with
but 7 and P each interchange TP with TAP. Consequently,
Il. DISCRETE SYMMETRIES AND THEIR with one of these conditions by itself only holds: It is
IMPLEMENTATION possible to choose wave functions which are real, and a fer-
mion field operator which is Hermitian, b(positive-energy
For the single-particle Dirac Hamiltonian waves of positive and negative wave numkeare not de-

generate with each other. This means that an implicit as-
] sumption of{4], that the energy spectrum is the same Kor
H=iho1dxthomey(X) do, (8 >0 andk<0, is not correc{10]. In [4] the spectrum for
negativek was not computed explicitly, and this led to a false
one has simple and unique representations of the three syraonclusion that the energy spectra for TP and TAP are dif-
metry operations, charge conjugatién parity P, and time  ferent. In fact, it is easy to check that for each solution with
reversalZ, which leave this differential operator invariadgt.  k of one sign for TP there is a degenerate solution Witf
at the single-particle level is an antiunitary operation whichthe opposite sign for TAP. A further assertion[d{ resulting
reverses the sign ¢, and because in this representatibis ~ from the assumed difference in spectra is that there exists a
purely imaginary the transformation is accomplished bydelocalized energy for either TP or TAP alone. This also is
simple complex conjugation of fermion wave functiorgs: ~false [10], but as will be shown below there indeed is a
=K. For P, which must include the transformation— delocalized quantity, a net momentum proportional to the
—x, a subtlety arises because this operation by itself turngltraviolet cutoff energy\.
the kink into an antikink. Therefore, in the kink sector, one  On the other hand, with ITP and ITAP conditiorand7
must require for the action of parity on the classical bosonicsymmetries leave the conditions invariant, Bunterchanges
field ¢x(X)— — dr(—X)=dk(X). In the kink background them. Once again, to have all three symmetries one must use
the combined transformation reverses the derivative term bi&n average over the two boundary conditions. This time, if
not the mass or Yukawa term t, and we find for the action one just chooses one of these boundary condition there is a
on fermion wave function$=(x— —x) Xio,. For the an-  difference in energy spectrum from the other boundary con-
tiunitary 7 one needs an operation includifg but it must  dition (but the spectra are each parity symmetridow a
leave H invariant. To do this requires a matrix factor anti- New difficulty arises: it is impossible to write a Hermitian
commuting with H, yielding 7=o3K. Note that each of Majorana field because a positive energy state with positive
these discrete operations on fermion wave functions is th&1omentum does not have an equal negative energy partner
same in the trivial sector as it is in the kink sector. Of courseWith negative momentum. A different way to reach the same
in the trivial sector, the action of parity on theonstant ~ conclusion is to consider the operati6RZ, which is a well-
classical background fiela, is simply to preserve it. Thus, accepted symmetry for local quantum field thebry.
to keep the background invariant one treats the background Evidently this symmetry leaves the field Hamiltonian den-
field as scalar in the trivial sector but pseudoscalar in thé&ity invariant only for the TP and TAP conditions, which
kink sector. therefore are the ones uniquely allowed as consistent condi-

While the discrete transformations can be defined consigions in quantum field theory. For these conditions to achieve
tently for the differential operator, we still need to look at vanishing delocalized momentum one must average over TP
their effects on the matching or boundary conditions. Let ugnd TAP, while for ITP and ITAP implementingP7 sym-

write these conditions in a general form which covers all themetry forces averaging over the two sets. Thus the notion of
choices described above: averaging over sets of boundary conditions, as introduced in
[4], does have merit, but detailed claims in the original ra-

tionale for this construction needed major revision, as we

p(x=—LI2)=Te*y(x=+L/2). (99  have just described. _

For completeness, we should examine the effects of the

) . ) discrete symmetries in the trivial sector. Now, invisible

The twisted boundary conditions which we now analyze COThoundary conditions have the unit matrix in place of the

— A3 i H
respond tol’=y°=o,. The conditions could be applied at 5¢ix -, One sees immediately that the P and AP condi-
any point(see[3] for the details of the precise procedyre

but let us choose symmetric placement around the center of——

the klnk_to makg the action of the parity symmetry as Slmp!e We use the passive point of view according to which we equate
as possible. Evidently we obtain the four different p055|b|I|—Eq. (9) with ¢’ (—L/2)=M ¢’ (L/2) and solve foM.

ties mentioned above by Chooisc'lng: 0'5'17/2’_ w2, re- 2There has been recent interest in anomal6@g violation in
spectively. The action of takese'® to (e'“)*, so that only  chiral theories in 4 dimensiorfid1,17 and in 2 dimensionfs]. We
a=0,7 (TP and TAR are left unchanged. For parity, becauseconsider the present workwhich does not include chiral gauge

of the interchange of left and right boundaries along with thecouplingg complementary to those studies, but the chiral nature of
presence of the matrixr,, one hase'“— —(e'*) %, so that  the twisted boundary conditions suggests that there may be a con-
only a==*=/2 (ITP and ITAP are left unchanged. FdfF, nection to the anomaly in explicitly chiral theories.
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tions satisfy all three discrete symmetries, while IP and IAPvalues considered before any other would break all three
do not satisfy any. This means that one could implement theymmetries, as one would expect for arbitrary irrational flux
discrete symmetries with either P or AP, but implementatiorthrough the circle. TheN=2 theory exhibits the Jackiw-
for imaginary conditions would require both IP and IAP.  Rebbi half-fermion charge localized at the kifi3], and it is

To describe the discrete symmetries as transformations cmmusing that this is consistent with the possibility of tunnel-
the Majorana field we need a dictionary relating these transing between kink and antikinkL4], as the latter also would
formations to those already discussed for the the single papossess charge one-half. The physical interpretation of this

ticle wave functions. For charge conjugation this is analysis, when combined with what we saw earlier, seems to
s be that the problem of the kink on a circle “knows” that it
Ucy(x,)Uc = ¢ (X,1), (100 really is half of the kink-antikink problem on a doubled

) . ) _circle. Thus the discrete symmetries which are obeyed for
so that the Majorana condition becomes simply the Hermit 5t an Aharonov-Bohm quantum of flux through the large
ticity or self-adjointness of the fielgs. Note that what had  ¢jrcle also are obeyed for one-quarter flux through the small

been an antiunitary operation takihginto its negative for  cjrcle but only when one averages over a suitable (@R
the single-particle description now is a unitary operationg,q ITAP of boundary conditions.

leaving the Hamiltonian density(x.t) invariant. This result
depends critically on the fact th&t includes a commutator
of ¢ with ', which reverses sign under charge conjugation.
For parity we havé

Ill. MODE NUMBER REGULARIZATION OF FERMIONIC
CONTRIBUTIONS TO THE ONE-LOOP SUSY
KINK MASS

Upih(X,HUp "=iaaih(—X,1), (11) We now turn to the explicit calculation of the fermionic
, , ) i i ) contributions to the SUSY kink mass at one-loop order in
identical with the single-particle rule. For time reversal onémode number regularization, extending and partially correct-
finds the greatest subtlety, because this operation remairﬁg,g the results presented in R§4].
antiunitary: The ¢*kink model corresponds to usingJ(¢)
= \2(¢*— #3) in the Lagrangian(3), but the following

—1_ * .
VOGOV m= o7 (X~ ). (12 discussion applie$mutatis mutandijsto other models such
The subtlety has to do with defining complex conjugation forS Sine-Gordon, where sin(y¢/2). ,
the raising and lowering operatoa$ anda appearing in the ~ IN_the trivial vacuum, one hasl(¢,)=0 and U’ (o)

mode expansion of the field. The simplest assumption is that V2N ¢po=m, whereas with the nontrivial kink background
this operation leaves the operators invariant, but instead eadi¢!d ¢« (X) = otanh(m(x—xo)/2) one has the Bogomol'nyi
one could be multiplied by a different phase factor. In thatequationU(¢y) = — dyéi and U’ (¢x) =mey/ ¢, leading
case, the phase factor would have to be exp||c|'[|y Compento a fluctuation equation for the fermionic mode functions
sated in the action of’; on each raising or lowering opera- governed by the differential operat(). _
tor. It is easy to verify that these new definitions are consis- The fermionic mode functions will be written
tent with the earlier analysis of the relation between discrete
symmetries and boundary conditions, with the obvious pro- (X t)=( wl(x))eiwt (13)
viso that the boundary conditions now are applied to the field ' Po(X)
exactly as they previously were applied to the wave func- , ,
tions. so that the Dirac equation becomes

The issues discussed here all arise because we are dealing . i . _ ,
with Majorana fermions. How would the discussion change loi=(0x=U") ¥, lwihy=(0 U ). (14

if one considered instead &=2 theory, with Dirac fermi- The fermionic contribution to the one-loop quantum mass

ons? Now the field/ no longer need be equivalent to its of a kink is given by sums over zero-point energies accord-
charge conjugate, so it might seem that one could choose jugig to

one boundary condition instead of averaging over a pair. It is

enticing to imagine that the Dirac fermion charge could be 1) h
coupled to a 1) gauge field, so that the phaaein Eq. (9) Mi"=— 2 2 o= oy

would reflect a magnetic flux threading the circle. However,

for no choice ofa would the spectrum obey all three discrete where the indice& andV refer to kink and trivial vacuum,
symmetries, just as we found already; that deduction holdgespectively, and\M; is the fermionic contribution to the
regardless of the assumptidf=1 or N=2. Thus we still counterterm due to renormalizing the theory in the trivial
require a pair of boundary conditions if the symmetries allvacuum. A minimal renormalization scheme that can be cho-
are to be obeyed simultaneously. In tNe=2 theory, how- sen is to require that tadpoles vanish and all other renormal-
ever, continuous values of are allowed, and except for the ization constants are trividlThis gives[4]

+AM, (15)

3As is the case for Majorana fermions in 4 dimensighl P2 4For a thorough discussion of more general renormalization
=-1. schemes in this context see RES].
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) mA (A dk Yry= — [/ (012)] _ g g-ilkx (912)]] (19)
AMi==ZAMp=—5—| ———. (16
s 2m)-n Jk*+m where we defing such that
In (global® mode regularization the spectrum of fluctua- . k—im
tions about a kinkand in the trivial vacuumis discretized = =+ K+m?. (20)

by considering an interval diiarge lengthL and choosing @

boundary conditions. The sums in E@5) are then cut off at
a given large valud&l of the number of modes, which accord-
ing to the principle of mode regularization is chosen to be th
same in the trivial and in the kink secfor.

So #= — 2 arctanfvk), but the branch of the arctan is fixed
ésuch thatfor positive frequencies) 6 goes from—27to 0
ask runs from—o to +<0. This conforms with the definition
adopted i 3] but deviates from Ref4]. The definition(20)

As argued in Ref]4], this requiredixedboundary condi- has the ad ¢ idi licit sian f . &
tions, meaning that they are identical for the trivial and the, as the a vgnte}ge ot avoiding exp icit sign functions &gn(
n the quantization conditions.

kink sector. But because invisible boundary conditions in oné T tizati diti f wisted P and AP
sector are visible ones in the other, it becomes necessary {o € guantization conditions 1or. untwiste an

average over boundary conditions such that boundary enePoundary conditions are simplyL=2=n and kL=2mn

gies cancel in the average. +a; IP and IAP havekL=27n—x/2 and kL=2mn
The correct answer this average has to give is, as has bedn?/2: respectively. Notice that IP and IAP in the trivial

established by a variety of methof&4,6,15,20—2F sector each have a set of solutions which is not symmetrical
A underk— —k.
Am The twisted boundary conditions reagh(0)=pi,(L)
VIR VIS > (170 and ¥»(0)=pyy(L), where p=e'®=(+1,—1,+i,—i) for

TP, TAP, ITP, and ITAP, respectively. Plugging these condi-

where MV is the bosonic contribution, so that there is in tions into Eqs/(18) and(19) and solving fora gives

total a nonvanishing negative correction for the SUSY kink

massM®=M{P+M{H, which is in fact entirely due to an —pPe —a— pe 21)
interesting anomalous contribution to the central charge op- —pe KL (2] 4 pe Kb_g-i(0R)’
erator[22,26,21.

i[kL+(012)] _ 1 _@l(012) _ ikl

Multiplying out, this gives
N A. Quantization .condmons - (p2— 1)(ei(9/2)+e‘i("’z))=2p(e”‘L—e‘”<L). 22)
To explicitly compute the difference of the sums in Eq.
(15) for the various boundary conditions discussed in Sec. IFgr p2=1 (TP and TAB, this is equivalent to sikL=0, i.e.
we have to derive the quantization conditions on an intervak) — n, with n+0, because=0 corresponds to the trivial
of lengthL. For ease of comparison with Ré#l], Sec. VB,  gojution i, = ,=0.

we let the spatial coordinate run from 0 toand put the Imaginary twisted periodic or antiperiodic boundary con-
center of the kink ak=L/2. _ ditions (ITP/ITAP) havep?=—1, and one finds fop=*i

We shall have to consider carefully both the discrete anghe two sets of solutiongd) kL=2mn—(6/2)=* (=/2), (b)
continuous$ spectrum. kL=2mn+ (6/2)+ (m/2). [For these conditions the numera-

tor and denominator on one side of Eg1) vanish, but not

1. Trivial sector on the other sidé.To every solution with there is one with

If one sets —k, but the two correspond to the same solut{op to nor-
, ) malization so it suffices to considek=0; k=0 has again
=€ +ae (18  a=—1 such thaty, = ,=0 everywhere and therefore must
not be counted.
then it follows from the Dirac equatioﬁiél) with U’ =m that There are also potentia”yero modesw=0, and near-

zeromodes w~0, which have to be treated separately. For
=0, the solutions to the Dirac equation read
5See Refs[15,1Q for a local variant which avoids the subtleties
discussed here as well as allowing one to calculate the local energy
distribution. U=
5The proper regularization of these sums is a highly delicate mat-
ter. In particular, a simple energy cutoff, which has frequently been . .
employed in the early literatufd6—18, turns out to lead to results wherea, anda, are dej[ermlned_ b_y the bc_)undary conditions.
inconsistent with the exact integrability of sine-Gordon models Only TP and TAP give nontrivial solutions far; anda,
[19] |f, however’ one uses a smooth energy Cutoff’ one Obtains aﬁ.nd thUS are Compat'ble W|th these SO|utI0nS There IS onhe
extra term in the mode sums which is independent of the details opuch zero mode for each of these boundary conditions.

(23

alemx)

a,e™

the smoothing, and this then yields the correct ref@0i. The imaginary twisted boundary conditions. ITP/ITAP, on
"More precisely, the part of the discretized spectrum that becomethe other hand, have near-zero modes with eneigy
continuous in the limitmL—sco. —4m?e 2"t for mL— o, with the positive-frequency solu-
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tion satisfying ITP, and the negative-frequency one satisfying

ITAP. To verify this, one can use the ansatz

J=e "“+ae”, —iwp,=(m—-k)e “+a(m+k)e™
(24)

with @?=m?— k2 and make the approximatiog~m which
becomes valid in the liminL— oo,

The untwisted boundary conditions P, AP, IP, and IAP
have neither zero nor near-zero modes in the trivial sector.

2. Kink sector

In the kink sector, one has the asymptotic expressions

gllkx=(82] 4 gg=ilkx=(82]  y~Q,

¢l:[ei[kx+(§/2)]+aei[kX+(5/2)], x~L, (25
pilkx=(812) = (812)] _ g g=ilkx=(52)=(812)]  y~Q

o=~ { gllkx+(812)+(0/2)] _ g g=ilkx+(82)+(012)]  y| (26)

where 5= — 2 arctaf3mk(nm?—k?)] is the phase shift func-
tion also appearing for bosonic fluctuations. &pbehaves
as the latter, while/, has a modified phase shift+ 6.

For 6(k) we adopt the convention thatk— *+o)—0 so
that there is a discontinuity &= 0 which in accordance with
Levinson’s theorem is 2 times the number of bound states.
For # we, however, keep the definition of EqO0), which

PHYSICAL REVIEW D 66, 085010(2002

FIG. 1. The quantization conditions for the fermionic modes in
the case of TP boundary conditions obtained from solvihg
+(60/2)=2mn+ 7—KL for positive w. The spectrum is clearly not
invariant undek— —Kk.

positive-frequency solutionsFor ITP the exemptions are
=0,—1 as with TP. For ITAPh=0 has to be excluded,
while n=*1 corresponds to the threshold moée-0,
w=m, which is proportional to §q,4,)=[1
— 3 tantf(mx2),—2i tanhfnx2)], and thus consistent with
ITAP boundary conditiongit does not appear in any of the

has the advantage of avoiding a separate treatment of pogther boundary conditionsThusn=*1 has to be counted

tive and negative values &f

We begin with discussing the untwisted boundary condi-

tions.

only once.
In contrast to TP/TAP, the sets of allowkdalues for ITP
and ITAP are each symmetric under» —k (while the cor-

The (rea) P and AP conditions can be satisfied either forresponding solutions are linearly independenbut a

(@ a=1 andkL=2mwn+7—6—0 or (b) a=—1 andkL
=2mn+ 7— &, where only positiven need to be considered
to obtain a complete set of solutions and solutions vkith
=0 have to be excluded, for they correspondito=,
=0. Because these quantization conditions involve @hfy
rather thare'??, in this (and only in thig case it would make
no difference to defin@ such as to vanish fok— *=o0, as
done for example in Ref19] (which obtained an incorrect

positive-frequency solution with momentuka for ITP or
ITAP has a negative-frequency partner only for the other of
the two imaginary twisted boundary conditions.

For the counting of modes in the next section we also
need to know how many zero modes there are for each
boundary condition in the kink sector. For real boundary
conditions these have been discussed in R&f.and are
recapitulated in Table I, which summarizes the results of this

result for the SUSY kink mass only because there is a localsection. The imaginary boundary conditions IP and IAP each

ized boundary energy contributiof4], as we shall see
shortly).

have a pair of near-zero modes; however, for ITP there is
only one near-zero mode with positive frequency, while the

The imaginary untwisted boundary conditions IP and IAP,complex conjugated negative-frequency mode satisfies ITAP
on the other hand, have identical quantization conditionsboundary conditions(For ITP and ITAP boundary condi-

which are given by the two set® kL=2mn+(w/2)— 65
—(60/12), n=1, (b) kL=2mn—(7/2)—6—(60/2), n=2.
Again, only positiven need to be considered sinGa con-
trast to IP/IAP in the trivial sectdork— —k does not lead to
further independent solutions.

tions, one can take, real andy, purely imaginary as this is
consistent with the Dirac equation, while for IP and IAP both
1 and i, are complex combinations of two real solutions.
Finally, in the kink sector there is one bound state with
energy square(bé:%mz. One can verify that on a finite

Turning now to the twisted boundary conditions, the TPinterval it is possible to satisfy any of the boundary condi-

ones lead tkL=2mn+ 7— §— 6/2. As shown in Fig. 1, this
has solutions for alh exceptn=0,—1, and the set of these
solutions is not symmetric und&r— — k. The solutions gen-

tions considered by slightly increasing or decreasing the
value of kg in w3=m?—«3. This is easy to see for P, AP,

ITP, and ITAP boundary conditions where the mode func-

erated by the latter transformation instead obey TAP boundtons ¢, and, are antisymmetric and symmetric around the

ary conditions, which requireL=2mn— 56— 6/2.

The imaginary twisted boundary conditions ITP/ITAP dif-
fer from TP/TAP simply by an additional term /2 on the
right-hand side(rhs) of the quantization conditiongfor

kink center, respectively; for TP, TAP, IP, and IAP, we have
verified the compatibility of the boundary conditions numeri-
cally. By contrast, the situation is more complicated for the
zero modes, because thergcan only be decreased from its
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TABLE I. Summary of fermionic quantization conditions, numbered in conformity with Refwhere applicable, and the number of
(nearjzero modesit,) in each case. An upper index to the numben, indicates that these modes are only near-zero modes; an index
or — indicates that only the positive or negative frequency mode, respectively, is compatible with the given boundary dancljtion

i) b.c. Sector k)L n,
1) P trivial 2mn, all n 0
2) AP trivial 27n+q, alln 0
3) P kink (@ 2mn—6—-6, n=1 2
(b) 27n— 68, n=2
4) AP kink (@ 2mn+m7—6—6, n=1 2=
(b) 2mn+m7— 46, n=1
1) IP trivial 2mn—/2, alln 0
2") IAP trivial 2mn+ /2, alln 0
3')=4") IP/IAP kink (@ 2mn+w/2— 65— 612, n=1 2"
(b) 27N+ mw/2— 66— 6012, n=2
5)=6) TP/TAP trivial (@ 2wn, n=1 1
(b) 27n+ 7, Nn=0
7) TP kink 2mn+a7—6—0/2, alln, n#0,—1 1
8) TAP kink 2mn—6—6/2, alln, n#0,—1 1
5) ITP trivial (@ 2mn+mw/2— 6/2, n=0 1"
(b) 2N+ m/2+6/2, n=1
6") ITAP trivial (@ 2mn—m/2— 612, n=1 1
(b) 2n—m/2+6/2, n=1
7" ITP kink 2mn+ mw/2— 56— 012, alln, n#0,—1 1t
8’) ITAP kink 2mn—m/2— 65— 612, alln, n#0,+1 1

maximal valuex,=m. Increasingx, would turn w?® nega- where the sums for the trivial sectors are written first, with
tive, but the Hamiltoniari8) is self-adjoint with a Hermitian ;)= \/kzi)+m2 according to Table I; explicit zeros indicate
inner product. the presence ofnearjzero modes. This leads to

B. Mode sums Am
" M(P) =MPAP) =MD +— (29)
1. Real boundary conditions f f f 4
Evaluating (15) with an equal number of modes in the

trivial and in th_e_ kink sector, one thus obtains for P and APimpIying that there is a finite amount of boundary energy
boundary condition$4,19,24

equivalent to the contribution of one-half of that of a low-
5N £ N lying continuum mode. Since P and AP are invisible bound-
MO(P) = — o ary conditions in the trivial sector, this must be attributed to
(P 2 n:z—N N7 72 nzl @3a) the kink sector.
For fixed TP and TAP boundary conditions, we fifoar-

hoo h i
-2 S gt~ 0— ] LAM, recting Ref.[4])
n=2

2
N N N
hwg Adk 0 ) h h h
__ Kelst? MD(TP) = +5 -
> +ﬁm+ﬁf0 5@ 5+2 +AM; r(TP) 221 Wsq) 2,120 “sb) ZnZl @)
(27) Ny fwg
and _E Wy w7)_T+AMf
. . . hog hm  (Adk 9)
h h =———+—F5+h| 5-0'|5+5|+AM
M{D(AP) =% 2, w2) =5 > ®4a)" 5 >, w45~ 0 2 2 0 2m 2 f
n=0 n=1 n=1
aim
h MmO
—%+AMf Mi™= 3 (30
=M{(P), 28  and
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U . n0 i ZEJA%[_g_g/Z]
Mf (TAP)= E nzl w6a)+ E nzo Wep) ™~ E nzl wg) 2)o 27
—(N+1) ho(o dk
i fiog _f oK s
-3 ngz ws)—T+AMf +2 7A27T[ 27— 56— 012]
hiwg Am  (Adk 0 h
=- oty oﬁ“"(‘”z TAM B %9
= Mgl)(-rp)_ (3D Both results correspond to the contribution of one-half of a

high-energy modék|= A, but with opposite sign. So there is
an infinite amount of “delocalized momentum,” which can-

TP/TAP are invisible boundary conditions in the kink Sec'gels only in the average over TP and TAP.

tor, so that any boundary energy must now be attributed t
the trivial sector. As one can see, it has equal magnitude but
opposite sign than in the results for P/AP, in agreement with
the discussion in Ref4]. (Twisting the fermions from P in As discussed in Sec. I, the imaginary versions of the
the trivial sector to TP in the kink sector, the localized above boundary conditions have the problem that each of IP,
boundary energy does not changedowever, because IAP, ITP, and ITAP separately breakand make it impos-
M%l)(TAp):Mgl)(Tp), there is no delocalized boundary en- sible to define Majorana quantum fields. In faGP7 is
ergy in the sense of Ref4]. Taking the average of the re- equally violated.
sults of one of the untwisted and one of the twisted boundary Nevertheless, it may make sense to consider these bound-
conditions eliminates the localized boundary energy and'y conditions in an averaged sense. Summing over positive
yields the correct resultl?). frequencies only one has, for IP,

In Ref.[3] it was found that mode number regularization N N \
with the completely invisible “topological” boundary condi- (1) _h h h
tions of P in the trivial sector and TP in the kink sector Mt "(IP)= 2 n;N winT 5 nzl W3a)” 5 nZZ W3b)
produces the correct finite part, but leaves an infiitet

2. Imaginary boundary conditions

mrindependent term corresponding to the contribution of hwg

one-half of that of a continuum mode wik+ A. The latter _O_T+AMf

is removed by the derivative regularization method proposed

in Ref.[3]. For mode regularization to give finite results it is fiwg fim Adk ¢

crucial to have fixed boundary conditions. The localized :_T+2X7+ﬁ 0 2w ot +AM;

boundary energies that this produces has then to be elimi-

nated by averaging over one twisted and one untwisted Aim

boundar iti =M+, (34)
y condition. f 4

However, taking either TP or TAP for the twisted bound-
ary condition, parityP is not a symmetry and thus the one- gnd the same fomgl)(mp) becauseENNwlrFE'waz/)
loop correction to the momentum in the kink sector need nogq 3)=4') according to Table I. The IP/IAP results for the

be zero. o _ one-loop energies thus coincide with the corresponding re-
The momentum operator is diagonal asymptotically fargis for P/AP.

away from the kink, and one obtains for TP Analogously, for ITP one obtains

3 N —(N+1) % N % N
POTP)=-— >, + > |[2mn+7—5—06/2] MPATP) =0+ X wsayt 5 > wsp)
2L n=1 n=-2 2 n=0 2 n=1
ho ho
“2)o2at 0T MY G] 2g Lm0
=+ A (32 B R R A )
+AM,
and, for TAP,
_M(l)_ﬁ_m (35)
BN SN o 4
P{(TAP =—( + ) 2mn— 38— 412
i ) 2L nzl n=22 [2m ] and for ITAP
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h Am CP17, so that these boundary conditions cannot be used for
M{D(ITAP) = > > weayt > > W)~ > local quantum field theory, although this obstruction is effec-
=t =1 tively removed by averaging over IP and IAP, or ITP and
5 N g ITAP. The cancellation of local boundary energy in the mode

—2X = 2 &, wg) T 5 +AM; regularization scheme requires averaging over the results ob-

tained with one twisted and one untwisted boundary condi-
tion, where these conditions have to be used both in the

__hos ﬁ_m+h A%w, P trivial and in the kink sector.
2 2 0 2 2 For compatibility with the Euler-Lagrange variational
principle, one should require that boundary terms due to par-
+AM; tial integrations cancel. In our case these “boundary field
=M,§1)(ITP). (36) equations” read
AlthoughC is broken, the two results coincide, so there is P1(—=L12) Sipa( = LI2) + o = LI2) 5ipe (— LI2)
still no delocalized boundary energy in the sense of REf. = i (L12) Suby(LI2) + r(LI2) Sy (L12). (39)

BecauseP is intact with either ITP or ITAP, there is also

no delocalized momentum as with real twisted boundaryI hat th b d di P AP, TP,
conditions. However, IP/IAP in the trivial sector now break tis easy to see that the real boundary conditions

P (whereas the kink sector is symmetric unéles —k), and and TAP all satisfy this requirement, but the imaginary ver-

one finds that there is delocalized momentum associated W|t<151Ions IP, IAP, ITP, and ITAP each violate it.
the trivial sector, This means that none of the imaginary boundary condi-

tions can be used in a Lagrangian formulation with Majorana
5N 5 fermions, although the Hamiltoniai8) with a Hermitian in-
a . . .. .
p(l) IP)=— 2 (zwn__) =— —A (37) ner product is still self-adjoint. The same conclusion was
2L n== 2 4 reached by looking at the spectruiterived from bulk field
equations and imposing the boundary conditjofitie prob-
and lem with imaginary boundary conditions then turned out to
5N " be that for a given momentuik and positive frequencw
1 _ T\ _ there is no corresponding mode in the spectrum withand
P(1AP) = 2L nzz_N (an+ 7]=Tzh 9 —w, and no Majorana field can be built.

To avoid this problem, one would have to switch to com-
which again corresponds to the contribution of one-half of gplex fermions by giving up supersymmetry, as in the original
high-energy modék|= A for IP and IAP separately, but with  Jackiw-Rebbi moddl13], or go toN=2 SUSY models. Nei-
opposite sign. ther possibility has been explored in this paper.

Thus, averaging over the results of the mode sums for all We summarize our assertions about averaging over invis-
four imaginary boundary conditions removes both localizedble boundary conditions to restore all three discrete symme-
boundary energies and delocalized momentum. In fact, onljries. In the trivial sector, one may average over P and AP or
in such an average one effectively removes also the obstru¢P and IAP, or both sets. However, because P and AP sepa-
tion to the Majorana conditiofandCP7) that positive and rately obey all symmetries, there is no need to average if one
negative frequency modes have different spectra. chooses one of these real periodic boundary conditions. In

Curiously enough, the necessity to consider ITP and ITARhe kink sector, one may average over TP and TAP or ITP
together in order to have at least effectively no violatio@of and ITAP, or both sets. Any of these is an acceptable method
and CPT means that the threshold mo#le=0, which only  to restore the symmetries, but this time there is no single
appears under ITAP boundary conditions, is on the averageoundary condition which simultaneously satisfies all three,
counted like half a mode. In Rgf24], in a different regular-  so that averaging over at least one pair is necessary. That fact
ization method, threshold modes had to be treated explicitlys the main point of our work.

as modes to be counted only half. The idea that one must average over a set of boundary
conditions to restore a symmetry is known in string theory,
IV. DISCUSSION where the spinning string maintains modular invariance

(large general coordinate transformatipasid unitarity and

We have considered the SUSY kink on a circle by intro-supersymmetry only if one sums over all spin structitee
ducing so-called invisible boundary conditions as proposedequirement that fermions on a closed surface are periodic or
earlier in Refs.[3,4]. We then analyzed how the discrete antiperiodic in spacelike or timelike direction9].
symmetriesC, P, and7 act on these boundary conditions.  We close with some speculative remarks. The fact that no
We found that no single set of locally invisible boundary locally invisible boundary condition for the fermionic quan-
conditions preserved all three discrete symmetries. The realim fluctuations satisfies all three symmetrigsP, and 7
boundary conditions TP and TAP preserv&gZ, but break simultaneously, whereas the classical actiog,is?, and 7
both P and 7. The imaginary variants ITP and ITAP, on the invariant, suggests that we are dealing with a discrete
other hand, respe@® and7, but violateC and therefore even anomaly. The origin of this effect is the global structure

085010-9



GOLDHABER et al. PHYSICAL REVIEW D 66, 085010(2002

(analogous to a Maius strip in our cas¢3]), whereas the anomaly as a “clash of quantum consistency conditions”
usual chiral anomaly is a local effect. Clearly, one should nof30].
confuse this with the anomalies due to instantons, where the
effective action contains terms of the forgf + ¢*; these
preserve parity but break chiral invariance. This research was supported in part by the National Sci-
Whether or not the striking loss of simultane@ysP, and  ence Foundation, Grant Nos. PHY00-98527, PHY99-07949,

Tinvariance should be called an anomaly in the sense of thand by the Austrian Science Foundation FWF, Project No.
chiral anomaly, it certainly satisfies the definition of an P15449.
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