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Clash of discrete symmetries for the supersymmetric kink on a circle
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We consider theN51 supersymmetric kink on a circle, i.e., on a finite interval with boundary or transition
conditions which are locally invisible. For Majorana fermions, the single-particle Dirac Hamiltonian as a
differential operator obeys simultaneously the three discrete symmetries of charge conjugation, parity, and time
reversal. However, no single locally invisible transition condition can satisfy all three. When calculating sums
over zero-point energies by mode number regularization, this gives a new rationale for a previous suggestion
that one has to average over different choices of boundary conditions, such that for the combined set all three
symmetries are obeyed. In particular it is shown that for twisted periodic or twisted antiperiodic boundary
conditions separately both parity and time reversal are violated in the kink sector, as manifested by a delocal-
ized momentum that cancels only in the average.
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I. INTRODUCTION

Subtleties in the application of the discrete symmetr
charge conjugationC, parity P, and time reversalT to Ma-
jorana fermions have long been a topic of interest@1,2#. Past
discussions generally have dealt with local processes
properties, but the main aim of the present work is to stu
an anomalous global behavior of these discrete symme
in a model with a topological structure. For this we consid
the simplest possible system: the supersymmetric~SUSY!
kink with what would seem to be natural boundary con
tions.

Some time ago the concept of locally invisible bounda
conditions was introduced@3,4#: for a two component Majo-
rana fermion in a kink background in a box of lengthL, the
twisted periodic~TP! boundary conditions

c1~2L/2!5c2~L/2!, c2~2L/2!5c1~L/2! ~1!

and twisted antiperiodic~TAP! boundary conditions

c1~2L/2!52c2~L/2!, c2~2L/2!52c1~L/2! ~2!
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amount to putting the system on a circle without introduci
a point where a boundary is present: The kink solut
fK(x)5f0tanh(mx/2) is invariant under the simultaneou
transformationx5L/2→x52L/2 andfK→2fK . Thus the
pointsx56L/2 may be identified. The action for the SUS
kink

L52
1

2
~]mf!22

1

2
U2~f!2

1

2
c̄gm]mc2

1

2
U8~f!c̄c

~3!

with U(f)5U(2f) is invariant under the transformation

f→2f, c→eiag3c, ~4!

which is compatible with the Majorana condition fora50 or
p whereas for Dirac fermions an arbitrary phase would
allowed. Here we use a Majorana representation of the D
matrices withg052 is2 , g15s3 , g35s1. In these terms,
the TP and TAP boundary conditions in Eqs.~1!,~2! are sim-
ply c→6g3c, clearly satisfying Eq.~4!. As a consequence
there is no visible boundary~meaning no locally observabl
discontinuity or cusp! at x56L/2. Note that it is not neces
sary in these considerations to assume that the center o
kink is located at the pointx50. That will be helpful later on
in defining the parity operation in a simple manner, but
any other purpose the matching point for the transition
jump conditions~4! may be chosen arbitrarily, as befits
locally invisible boundary.
©2002 The American Physical Society10-1
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The TP and TAP boundary conditions arise naturally
one begins with a kink-antikink system with periodic~P!
boundary conditions, and looks at the values ofc1 ,c2 be-
tween the kink and antikink. One finds then that for P co
ditions for the kink-antikink system, the fermions satisfy e
ther TP or TAP conditions. In this article we also conside
natural extension of these ideas: we begin with antiperio
~AP! boundary conditions for the kink-antikink system, a
find then that if the fermionic modes are written as pla
wavese2 i (vt2kx) far away from the kink-antikink system
then in between the kink and antikink they satisfy imagina
twisted periodic~ITP! boundary conditions

c1~2L/2!5 ic2~L/2!, c2~2L/2!5 ic1~L/2! ~5!

and imaginary twisted antiperiodic~ITAP! boundary condi-
tions

c1~2L/2!52 ic2~L/2!, c2~2L/2!52 ic1~L/2!,
~6!

where c1,2 now refer to the fermionic mode functions a
opposed to the complete field. If one prefers to avoid wo
ing with complex boundary conditions for the Majorana fe
mions, one may take the real and imaginary parts of
distorted plane waves, but this then leads to thenon-
local boundary conditions (2]x

21m2)1/2c1(2L/2)56(]x

2m)c2(L/2) and similar conditions forc2(2L/2). In the
following we consider only the algebraic boundary con
tions ~5! and ~6!. For periodic boundary conditions on th
kink-antikink system, one finds only the real boundary co
ditions for a single kink given in Eqs.~1! and ~2!, whether
one uses complex or real mode functions.

In the trivial sector, P and AP boundary conditions a
invisible boundary conditions, and, having introduced I
and ITAP it seems only natural to also include imagina
periodic ~IP! boundary conditions

c1~2L/2!5 ic1~L/2!, c2~2L/2!5 ic2~L/2! ~7a!

and imaginary antiperiodic~IAP! boundary conditions

c1~2L/2!52 ic1~L/2!, c2~2L/2!52 ic2~L/2!.
~7b!

With imaginary boundary conditions, one finds a gener
ized Majorana identity, in which the adjoint of the field fo
one of the two boundary conditions is equal to the field
the other boundary condition, so that only if one avera
over both conditions is it meaningful to describe the ferm
ons as Majorana particles.

In Ref. @4# it was found that for a single kink one has
consider suitable averages over subsets of the mentio
boundary conditions to obtain the correct SUSY kink ma
because for particular individual cases one encounters lo
ized boundary energy. This localized energy is due to bou
ary conditions which distort the field at the boundary a
may be called visible boundary conditions. In the kink sec
the P/AP and IP/IAP boundary conditions are visib
whereas in the trivial sector, the twisted versions are visi
08501
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To cancel out localized boundary energy, one needs
average over the results of a twisted and an untwisted bou
ary condition. In this paper we shall show that there is
reason to average also over the two twisted boundary co
tions, because a single~real! twisted boundary condition
breaks parityP ~as well asT ), giving rise to delocalized
momentum proportional to the ultraviolet cutoff, which ca
cels only in the average.~In the case of imaginary boundar
conditions, a similar phenomenon arises with IP/IAP in t
trivial sector.! This was overlooked in Ref.@4#, which had
assumed parity invariance for the spectrum and incorre
claimed the appearance of delocalized energy.

One might expect that one can find other boundary c
ditions in the kink sector which preserve parity. Indeed,
invisible boundary conditions ITP and ITAP have aP andT
invariant spectrum, but instead violateC ~and thusCPT ), so
that these mode functions do not allow one to build a lo
quantum field theory with Majorana fields. BecauseC selects
different locally invisible boundary condition fromP andT,
it follows that there is no choice which preserves all thr
symmetries simultaneously. This obstruction occurs des
the fact that the action as a local expression in Bose
Fermi fields is invariant under all the symmetries. Hen
one encounters here a phenomenon which we call with s
hesitation a discrete symmetry anomaly, induced by the k
There is no local counterterm which can remove t
anomaly. One can, of course, choose as boundary condit
c50 in which case there are no problems with the discr
symmetries, but then one has localized boundary energy,
our aim here is to study the discrete symmetries in the p
ence of invisible boundary conditions, which means with t
kink put on a circle.

The possibility that a nontrivial structure of spacetime c
lead to anomalies in discrete symmetries has been stu
before. For example, in Ref.@5# a CPT anomaly was claimed
to arise by compactification of some dimensions of (311)
spacetime.

In our example, both a nontrivial space-time and a no
trivial field topology is present. In Ref.@6#, it was found that
in 211 dimensions there arise chiral fermions living on
SUSY kink domain wall; these fermions are massless in
11 dimensions~their energy is equal to the momentu
along the domain wall! and they correspond to fermioni
zero modes of the susy kink in 111 dimensions. In this case
the spectrum is again parity nonsymmetric~the massless fer
mions on the domain wall move in one direction but not
the other! but now this is not due to boundary conditions b
rather due to the presence of the kink, in accordance with
general results of Refs.@7,8#. In Ref. @9# the connection be-
tween instantons and the breaking of supersymmetry and
discrete symmetriesC,P,T was considered.

Our paper is organized as follows. In Sec. II we discu
how the symmetriesC, P andT act on the boundary condi
tions in the kink and in the trivial sector. In Sec. III we wor
out the fermionic spectra for the 16 sets of boundary con
tions ~8 sets in the kink sector, and 8 sets in the trivial se
tor!. We also determine how the total mass and momen
of the kink depend on the choice of boundary conditions.
regulate by mode regularization, i.e., requiring equal nu
0-2
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bers of modes in the trivial and kink sector, counting ferm
onic zero modes according to the rules derived in Ref.@4#. In
Sec. IV we comment on our results.

II. DISCRETE SYMMETRIES AND THEIR
IMPLEMENTATION

For the single-particle Dirac Hamiltonian

H5 i\s1]x1\s2mfK~x!/f0 , ~8!

one has simple and unique representations of the three
metry operations, charge conjugationC, parity P, and time
reversalT, which leave this differential operator invariant.C
at the single-particle level is an antiunitary operation wh
reverses the sign ofH, and because in this representationH is
purely imaginary the transformation is accomplished
simple complex conjugation of fermion wave functions:C
5K. For P, which must include the transformationx→
2x, a subtlety arises because this operation by itself tu
the kink into an antikink. Therefore, in the kink sector, o
must require for the action of parity on the classical boso
field fK(x)→2fK(2x)5fK(x). In the kink background
the combined transformation reverses the derivative term
not the mass or Yukawa term inH, and we find for the action
on fermion wave functionsP5(x→2x)3 is2. For the an-
tiunitary T one needs an operation includingK, but it must
leaveH invariant. To do this requires a matrix factor an
commuting with H, yielding T5s3K. Note that each of
these discrete operations on fermion wave functions is
same in the trivial sector as it is in the kink sector. Of cour
in the trivial sector, the action of parity on the~constant!
classical background fieldf0 is simply to preserve it. Thus
to keep the background invariant one treats the backgro
field as scalar in the trivial sector but pseudoscalar in
kink sector.

While the discrete transformations can be defined con
tently for the differential operator, we still need to look
their effects on the matching or boundary conditions. Let
write these conditions in a general form which covers all
choices described above:

c~x52L/2!5Geiac~x51L/2!. ~9!

The twisted boundary conditions which we now analyze c
respond toG5g35s1. The conditions could be applied a
any point ~see@3# for the details of the precise procedure!,
but let us choose symmetric placement around the cente
the kink to make the action of the parity symmetry as sim
as possible. Evidently we obtain the four different possib
ties mentioned above by choosinga50,p,p/2,2p/2, re-
spectively. The action ofC takeseia to (eia)* , so that only
a50,p ~TP and TAP! are left unchanged. For parity, becau
of the interchange of left and right boundaries along with
presence of the matrixs2, one haseia→2(eia)21, so that
only a56p/2 ~ITP and ITAP! are left unchanged. ForT,
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the matrixs3 implies eia→2(eia)* , and againa56p/2
~ITP and ITAP! are left unchanged.1

The purely real TP and TAP conditions commute withC,
but T and P each interchange TP with TAP. Consequent
with one of these conditions by itself onlyC holds: It is
possible to choose wave functions which are real, and a
mion field operator which is Hermitian, but~positive-energy!
waves of positive and negative wave numberk are not de-
generate with each other. This means that an implicit
sumption of@4#, that the energy spectrum is the same fork
.0 and k,0, is not correct@10#. In @4# the spectrum for
negativek was not computed explicitly, and this led to a fal
conclusion that the energy spectra for TP and TAP are
ferent. In fact, it is easy to check that for each solution w
k of one sign for TP there is a degenerate solution withk of
the opposite sign for TAP. A further assertion of@4# resulting
from the assumed difference in spectra is that there exis
delocalized energy for either TP or TAP alone. This also
false @10#, but as will be shown below there indeed is
delocalized quantity, a net momentum proportional to
ultraviolet cutoff energyL.

On the other hand, with ITP and ITAP conditions,P andT
symmetries leave the conditions invariant, butC interchanges
them. Once again, to have all three symmetries one must
an average over the two boundary conditions. This time
one just chooses one of these boundary condition there
difference in energy spectrum from the other boundary c
dition ~but the spectra are each parity symmetric!. Now a
new difficulty arises: it is impossible to write a Hermitia
Majorana field because a positive energy state with posi
momentum does not have an equal negative energy pa
with negative momentum. A different way to reach the sa
conclusion is to consider the operationCPT, which is a well-
accepted symmetry for local quantum field theory.2

Evidently this symmetry leaves the field Hamiltonian de
sity invariant only for the TP and TAP conditions, whic
therefore are the ones uniquely allowed as consistent co
tions in quantum field theory. For these conditions to achie
vanishing delocalized momentum one must average ove
and TAP, while for ITP and ITAP implementingCPT sym-
metry forces averaging over the two sets. Thus the notion
averaging over sets of boundary conditions, as introduce
@4#, does have merit, but detailed claims in the original
tionale for this construction needed major revision, as
have just described.

For completeness, we should examine the effects of
discrete symmetries in the trivial sector. Now, invisib
boundary conditions have the unit matrix in place of t
matrix s1. One sees immediately that the P and AP con

1We use the passive point of view according to which we equ
Eq. ~9! with c8(2L/2)5Mc8(L/2) and solve forM.

2There has been recent interest in anomalousCPT violation in
chiral theories in 4 dimensions@11,12# and in 2 dimensions@5#. We
consider the present work~which does not include chiral gaug
couplings! complementary to those studies, but the chiral nature
the twisted boundary conditions suggests that there may be a
nection to the anomaly in explicitly chiral theories.
0-3
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GOLDHABER et al. PHYSICAL REVIEW D 66, 085010 ~2002!
tions satisfy all three discrete symmetries, while IP and I
do not satisfy any. This means that one could implement
discrete symmetries with either P or AP, but implementat
for imaginary conditions would require both IP and IAP.

To describe the discrete symmetries as transformation
the Majorana field we need a dictionary relating these tra
formations to those already discussed for the the single
ticle wave functions. For charge conjugation this is

UCc~x,t !UC
215c†~x,t !, ~10!

so that the Majorana condition becomes simply the Her
ticity or self-adjointness of the fieldc. Note that what had
been an antiunitary operation takingH into its negative for
the single-particle description now is a unitary operat
leaving the Hamiltonian densityH(x.t) invariant. This result
depends critically on the fact thatH includes a commutato
of c with c†, which reverses sign under charge conjugati
For parity we have3

UPc~x,t !UP
215 is2c~2x,t !, ~11!

identical with the single-particle rule. For time reversal o
finds the greatest subtlety, because this operation rem
antiunitary:

VTc~x,t !VT
215s3c* ~x,2t !. ~12!

The subtlety has to do with defining complex conjugation
the raising and lowering operatorsa† anda appearing in the
mode expansion of the field. The simplest assumption is
this operation leaves the operators invariant, but instead e
one could be multiplied by a different phase factor. In th
case, the phase factor would have to be explicitly comp
sated in the action ofVT on each raising or lowering opera
tor. It is easy to verify that these new definitions are cons
tent with the earlier analysis of the relation between discr
symmetries and boundary conditions, with the obvious p
viso that the boundary conditions now are applied to the fi
exactly as they previously were applied to the wave fu
tions.

The issues discussed here all arise because we are de
with Majorana fermions. How would the discussion chan
if one considered instead anN52 theory, with Dirac fermi-
ons? Now the fieldc no longer need be equivalent to i
charge conjugate, so it might seem that one could choose
one boundary condition instead of averaging over a pair.
enticing to imagine that the Dirac fermion charge could
coupled to a U~1! gauge field, so that the phasea in Eq. ~9!
would reflect a magnetic flux threading the circle. Howev
for no choice ofa would the spectrum obey all three discre
symmetries, just as we found already; that deduction ho
regardless of the assumptionN51 or N52. Thus we still
require a pair of boundary conditions if the symmetries
are to be obeyed simultaneously. In theN52 theory, how-
ever, continuous values ofa are allowed, and except for th

3As is the case for Majorana fermions in 4 dimensions@1#, P 2

521.
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values considered before any other would break all th
symmetries, as one would expect for arbitrary irrational fl
through the circle. TheN52 theory exhibits the Jackiw
Rebbi half-fermion charge localized at the kink@13#, and it is
amusing that this is consistent with the possibility of tunn
ing between kink and antikink@14#, as the latter also would
possess charge one-half. The physical interpretation of
analysis, when combined with what we saw earlier, seem
be that the problem of the kink on a circle ‘‘knows’’ that
really is half of the kink-antikink problem on a double
circle. Thus the discrete symmetries which are obeyed
half an Aharonov-Bohm quantum of flux through the lar
circle also are obeyed for one-quarter flux through the sm
circle, but only when one averages over a suitable pair~ITP
and ITAP! of boundary conditions.

III. MODE NUMBER REGULARIZATION OF FERMIONIC
CONTRIBUTIONS TO THE ONE-LOOP SUSY

KINK MASS

We now turn to the explicit calculation of the fermion
contributions to the SUSY kink mass at one-loop order
mode number regularization, extending and partially corre
ing the results presented in Ref.@4#.

The f4-kink model corresponds to usingU(f)
5Al/2(f22f0

2) in the Lagrangian~3!, but the following
discussion applies~mutatis mutandis! to other models such
as sine-Gordon, whereU}sin(gf/2).

In the trivial vacuum, one hasU(f0)50 and U8(f0)
5A2lf05m, whereas with the nontrivial kink backgroun
field fK(x)5f0tanh„m(x2x0)/2… one has the Bogomol’ny
equationU(fK)52]xfK and U8(fK)5mfK /f0, leading
to a fluctuation equation for the fermionic mode functio
governed by the differential operator~8!.

The fermionic mode functions will be written

c~x,t !5S c1~x!

c2~x!
D e2 ivt ~13!

so that the Dirac equation becomes

2 ivc15~]x2U8!c2 , 2 ivc25~]x1U8!c1 . ~14!

The fermionic contribution to the one-loop quantum ma
of a kink is given by sums over zero-point energies acco
ing to

M f
(1)52

\

2 F( vK2( vVG1DM f ~15!

where the indicesK andV refer to kink and trivial vacuum,
respectively, andDM f is the fermionic contribution to the
counterterm due to renormalizing the theory in the triv
vacuum. A minimal renormalization scheme that can be c
sen is to require that tadpoles vanish and all other renorm
ization constants are trivial.4 This gives@4#

4For a thorough discussion of more general renormalizat
schemes in this context see Ref.@6#.
0-4
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DM f52
2

3
DMb52

m\

2p E
2L

L dk

Ak21m2
. ~16!

In ~global!5 mode regularization the spectrum of fluctu
tions about a kink~and in the trivial vacuum! is discretized
by considering an interval of~large! length L and choosing
boundary conditions. The sums in Eq.~15! are then cut off at
a given large valueN of the number of modes, which accord
ing to the principle of mode regularization is chosen to be
same in the trivial and in the kink sector.6

As argued in Ref.@4#, this requiresfixedboundary condi-
tions, meaning that they are identical for the trivial and t
kink sector. But because invisible boundary conditions in o
sector are visible ones in the other, it becomes necessa
average over boundary conditions such that boundary e
gies cancel in the average.

The correct answer this average has to give is, as has
established by a variety of methods@3,4,6,15,20–25#,

M f
(1)52Mb

(1)2
\m

2p
~17!

where Mb
(1) is the bosonic contribution, so that there is

total a nonvanishing negative correction for the SUSY k
massM (1)5M f

(1)1Mb
(1) , which is in fact entirely due to an

interesting anomalous contribution to the central charge
erator@22,26,27#.

A. Quantization conditions

To explicitly compute the difference of the sums in E
~15! for the various boundary conditions discussed in Sec
we have to derive the quantization conditions on an inter
of lengthL. For ease of comparison with Ref.@4#, Sec. V B,
we let the spatial coordinate run from 0 toL and put the
center of the kink atx5L/2.

We shall have to consider carefully both the discrete a
continuous7 spectrum.

1. Trivial sector

If one sets

c15eikx1ae2 ikx ~18!

then it follows from the Dirac equation~14! with U8[m that

5See Refs.@15,10# for a local variant which avoids the subtletie
discussed here as well as allowing one to calculate the local en
distribution.

6The proper regularization of these sums is a highly delicate m
ter. In particular, a simple energy cutoff, which has frequently be
employed in the early literature@16–18#, turns out to lead to results
inconsistent with the exact integrability of sine-Gordon mod
@19#. If, however, one uses a smooth energy cutoff, one obtain
extra term in the mode sums which is independent of the detail
the smoothing, and this then yields the correct result@20#.

7More precisely, the part of the discretized spectrum that beco
continuous in the limitmL→`.
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c252@ei [kx1(u/2)]2ae2 i [kx1(u/2)]# ~19!

where we defineu such that

ei (u/2)5
k2 im

v
, v56Ak21m2. ~20!

So u522 arctan(m/k), but the branch of the arctan is fixe
such that~for positive frequenciesv) u goes from22p to 0
ask runs from2` to 1`. This conforms with the definition
adopted in@3# but deviates from Ref.@4#. The definition~20!
has the advantage of avoiding explicit sign functions sgnk)
in the quantization conditions.

The quantization conditions for untwisted P and A
boundary conditions are simplykL52pn and kL52pn
1p; IP and IAP have kL52pn2p/2 and kL52pn
1p/2, respectively. Notice that IP and IAP in the trivia
sector each have a set of solutions which is not symmetr
underk→2k.

The twisted boundary conditions readc1(0)5rc2(L)
and c2(0)5rc1(L), where r5eia5(11,21,1 i ,2 i ) for
TP, TAP, ITP, and ITAP, respectively. Plugging these con
tions into Eqs.~18! and ~19! and solving fora gives

2rei [kL1(u/2)]21

2re2 i [kL1(u/2)]11
5a5

2ei (u/2)2reikL

re2 ikL2e2 i (u/2)
. ~21!

Multiplying out, this gives

~r221!~ei (u/2)1e2 i (u/2)!52r~eikL2e2 ikL!. ~22!

For r251 ~TP and TAP!, this is equivalent to sinkL50, i.e.
kL5pn, with nÞ0, becausen50 corresponds to the trivia
solutionc15c250.

Imaginary twisted periodic or antiperiodic boundary co
ditions ~ITP/ITAP! haver2521, and one finds forr56 i
the two sets of solutions~a! kL52pn2(u/2)6(p/2), ~b!
kL52pn1(u/2)6(p/2). @For these conditions the numera
tor and denominator on one side of Eq.~21! vanish, but not
on the other side.# To every solution withk there is one with
2k, but the two correspond to the same solution~up to nor-
malization! so it suffices to considerk>0; k50 has again
a521 such thatc15c250 everywhere and therefore mu
not be counted.

There are also potentiallyzero modes, v50, and near-
zeromodes, v'0, which have to be treated separately. F
v50, the solutions to the Dirac equation read

c I5S a1e2mx

a2emx D , ~23!

wherea1 anda2 are determined by the boundary condition
Only TP and TAP give nontrivial solutions fora1 anda2

and thus are compatible with these solutions. There is
such zero mode for each of these boundary conditions.

The imaginary twisted boundary conditions ITP/ITAP, o
the other hand, have near-zero modes with energyv2

→4m2e22mL for mL→`, with the positive-frequency solu
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tion satisfying ITP, and the negative-frequency one satisfy
ITAP. To verify this, one can use the ansatz

c15e2kx1aekx, 2 ivc25~m2k!e2kx1a~m1k!ekx

~24!

with v25m22k2 and make the approximationk'm which
becomes valid in the limitmL→`.

The untwisted boundary conditions P, AP, IP, and IA
have neither zero nor near-zero modes in the trivial sect

2. Kink sector

In the kink sector, one has the asymptotic expression

c15H ei [kx2(d/2)]1ae2 i [kx2(d/2)], x'0,

ei [kx1(d/2)]1ae2 i [kx1(d/2)], x'L,
~25!

c252H ei [kx2(d/2)2(u/2)]2ae2 i [kx2(d/2)2(u/2)], x'0,

ei [kx1(d/2)1(u/2)]2ae2 i [kx1(d/2)1(u/2)], x'L,
~26!

whered522 arctan@3mk/(m22k2)# is the phase shift func
tion also appearing for bosonic fluctuations. Soc1 behaves
as the latter, whilec2 has a modified phase shiftd1u.

For d(k) we adopt the convention thatd(k→6`)→0 so
that there is a discontinuity atk50 which in accordance with
Levinson’s theorem is 2p times the number of bound state
For u we, however, keep the definition of Eq.~20!, which
has the advantage of avoiding a separate treatment of p
tive and negative values ofk.

We begin with discussing the untwisted boundary con
tions.

The ~real! P and AP conditions can be satisfied either
~a! a51 and kL52pn1p2d2u or ~b! a521 and kL
52pn1p2d, where only positiven need to be considere
to obtain a complete set of solutions and solutions withk
50 have to be excluded, for they correspond toc15c2
50. Because these quantization conditions involve onlyeiu

rather thaneiu/2, in this ~and only in this! case it would make
no difference to defineu such as to vanish fork→6`, as
done for example in Ref.@19# ~which obtained an incorrec
result for the SUSY kink mass only because there is a lo
ized boundary energy contribution@4#, as we shall see
shortly!.

The imaginary untwisted boundary conditions IP and IA
on the other hand, have identical quantization conditio
which are given by the two sets~a! kL52pn1(p/2)2d
2(u/2), n>1, ~b! kL52pn2(p/2)2d2(u/2), n>2.
Again, only positiven need to be considered since~in con-
trast to IP/IAP in the trivial sector! k→2k does not lead to
further independent solutions.

Turning now to the twisted boundary conditions, the
ones lead tokL52pn1p2d2u/2. As shown in Fig. 1, this
has solutions for alln exceptn50,21, and the set of thes
solutions is not symmetric underk→2k. The solutions gen-
erated by the latter transformation instead obey TAP bou
ary conditions, which requirekL52pn2d2u/2.

The imaginary twisted boundary conditions ITP/ITAP d
fer from TP/TAP simply by an additional term2p/2 on the
right-hand side~rhs! of the quantization conditions~for
08501
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,
s,

d-

positive-frequency solutions!. For ITP the exemptions aren
50,21 as with TP. For ITAP,n50 has to be excluded
while n561 corresponds to the threshold modek50,
v5m, which is proportional to (c1 ,c2)5@1
23 tanh2(mx/2),22i tanh(mx/2)#, and thus consistent with
ITAP boundary conditions~it does not appear in any of th
other boundary conditions!. Thusn561 has to be counted
only once.

In contrast to TP/TAP, the sets of allowedk values for ITP
and ITAP are each symmetric underk→2k ~while the cor-
responding solutions are linearly independent!, but a
positive-frequency solution with momentumk for ITP or
ITAP has a negative-frequency partner only for the other
the two imaginary twisted boundary conditions.

For the counting of modes in the next section we a
need to know how many zero modes there are for e
boundary condition in the kink sector. For real bounda
conditions these have been discussed in Ref.@4# and are
recapitulated in Table I, which summarizes the results of t
section. The imaginary boundary conditions IP and IAP ea
have a pair of near-zero modes; however, for ITP there
only one near-zero mode with positive frequency, while t
complex conjugated negative-frequency mode satisfies IT
boundary conditions.~For ITP and ITAP boundary condi
tions, one can takec1 real andc2 purely imaginary as this is
consistent with the Dirac equation, while for IP and IAP bo
c1 andc2 are complex combinations of two real solutions!

Finally, in the kink sector there is one bound state w
energy squaredvB

25 3
4 m2. One can verify that on a finite

interval it is possible to satisfy any of the boundary con
tions considered by slightly increasing or decreasing
value ofkB in vB

25m22kB
2 . This is easy to see for P, AP

ITP, and ITAP boundary conditions where the mode fun
tionsc1 andc2 are antisymmetric and symmetric around t
kink center, respectively; for TP, TAP, IP, and IAP, we ha
verified the compatibility of the boundary conditions nume
cally. By contrast, the situation is more complicated for t
zero modes, because therek0 can only be decreased from it

FIG. 1. The quantization conditions for the fermionic modes
the case of TP boundary conditions obtained from solvingd
1(u/2)52pn1p2kL for positivev. The spectrum is clearly no
invariant underk→2k.
0-6
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TABLE I. Summary of fermionic quantization conditions, numbered in conformity with Ref.@4# where applicable, and the number o
~near-!zero modes (nz) in each case. An upper index6 to the numbernz indicates that these modes are only near-zero modes; an inde1
or 2 indicates that only the positive or negative frequency mode, respectively, is compatible with the given boundary condition~b.c.!.

i ) b.c. Sector ki )L nz

1! P trivial 2pn, all n 0
2! AP trivial 2pn1p, all n 0
3! P kink ~a! 2pn2d2u, n>1 2

~b! 2pn2d, n>2
4! AP kink ~a! 2pn1p2d2u, n>1 26

~b! 2pn1p2d, n>1
18) IP trivial 2pn2p/2, all n 0
28) IAP trivial 2pn1p/2, all n 0
38)548) IP/IAP kink ~a! 2pn1p/22d2u/2, n>1 26

~b! 2pn1p/22d2u/2, n>2
5!56! TP/TAP trivial ~a! 2pn, n>1 1

~b! 2pn1p, n>0
7! TP kink 2pn1p2d2u/2, all n, nÞ0,21 1
8! TAP kink 2pn2d2u/2, all n, nÞ0,21 1
58) ITP trivial ~a! 2pn1p/22u/2, n>0 11

~b! 2pn1p/21u/2, n>1
68) ITAP trivial ~a! 2pn2p/22u/2, n>1 12

~b! 2pn2p/21u/2, n>1
78) ITP kink 2pn1p/22d2u/2, all n, nÞ0,21 11

88) ITAP kink 2pn2p/22d2u/2, all n, nÞ0,11 12
e
AP

ith
e

gy
-
d-
to
maximal valuek05m. Increasingk0 would turn v2 nega-
tive, but the Hamiltonian~8! is self-adjoint with a Hermitian
inner product.

B. Mode sums

1. Real boundary conditions

Evaluating ~15! with an equal number of modes in th
trivial and in the kink sector, one thus obtains for P and
boundary conditions@4,19,28#

M f
(1)~P!5

\

2 (
n52N

N

v1)2
\

2 (
n51

N

v3a)

2
\

2 (
n52

N

v3b)202
\vB

2
1DM f

52
\vB

2
1\m1\E

0

L dk

2p
v8S d1

u

2D1DM f

~27!

and

M f
(1)~AP!5\ (

n50

N

v2)2
\

2 (
n51

N

v4a)2
\

2 (
n51

N

v4b)20

2
\vB

2
1DM f

5M f
(1)~P!, ~28!
08501
where the sums for the trivial sectors are written first, w
v i )5Aki )

2 1m2 according to Table I; explicit zeros indicat
the presence of~near-!zero modes. This leads to

M f
(1)~P!5M f

(1)~AP!5M f
(1)1

\m

4
, ~29!

implying that there is a finite amount of boundary ener
equivalent to the contribution of one-half of that of a low
lying continuum mode. Since P and AP are invisible boun
ary conditions in the trivial sector, this must be attributed
the kink sector.

For fixed TP and TAP boundary conditions, we find~cor-
recting Ref.@4#!

M f
(1)~TP!5

\

2 (
n51

N

v5a)1
\

2 (
n50

N

v5b)2
\

2 (
n51

N

v7)

2
\

2 (
n522

2(N11)

v7)2
\vB

2
1DM f

52
\vB

2
1

\m

2
1\E

0

L dk

2p
v8S d1

u

2D1DM f

5M f
(1)2

\m

4
~30!

and
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M f
(1)~TAP!5

\

2 (
n51

N

v6a)1
\

2 (
n50

N

v6b)2
\

2 (
n51

N

v8)

2
\

2 (
n522

2(N11)

v8)2
\vB

2
1DM f

52
\vB

2
1

\m

2
1\E

0

L dk

2p
v8S d1

u

2D1DM f

5M f
(1)~TP!. ~31!

TP/TAP are invisible boundary conditions in the kink se
tor, so that any boundary energy must now be attributed
the trivial sector. As one can see, it has equal magnitude
opposite sign than in the results for P/AP, in agreement w
the discussion in Ref.@4#. ~Twisting the fermions from P in
the trivial sector to TP in the kink sector, the localize
boundary energy does not change.! However, because
M f

(1)(TAP)5M f
(1)(TP), there is no delocalized boundary e

ergy in the sense of Ref.@4#. Taking the average of the re
sults of one of the untwisted and one of the twisted bound
conditions eliminates the localized boundary energy a
yields the correct result~17!.

In Ref. @3# it was found that mode number regularizatio
with the completely invisible ‘‘topological’’ boundary condi
tions of P in the trivial sector and TP in the kink sect
produces the correct finite part, but leaves an infinite~but
m-independent! term corresponding to the contribution o
one-half of that of a continuum mode withk5L. The latter
is removed by the derivative regularization method propo
in Ref. @3#. For mode regularization to give finite results it
crucial to have fixed boundary conditions. The localiz
boundary energies that this produces has then to be e
nated by averaging over one twisted and one untwis
boundary condition.

However, taking either TP or TAP for the twisted boun
ary condition, parityP is not a symmetry and thus the on
loop correction to the momentum in the kink sector need
be zero.

The momentum operator is diagonal asymptotically
away from the kink, and one obtains for TP

Pf
(1)~TP!5

\

2LS (
n51

N

1 (
n522

2(N11) D @2pn1p2d2u/2#

5
\

2E0

L dk

2p
@2d2u/2#1

\

2E2L

0 dk

2p
@2d2u/2#

51
\

4
L ~32!

and, for TAP,

Pf
(1)~TAP!5

\

2LS (
n51

N

1 (
n522

2(N11) D @2pn2d2u/2#
08501
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5
\

2E0

L dk

2p
@2d2u/2#

1
\

2E2L

0 dk

2p
@22p2d2u/2#

52
\

4
L. ~33!

Both results correspond to the contribution of one-half o
high-energy modeuku5L, but with opposite sign. So there i
an infinite amount of ‘‘delocalized momentum,’’ which can
cels only in the average over TP and TAP.

2. Imaginary boundary conditions

As discussed in Sec. II, the imaginary versions of t
above boundary conditions have the problem that each o
IAP, ITP, and ITAP separately breakC and make it impos-
sible to define Majorana quantum fields. In fact,CPT is
equally violated.

Nevertheless, it may make sense to consider these bo
ary conditions in an averaged sense. Summing over pos
frequencies only one has, for IP,

M f
(1)~ IP!5

\

2 (
n52N

N

v18)2
\

2 (
n51

N

v3a8)2
\

2 (
n52

N

v3b8)

202
\vB

2
1DM f

52
\vB

2
123

\m

2
1\E

0

L dk

2p
v8S d1

u

2D1DM f

5M f
(1)1

\m

4
, ~34!

and the same forM f
(1)(IAP) because(2N

N v18)5(2N
N v28)

and 38)548) according to Table I. The IP/IAP results for th
one-loop energies thus coincide with the corresponding
sults for P/AP.

Analogously, for ITP one obtains

M f
(1)~ ITP!501

\

2 (
n50

N

v5a8)1
\

2 (
n51

N

v5b8)

223
\

2 (
n51

N

v78)202
\vB

2
1DM f

52
\vB

2
1

\m

2
1\E

0

L dk

2p
v8S d1

u

2D
1DM f

5M f
(1)2

\m

4
~35!

and for ITAP
0-8
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M f
(1)~ ITAP!5

\

2 (
n51

N

v6a8)1
\

2 (
n51

N

v6b8)2
\m

2

223
\

2 (
n52

N

v88)2
\vB

2
1DM f

52
\vB

2
1

\m

2
1\E

0

L dk

2p
v8S d1

u

2D
1DM f

5M f
(1)~ ITP!. ~36!

AlthoughC is broken, the two results coincide, so there
still no delocalized boundary energy in the sense of Ref.@4#.

BecauseP is intact with either ITP or ITAP, there is als
no delocalized momentum as with real twisted bound
conditions. However, IP/IAP in the trivial sector now bre
P ~whereas the kink sector is symmetric underk→2k), and
one finds that there is delocalized momentum associated
the trivial sector,

Pf
(1)~ IP!5

\

2L (
n52N

N S 2pn2
p

2 D52
\

4
L ~37!

and

Pf
(1)~ IAP!5

\

2L (
n52N

N S 2pn1
p

2 D51
\

4
L, ~38!

which again corresponds to the contribution of one-half o
high-energy modeuku5L for IP and IAP separately, but with
opposite sign.

Thus, averaging over the results of the mode sums fo
four imaginary boundary conditions removes both localiz
boundary energies and delocalized momentum. In fact, o
in such an average one effectively removes also the obs
tion to the Majorana condition~andCPT ) that positive and
negative frequency modes have different spectra.

Curiously enough, the necessity to consider ITP and IT
together in order to have at least effectively no violation oC
and CPT means that the threshold modek50, which only
appears under ITAP boundary conditions, is on the aver
counted like half a mode. In Ref.@24#, in a different regular-
ization method, threshold modes had to be treated explic
as modes to be counted only half.

IV. DISCUSSION

We have considered the SUSY kink on a circle by int
ducing so-called invisible boundary conditions as propo
earlier in Refs.@3,4#. We then analyzed how the discre
symmetriesC, P, and T act on these boundary condition
We found that no single set of locally invisible bounda
conditions preserved all three discrete symmetries. The
boundary conditions TP and TAP preservedCPT, but break
both P andT. The imaginary variants ITP and ITAP, on th
other hand, respectP andT, but violateC and therefore even
08501
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CPT, so that these boundary conditions cannot be used
local quantum field theory, although this obstruction is effe
tively removed by averaging over IP and IAP, or ITP a
ITAP. The cancellation of local boundary energy in the mo
regularization scheme requires averaging over the results
tained with one twisted and one untwisted boundary con
tion, where these conditions have to be used both in
trivial and in the kink sector.

For compatibility with the Euler-Lagrange variation
principle, one should require that boundary terms due to p
tial integrations cancel. In our case these ‘‘boundary fi
equations’’ read

c1~2L/2!dc2~2L/2!1c2~2L/2!dc1~2L/2!

5c1~L/2!dc2~L/2!1c2~L/2!dc1~L/2!. ~39!

It is easy to see that the real boundary conditions P, AP,
and TAP all satisfy this requirement, but the imaginary v
sions IP, IAP, ITP, and ITAP each violate it.

This means that none of the imaginary boundary con
tions can be used in a Lagrangian formulation with Majora
fermions, although the Hamiltonian~8! with a Hermitian in-
ner product is still self-adjoint. The same conclusion w
reached by looking at the spectrum~derived from bulk field
equations and imposing the boundary conditions!. The prob-
lem with imaginary boundary conditions then turned out
be that for a given momentumk and positive frequencyv
there is no corresponding mode in the spectrum with2k and
2v, and no Majorana field can be built.

To avoid this problem, one would have to switch to com
plex fermions by giving up supersymmetry, as in the origin
Jackiw-Rebbi model@13#, or go toN52 SUSY models. Nei-
ther possibility has been explored in this paper.

We summarize our assertions about averaging over in
ible boundary conditions to restore all three discrete symm
tries. In the trivial sector, one may average over P and AP
IP and IAP, or both sets. However, because P and AP s
rately obey all symmetries, there is no need to average if
chooses one of these real periodic boundary conditions
the kink sector, one may average over TP and TAP or
and ITAP, or both sets. Any of these is an acceptable met
to restore the symmetries, but this time there is no sin
boundary condition which simultaneously satisfies all thr
so that averaging over at least one pair is necessary. Tha
is the main point of our work.

The idea that one must average over a set of bound
conditions to restore a symmetry is known in string theo
where the spinning string maintains modular invarian
~large general coordinate transformations! and unitarity and
supersymmetry only if one sums over all spin structures~the
requirement that fermions on a closed surface are periodi
antiperiodic in spacelike or timelike directions! @29#.

We close with some speculative remarks. The fact that
locally invisibleboundary condition for the fermionic quan
tum fluctuations satisfies all three symmetriesC, P, and T
simultaneously, whereas the classical action isC, P, andT
invariant, suggests that we are dealing with a discr
anomaly. The origin of this effect is the global structu
0-9
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~analogous to a Mo¨bius strip in our case@3#!, whereas the
usual chiral anomaly is a local effect. Clearly, one should
confuse this with the anomalies due to instantons, where
effective action contains terms of the formc41c̄4; these
preserve parity but break chiral invariance.

Whether or not the striking loss of simultaneousC, P, and
T invariance should be called an anomaly in the sense of
chiral anomaly, it certainly satisfies the definition of a
ki

R

n

J

i-
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y

n

08501
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anomaly as a ‘‘clash of quantum consistency condition
@30#.
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