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Lieénard-Wiechert potentials of a non-Abelian Yang-Mills charge
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Given the path of a point particle, one can relate its acceleration and, in general, its kinematics to the
curvature scalars of its trajectory. Using this, a general ansatz is made for the Yang-Mills connection corre-
sponding to a non-Abelian point source. The Yang-Mills field equations are then solved outside the position of
the point source under physically reasonable constraints such as finite total energy flux and finite total color
charge. The solutions contain the Trautman solution; moreover two of them are exact whereas one of them is
found using a series expansion irRlAwhereR is the retarded distance. These solutions are new and, in their
most general form, are not gauge equivalent to the original Trautman solution.
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[. INTRODUCTION further constrains the form of the ansatz studied. In Sec. 1V,
we give the general form of the source free YM field equa-
In classical Maxwell electrodynamics, it is well known tions. We also examine in detail the existence of special tra-
that accelerated charges emit electromagnetic radiation. Ugectories for which YM field equations are satisfied. We then
ing Liénard-WiechertLW) potentials, one is able to calcu- give the series expansion of these equations in powers of
late the field strength for a point charfmr a system of point  1/R. In Sec. V, the total color charge is defined and its form
chargey and relate the radiation from the accelerated chargés derived for the R expansion of the YM connection ansatz
to its motion and the geometry of its trajectdry,2]. One  under study. In Sec. VI, we present two new exact solutions
may, of course, ask the same question in the case of no@s well as one approximate solution that is obtained by solv-
Abelian Yang-Mills(YM) theory, i.e., the existence of a LW ing the 1R expanded field equations under the finite total
potential such that the emitted radiation and the trajectory o€olor charge constraint. In Sec. VII, we examine whether the
the charge are interrelated. An analysis of this problem wasolutions presented are gauge equivalent to the Trautman so-
done long ag3] and it was found that the color of a single lution [3]. In two Appendixes, we give the explicit form of
point particle remains constant although there is a transfer gfome complicated equations that are needed in the text.
energy, provided that the gauge group is compact and semi-
simple. Later it was also shown that the total gauge-invariant Il. THE GEOMETRY OF A CURVE
color of an external line source in YM theory could change
as a result of color radiation, depending on the YM waves Let z“(7) define a smooth curv€ in a flat spacetime
considered4]. with Minkowski metric 77,,,, [6]. One can, in general, define
Here we want to examine whether one can generalize th&o times using an arbitrary point* outside the curve. Now
LW potential of[3] in the light of the recent results we found let 7 denotethe retarded timen the usual sense—that one
relating the generalized acceleration scalargg) of a point ~ obtains by looking at the roots of (x*—z*(7)][x,
particle to the curvature scalars of its trajectP®y. To this  —Zz,(7)]=0—and define the null vector
effect, we make a new ansatz for the YM vector potential and
find new solutions to the source-free YM field equations. gr X,—27,(7)
Two of the solutions we present are exact solutions whereas N, =—=t— (1)
one of them is found using a series expansion R, lthe d R
reciprocal of the retarded distan& The solutions are ob- .
tained by using physically acceptable constraints such as d#here R=z*(7)[x,—2z,(7)] gives the retarded distance
manding that the total energy fluXy,, and the total color Here and from now on a dot over a letter denotes differen-
charge Q are finite at largeR values. We also examine tiation with respect to the retarded time Differentiating\ ,
whether the solutions presented are gauge equivalent to t@dR, one finds that
Trautman solution and show that they are not in their full
generality. 1
In S.ec. II, we give a brief review of some basic elements Npo= ﬁ[nw_z#)\v_zy)\#_(Ra_ NN (D
regarding the geometry of a trajectory curve. A new ansatz
for the YM connection is presented in Sec. lll. The total
energy flux of the YM field is defined and its behavior at :
large distances is examined. Demanding the flux to be finite Ru=(Ra—e)r,+2z, &)

where the accelerationof the particle isa=(1/R) z* [X,
*Electronic address: sarioglu@metu.edu.tr -z,(7)]andz*z,=€=0,£1. (We choose= —1 for time-
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like curves ande=0 for null curves) Moreover, one also Fu=0,A,—d,A,+[AL A (8
finds that\*z,=1\*R ,=1 and\*a ,=0. _
In fact, one notices that one can def{7@ one finds that
gkze FMV:MXV—MX#JFH,uiv_H,viﬂ
ac=\,—, k=12,...p-1
dr .
where for convenience we have defingd=Hz,—G,
which satisfy —[H,G]z,.
Using the orthogonality of the velocity vector fieitg and
Aay =0, 4 the vectom,,, one finds that

for all k. Hereag=a and D denotes the dimension of the _ )

spacetime(From now on we will takeD=4.) The scalars z, T n,=(F,,z") (F,*n"),

a,, which are generalizations of the acceleratmmf the

point particle, are related to the curvature scalars of the), substituting forF ,, in this expression, that

smooth curveC [5,8]. mr

By using the curveC and its kinematics, one can con- .

struct more general solutions to the classical source free YM Rz, T*'n,=—ee R* Tr (Y*J,)

field equations than the one found by Trautnjdh
where

Il. THE TOTAL ENERGY FLUX

_ , _ o Y,=Hz,+27,(H ,z*~[H,G])+\,(G 2"+ H,G
Making use of the curve kinematics that has been briefly Zat 2o (Hu2 1 DHR(G 2t el D
discussed in Sec. ll, we now make the following ansatz for -G,—€H,

the LW potential
and

A,=Hz,+G\,,, (5) o ,
J,.=Hz,+z,(H ,z*—[H,G]—€H’)

whereH and G are differentiable functions oR and some _
Rindependent functiong;(i=1,2, ...) such that\“c; , TN [G 2" +e(@aH-G")]-G,.
=0 for alli [9]. It is clear that due to the propert¥) of a,
all of these functionsq;) are functions of the scalassand  Here and from now on a prime over a letter denotes partial
ax(k=1,2,3) and the retarded time For the original Traut-  djfferentiation with respect t@.
man solution,G=0 andH=g/R whereq=q(7) only [3]. Notice that whenG=G[R,c;(7,a,a,)](k=1,2,3) in its
We are motivated to choose the more general ansatz aboyg|| generality,
Eqg. (5) by our recent results concerning tBedimensional
Einstein Maxwell theory with a null perfect fluid in the Kerr-
Schild geometry5].

In close analogy to how it is defined in the Maxwell case
[1], the total energy fluxf the YM field is given by[10]

G.=G'R,+GCi,

= G’R,a—’_ G,Ci(ci)\,a+ Ci,aa,a+ Ci,akak,a)

Nym= —f z, T#'n,RdQ. (6)  and similarly forH=H[R,c¢(7,a,a,)](k=1,2,3). The de-
s rivative of the acceleration is
HereT,,=F o F,“— 27,,F.zF* is the YM energy mo-
mentum tensofwith again the trace over the internal group 1. a. , @
indices suppressed on the YM field strength The vector A o= RLTRLT| Mm@ T en N, ©

n, is orthogonal to the velocity vector fiek;t and is defined

through and similarly one can also calculate the derivativegofor

k=1,2,3. As an example, the derivative af is given in
. 1 u " Appendix A, Eq.(Al). It is easy to see that putting the de-
M€z, Fegn,; nin,=—eR% ™ rivatives ofa,, one ends up with higher orderderivatives
of z, and more complicated expressions fer, (and like-
(Heree;=*+1.) One can consideB in the rest frame of the wise forH ,) and henceNy),. So to keep the angular inte-
point particle as a sphei® of very large radiuRR. d(), of  grations that appear in the expressionNsfy, and also the
course, denotes the solid angle. calculations that one encounters in the solution of the YM
Substituting forA,, [Eq. (5)] in the YM field strengtl{11]  field equations simple, from now on we assume that the
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functions ¢;, whose properties were described above, ardghe limit R—« in the expressiof6) for Ny, . So one is now
just functions ofr anda. Hence one ha&=G[R,ci(,a)] left with
and similarly H=H[R,c;(r,a)] from now on. With these

assumptions, substituting the derivativeaodnd the deriva- B v 3
tive of the retarded distand® (3) in the relevant expressions H=g+ 2 +O(R™) (10
above, one finds that, andJ, can, respectively, be put in
the form and
Y, =2,Y2+2,Y1+ N, Yo w 6 i
GEO_+§+E+O(R ), (12

Ja=2,d2+2,d1+ N oJo,
where the five remaining coefficien y,o,» and § (func-
with six coefficientsY;,J,,Y1,J;1,Y0,Jo to be determined. tions of r and a) are to be determined by the YM field
Notice that this YIe|dS equations_
Carrying out the calculations of the remaining coefficients

Tr(Y®3,) =22, Tr (Y2d5) +aTr(Yado+ Yodo) + € Tr(Y1dy)  Y1.J1,Yo @andJo in the same manner 0(R™°) and using
these, one finds that
+Tr(Y1do+ YoJy)

1
using the properties of the velocity vector fiedg andx , . Tr(Yadp)= ETr (B—0a)?+O(R™3),
Notice at this point that it is still very difficult to work out
the general form of the energy flux formuly, \, let alone to a2
find solutions of the YM field equations in this general set- __2. _ 2 -3
ting. However demanding thaty,, be finite at very large aTr(YZJO)_eRZTr('B 72"+ OR™,
values ofR, one can in general assume that a series expan-
sion of H and G can be made in powers of R/(with R aTr(Yody)=—Tr(Y,Jo)
#0, of coursg as

a .
=eTr{(B,o]+a(B—0a.)—pB
Heat 24+ L ioR3 R? )
R R?
—(a— az)ﬂ,a)x (B— O',a)}
and +O(R?),
w 9 Tr(Y,dy)=—Tr(Yedy)
G=o+—=+—+0(R™3). € 11 ov1
R R2?
€
Here o, 8,7 and o, »,d are the functions; that we have = QTT{[ﬁyU]ﬁLa(ﬂ—U,a)
described above and are just functions of the retarded time
and the acceleratioa. ; 2 2 -3
—B—(a,—a +0O(R™°),
With these assumptions then, one finds that A& )B.a} ( )
and hence
1 1 1 . -
Jo=H- G Cia=at p(B-0a)+ @('y_w,a) Rz, T#'n,=— €€ (2°2,+ €a®) Tr(f—0 2)*+ O(1R).
+O(R™3) So taking theR— limit, one finds
and NYM=f dQ e € (2°2,+€a®) Tr(B—0c ) (12
S
! for the energy flux
Yo=H- (G teH)Cia gy Tux.

Notice that the YM field equations have not been solved
yet and at this staghly) contains only the first terms that
1 1 . . . .
=at (B0 €a )t —(y—w,— €B,)+O(R™%, appearin the series expansiontblandG in powers of 1R
R R [Egs. (10), (11)]. So to observe any outgoing radiation at
large distances, one has to keep eitBerthe coefficient of
which in turn implies that TrY,J,)=Tr(a?)+O(1/R) and the 1R term inH, and/oro, the constant term i of the
one has to setr=0 to get a finite energy flux as one takes YM connection(5).
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We will come back to the discussion of the energy fluxc;=c;(7,a).] However in that cas®*F,, now takes the
Ny after we find solutions of the YM field equations using form
the YM connection5) with H andG given by Eqs(10) and
(13). D“F ,,=M,2,+Mz,+ Mo,

IV. THE SOURCE FREE YM EQUATIONS
where, for example,
The source free YM field equations simply read
1

H
D# F,U-V:a#Fp.V—i_ [A'“,FM,,]ZO. (13) MZZH’+ﬁ_ﬁ(G,’ci—’_[HaG,ci])Ci,a-

The field strength is given by E@8), of course. TakingA,,

as in Eq. (5 with H=H[R,(r,a)] and G One is then either forced to take the trajectory cutvas a
ZG[R,Ci(T,a)], Ca|cu|ating F,uv and using these in Eq. straight line or seM2= M]_: M0=0 for a nontrivial curve
(13), one finds that in the general caB¢F ,, can be putin C. However these three equatiomd,=M;=M,=0 are
the form again highly nonlinear and very complicated to work with.

For X#0, one has to put
D*F,,=XZ¥+YZz+Kz,+L\,=0 (14)
Z¥+pz,+qz,+r\,=0. (15)

wherez(®) denotesi®z, /d7°. The explicit form ofD#F ,, is
given in Appendix A. One immediately recognizes that it IS, vever making use of the Serret-Frenet frame in four di-
extremely difficult to find exact solutions ©*F ,,=0 [Eq. mensiong5], one finds that
(13)] in this general setting. Even though this is the case, in '
what follows we are going to try to consider every possible ,
case in detail, do what can be said and done and leave out oK — 2 and r—
only the most complicated equations which we found too pP=- K_l q=—«i andr=0
hard to solve.

and that Eq(15) is satisfied identically whefi) x;=0, i.e.,
A. A closer look at the trajectories a=0 which implies that the trajectory cun@ is a straight
Notice at this point that one can ask whetBetF,,=0is  line or (i) x,=0 but x;#0. The first case again gives a
satisfied identically without imposing any conditions bn ~ “trivial” solution, whereas the second case implies that one
and/orG in A, ; i.e., whether there are any special trajecto-has to both constrain the trajectory cureand find the
ries that a point particle can follow so that the YM equationscorrespondingd and G which satisfy
identically hold outside its position.

Contracting D#F ,, with \",z",7", etc. one finds that K1 5
D*F,, can in general be written as Y=— K—lX, K=—-«k1X andL=0.

D“F ,,=X(z¥+pz,+qz,+r\,)
- : i ' ' These equations are again very difficult to solve. So instead
where of working out these complicated conditions on the trajec-
tory curveC, we now concentrate on what one can do with
) o the YM equations themselves.
(2420 +a(ea; +242,)],

|~

pE
B. /R expansion of source free YM equations

Since it is very hard to find exact solutions BR*“F,,
=0 [Eq. (14)] in its full generality, we look for approximate
solutions by using the series expansiorHo&indG in powers
) o of 1/R [Egs.(10), (11)]. Substituting these in the expressions
[eaz* ) (ea;+72,) 2°2,], for X,Y,K andL [see Eqs(A2), (A3), (A4) and (A5)], one
finds to orderR™2 that

1 . -
=-;lazzP+247, (a%-ay)],

| -

r=

AE—(632+2’U'“ZM)¢O. 1 1 (3) - :

DMFﬂyzﬁ)\y(Lo) + E(Xl Zv +Y1 Zv+ Kl Zl/+ Ll )\V)
Now settingX=0 would imply thatHyciciyazo. Since

H,Ci:o necessarily excludes the curve kinematics that we +O(R™?),

want to introduce into the picture, this leaves one vath
=0 orc;=c;(7). [Notice thatG still may depend omr; with  where
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Lo=a{B+(a;—a%)Ba—[B,0]}+2[ B+ (a;—a%) B4, 0]+ [B,0+(a1—8%) 0 o] +[0,[ B,0]]- Ba(@p—3a;a+22%) —2 (2
—a%) Ba—(a1=a%)? B aa— B, (16)

Li=2aw—w0—(a;-a8%) 0 ,+2€a0 ,+ (€a?+22,) 0 45+ (21— 38%) y— € B—€aB ,— e(2a;— 3a%+ € 2°2,) B .— e a(ay
—a%) B aa— (21787 70— 2(a1 - %) y .~ y+3ay—(a,~6a;a+5a%) v, + €[ B,0]—3a[ y,0]—2a[ B,0] +2[ B
+(a;=a%)Ba,0]+2[y+(a1-8%) v, 0]+ [y,0+(a1—a%) 0 ] +[B,0+(a1-8%) w o]+ €[B,[ B,0]]- [0, 0]
+[o[B, 0]+ [w,[B.0]1+ [0 [y,0]]- €[ B.B+(a1~8%) B ]~ €ealo.B ]~ €al B,0 4], (17)

Ky=B+(2a,—3a%) B s+ a(B .+ (a1—a%) B )+, B1+[ 8,81+ (a1—a%) [B,B..l—[B.[B.cll+a([a,B..+[B,7 a]),
(18)

—_ _ R (A a2 they give is that neither Eq22) nor Eq.(23) can be written
[0:Bal=[B.0a]=Ba (81787 Baat 28B4, 19)  inagauge independent manner as a sum of the gauge invari-
ant color of the external source and that of the YM field.
=—f,. (20) Here we are not going to take part in this discussion.
Whether it can be written in a gauge independent manner or
Before dwelling on the solutions of the equations abovenot, for Eq.(23) to make sense as the definition of some
we now make a digression and briefly review the definitioncharge, Eq(22) must, first of all, be finite when the integra-
of a gauge-invariant total color charge. Demanding the totation is carried on the full space. This is especially essential
color charge to be finite at largR values constrains the for us in this work, since the only source here is a point
system of differential equations to be solved considerablysource moving along a trajectory. However some attention is
and one is, at least, able to talk about the behavior of solualso needed here: One has to do the integration on such a
tions. surface that it respects the motion of the point source.
Notice that similar considerations I¢d] to the expression
V. TOTAL COLOR CHARGE Q for the total energy fluNy,, in Eqg. (6). So in complete

) ) analogy, one can define the total color as
In the presence of sources, the YM field equations are

DAF,, =" F,,+[A%F,,]1=J,. 21) |- LdQ R2(3,~[A%.F,.])2", (24)

Even thoughD#J, =0, using this, one cannot define a con-
served or a gauge-invariant charge in the usual sense. HoW! Simply as
ever, one can make use of the fact that

— 2 v
PO = 3 (3= [ARE 1) =0 I—JSdQR (4 F ) 2, (25

and define the total color as so that the motion of the point source is taken into account.

The surfaceS can again be thought of as a sph&feof very

|:f d3x (Jo—[A,Fio]). (22) large radiusR in the rest frame of the point source. One can
again use Eq(23) as the definition of the total color charge

then.
According to[4], considering gauge transformations that are So we need to examing* F ,, for the A, ansatz(5) that

independent of space-time coordinates at large distances; i.e. Sk have. Similar to what we d|d fDF,, subsututmgH

e o corneclr, Lt g0 o e e and i powers of IR [E5s.10, (1] e spression for
ger, gaug F,.. (see Appendix B one finds to ordeR™? that

gauge invariantotal color chargecan be defined d4.2] (see
the discussions if13] and[4] as wel)

1 1 .
KE == +—= ®rc,z,+ +
— TI’IZ. (23) d F,uv R)\V(SO) RZ(B]‘ZV Clzv Plzv Sl)\v)

However it is also claimed if4,14] that the total colofEqg. +0O(R™3),
(22)] is not well suited for determining the color exchange
between an external source and the YM waves. The reasomhere
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So=a{B+(a,—a>)B.—[B,ol}+[B+(a1—a%) B s, 0]+ [B,0+(a;—a?) o 41— B.a(a,— 3a;a+2a%) —2(a;—a%) B o~ (a;

- a2)2 ,B,aa_ Ba

(26)

Si=2a0—w—(a;-a%) 0 4+ 2€a0 .+ (€a%+292,) 0 40+ (8, 38%) y— € B—€afB ,— e(2a;—3a%+ €2°2,) B .—€a(a,

- az)IB,aa_ (al_ a2)2 Y,aa— 2(3-1_ aZ) :)’,a_ 5’+ 33—:)’_ (a2_

+[B+(a1—8%) B w]+[y+(a;—a%) ya, 0]+ [ B0t (a

Pi=p+(2a,-3a%) B 4+ a(B,a+<a1—a2>ﬁ,aa)+[a,ﬁ](,2 9

Ci=—Ba—(a—a>)Baat2aB, (29)

Bi=—Ba- (30

SinceAViV=1, one is forced to s€3,=0 so thatl in Eq.
(25 and henceQ become finite for very largdR. Hence
taking theR— o limit, the total color charge) is defined
throughl in Eq. (25) which turns out to be

| = f dQ (-B;z%z,+eP;+S))
S

for the special form of thé\, ansatz(5) that we are using.

VI. SOLUTIONS

In this section we look for solutions to the source free YM
equations. We first start with the original Trautman solution
to remind the reader about its properties and also to ch
the calculations that have been done so far. We then give t
new exact solutions and finally present the “approximate”
one which is obtained by using a series expansion i 1/

A. Trautman solution
In the case whelG=0, i.e.,c=w=45=vy=0 and when

A, is of the form

(31)

one should of course find the original Trautman solution
which is the first example of a non-Abelian LW potential.

Indeed, one finds in this case that the YM field equations

D#F,,=0 are satisfiecexactly provided (i) 8= (1), (ii)
B—ap=0, and(iii) B+[B,8]=0, as found by Trautman
[3]. In this case sincer=0, the total energy flux formula

6aja+5a’) y ,—2al y,0]—2a[ B, 0]

(27)

1—8%) @]+ [y,0+(a1-a%) o 4,

=p,B;=C;,=0 and henced"F ,,) z'=0 identically in this
case. So the total color char@=0 and automatically con-
served as expected frof].

B. B=v=0, 6=0

For the special choice g8=vy=0 and =0, i.e., when
A, is of the form

A =

“ N

(32

m

+(1)
TR

one finds that the YM field equatioi®“F ,,=0 are satisfied
exactlyprovided thato and w satisfy

(33

w=w(1),

0a[ 0 (292, + €8®) +a% w]— w—[0,0]=0. (34)
Notice that in this case the total energy flNx,, expression
(12) has only B—o ,=—0 4 in it, which is considerably
different than the Trautman solution in character. The depen-

ec

etermine the form oy, . Moreover, in this case one finds
that B;=C,=P;=0 as well asS;=0, of course, butS;
=[o,w]. Hencel now becomed = [sdQ [o,w]. Q=0 if
[o,0]=0, of course.

A trivial solution to Eq.(34) is given by o ,,=0,e0 ,
+w=0 and w+[o,0]=0. Then o=ak(7)+1(7),w=
—ek(7) and the arbitrary functionk(7) and|(7) satisfyk
+[1,k]=0. [If one choosek=—q and|=—q, theno=
—aq(r)—Q(T) and w = eq, and this yields the same condi-
tion that one obtains in the case of the Trautman solution.
One, of course, expects that this trivial solution is gauge
equivalent to Trautman'’s original solutigriNotice also that
thenl=[sdQ(—e[l,k])=/sdQ ek and B— 0 ;= — 0 .=
k(7) in Nyy [Eq. (12)].

W%‘ence ofo- on the acceleratioa of the trajectory turns out to

C. y=0, 6=0

For the special choice of=0 andé=0, i.e., whemA , is

Ny is just a simple generalization of the corresponding exuf the form

pression for the ordinary Abelian Maxwell theory that is ob-
tained by replacing the square of the electric charge I8 Tr

[1,3,5. Moreover, one also finds th&=0,S;=— € 3,P;

(39
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one finds again that the YM field equatiobg‘F ,,=0 are
satisfiedexactlyprovided that3, o and w satisfy

B=B(1), (36)

B—[B,0]=0, (37)
w+9(7)—[B,w]=0, (38
[8.9]=0, (39

g+ dao o(2°2,+ €a®) —a’g]+[0,g]=0,  (40)
Il © a(2°2,+ €% ]+ € (0+9) +[w,g]=0.  (41)

Hereg=g(r) is an arbitrary function of- that is obtained in

PHYSICAL REVIEW D 66, 085005 (2002

B=B(7), (42
y=y(7), (43
B—[B,0]=0, (44)
ay—w=—9(7)+[B,0]+[y,0]=0, (45)
a0 4(22,+ €a®) —a%(g— )]
+d,(g—y)+[0,9—¥]=0. (46)

Here'g=g(7) is an arbitrary function ofr that appears in
one of the integrations in the midsteps of the calculation. In
this case one finds thdt=[sdQ (—[o,g—y]—€B) and
hence for the general cage# 0 and, in fact, may be chosen

one of the integrations in the midsteps of the calculation. Fofo depend onr. However notice that when one chooses the

this case one finds thaty ,, maintains its most general form
and thatB,=C,=P;=0, as well asS,=0, of course, and

S,=—¢€B—[o,9] which gives|=[gdQ (—eB—[0.g]).

Again Q#0 for the general case and can be chosen to de-

pend onr.
A trivial solution to Eqs.(40) and(41) is given by choos-

ing
0 4a=0, €0,—0=0, g+[a,g]=O, w,=0,
e(w+g)+[w,g]=0.

All of the conditions(36)—(41) are satisfied identically pro-
vided

g(1)=€B,0=aB+0y(7),0=w(7),B+[0y,8]=0

and[B,w]=w+ € B. [Here oy(7) is an arbitrary function
and if one chooses,=— B and 8=, this yields the same
condition that one finds fag in the Trautman solutiohNo-
tice also that themB—o ,=0 in Ny [Eq. (12)] and1=0,
and henceQ=0.

D. General case

In this case we také , to be of the form(5) with H and
G given by Egs.(10) and (11), respectively. We look for
solutions of the YM field equations to ord& 3 by setting
Lo=L;=K;=Y;=X;=0 [Egs. (16—-20]. However due to
the discussion at the end of Sec. V, we also need t&get
=0 [Eq. (26)] for a finite total color charge. Hence we now

have to solve these six equations simultaneously for the five

unknown coefficient®, y,o,» and s (which are, remember,
only functions ofr anda).

In this case, one finds thay=L,;=K;=Y;=X;=0 and
Sy=0 are satisfied provided that

integration functiong(7) as g(7)=e€B+v, Eq. (46) be-
comes

O'Ya(iaia-l— ea’)—epa’=n(r)

wheren(r) is a new arbitrary function of, andl=0 and
hence Q=0. One can further choose ,=p, i.e., ¢
=ap(7)+oo(7), and the arbitrary functiom(7) suitably
such that this is also identically satisfied. So now EH)
implies B—[B,0,]=0 and a trivial solution to Eq(45) is
provided by demanding thati) y+[y,8]=0 and (ii)

[B.w]+[y,00]—w—g=0.

VIl. GAUGE EQUIVALENCE

One natural question to ask at this stage is, of course,
whether the solutions that have been found so far are gauge
equivalent to the Trautman soluti¢8], also derived in Sec.

VI A. To answer this question, one has to examine whether
there exist any gauge potentiabs (we again suppress inter-
nal group indices o) which locally satisfy

q

Trautman_ A newsol newsol —
AT AL G, D+ [ASSOL D)= o

(47)

Z,.

(Here we take the original form of the Trautman solution,
i.e., one hag in place ofg.)

Notice that substituting the general form of our ansatz
A#=.Hzﬂ+ G, [Eq. (5] and solving ford,®, one finds
that in generab, @ is of the form
9, P=Xz,+YN\,. (48)

Demanding thatb has continuous second order derivatives
and thatg,,d,=4,d,P, one finds
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X ,2,— X ,2,+X(Z,A,—Z,\ )+ Y N, —Y \,=0.
(49

Contracting this with\# andz*, one obtains two equations

which then can be solved fof , andY , to yield

X,Vziu()\“x,ﬂ)H\V(VY,M_aX)* (50
Y ,=2,X+2,(2"X ,— e\"X ,)
+N(Z'Y ,— eNFY , — eaX). (51)

Substituting these into Eq49), one finally finds that

(NRY ,—aX—2z"X ,+ ex*X ) (Z,\,—Z,\,)=0.

For a nontrivial gauge potentidb, one has to demand that

NY ,—aX—2"X ,+€eN"X ,=0 (52)

for the coefficientsX andY in Eq. (48).

So now we look for the existence of such gauge potentials
for each of the solutions presented in Sec. VI in order of their

appearance.

A. B=y=0, 6=0
For thisexactsolution,X andY in Eq. (48) turns out to be

o+

w
o+ —=|—

q
X=15, Y=—|o+ 5

LD
ﬁ’

and remember thaj=q(7),0=0(7,a) and w=w(7), and

these satisfy Eq.34) in this case. So imposing E(62), one
gets

1 . 1
g(—a-[o.aD+ Q(w—qur[w,fD]—[w,QJ):O-

Since the coefficientq,o and w areR independent, one has

to set

q+[o,q]=0, (53

w—€eq+[w,P]-[w,q]=0. (54)
Atrivial solution is provided byr=—aq—q,w=€q (see

the end of Sec. VI Band® =kq, wherek is an arbitrary real

number. In that case Eq&33) and (34) are also identically

satisfied sincey, now being part of the Trautman solution,

obeys gq+[q,q]=0. In this case A}*"*°~(-q-aq

PHYSICAL REVIEW D 66, 085005 (2002

However in the general case whenr= o(r,a), it is not
easy to find a simultaneous solution to E(&3), (34), (53
and (54), and hence this class of exact solutions is not nec-
essarily gauge equivalent to the Trautman solution.

B. y=0,6=0

For thisexactsolution, following similar steps as in Sec.
VII A, one finds that

B

_9-8 _|B
B R

15)
= o+ =,

X R

w
,(I)}, Y:—(O"Fﬁ

and for this case remember thgt=B(7),0=0(r,a) and
w=w(7,a), and these satisfy Eq$36—41. Imposing Eq.
(52), one finds that

1. . .
riB—a-[o.al+[o[B,P]I+[B,P]-[B[0,P]]}

1
+ Q{w—6(q—ﬂ)—[w,QJ+[w+6,3.<D]

+[w,[B,CI>]]—[,8,[w,@]]}=O.

Since the coefficient®,o,w andq are R independent, one
has to set

B—q—[o,ql+[o.,[B8,2]]+[B.®]-[B.[0,P]]=0,
(55)

w—e(q—ﬁ)—[w,q]+[w+Eﬁ,q)]-i—[w,[ﬁ,(l)]]

—[B.[w,@]]=0. (56)
If one considers the trivial solution described at the end of
Sec. VI C withq= 3, uses B, w]=w+ € B in Eq. (56) and
the Jacobi identity, one gets—[ w,8]=0 which yieldsw
= — € B/2. Then using the Jacobi identity in E&5) implies

[B,01+[B.®]+[[0,8],9]=0

and usingB+[oy,B]=0 gives[B,0]=[B,04]=0 or oy
=cpB(7) for c an arbitrary real constant, independent of the
choice of the gauge potentidi. However, this in turn im-

plies that 3=0 or B=constant, the Trautman solution.
Hence, once again this trivial solution is gauge equivalent to
the Trautman solution.

Notice that in the general case whet+ o(7,a) and w
=w(7,a), it is not easy to find a simultaneous solution to
both the conditiong36-4J, coming from theD*F ,,=0
equations, and the gauge conditidb$), (56) above. Hence

+€q/R)\, and this is gauge equivalent to the Trautman so+his class of exact solutions is not necessarily gauge equiva-

lution.

lent to the Trautman solution.
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C. General case

PHYSICAL REVIEW D 66, 085005 (2002

VIIl. CONCLUSIONS

Remember that the solutions in this class were found by e have found new solutions to the source free YM field

solving theD#F,,=0 YM equations to ordeR™ 3 and by
simultaneously setting the term of ordRr ! in *F ., e,
Sy [EQ. (26)], to zero. Hence these solutions afproximate

equations which generalize the LW potential of Trautman.
Two of the solutions are exact whereas one of them is ap-
proximate and obtained through &Rlgeries expansion in the

in character and for that reason we now examine the questiopM field equations. For each solution the total energy flux
of whether these are “approximately” gauge equivalent toN,,,, and the total color charg® have been constrained to
the Trautman solution. So we assume that the gauge potentigé finite. It has also been shown that the solutions are not
® locally has a well defined series expansion in powers ofjauge equivalent to the Trautman solution in their most gen-

1/R as R#0)
b= ! ! O(R3
Y+ 5o+t —{+O(R™)

where the coefficients, ¢ and are, of courseR indepen-
dent now and we assume them to be only functions ahd
a. With these in mind, one can writé andY in Eqg. (48) to
orderR™2 as

1 1
X=g@=B=[B4¥D+ E(_y_[ﬂ’ﬂ_[% 1)

+O(R™3),

1
Y=—0—[0,¢]+ ﬁ(—w—[m@]—[w,l//])

1
+ E(_5_[0-1§]_[w1¢]_[51¢])+O(R73)-

eral form.

In [15], Trautman’s original solution was shown to exist
in the setting of Robinson-Trautman metrics in General Rela-
tivity. After the seminal work of16], there has also been an
ongoing interest in the particle like solutions of Einstein-YM
theory. It would be interesting to study Einstein-YM theory
in the Kerr-Schild geometry using the general ansatz for the
YM connection(5) presented here.

Note added in proof. After the completion of this paper,
B.P. Kosyakov informed us of his work where he considers
exact solutions of the Yang-Mills-Wong theory in even di-
mensions and where he uses a somewhat similar ansatz to
our Eq. (5). However, his motivation and results are quite
different from ourg17].
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APPENDIX A: THE EXPLICIT FORM OF DYF,,

In this appendix, we show explicitly how one obtains the
YM field equations starting with the general ansatz for the
YM connectionA , as

Remember that at this stage all the coefficients above are

only functions ofr anda. So imposing Eq(52) and carefully

collecting the coefficients of the powers oRlto orderR™ 3,
one gets

ZM&ﬂ(q_ﬁ_[ﬁalﬁ])ZO,

w+loel+[o,yl-aly+[B,el+ [y, ¢]) +2"d,(y
+[B.el+Lv,¥])—e(q—B—[B,¢])=0.

A,=H[R,ci(7,2)]z,+G[R,ci(7,a)]\,,.

R, [Eq. (3], a , [Eq.(9)] and the derivative o0&,

1 a.
a,==z¥-—z,+

1. . a,
RZu Rk a2+§(z Z,)—ajate—= (A

R I
(A1)

are expressions that are needed in the calculati@®véf,, .

One now has to solve these two conditions simultaneously After lengthy calculations one obtains that
with Eqgs. (42), (43), (44), (45) and (46) for gauge equiva-
lence of this class of solutions to the Trautman solution. Ob-
viously, this is not an easy task if one is to stay in the most
general case and we conjecture that the class of “approxi-
mate” solutions we found are not “approximately” gauge
equivalent to the Trautman solution.
Hence when one considers the solutions presented in Sec.

VI in their full generality, one can assert that they are not X= EH

; ; - ¢;Ci,as
gauge equivalent to the Trautman solution. R &

— 3 . Z
D“F,,=XZ¥+YZ+Kz,+L\,
where
(A2)
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H 1 o
Y=H'+ 5~ ={RaH +H{c 2/ +aH ¢ + e[ HH o 1+[G,H ¢ 1+ G/ +[H,G ¢ licia

1 :
- ﬁH,ci[Ci,a+ci,aa(al_az)_zaci,a]r (A3)
€ a 2 . !
K=(Ra—¢e)H"+ 3a—2§ H'+ ﬁH—G”— §6’+chi ci,Mz”JrH:z: Ci uCi" +H ¢ Cif, +[G,H']

+2[G' ,H]+ %[G,H]-ﬁ-(Ra— e)[H,H’]-i—[H,H,Ci Ci'M.z“]—[H,[H,G]]

1 . a _ .
+ 2H c{a1Ci,a T alCiat Ciaa(@r - a%)—2ac ]} + si{RaH + Hf:: Cin2*+aHc +e[H,H ]

+[GH1+G +[H,G ¢ 1}Ci a, (A4)
= 4 ' S Ci oM o 2 1 ’
L=RaG +ZG'Cicwz +G,ciCi,,LCi +G,cici,,u_§G,ciCi,,uz —a;(H+RH")

+a(Ra—e¢) R

H . .
——RH"—H’) —(Ra—€)H/,C; ,2*+(2Ra-€)[H",G]+[H ¢ ,2*,G] + (Ra+ €)[H,G']

+2[H,G ¢ ,2*]+a[H,G]+ €[H,[H,G]]+[G,G']+[G,[H,G]]- e(Ra—e)[H,H'] - {RaH

2 a
al_a +e—

+ sz:ci’M'z“nL aH ¢+ e[H,H1+[G,H 1+ G +[H,G .1} =

éi+ci,a

1. . a; . .
a,+ ﬁ(z“za)—alavLeE + [CiatCiaa(ai—a%) —2ac 4]+Ci+Cia(a;—a);.

, a
—Hc\Cia a-a‘tepn

(A5)

APPENDIX B: THE EXPLICIT FORM OF é"F,

In this appendix we give the explicit form ofF

«v that is needed in the definition of a total color charge. Following steps
similar to those of Appendix A, one finds that

IF,,=BZ¥+Cz,+Pz,+9S\,

where
1
B=—=H o Cia, (BD)
, H 1 , o . , 1 . )
C=H +ﬁ—ﬁ{RaH’Ci'FH:C:Ci’MZ'U"FaH’Ci‘FG’Ci}Ci'a_ﬁH'Ci[Ci'a‘FCi’aa(al_a )_Zaci’a], (BZ)
P=(Ra—e)H"+|3a— 25 |H'+ SH-G"— 26" +H, ¢ , 24+ H¢, 6"+ H ocih +[GH'+[G'H]+2[G.H
=(Ra—¢) a-2g R R ¢, CiuZ ', Ci.uCi Gl TIGH ]+ [G" H] ﬁ[ H]
a ! ,Cj i ' 1 ) 2
+ ﬁ{RachinLchi G,z + aH,ci+G'ci} Ciat ﬁH,Ci{alci,aJr a[Cj o1 Cj aa(a;—a%) —2ac; 41}, (B3)
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. _ 2 .
S=RaG'+ Zchici_Mz“+ G:E:ciyﬂc;”+ G cifu— ﬁG,cici,#z“—al(H +RH’)+a(Ra—e¢)

N RH -
R _
—(Ra— E)H,’ci Ci”u'z,u_l_ Ra[H’,G]+Ra[H,G’]+[HYCi Ci,M-ZM'G]+[H'G*Ci Ci,ﬂ'zﬂ]_{Rachi+H:§: Ci,#i”+aH,ci+chi}

X +

1. . a , . aj . ) .
a,+ =(zz,)—a;a+ ‘R a;—a +e§ [CiatCiaal@;—a%)—2ac 4]+c¢;

R

,, @
a-a‘teg||~Hc)Cia

R

Ci+Cia

+Cr.a(@1— a2>] . (B9
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