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Liénard-Wiechert potentials of a non-Abelian Yang-Mills charge
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Given the path of a point particle, one can relate its acceleration and, in general, its kinematics to the
curvature scalars of its trajectory. Using this, a general ansatz is made for the Yang-Mills connection corre-
sponding to a non-Abelian point source. The Yang-Mills field equations are then solved outside the position of
the point source under physically reasonable constraints such as finite total energy flux and finite total color
charge. The solutions contain the Trautman solution; moreover two of them are exact whereas one of them is
found using a series expansion in 1/R, whereR is the retarded distance. These solutions are new and, in their
most general form, are not gauge equivalent to the original Trautman solution.
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I. INTRODUCTION

In classical Maxwell electrodynamics, it is well know
that accelerated charges emit electromagnetic radiation.
ing Liénard-Wiechert~LW! potentials, one is able to calcu
late the field strength for a point charge~or a system of point
charges! and relate the radiation from the accelerated cha
to its motion and the geometry of its trajectory@1,2#. One
may, of course, ask the same question in the case of
Abelian Yang-Mills~YM ! theory, i.e., the existence of a LW
potential such that the emitted radiation and the trajector
the charge are interrelated. An analysis of this problem w
done long ago@3# and it was found that the color of a sing
point particle remains constant although there is a transfe
energy, provided that the gauge group is compact and s
simple. Later it was also shown that the total gauge-invar
color of an external line source in YM theory could chan
as a result of color radiation, depending on the YM wav
considered@4#.

Here we want to examine whether one can generalize
LW potential of@3# in the light of the recent results we foun
relating the generalized acceleration scalars (a,ak) of a point
particle to the curvature scalars of its trajectory@5#. To this
effect, we make a new ansatz for the YM vector potential a
find new solutions to the source-free YM field equation
Two of the solutions we present are exact solutions whe
one of them is found using a series expansion in 1/R, the
reciprocal of the retarded distanceR. The solutions are ob
tained by using physically acceptable constraints such as
manding that the total energy fluxNY M and the total color
charge Q are finite at largeR values. We also examin
whether the solutions presented are gauge equivalent to
Trautman solution and show that they are not in their f
generality.

In Sec. II, we give a brief review of some basic eleme
regarding the geometry of a trajectory curve. A new ans
for the YM connection is presented in Sec. III. The to
energy flux of the YM field is defined and its behavior
large distances is examined. Demanding the flux to be fi
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further constrains the form of the ansatz studied. In Sec.
we give the general form of the source free YM field equ
tions. We also examine in detail the existence of special
jectories for which YM field equations are satisfied. We th
give the series expansion of these equations in power
1/R. In Sec. V, the total color charge is defined and its fo
is derived for the 1/R expansion of the YM connection ansa
under study. In Sec. VI, we present two new exact solutio
as well as one approximate solution that is obtained by s
ing the 1/R expanded field equations under the finite to
color charge constraint. In Sec. VII, we examine whether
solutions presented are gauge equivalent to the Trautman
lution @3#. In two Appendixes, we give the explicit form o
some complicated equations that are needed in the text.

II. THE GEOMETRY OF A CURVE

Let zm(t) define a smooth curveC in a flat spacetime
with Minkowski metrichmn @6#. One can, in general, defin
two times using an arbitrary pointxm outside the curve. Now
let t denotethe retarded timein the usual sense—that on
obtains by looking at the roots of@(xm2zm(t)#@xm
2zm(t)#50—and define the null vector

lm[
]t

]m
5

xm2zm~t!

R
, ~1!

where R[ żm(t)@xm2zm(t)# gives the retarded distance.
Here and from now on a dot over a letter denotes differ
tiation with respect to the retarded timet. Differentiatinglm
andR, one finds that

lm,n5
1

R
@hmn2 żmln2 żnlm2~Ra2e!lmln#, ~2!

R,m5~Ra2e!lm1 żm ~3!

where the accelerationof the particle isa[(1/R) z̈m @xm

2zm(t)# andżm żm5e[0,61. ~We choosee521 for time-
©2002 The American Physical Society05-1



e

th

-
Y

fl
fo

bo

r-

se

p

tial

-

-

M
the

ÖZGÜR SARIOĞLU PHYSICAL REVIEW D 66, 085005 ~2002!
like curves ande50 for null curves.! Moreover, one also
finds thatlm żm51,lm R,m51 andlm a,m50.

In fact, one notices that one can define@7#

ak[lm

dkz̈m

dtk
, k51,2, . . . ,D21

which satisfy

lmak,m50, ~4!

for all k. Here a0[a and D denotes the dimension of th
spacetime.~From now on we will takeD54.! The scalars
ak , which are generalizations of the accelerationa of the
point particle, are related to the curvature scalars of
smooth curveC @5,8#.

By using the curveC and its kinematics, one can con
struct more general solutions to the classical source free
field equations than the one found by Trautman@3#.

III. THE TOTAL ENERGY FLUX

Making use of the curve kinematics that has been brie
discussed in Sec. II, we now make the following ansatz
the LW potential

Am5Hżm1Glm , ~5!

whereH and G are differentiable functions ofR and some
R-independent functionsci( i 51,2, . . . ) such thatlm ci ,m
50 for all i @9#. It is clear that due to the property~4! of ak ,
all of these functions (ci) are functions of the scalarsa and
ak(k51,2,3) and the retarded timet. For the original Traut-
man solution,G50 andH5q/R whereq5q(t) only @3#.
We are motivated to choose the more general ansatz a
Eq. ~5! by our recent results concerning theD-dimensional
Einstein Maxwell theory with a null perfect fluid in the Ker
Schild geometry@5#.

In close analogy to how it is defined in the Maxwell ca
@1#, the total energy fluxof the YM field is given by@10#

NY M52E
S

żm Tmn nn R dV. ~6!

HereTmn5Fma Fn
a2 1

4 hmn Fab Fab is the YM energy mo-
mentum tensor~with again the trace over the internal grou
indices suppressed on the YM field strengthF). The vector
nn is orthogonal to the velocity vector fieldżm and is defined
through

lm5e żm1e1

1

R
nm ; nm nm52eR2. ~7!

~Heree1561.! One can considerS in the rest frame of the
point particle as a sphereS2 of very large radiusR. dV, of
course, denotes the solid angle.

Substituting forAm @Eq. ~5!# in the YM field strength@11#
08500
e

M

y
r

ve

Fmn5]mAn2]nAm1@Am ,An#, ~8!

one finds that

Fmn5lmxn2lnxm1H ,mżn2H ,nżm

where for convenience we have definedxn[Hz̈n2G,n

2@H,G# żn .
Using the orthogonality of the velocity vector fieldżm and

the vectornm , one finds that

żm Tmn nn5~Fma żm! ~Fn
a nn!,

or substituting forFmn in this expression, that

R żm Tmn nn52e e1 R2 Tr ~Ya Ja!

where

Ya[Hz̈a1 ża ~H ,mżm2@H,G# !1la ~G,mżm1e@H,G# !

2G,a2eH ,a

and

Ja[Hz̈a1 ża ~H ,mżm2@H,G#2e H8!

1la @G,mżm1e ~a H2G8!#2G,a .

Here and from now on a prime over a letter denotes par
differentiation with respect toR.

Notice that whenG5G@R,ci(t,a,ak)#(k51,2,3) in its
full generality,

G,a5G8R,a1G,ci
ci ,a

5G8R,a1G,ci
~ci̇l ,a1ci ,aa,a1ci ,ak

ak,a!

and similarly for H5H@R,ci(t,a,ak)#(k51,2,3). The de-
rivative of the accelerationa is

a,a5
1

R
z̈a2

a

R
ża1S a12a21e

a

RDla ~9!

and similarly one can also calculate the derivatives ofak for
k51,2,3. As an example, the derivative ofa1 is given in
Appendix A, Eq.~A1!. It is easy to see that putting the de
rivatives ofak , one ends up with higher ordert derivatives
of zm and more complicated expressions forG,a ~and like-
wise for H ,a) and henceNY M . So to keep the angular inte
grations that appear in the expression ofNY M and also the
calculations that one encounters in the solution of the Y
field equations simple, from now on we assume that
5-2
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LIÉNARD-WIECHERT POTENTIALS OF A NON- . . . PHYSICAL REVIEW D 66, 085005 ~2002!
functions ci , whose properties were described above,
just functions oft anda. Hence one hasG5G@R,ci(t,a)#
and similarly H5H@R,ci(t,a)# from now on. With these
assumptions, substituting the derivative ofa and the deriva-
tive of the retarded distanceR ~3! in the relevant expression
above, one finds thatYa andJa can, respectively, be put in
the form

Ya5 z̈aY21 żaY11laY0

Ja5 z̈aJ21 żaJ11laJ0 ,

with six coefficientsY2 ,J2 ,Y1 ,J1 ,Y0 ,J0 to be determined.
Notice that this yields

Tr~YaJa!5 z̈az̈aTr ~Y2J2!1aTr~Y2J01Y0J2!1e Tr ~Y1J1!

1Tr ~Y1J01Y0J1!

using the properties of the velocity vector fieldżm andlm .
Notice at this point that it is still very difficult to work ou

the general form of the energy flux formulaNY M let alone to
find solutions of the YM field equations in this general s
ting. However demanding thatNY M be finite at very large
values ofR, one can in general assume that a series exp
sion of H and G can be made in powers of 1/R ~with R
Þ0, of course! as

H[a1
b

R
1

g

R2
1O~R23!

and

G[s1
v

R
1

d

R2
1O~R23!.

Here a,b,g and s,v,d are the functionsci that we have
described above and are just functions of the retarded timt
and the accelerationa.

With these assumptions then, one finds that

J2[H2
1

R
G,ci

ci ,a5a1
1

R
~b2s ,a!1

1

R2
~g2v ,a!

1O~R23!

and

Y2[H2
1

R
~G,ci

1eH ,ci
! ci ,a

5a1
1

R
~b2s ,a2ea ,a!1

1

R2
~g2v ,a2eb ,a!1O~R23!,

which in turn implies that Tr (Y2J2)5Tr (a2)1O(1/R) and
one has to seta50 to get a finite energy flux as one tak
08500
e

-

n-

the limit R→` in the expression~6! for NY M . So one is now
left with

H[
b

R
1

g

R2
1O~R23! ~10!

and

G[s1
v

R
1

d

R2
1O~R23!, ~11!

where the five remaining coefficientsb,g,s,v andd ~func-
tions of t and a) are to be determined by the YM fiel
equations.

Carrying out the calculations of the remaining coefficien
Y1 ,J1 ,Y0 andJ0 in the same manner toO(R23) and using
these, one finds that

Tr ~Y2J2!5
1

R2
Tr ~b2s ,a!21O~R23!,

a Tr ~Y2J0!5e
a2

R2
Tr ~b2s ,a!21O~R23!,

a Tr ~Y0J2!52Tr ~Y1J0!

5e
a

R2
Tr $„@b,s#1a~b2s ,a!2ḃ

2~a12a2!b ,a…3 ~b2s ,a!%

1O~R23!,

e Tr ~Y1J1!52Tr ~Y0J1!

5
e

R2
Tr $@b,s#1a~b2s ,a!

2ḃ2~a12a2!b ,a%
21O~R23!,

and hence

R żm Tmn nn52e e1 ~ z̈az̈a1ea2! Tr ~b2s ,a!21O~1/R!.

So taking theR→` limit, one finds

NY M5E
S

dV e e1 ~ z̈az̈a1ea2! Tr ~b2s ,a!2 ~12!

for the energy flux.
Notice that the YM field equations have not been solv

yet and at this stageNY M contains only the first terms tha
appear in the series expansion ofH andG in powers of 1/R
@Eqs. ~10!, ~11!#. So to observe any outgoing radiation
large distances, one has to keep eitherb, the coefficient of
the 1/R term in H, and/ors, the constant term inG of the
YM connection~5!.
5-3
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We will come back to the discussion of the energy fl
NY M after we find solutions of the YM field equations usin
the YM connection~5! with H andG given by Eqs.~10! and
~11!.

IV. THE SOURCE FREE YM EQUATIONS

The source free YM field equations simply read

Dm Fmn5]m Fmn 1 @Am,Fmn#50. ~13!

The field strength is given by Eq.~8!, of course. TakingAm
as in Eq. ~5! with H5H@R,ci(t,a)# and G
5G@R,ci(t,a)#, calculating Fmn and using these in Eq
~13!, one finds that in the general caseDmFmn can be put in
the form

Dm Fmn5X zn
(3)1Y z̈n1K żn1L ln50 ~14!

wherezn
(3) denotesd3zn /dt3. The explicit form ofDmFmn is

given in Appendix A. One immediately recognizes that it
extremely difficult to find exact solutions toDmFmn50 @Eq.
~13!# in this general setting. Even though this is the case
what follows we are going to try to consider every possi
case in detail, do what can be said and done and leave
only the most complicated equations which we found
hard to solve.

A. A closer look at the trajectories

Notice at this point that one can ask whetherDmFmn50 is
satisfied identically without imposing any conditions onH
and/orG in Am ; i.e., whether there are any special trajec
ries that a point particle can follow so that the YM equatio
identically hold outside its position.

Contracting DmFmn with ln,żn,z̈n, etc. one finds tha
DmFmn can in general be written as

DmFmn5X~zn
(3)1pz̈n1qżn1rln!

where

p[
1

D
@ z̈m zm

(3)1a~e a11 z̈m z̈m!#,

q[2
1

D
@a z̈m zm

(3)1 z̈m z̈m ~a22a1!#,

r[
1

D
@e a z̈m zm

(3)2~e a11 z̈m z̈m! z̈a z̈a#,

D[2~e a21 z̈m z̈m!Þ0.

Now settingX50 would imply thatH ,ci
ci ,a50. Since

H ,ci
50 necessarily excludes the curve kinematics that

want to introduce into the picture, this leaves one withci ,a
50 or ci5ci(t). @Notice thatG still may depend onci with
08500
n

ut
o

-
s

e

ci5ci(t,a).# However in that caseDmFmn now takes the
form

DmFmn5M2z̈n1M1żn1M0ln

where, for example,

M25H81
H

R
2

1

R
~G,ci

8 1@H,G,ci
# !ci ,a .

One is then either forced to take the trajectory curveC as a
straight line or setM25M15M050 for a nontrivial curve
C. However these three equationsM25M15M050 are
again highly nonlinear and very complicated to work with

For XÞ0, one has to put

zn
(3)1pz̈n1qżn1rln50. ~15!

However making use of the Serret-Frenet frame in four
mensions@5#, one finds that

p52
k̇1

k1
, q52k1

2 and r 50

and that Eq.~15! is satisfied identically when~i! k150, i.e.,
a50 which implies that the trajectory curveC is a straight
line or ~ii ! k250 but k1Þ0. The first case again gives
‘‘trivial’’ solution, whereas the second case implies that o
has to both constrain the trajectory curveC and find the
correspondingH andG which satisfy

Y52
k̇1

k1
X, K52k1

2X andL50.

These equations are again very difficult to solve. So inst
of working out these complicated conditions on the traje
tory curveC, we now concentrate on what one can do w
the YM equations themselves.

B. 1ÕR expansion of source free YM equations

Since it is very hard to find exact solutions toDmFmn

50 @Eq. ~14!# in its full generality, we look for approximate
solutions by using the series expansion ofH andG in powers
of 1/R @Eqs.~10!, ~11!#. Substituting these in the expressio
for X,Y,K andL @see Eqs.~A2!, ~A3!, ~A4! and ~A5!#, one
finds to orderR23 that

DmFmn5
1

R
ln~L0!1

1

R2
~X1 zn

(3)1Y1 z̈n1K1 żn1L1 ln!

1O~R23!,

where
5-4
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L0[a$ḃ1~a12a2!b ,a2@b,s#%12@ḃ1~a12a2!b ,a ,s#1@b,ṡ1~a12a2!s ,a#1†s,@b,s#‡2b ,a~a223a1a12a3!22 ~a1

2a2! ḃ ,a2~a12a2!2 b ,aa2b̈, ~16!

L1[2av2v̇2~a12a2! v ,a12e as ,a1~e a21 z̈a z̈a! s ,aa1~a123a2!g2e ḃ2e aḃ ,a2e~2a123a21e z̈a z̈a!b ,a2e a~a1

2a2!b ,aa2~a12a2!2 g ,aa22~a12a2!ġ ,a2g̈13aġ2~a226a1a15a3! g ,a1e @b,s#23a@g,s#22a@b,v#12@ḃ

1~a12a2!b ,a ,v#12@ ġ1~a12a2! g ,a ,s#1@g,ṡ1~a12a2! s ,a#1@b,v̇1~a12a2! v ,a#1e †b,@b,s#‡2@s,v#

1†s,@b,v#‡1†v,@b,s#‡1†s,@g,s#‡2e @b,ḃ1~a12a2! b ,a#2e a@s,b ,a#2e a@b,s ,a#, ~17!

K1[ḃ1~2a123a2!b ,a1a„ḃ ,a1~a12a2! b ,aa…1@s,b#1@b,ḃ#1~a12a2! @b,b ,a#2†b,@b,s#‡1a~@s,b ,a#1@b,s ,a# !,

~18!
ve
ion
t

b
ol

n-
o

r
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r

a

ge
s

vari-
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e
-
tial
int
n is
ch a

nt.

an
e

Y1[2@s,b ,a#2@b,s ,a#2ḃ ,a2~a12a2! b ,aa12 ab ,a ,
~19!

X1[2b ,a . ~20!

Before dwelling on the solutions of the equations abo
we now make a digression and briefly review the definit
of a gauge-invariant total color charge. Demanding the to
color charge to be finite at largeR values constrains the
system of differential equations to be solved considera
and one is, at least, able to talk about the behavior of s
tions.

V. TOTAL COLOR CHARGE Q

In the presence of sources, the YM field equations are

Dm Fmn5]m Fmn1@Am,Fmn#5Jn . ~21!

Even thoughDmJm50, using this, one cannot define a co
served or a gauge-invariant charge in the usual sense. H
ever, one can make use of the fact that

]n ]m Fmn5]n ~Jn2@Am,Fmn#!50

and define the total color as

I 5E d3x ~J02@Ai ,Fi0# !. ~22!

According to@4#, considering gauge transformations that a
independent of space-time coordinates at large distances
taking into account YM connectionsAm that go to zero faste
than 1/R at largeR, I turns out to be gauge covariant and
gauge invarianttotal color chargecan be defined as@12# ~see
the discussions in@13# and @4# as well!

Q5ATr I 2. ~23!

However it is also claimed in@4,14# that the total color@Eq.
~22!# is not well suited for determining the color exchan
between an external source and the YM waves. The rea
08500
,

al

ly
u-

w-

e
.e.,

on

they give is that neither Eq.~22! nor Eq.~23! can be written
in a gauge independent manner as a sum of the gauge in
ant color of the external source and that of the YM field.

Here we are not going to take part in this discussio
Whether it can be written in a gauge independent manne
not, for Eq. ~23! to make sense as the definition of som
charge, Eq.~22! must, first of all, be finite when the integra
tion is carried on the full space. This is especially essen
for us in this work, since the only source here is a po
source moving along a trajectory. However some attentio
also needed here: One has to do the integration on su
surface that it respects the motion of the point source.

Notice that similar considerations led@1# to the expression
for the total energy fluxNY M in Eq. ~6!. So in complete
analogy, one can define the total color as

I 5E
S

dV R2 ~Jn2@Am,Fmn#!żn, ~24!

or simply as

I 5E
S

dV R2 ~]m Fmn! żn, ~25!

so that the motion of the point source is taken into accou
The surfaceScan again be thought of as a sphereS2 of very
large radiusR in the rest frame of the point source. One c
again use Eq.~23! as the definition of the total color charg
then.

So we need to examine]m Fmn for the Am ansatz~5! that
we have. Similar to what we did forDmFmn , substitutingH
andG in powers of 1/R @Eqs.~10!, ~11!# in the expression for
]m Fmn ~see Appendix B!, one finds to orderR23 that

]mFmn5
1

R
ln~S0!1

1

R2
~B1 zn

(3)1C1 z̈n1P1 żn1S1 ln!

1O~R23!,

where
5-5
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S0[a$ḃ1~a12a2!b ,a2@b,s#%1@ḃ1~a12a2!b ,a ,s#1@b,ṡ1~a12a2!s ,a#2b ,a~a223a1a12a3!22~a12a2!ḃ ,a2~a1

2a2!2 b ,aa2b̈, ~26!

S1[2av2v̇2~a12a2! v ,a12e as ,a1~e a21 z̈a z̈a! s ,aa1~a123a2!g2e ḃ2e aḃ ,a2e~2a123a21e z̈az̈a!b ,a2e a~a1

2a2!b ,aa2~a12a2!2 g ,aa22~a12a2!ġ ,a2g̈13aġ2~a226a1a15a3! g ,a22a@g,s#22a@b,v#

1@ḃ1~a12a2! b ,a ,v#1@ ġ1~a12a2! g ,a ,s#1@b,v̇1~a12a2! v ,a#1@g,ṡ1~a12a2! s ,a#, ~27!
M
on
e
tw

te

ion
l.
n

ex
b-
r

en-

s

i-
on.
ge
P1[ḃ1~2a123a2!b ,a1a„ḃ ,a1~a12a2!b ,aa…1@s,b#,
~28!

C1[2ḃ ,a2~a12a2!b ,aa12 ab ,a , ~29!

B1[2b ,a . ~30!

Sincelnżn51, one is forced to setS050 so thatI in Eq.
~25! and henceQ become finite for very largeR. Hence
taking theR→` limit, the total color chargeQ is defined
throughI in Eq. ~25! which turns out to be

I 5E
S

dV ~2B1 z̈a z̈a1e P11S1!

for the special form of theAm ansatz~5! that we are using.

VI. SOLUTIONS

In this section we look for solutions to the source free Y
equations. We first start with the original Trautman soluti
to remind the reader about its properties and also to ch
the calculations that have been done so far. We then give
new exact solutions and finally present the ‘‘approxima
one which is obtained by using a series expansion in 1/R.

A. Trautman solution

In the case whenG50, i.e.,s5v5d5g50 and when
Am is of the form

Am5
b

R
żm , ~31!

one should of course find the original Trautman solut
which is the first example of a non-Abelian LW potentia
Indeed, one finds in this case that the YM field equatio
DmFmn50 are satisfiedexactly provided ~i! b5b(t), ~ii !
b̈2aḃ50, and ~iii ! ḃ1@b,ḃ#50, as found by Trautman
@3#. In this case sinces50, the total energy flux formula
NY M is just a simple generalization of the corresponding
pression for the ordinary Abelian Maxwell theory that is o
tained by replacing the square of the electric charge by Tb2

@1,3,5#. Moreover, one also finds thatS050,S152e ḃ,P1
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5ḃ,B15C150 and hence (]mFmn) żn50 identically in this
case. So the total color chargeQ50 and automatically con-
served as expected from@3#.

B. bÄgÄ0, dÄ0

For the special choice ofb5g50 andd50, i.e., when
Am is of the form

Am5S s1
v

RDlm , ~32!

one finds that the YM field equationsDmFmn50 are satisfied
exactlyprovided thats andv satisfy

v5v~t!, ~33!

]a@s ,a~ z̈az̈a1e a2!1a2 v#2v̇2@s,v#50. ~34!

Notice that in this case the total energy fluxNY M expression
~12! has only b2s ,a52s ,a in it, which is considerably
different than the Trautman solution in character. The dep
dence ofs on the accelerationa of the trajectory turns out to
determine the form ofNY M . Moreover, in this case one find
that B15C15P150 as well asS050, of course, butS1
5@s,v#. HenceI now becomesI 5*S dV @s,v#. Q50 if
@s,v#50, of course.

A trivial solution to Eq. ~34! is given by s ,aa50,e s ,a

1v50 and v̇1@s,v#50. Then s5ak(t)1 l (t),v5

2ek(t) and the arbitrary functionsk(t) and l (t) satisfy k̇

1@ l ,k#50. @If one choosesk52q and l 52q̇, then s5

2aq(t)2q̇(t) andv5eq, and this yields the same cond
tion that one obtains in the case of the Trautman soluti
One, of course, expects that this trivial solution is gau
equivalent to Trautman’s original solution.# Notice also that
then I 5*S dV(2e @ l ,k#)5*S dV e k̇ and b2s ,a52s ,a5
2k(t) in NY M @Eq. ~12!#.

C. gÄ0, dÄ0

For the special choice ofg50 andd50, i.e., whenAm is
of the form

Am 5
b

R
żm1S s1

v

RD lm , ~35!
5-6
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one finds again that the YM field equationsDmFmn50 are
satisfiedexactlyprovided thatb, s andv satisfy

b5b~t!, ~36!

ḃ2@b,s#50, ~37!

v1g~t!2@b,v#50, ~38!

@b,g#50, ~39!

ġ1]a@s ,a~ z̈az̈a1e a2!2a2g#1@s,g#50, ~40!

]a@v ,a~ z̈az̈a1e a2!#1e ~v1g!1@v,g#50. ~41!

Hereg5g(t) is an arbitrary function oft that is obtained in
one of the integrations in the midsteps of the calculation.
this case one finds thatNY M maintains its most general form
and thatB15C15P150, as well asS050, of course, and
S152e ḃ2@s,g# which gives I 5*S dV (2e ḃ2@s,g#).
Again QÞ0 for the general case and can be chosen to
pend ont.

A trivial solution to Eqs.~40! and~41! is given by choos-
ing

s ,aa50, e s ,a2g50, ġ1@s,g#50, v ,a50,

e~v1g!1@v,g#50.

All of the conditions~36!–~41! are satisfied identically pro
vided

g~t!5e b ,s5ab1s0~t!,v5v~t!,ḃ1@s0 ,b#50

and @b,v#5v1e b. @Here s0(t) is an arbitrary function
and if one choosess052ḃ andb5q, this yields the same
condition that one finds forq in the Trautman solution.# No-
tice also that thenb2s ,a50 in NY M @Eq. ~12!# and I 50,
and henceQ50.

D. General case

In this case we takeAm to be of the form~5! with H and
G given by Eqs.~10! and ~11!, respectively. We look for
solutions of the YM field equations to orderR23 by setting
L05L15K15Y15X150 @Eqs. ~16–20!#. However due to
the discussion at the end of Sec. V, we also need to seS0
50 @Eq. ~26!# for a finite total color charge. Hence we no
have to solve these six equations simultaneously for the
unknown coefficientsb,g,s,v andd ~which are, remember
only functions oft anda).

In this case, one finds thatL05L15K15Y15X150 and
S050 are satisfied provided that
08500
r

e-

e

b5b~t!, ~42!

g5g~t!, ~43!

ḃ2@b,s#50, ~44!

ag2v2g̃~t!1@b,v#1@g,s#50, ~45!

]a @s ,a~ z̈az̈a1e a2!2a2~ g̃2ġ !#

1]t ~ g̃2ġ !1@s,g̃2ġ #50. ~46!

Here g̃5g̃(t) is an arbitrary function oft that appears in
one of the integrations in the midsteps of the calculation.
this case one finds thatI 5*S dV (2@s,g̃2ġ #2e ḃ) and
hence for the general caseQÞ0 and, in fact, may be chose
to depend ont. However notice that when one chooses t
integration functiong̃(t) as g̃(t)5e b1ġ, Eq. ~46! be-
comes

s ,a~ z̈az̈a1e a2!2e b a25n~t!

wheren(t) is a new arbitrary function oft, and I 50 and
hence Q50. One can further chooses ,a5b, i.e., s
5ab(t)1s0(t), and the arbitrary functionn(t) suitably
such that this is also identically satisfied. So now Eq.~44!

implies ḃ2@b,s0#50 and a trivial solution to Eq.~45! is
provided by demanding that~i! g1@g,b#50 and ~ii !

@b,v#1@g,s0#2v2g̃50.

VII. GAUGE EQUIVALENCE

One natural question to ask at this stage is, of cou
whether the solutions that have been found so far are ga
equivalent to the Trautman solution@3#, also derived in Sec
VI A. To answer this question, one has to examine whet
there exist any gauge potentialsF ~we again suppress inter
nal group indices onF) which locally satisfy

Am
Trautman5Am

newsol1]m F1@Am
newsol,F#5

q

R
żm . ~47!

~Here we take the original form of the Trautman solutio
i.e., one hasq in place ofb.!

Notice that substituting the general form of our ans
Am5Hżm1Glm @Eq. ~5!# and solving for]mF, one finds
that in general]mF is of the form

]m F5X żm1Y lm . ~48!

Demanding thatF has continuous second order derivativ
and that]m]nF5]n]mF, one finds
5-7
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X,nżm2X,mżn1X~ z̈mln2 z̈nlm!1Y,nlm2Y,mln50.
~49!

Contracting this withlm and żm, one obtains two equation
which then can be solved forX,n andY,n to yield

X,n5 żn~lmX,m!1ln~lmY,m2aX!, ~50!

Y,n5 z̈nX1 żn~ żmX,m2e lmX,m!

1ln~ żmY,m2e lmY,m2eaX!. ~51!

Substituting these into Eq.~49!, one finally finds that

~lmY,m2aX2 żmX,m1elmX,m!~ żmln2 żnlm!50.

For a nontrivial gauge potentialF, one has to demand tha

lmY,m2a X2 żmX,m1e lmX,m50 ~52!

for the coefficientsX andY in Eq. ~48!.
So now we look for the existence of such gauge potent

for each of the solutions presented in Sec. VI in order of th
appearance.

A. bÄgÄ0, dÄ0

For thisexactsolution,X andY in Eq. ~48! turns out to be

X5
q

R
, Y52S s1

v

RD2Fs1
v

R
,FG

and remember thatq5q(t),s5s(t,a) and v5v(t), and
these satisfy Eq.~34! in this case. So imposing Eq.~52!, one
gets

1

R
~2q̇2@s,q# !1

1

R2
~v2e q1@v,F#2@v,q# !50.

Since the coefficientsq,s andv areR independent, one ha
to set

q̇1@s,q#50, ~53!

v2e q1@v,F#2@v,q#50. ~54!

A trivial solution is provided bys52aq2q̇,v5e q ~see
the end of Sec. VI B! andF5kq, wherek is an arbitrary real
number. In that case Eqs.~33! and ~34! are also identically
satisfied sinceq, now being part of the Trautman solutio
obeys q̇1@q,q̇#50. In this case Am

newsol5(2q̇2a q
1eq/R)lm and this is gauge equivalent to the Trautman
lution.
08500
ls
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However in the general case whens5s(t,a), it is not
easy to find a simultaneous solution to Eqs.~33!, ~34!, ~53!
and ~54!, and hence this class of exact solutions is not n
essarily gauge equivalent to the Trautman solution.

B. gÄ0 ,dÄ0

For thisexactsolution, following similar steps as in Sec
VII A, one finds that

X5
q2b

R
2FbR ,FG , Y52S s1

v

RD2Fs1
v

R
,FG

and for this case remember thatb5b(t),s5s(t,a) and
v5v(t,a), and these satisfy Eqs.~36–41!. Imposing Eq.
~52!, one finds that

1

R
$ḃ2q̇2@s,q#1†s,@b,F#‡1@ḃ,F#2†b,@s,F#‡%

1
1

R2
$v2e ~q2b!2@v,q#1@v1e b,F#

1†v,@b,F#‡2†b,@v,F#‡%50.

Since the coefficientsb,s,v and q are R independent, one
has to set

ḃ2q̇2@s,q#1†s,@b,F#‡1@ḃ,F#2†b,@s,F#‡50,
~55!

v2e ~q2b!2@v,q#1@v1e b,F#1†v,@b,F#‡

2†b,@v,F#‡50. ~56!

If one considers the trivial solution described at the end
Sec. VI C withq5b, uses@b,v#5v1e b in Eq. ~56! and
the Jacobi identity, one getsv2@v,b#50 which yieldsv
52e b/2. Then using the Jacobi identity in Eq.~55! implies

@b,s#1@ḃ,F#1†@s,b#,F‡50

and usingḃ1@s0 ,b#50 gives @b,s#5@b,s0#50 or s0
5cb(t) for c an arbitrary real constant, independent of t
choice of the gauge potentialF. However, this in turn im-
plies that ḃ50 or b5constant, the Trautman solution
Hence, once again this trivial solution is gauge equivalen
the Trautman solution.

Notice that in the general case whens5s(t,a) and v
5v(t,a), it is not easy to find a simultaneous solution
both the conditions~36–41!, coming from theDmFmn50
equations, and the gauge conditions~55!, ~56! above. Hence
this class of exact solutions is not necessarily gauge equ
lent to the Trautman solution.
5-8
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C. General case

Remember that the solutions in this class were found
solving theDmFmn50 YM equations to orderR23 and by
simultaneously setting the term of orderR21 in ]mFmn , i.e.,
S0 @Eq. ~26!#, to zero. Hence these solutions areapproximate
in character and for that reason we now examine the ques
of whether these are ‘‘approximately’’ gauge equivalent
the Trautman solution. So we assume that the gauge pote
F locally has a well defined series expansion in powers
1/R as (RÞ0)

F5c1
1

R
w1

1

R2
z1O~R23!

where the coefficientsc,w andz are, of course,R indepen-
dent now and we assume them to be only functions oft and
a. With these in mind, one can writeX andY in Eq. ~48! to
orderR23 as

X5
1

R
~q2b2@b,c#!1

1

R2
~2g2@b,w#2@g,c#!

1O~R23!,

Y52s2@s,c#1
1

R
~2v2@s,w#2@v,c#!

1
1

R2
~2d2@s,z#2@v,w#2@d,c#!1O~R23!.

Remember that at this stage all the coefficients above
only functions oft anda. So imposing Eq.~52! and carefully
collecting the coefficients of the powers of 1/R to orderR23,
one gets

żm]m~q2b2@b,c#!50,

v1@s,w#1@v,c#2a~g1@b,w#1@g,c#!1 żm]m~g

1@b,w#1@g,c#!2e~q2b2@b,c#!50.

One now has to solve these two conditions simultaneou
with Eqs. ~42!, ~43!, ~44!, ~45! and ~46! for gauge equiva-
lence of this class of solutions to the Trautman solution. O
viously, this is not an easy task if one is to stay in the m
general case and we conjecture that the class of ‘‘appr
mate’’ solutions we found are not ‘‘approximately’’ gaug
equivalent to the Trautman solution.

Hence when one considers the solutions presented in
VI in their full generality, one can assert that they are n
gauge equivalent to the Trautman solution.
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VIII. CONCLUSIONS

We have found new solutions to the source free YM fie
equations which generalize the LW potential of Trautma
Two of the solutions are exact whereas one of them is
proximate and obtained through a 1/R series expansion in the
YM field equations. For each solution the total energy fl
NY M and the total color chargeQ have been constrained t
be finite. It has also been shown that the solutions are
gauge equivalent to the Trautman solution in their most g
eral form.

In @15#, Trautman’s original solution was shown to exi
in the setting of Robinson-Trautman metrics in General Re
tivity. After the seminal work of@16#, there has also been a
ongoing interest in the particle like solutions of Einstein-Y
theory. It would be interesting to study Einstein-YM theo
in the Kerr-Schild geometry using the general ansatz for
YM connection~5! presented here.

Note added in proof. After the completion of this paper
B.P. Kosyakov informed us of his work where he consid
exact solutions of the Yang-Mills-Wong theory in even d
mensions and where he uses a somewhat similar ansa
our Eq. ~5!. However, his motivation and results are qu
different from ours@17#.
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APPENDIX A: THE EXPLICIT FORM OF DµF µn

In this appendix, we show explicitly how one obtains t
YM field equations starting with the general ansatz for t
YM connectionAm as

Am5H@R,ci~t,a!# żm1G@R,ci~t,a!#lm .

R,m @Eq. ~3!#, a,m @Eq. ~9!# and the derivative ofa1

a1,m5
1

R
zm

(3)2
a1

R
żm1H a21

1

R
~ z̈az̈a!2a1a1e

a1

R J lm

~A1!

are expressions that are needed in the calculation ofDmFmn .
After lengthy calculations one obtains that

Dm Fmn5X zn
(3)1Y z̈n1K żn1L ln

where

X52
1

R
H ,ci

ci ,a , ~A2!
5-9
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Y5H81
H

R
2

1

R
$RaH,ci

8 1H ,ci

,cici ,mżm1aH,ci
1e@H,H ,ci

#1@G,H ,ci
#1G,ci

8 1@H,G,ci
#%ci ,a

2
1

R
H ,ci

@ ċi ,a1ci ,aa~a12a2!22aci ,a#, ~A3!

K5~Ra2e!H91S 3a22
e

RDH81
a

R
H2G92

2

R
G81H ,ci

8 ci ,mżm1H ,ci

,ci ci ,mci
,m1H ,ci

ci ,m
,m 1@G,H8#

12@G8,H#1
2

R
@G,H#1~Ra2e!@H,H8#1@H,H ,ci

ci ,mżm#2†H,@H,G#‡

1
1

R
H ,ci

$a1ci ,a1a@ ċi ,a1ci ,aa~a12a2!22aci ,a#%1
a

R
$RaH,ci

8 1H ,ci

,ci ci ,m żm1aH,ci
1e@H,H ,ci

#

1@G,H ,ci
#1G,ci

8 1@H,G,ci
#%ci ,a , ~A4!

L5RaG912G,ci
8 ci ,mżm1G,ci

,cici ,mci
,m1G,ci

ci ,m
,m 2

2

R
G,ci

ci ,mżm2a1~H1RH8!

1a~Ra2e!S H

R
2RH92H8D2~Ra2e!H ,ci

8 ci ,mżm1~2Ra2e!@H8,G#1@H ,ci
ci ,mżm,G#1~Ra1e!@H,G8#

12@H,G,ci
ci ,mżm#1a@H,G#1 e †H,@H,G#‡1@G,G8#1†G,@H,G#‡2e~Ra2e!@H,H8#2$RaH,ci

8

1H ,ci

,cici ,mżm1aH,ci
1e@H,H ,ci

#1@G,H ,ci
#1G,ci

8 1@H,G,ci
#%F ċi1ci ,aS a12a21e

a

RD G
2H ,ci H ci ,aS a21

1

R
~ z̈az̈a!2a1a1e

a1

R D1S a12a21e
a

RD @ ċi ,a1ci ,aa~a12a2!22aci ,a#1 c̈i1 ċi ,a~a12a2!J .

~A5!

APPENDIX B: THE EXPLICIT FORM OF ­µF µn

In this appendix we give the explicit form of]mFmn that is needed in the definition of a total color charge. Following st
similar to those of Appendix A, one finds that

]mFmn5Bzn
(3)1Cz̈n1Pżn1Sln

where

B52
1

R
H ,ci

ci ,a , ~B1!

C5H81
H

R
2

1

R
$RaH,ci

8 1H ,ci

,cici ,mżm1aH,ci
1G,ci

8 %ci ,a2
1

R
H ,ci

@ ċi ,a1ci ,aa~a12a2!22aci ,a#, ~B2!

P5~Ra2e!H91S 3a22
e

RDH81
a

R
H2G92

2

R
G81H ,ci

8 ci ,mżm1H ,ci

,cici ,mci
,m1H ,ci

ci ,m
,m 1@G,H8#1@G8,H#1

2

R
@G,H#

1
a

R
$RaH,ci

8 1H ,ci

,ci ci ,mżm1aH,ci
1G,ci

8 % ci ,a1
1

R
H ,ci

$a1ci ,a1a@ ċi ,a1ci ,aa~a12a2!22aci ,a#%, ~B3!
085005-10
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S5RaG912G,ci
8 ci ,mżm1G,ci

,cici ,mci
,m1G,ci

ci ,m
,m 2

2

R
G,ci

ci ,mżm2a1~H1RH8!1a~Ra2e!S H

R
2RH92H8D

2~Ra2e!H ,ci
8 ci ,mżm1Ra@H8,G#1Ra@H,G8#1@H ,ci

ci ,mżm,G#1@H,G,ci
ci ,mżm#2$RaH,ci

8 1H ,ci

,ci ci ,mżm1aH,ci
1G,ci

8 %

3F ċi1ci ,aS a12a21e
a

RD G2H ,ci H ci ,aS a21
1

R
~ z̈az̈a!2a1a1e

a1

R D1S a12a21e
a

RD @ ċi ,a1ci ,aa~a12a2!22aci ,a#1 c̈i

1 ċi ,a~a12a2!J . ~B4!
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