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Quark zero modes in intersecting center vortex gauge fields
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The zero modes of the Dirac operator in the background of center vortex gauge field configurations inR2

andR4 are examined. If the net flux inD52 is larger than 1 we obtain normalizable zero modes which are
mainly localized at the vortices. InD54 quasinormalizable zero modes exist for intersecting flat vortex sheets
with the Pontryagin index equal to 2. These zero modes are mainly localized at the vortex intersection points,
which carry a topological charge of6

1
2 . To circumvent the problem of normalizability the space-time mani-

fold is chosen to be the~compact! torus T2 and T4, respectively. According to the index theorem there are
normalizable zero modes onT2 if the net flux is nonzero. These zero modes are localized at the vortices. On
T4 zero modes exist for a nonvanishing Pontryagin index. As inR4 these zero modes are localized at the vortex
intersection points.

DOI: 10.1103/PhysRevD.66.085004 PACS number~s!: 11.15.2q, 12.38.Aw
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I. INTRODUCTION

There are two fundamental, principally nonperturbat
phenomena of the strong interaction which should be
plained by QCD: confinement and chiral symmetry breaki
Soon after the advent of QCD chiral symmetry breaking w
explained by assuming that the QCD vacuum contains
ensemble of instantons and anti-instantons@1#. Lattice simu-
lations have, however, shown that instantons cannot be
sponsible for confinement since they account for only ab
ten percent of the string tension@2–4#. On the other hand
recent lattice calculations have produced mounting evide
that confinement is due to the condensation of center vort
in the Yang-Mills vacuum@5,6#. Since on the lattice the con
finement phase transition is observed to occur at the s
temperature@7# at which chiral symmetry is restored, on
expects that chiral symmetry breaking and confinement
triggered by the same mechanism.

Since instantons cannot explain confinement one won
whether center vortices are also capable of producing ch
symmetry breaking in addition to confinement. Indeed, it h
been shown that in a Yang-Mills ensemble devoid of cen
vortices the relevant order parameter, the quark conden
vanishes@6#. This does, however, not yet mean that cen
vortices produce chiral symmetry breaking in the QC
vacuum, since the field configurations which produce
could be tied or attached to center vortices and simu
neously removed with the latter. It is therefore still an op
question whether center vortices produce chiral symm
breaking and what the underlying mechanism behind this

In order to get an idea how chiral symmetry breaki
could be produced by center vortices let us first recall how
arises in the instanton picture of the QCD vacuum. In t
picture the zero modes of quarks in the instanton backgro
play a crucial role. These zero modes occur due to the to
logical charge of the instantons and are localized near t
topological charge density@8–10#.

In an instanton–anti-instanton ensemble the localized z
0556-2821/2002/66~8!/085004~12!/$20.00 66 0850
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modes of the individual instantons spread out in space
form a continuum of quasizero modes which by the Ban
Casher relation give rise to a nonzero quark condensate@11#.
In fact, independent of the instanton picture lattice calcu
tions show a strong correlation between topological cha
density and the quark condensate@12,13#. This correlation is
mainly due to the zero modes which exist in topologica
nontrivial gauge fields with nonvanishing Pontryagin ind
due to the Atiyah-Singer index theorem@14# and which are
localized at topological charge.

In center vortex field configurations topological charge
concentrated at the intersection points and other sing
points like twisting points@15#. Near these singular point
we expect localization of quark zero modes which could p
a similar role in the explanation of chiral symmetry breaki
in the vortex picture as they do in the instanton picture. I
first attempt towards an understanding of chiral symme
breaking in the vortex picture, in the present paper we st
the quark zero modes in intersecting center vortex ba
ground fields. A more rigorous understanding of the mec
nism of chiral symmetry breaking in the vortex picture
presently under investigation.

We examine zero modes of the Dirac operator in vor
backgrounds in two and four dimensions for different Eucl
ean space-time topologies. In Secs. II and III fermionic z
modes in the background of vortices inR2 and intersecting
flat vortices inR4 are studied and their relation to solution
found by other authors@16,17# is shortly discussed. In Secs
IV and V this analysis is repeated for space-time given byT2

andT4, respectively.

II. FERMIONIC ZERO MODES IN NONINTERSECTING
CENTER VORTEX FIELDS

In D54 center vortices represent closed two-dimensio
flux sheets. We are interested here in the quark modes in
background of such vortex sheets. Locally a center vor
sheet represents a two-dimensional plane. For simplicity
©2002 The American Physical Society04-1
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will consider in the following flat~planar! vortex sheets. In
this case we have translational invariance parallel to the
tex sheets and the solution of the Dirac equation reduce
the two-dimensional problem in the plane defined by th
directions perpendicular to the vortex sheet. In this plane
vortex appears as intersection point. We will first study
Dirac equation in this plane, i.e., inD52.

We will consider the zero modes of the Dirac operator
the background of Abelian gauge potentials represen
Dirac strings and center vortices. We can consider th
gauge potentials as living in the Cartan subalgebra o
SU(2) gauge group. Having this in mind we say that a gau
potential describes a center vortex or Dirac string at a p
z0, if the Wilson loop aroundz0 is 21 or 11, respectively.
Equivalently, the magnetic flux carried by a center vortex
a Dirac string is given byFcenter5(m11/2), mPZ or
FDirac5m , mPZ, respectively.1

The solution of the Dirac equation in two dimensions c
be related to the theory of functions of a complex variab
We introduce the complex variablez by

z5x1 iy , z̄5x2 iy , ]z5
1

2
~]x2 i ]y!,

~1!

] z̄5
1

2
~]x1 i ]y!

and a complex notation for the gauge potential. We defin1

Azª
1

2
~Ax2 iAy!, Az̄ª

1

2
~Ax1 iAy!52Āz ,

~2!
Ax52iIAz , Ay52iRAz ,

whereIAz is the imaginary part andRAz is the real part of
Az . The Dirac equation1

igmDmc5lc, c5S c1

c2
D , Dm5]m1Am ~3!

in spinor components reads

2i ~]z1Az!c25lc1 , ~4!

2i ~] z̄1Az̄!c15lc2 . ~5!

The most simple case is the free Dirac equation, i.e.,Az
50. Zero modes (l50) of the free Dirac equation are ob
viously given by analytic functionsc1 and antianalytic func-
tions c2. A normalizable zero mode has to go to zero
infinity. But every ~anti!analytic function without singulari-
ties which goes to zero at infinity has to be zero everywhe
This means there are nosmoothzero modes. In principle the
zero mode may have singularities, in this case poles. B
pole in the zero mode is a nonintegrable singularity and
zero mode would be not normalizable. Hence, there are
normalizable zero modes for the free Dirac equation.

1Our conventions are summarized in Appendix A.
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Next we consider the Dirac field in the background of
straight plane center vortex. Its gauge potential reads

Ax52y
f ~r 2!

r 2

i

2
, Ay5x

f ~r 2!

r 2

i

2
,

~6!
r 25x21y25zz̄.

Here we introduced the profile functionf (r 2) which satisfies
f (0)50 and f (r 2)→1 as r→`. The complexified gauge
potential is then given by

Azª
1

2
~Ax2 iAy!5

f ~r 2!

4r 2
~2 iy1x!5

f ~r 2!

4r 2
~ z̄!. ~7!

Introducing the function

f~x!ªE
1

x f ~x8!

2x8
dx8 ~8!

the gauge potentialAz can simply be written as

Az5
1

2
]zf~zz̄!. ~9!

Inserting the gauge potential into the Dirac equation we
tain the differential equations

2i S ]z1
1

2
]zf~zz̄! Dc25lc1 , ~10!

2i S ] z̄2
1

2
] z̄f~zz̄! Dc15lc2 . ~11!

We are mainly interested in the zero modesl50. Fur-
thermore, let us first consider an idealized vortex w
f (r 2)[1 @this function obviously does not have the prope
ties of a profile function, becausef (0)51Þ0]. For f (r 2)
51 the functionf becomesf(r 2)5 1

2 log(r2), which is, up to
a factor, the Green’s function of the Laplace operator in t
dimensions. Forl50 and f(r 2)5 1

2 log(r2) the differential
equations~10!,~11! can again be easily solved

c15~A4 zz̄!x1~z!, ~12!

c25~A4 zz̄!21x2~z!̄, ~13!

wherex1 andx2 are analytic functions ofz andx2(z)̄ is the
complex conjugate ofx2(z). Choosing, e.g.,x151 we get
c15Ar , i.e., a real-valued function ofx and y. The zero
modes~12!,~13! of the Dirac operator in the background of
single center vortex are not normalizable. This is beca
normalizable analytic functionsx1/2 have to approach zero a
infinity, and therefore, have to be identically zero or have
pole which yields a nonintegrable singularity as was alrea
discussed above.

This result is in accord with the index theorem forU(1)
gauge fields inD52. The theorem states that the differen
4-2
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QUARK ZERO MODES IN INTERSECTING CENTER . . . PHYSICAL REVIEW D 66, 085004 ~2002!
between the numbers of right- and left-handed fermio
zero modes, sayn, in the background of aU(1) gauge po-
tential onR2 is related to the total fluxF5(1/2p i )*R2F by
@18#

n5@F#, ~14!

where@x# is the largest integer smaller thanxPR ~i.e., @1#
50). In the case of a single center vortex onR2 the total flux
is equal to 1/2, i.e., the number of left-handed zero mode
equal to the number of right-handed zero modes~in the
present case there are no normalizable left- or right-han
zero modes!. There exists an extensive literature about
Dirac operator in the background of Abelian gauge fields
two dimensions. A few remarks about some papers conc
ing also eigenmodes of such Dirac operators are in o
here. In@16# the authors considered zero modes of the Di
operator in the background of a flux tube on a disk with fin
radius and APS boundary conditions. In this case the inden
of the Dirac operator receives contributions from the bou
ary of the space-time manifold.2 In @17# self-adjoint exten-
sions of the Dirac operator in the background of a singu
magnetic vortex have been examined. Due to the bound
conditions used in these papers the encountered eigenm
differ from the ones found here. In our opinion it is not cle
which boundary conditions are the correct ones in a phys
context. Therefore we will consider a smooth gauge poten
representing a smeared out vortex. This way we get rid of
singularity of the vortex field and avoid the discussion
self-adjoint extensions of the Dirac operator at the posit
of the vortex. We choose a profile functionf (r 2)5r 2/(«2

1r 2), «PR, i.e., we work with the gauge potential

Ax52
y

r 21«2

i

2
, Ay5

x

r 21«2

i

2
. ~15!

For this profile functionf we obtainf(r 2)5 1
2 log(r21«2).

For l50 the differential equations~10! and ~11! can be
solved also in this case:

c15~A4 r 21«2 ! x̃1~z!, ~16!

c25~A4 r 21«2 !21 x̃2~z!. ~17!

For x̃1/251 these solutions are obviously not normalizab
With the same arguments as before we conclude that t
are no normalizable zero modes.

As discussed already above in connection with the in
theorem the asymptotic behavior of the zero mode of
Dirac operator changes if we change the magnitude of
magnetic flux. Multiplying the gauge potentialA in Eq. ~15!
by a factorrPR1 the fluxF becomesr/2 and the solutions

2We consider in the present paper space-time manifolds with
topologyRN, SN or TN. The latter two have no boundary where
on RN the gauge potential vanishes at infinity. Therefore in our c
there are no boundary contributions to the index.
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c1/2, cf. Eqs.~16!,~17!, change to (c1/2)
r. This means that

for r.2 we get a total fluxF.1 and a normalizable zero
mode with chirality21:

c25~A4 r 21«2!2r, c1[0. ~18!

The probability density of this zero mode has a maximum
r 50, i.e., at the location of the vortex.

Since the differential equations~10!,~11! are of first order
type it is also possible to explicitly write down zero mod
for multi-vortex background fields, because the multi-vort
gauge potential can be written as the sum over the ga
potentials of several simple vortices. The solution of the c
responding multi-vortex differential equation is then simp
the product of the solutions to the several one-vortex diff
ential equations. As an example take two vortices, onez
5a and a second atz5b. The solutionsc1/2 then read

c15„
A4 ~z2a!~ z̄2ā!1«2

3A4 ~z2b!~ z̄2b̄!1«2
… x1~z!, ~19!

c25„
A4 ~z2a!~ z̄2ā!1«2

3A4 ~z2b!~ z̄2b̄!1«2
…

21 x2~z!. ~20!

There is one quasinormalizable3 zero mode: (0,c2). This
zero mode is obviously localized at the centers of the vo
ces~at z5a andz5b) and on the line between them, cf. Fig
1. A similar calculation on the compact sphereS2 yields a
normalizable zero mode, cf. Appendix B. According to t
index theorem we obtain normalizable zero modes as soo
the net flux of the vortices exceeds 1~i.e., two units of the
flux of a center vortex!.
e

e 3Strictly speaking we have to increase the magnetic flux infinite
mally to get a normalizable zero mode.

FIG. 1. Probability density of the zero mode in the backgrou
of two center vortices inD52 @see Eqs.~19! and ~20!# for «
50.01, a51 andb521.
4-3
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III. FERMIONIC ZERO MODES OF THE DIRAC
OPERATOR FOR INTERSECTING CENTER VORTEX

FIELDS

So far we have considered the fermionic modes in
background of parallel nonintersecting flat center vor
sheets. Because of the translational invariance parallel to
vortex sheets it was sufficient to study the Dirac operato
the plane perpendicular to the vortex sheet, where the v
ces appear as intersection points. In the confined phase
center vortices percolate@19#. The vortices then have arb
trary directions and also intersect. In intersection points
four space directions participate and, consequently to st
the fermionic modes in the background of intersecting vo
ces we have to consider the full 4-dimensional Dirac ope
tor.

In the following we consider four vortex sheets consisti
of two orthogonal pairs of parallel vortex sheets. One vor
pair is given by two planes parallel to thex12x2 plane lo-
cated atx450 andx356a. The other vortex pair consists o
two planes parallel to thex32x4 plane located atx250 and
x156b. The four vortices intersect in four points given b
x45x250, x356a, x156b. Each of the intersection
points carries topological charge61/2. If we choose the
orientation of the flux of the two vortex sheets to be equal
find a total Pontryagin index ofn562, otherwise~if the
fluxes are antiparallelly oriented! the Pontryagin index van
ishes. For definiteness we choose the direction of the flu
parallel vortex pairs to be the equal. Then the gauge pote
can be chosen as

A15F2x2

f ~s1
2 !

s1
2

2x2

f ~s2
2 !

s2
2 G i

2
,

A25F ~x11b!
f ~s1

2 !

s1
2

1~x12b!
f ~s2

2 !

s2
2 G i

2
,

A35F2x4

f ~r 1
2 !

r 1
2

2x4

f ~r 2
2 !

r 2
2 G i

2
,

A45F ~x31a!
f ~r 1

2 !

r 1
2

1~x32a!
f ~r 2

2 !

r 2
2 G i

2
,

where

r 6
2 5~x36a!21x4

2 , s6
2 5~x16b!21x2

2 ,
~21!

a,bPR1,
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f ~r 2!5r 2/~r 21«2!. ~22!

The field strengthFmn of the above gauge potential is give
by

F125
i

2 S 2«2

~s1
2 1«2!2

1
2«2

~s2
2 1«2!2D ,

F345
i

2 S 2«2

~r 1
2 1«2!2

1
2«2

~r 2
2 1«2!2D .

Splitting the field strength into~anti-!self-dual components

Fmn5~ahmn
3 1bh̄mn

3 !, ~23!

where hmn
a and h̄mn

a are the t’ Hooft symbols anda5F12

1F34, b5F122F34, one finds that in the limit«→0 the
field strength is self-dual (b50) at the intersection points.

To determine the zero modes of the Dirac operator in
background of the considered intersecting vortices we in
duce complex variablesu andv @20#

u5x31 ix4 , v5x11 ix2 ~24!

and the corresponding complex derivatives]u and]v

]u5
1

2
~]x3

2 i ]x4
!, ]v5

1

2
~]x1

2 i ]x2
!. ~25!

We also introduce two complexified gauge potentialsAu
andAv as in Eq.~7!. These gauge potentials can be written

Au5
1

2
]uf, Av5

1

2
]vf, ~26!

where

f5f~u,ū,v,v̄ !

5 log@„~u2a!~ ū2a!1«2!

3„~u1a!~ ū1a!1«2
…„~v2b!~ ȳ2b!1«2)

3„~y1b!~ ȳ1b!1«2
…]. ~27!

The Dirac operator in the background of the gauge pot
tial ~21! reads
igmDmc5 i S 0 0 iD41D3 D12 iD2

0 0 D11 iD2 iD42D3

2 iD41D3 D12 iD2 0 0

D11 iD2 2 iD42D3 0 0

D S c1

c2

c3

c4

D , ~28!
4-4
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QUARK ZERO MODES IN INTERSECTING CENTER . . . PHYSICAL REVIEW D 66, 085004 ~2002!
where Dm5]m1Am is the covariant derivative. For the con
sidered vortex gauge potential~21! the eigenvalue equatio
~3! for the Dirac operator reduces to four coupled differen
equations:

lc15 i S 2] ū2
1

2
] ūf Dc31 i S 2]v1

1

2
]vf Dc4 ,

lc25 i S 2] v̄2
1

2
] v̄f Dc31 i S 22]u2

1

2
]uf Dc4 ,

lc35 i S 2]u1
1

2
]uf Dc11 i S 2]v1

1

2
]vf Dc2 ,

lc45 i S 2] v̄2
1

2
] v̄f Dc11 i S 22] ū1

1

2
] ūf Dc2 ,

which can be easily solved forl50, since in this case the
upper and lower components of the Dirac spinor decou
The l50 solutions read

c15„A4 ~r 1
2 1«2!~r 2

2 1«2! …21

3A4 ~s1
2 1«2!~s2

2 1«2! x1~ ū,v !,

c25A4 ~r 1
2 1«2!~r 2

2 1«2!

3„A4 ~s1
2 1«2!~s2

2 1«2! …21x2~u,v̄ !,

c35A4 ~r 1
2 1«2!~r 2

2 1«2!

3A4 ~s1
2 1«2!~s2

2 1«2! x3~u,v !,

c45„A4 ~r 1
2 1«2!~r 2

2 1«2! …21

3„A4 ~s1
2 1«2!~s2

2 1«2! …21x4~ ū,v̄ !.

The analytic functionsx i have to be chosen constant to avo
nonintegrable singularities as was discussed for theD52
case. The only spinor component going to zero at infinity
c4. Therefore, only the spinor with nonvanishing compon
c4 ~and all other components zero! yields a normalizable
zero mode~normalizable up to a logarithmic divergenc
from the integrationr 6→` ands6→` — but these diver-
gences become integrable if the vortex gauge potentia
multiplied with r511a, a.0). Embedding theU(1)
gauge group into anSU(2) gauge group results in a secon
zero mode with opposite isospin@corresponding to inverting
the sign in front of the vortex gauge potential~21!# and the
same chirality as the above zero mode. This second
mode is given by4

4Embedding theU(1) gauge group intoSU(2) gives the Pontrya-
gin index 2 for this configuration. This corresponds to the 2 o
served zero modes.
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c15c25c4[0,

c35„A4 4~r 1
2 1«2!~r 2

2 1«2! …21

3„A4 ~s1
2 1«2!~s2

2 1«2! …21.

The probability density of the zero modes is peaked at
four vortex intersection points and at the vortex sheets,
Fig. 2.

IV. CENTER VORTICES AND DIRAC EQUATION ON THE
2-TORUS

In this chapter we consider zero modes of the Dirac
erator in the background of Abelian gauge potentials rep
senting Dirac strings and center vortices on the torusT2.
There is a variety of reasons for studyingT2 in addition to
R2: first, T2 allows to use the Atiyah-Singer index theore
in a stringent fashion and allows for normalizable spinors
the background of integer flux. Second, from a physical po
of view one would want the mechanism of chiral symme
breaking to depend on local quantities rather than on glo
characteristics like boundary conditions imposed from
manifold. However, individual solutions of differential equ
tions may depend strongly on the boundary conditions. S
the envisaged mechanism of chiral symmetry breaking c
tains a truncation to a subset of modes of the Dirac opera
it is not a priori clear that the mechanism is indeed indepe
dent of the boundary conditions. Therefore the propo
mechanism has to be checked for different topologies of
space-time manifold. Third, the torus simulates a perio
arrangement of vortices. This is much closer to a percola
vortex cluster than a single vortex inR2. It will turn out that
the zero modes are again localized at the position of
vortex, thus strengthening the point of view that the ze
modes are indeed influenced by local properties of the ga
potential only. Finally, the torus is the space-time manifo
that is also used in lattice calculations.

At this point it should be mentioned that zero modes
-

FIG. 2. Probability density of the zero mode in the backgrou
of four intersecting vortex sheets is shown in the subspacex45x2

50 for a5b51 and«50.01.
4-5
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REINHARDT, SCHRÖDER, TOK, AND ZHUKOVSKY PHYSICAL REVIEW D 66, 085004 ~2002!
the Dirac operator in the background of ideal vortices on
torus are also relevant to find instantons on a~dual! torus by
the Nahm transformation@23,24#.

A. Periodicity properties of the gauge potential on the torus

We first consider flat vortices so that we can restrict o
selves to a two-torus where the vortices appear as pier
points. Instead of working on the compact torus we can w
on its covering manifold — onT̃25R2[C. But in this case
we have to demand that physical, i.e., gauge invariant,
servables are periodic. This implies that the gauge poten
has to be periodic up to gauge transformations. We cho
the two-torus to have circumferences 1 andt. Then the
gauge potentialA has to satisfy ‘‘quasiperiodicity’’ condi-
tions

A~z11!5AUx(z)~z!, A~z1 i t!5AUy(z)~z!, ~29!

where Am
U5U21AmU1U21]mU is the gauge transform o

A. The transition functionsUx ,Uy have to satisfy the cocycle
condition @21#

Ux~z!Uy~z11!5Uy~z!Ux~z1 i t!. ~30!

We can always chooseUx51 andUy independent ofy. This
implies periodicity ofA(z) in x direction. Furthermore,Uy
as function ofx defines a mapping fromS1 into U(1). Such
mappings fall into homotopy classesp1„U(1)…5p1(S1)
which are characterized by a winding numbern. A simple
calculation shows that this winding number is related to
magnetic fluxF through the torus

F52n, ~31!

reflecting the quantization of the magnetic flux through
torus.

B. Dirac string on the torus

Before we write down the gauge potential of center v
tices on the torus let us consider the gauge potential o
single Dirac string. The reason is that a single center vo
does not exist on a torus while a single Dirac string does

On the two-torus the gauge potential of a singular po
like object can be expressed by means of the theta funct

u~z,i t!5 (
nPZ

e2ptn212p inz, tPR1 ~32!

which are analytic inz and obey the periodicity properties

u~z11,i t!5u~z,i t!,
~33!

u~z1 i t,i t!5ept22p izu~z,i t!.

The only zeros of this function are at the points@22#

z5~m11/2!1~n11/2!i t, m,nPZ. ~34!

For subsequent consideration let us also introduce the
valued function@23,24#
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f0~z,z0!5
1

2
log„ut~z,z0!ut~z,z0!…,

~35!
ut~z,z0!ªu~z11/211/2i t2z0 ,i t!,

which ~up to a factor of 2p) represents a~nonperiodic!
Green’s function of the Laplacian on the two-torus.5 By Tay-
lor expandingut(z,z0) around its zero atz5z0 one finds that
the Green’s functionf0(z,z0) behaves nearz0 as loguz2z0u.
By means of this Green’s function the gauge potential o
Dirac string on the two-torus can be expressed as

Ax52 i ]yf0 , Ay5 i ]xf0 . ~36!

Using the same notation as in Eq.~2!

Azª1/2~Ax2 iAy!, Ax52iI~Az!,
~37!

Ay52iR~Az!,

we obtain

Az5
1

2
~2 i ]yf01]xf0!5]zf05

1

2

]zut~z,z0!

ut~z,z0!
, ~38!

where we used thatut(z,z0) is an analytic function ofz and
ūt(z,z0) is an antianalytic function, i.e., it does not depe
on z. The periodicity properties ofAz , Ax andAy can simply
be derived using Eq.~33!

Az~z11!5Az~z!,
~39!

Az~z1 i t!52p i 1Az~z!,

Ay~z11!5Ay~z1 i t!5Ay~z!, ~40!

Ax~z11!5Ax~z!,
~41!

Ax~z1 i t!522p i 1Ax~z!.

This means that the gauge potential satisfies Eq.~29! with
Ux(x,y)51 andUy(x,y)5exp(22pix)1. Furthermore, com-
puting explicitly the flux going through the torus, we obta
~using Stokes theorem!

F5
1

2p i S E(0,0)

(1,0)

Axdx1E
(1,0)

(1,t)

Aydy

1E
(1,t)

(0,t)

Axdx1E
(0,t)

(0,0)

AydyD
5

1

2p i S E0

1

@Ax~x,0!2Ax~x,t!#dx1E
0

t

@Ay~1,y!

2Ay~0,y!#dyD
51, ~42!

5On the torus there is no periodic Green’s function of the Lapl
ian.
4-6
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which is consistent with Eq.~31!. The Dirac string is located
at the point where ut(z,z0)50, i.e., at z5z01m
1 int,m,nPZ. The field strength of the Dirac string con
figuration vanishes at points whereut(z,z0)Þ0, because

Fxy5]xAy2]yAx5 i ~]x
21]y

2!f

5R~4] z̄]zf!52R] z̄„]zut~z,z0!/ut~z,z0!…

50. ~43!

Here we used again thatu(z,z0) is an analytic function, i.e.
it is independent ofz̄. On the other hand, the flux through th
torus is 1, cf. Eq.~42!, from which we conclude that we hav
a Dirac string~which is represented by a point inD52) at
the zero of the functionut(z,z0), i.e., atz5z01m1nit.

The Dirac string can also be written as a pure gauge. If
define theU(1) gauge function

g~z!5
ut~z,z0!

uut~z,z0!u
5Aut~z,z0!

ut~z,z0!
PU~1!, ~44!

which is singular at the zeros ofut(z,z0), the gauge poten
tial

Am5g21]mg ~45!

becomes

Az5
1

2
~Ax2 iAy!

5g21]zg

5Aut~z,z0!

ut~z,z0!
]zAut~z,z0!

ut~z,z0!
~46!

5
1

2

]zut~z,z0!

ut~z,z0!
, ~47!

which agrees with Eq.~38!. The periodicity properties ofg
are as follows:

g~z11!5g~z!,
~48!

g~z1 i t!52e2p i [(z2z0)1( z̄2 z̄0)]g~z!.

Since the gauge potential of the Dirac string is a pure ga
we can simply write down the zero modes of the correspo
ing Dirac operator. The zero mode is nothing but the ga
transformation of a constant Dirac field.

In the following we will consider only smeared out vort
ces on the torus. This way we avoid the discussion of bou
ary conditions of the spinor field at the position of the s
gularity of an ideal vortex. This discussion would involve t
problem of self-adjoint extension of the naive Dirac ope
tor; see e.g.@16,17,25#.
08500
e

e
-
e
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-

The gauge potential of a smeared out Dirac string at
point z0 is given by Eq.~36! with the functionf0(z,z0)
replaced by

f~z,z0!5
1

2
log„ut

1~z,z0!ut
1~z,z0!

1ut
2~z,z0!ut

2~z,z0!…, ~49!

ut
6~z,z0!5uS z1

1

2
1

i

2
t2z06«,i t D ,

~50!
«PR1 ,

i.e., by

Az51/2~Ax2 iAy!5]zf~z,zk! ~51!

5
1

2

ut
1~z,zk!]zut

1~z,zk!1ut
2~z,zk!]zut

2~z,zk!

ut
1~z,zk!ut

1~z,zk!1ut
2~z,zk!ut

2~z,zk!
.

~52!

By Taylor expanding aroundzk we obtain the behavior of the
gauge potential for small distancesr from the centerz0 of the
Dirac string:

Ax52y
i

~r 21«2!
, Ay5x

i

~r 21«2!
. ~53!

This gauge potential indeed represents a smeared out D
string. In the limit«→0 A becomes the gauge potential of a
ideal Dirac string@15# on the torus.

C. Fermionic zero modes of center vortices on the torus

A center vortex living in the Cartan subalgebra can
represented by half the gauge potential of a Dirac stri
However, for a single center vortex it is not possible to rel
the gauge potential atz with the gauge potential atz1 i t by
a transition functionUy which is periodic inx. Instead we
need an even number of center vortices on the torus, in
cord with the quantization of magnetic flux through th
torus, cf. Eq.~31!. We consider the configuration, see Eq
~49!,~50!,

Az5
1

2
„]zf~z,z1!1]zf~z,z2!…

5
1

4
(
k51

2 ut
1~z,zk!]zut

1~z,zk!1ut
2~z,zk!]zut

2~z,zk!

ut
1~z,zk!ut

1~z,zk!1ut
2~z,zk!ut

2~z,zk!
,

~54!

which consists of two~smeared out! center vortices at the
pointsz1 andz2 and satisfies the periodicity properties~29!
with transition functions Ux51 and Uy5exp(22pix)1
5exp„2p i ( z̄1z)…1.
4-7



or

e

u

ty

s

ies.

ty

the

.

e-
d.
ity

ten-

ge
eri-

d

th

o-

on
ary
n

he-
e
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We are interested in thel50 eigenfunctions of the Dirac
operator in the background of these two vortices. In acc
with the boundary conditions to the gauge field~29! we im-
pose the boundary conditions

c~z11!5Ux~z!21c~z!5c~z!,
~55!

c~z1 i t!5Uy~z!21c~z!5ep i ( z̄1z)c~z!

to the Dirac spinorc. The Dirac eigenvalue equation for th
two spinor components reads

i ~2]z12Az!c25lc1 , ~56!

i ~2] z̄12Az̄!c15lc2 , ~57!

where Az̄51/2(Ax1 iAy)52Āz . Because of the simple
form of the two-vortex gauge potential~54! the zero modes
of the Dirac operator can be found explicitly. A short calc
lation yields

c15S )
k51

2

„ut
1~z,zk!ut

1~z,zk!

1ut
2~z,zk!ut

2~z,zk!…D 1/4

x1~z!, ~58!

c25S )
k51

2

„ut
1~z,zk!ut

1~z,zk!

1ut
2~z,zk!ut

2~z,zk!…D 21/4

x2~z!. ~59!

The analytic functionsx1(z) and x2(z) have to be chosen
such thatc1/2 are normalizable and satisfy the periodici
properties~55!. To renderc1/2 normalizable the functions
x1/2 must not have poles.6 Inserting Eqs.~59! and ~58! into
Eq. ~55! and using the periodicity properties~33! of the theta
function we arrive at

x1~z1 i t!5e„2pt12p i [z1( i /2)t2( i /2)I(z11z2)] …x1~z!,
~60!

x1~z11!5x1~z!,

x2~z1 i t!5e„pt22p i [z1( i /2)t2( i /2)I(z11z2)] …x2~z!,
~61!

x2~z11!5x2~z!.

If we require analyticity ofx2 on the whole torus then thi
function is fixed~up to a factor! by the periodicity properties
~61! to be the theta function

6A pole of x1/2 would yield a nonintegrable~logarithmically di-
vergent! singularity in the norm of the spinorc, because the pref
actors ofx1/2 in Eqs.~58!,~59! are nonzero on the whole torus, sinc
we only consider smeared out vortices.
08500
d

-

x2~z!5uS z1
i

2
t2

i

2
I~z11z2!,i t D . ~62!

This is proven in Appendix C. The functionc2, cf. Eq.~59!,
is obviously normalizable, because it has no singularit
The only zeros ofx2(z) are at the pointsz5 1

2 1( i /2)I(z1
1z2)1m1nit. On the other hand, the required periodici
properties forx1 ~60! show that there is no~nontrivial! func-
tion x1 which is analytic on the whole torus. The functionx1
has to have at least one pole. Such a solution is given by
inverse of a theta function

x1~z!51/uS z1
i

2
t2

i

2
I~z11z2!,i t D . ~63!

The poles of this function are at the pointsz5zmn5
1
2

1( i /2)I(z11z2)1m1nit,m,nPZ. Our considerations
show that there is only one normalizable zero mode~with
c1[0). If the componentc1 of the Dirac spinor is not iden-
tically zero then it would have a pole atz5zmn , because the
prefactor ofx1 in Eq. ~58! is nonzero on the whole torus
This pole would yield a logarithmic divergence.

In Appendix D multi-vortex configurations and the corr
sponding zero modes of the Dirac operator are presente

There is another interesting point related to the periodic
properties given by Eqs.~29!,~55!. Multiplying the transition
functionsUx andUy by constant phases, saye2 ia ande2 ib,
respectively, the center vortex and Dirac string gauge po
tials, Eqs.~54! and ~36!, still satisfy the periodicity proper-
ties with the new transition functionsŨx5e2 ia1 and Ũy
5e22p ix2 ib1. But these new periodicity properties chan
the zero modes of the Dirac operator by changing the p
odicity properties of the analytic functionsx1/2(z). The new
solution reads

x̃2~z!5e2 iazuS z1
i

2
t2

ia

2p
t2

i

2
I~z11z2!1

b

2p
,i t D .

~64!

The zeros of this function are at the pointsz5 1
2 1( i /2)I(z1

1z2)1( ia/2p)t2b/2p1m1nit, i.e., the zeros are shifte
by (iat2b)/2p compared to the original case, whereŨx

51 and Ũy5e22p ix1.
The change of the transition functions by multiplying wi

constant phasese2 ia ande2 ib is equivalent to introducing a
constant background gauge potentialAz5

1
2 (b/t1 ia) and

leaving the transition functions unchanged.
The above considerations have shown that for a tw

vortex gauge potential~smeared out vortices! we get exactly
one normalizable zero mode which has exactly one zero
the torus. The position of the zero depends on the imagin
parts (y coordinates! of the positions of the vortices and o
the periodicity properties of the gauge potential~or equiva-
lently on the presence of a constant background field! and of
the spinor field. Furthermore, the probability density of t
spinor field is peaked at the positions of the vortices.~See
Fig. 3.!
4-8
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V. FERMIONIC ZERO MODES FOR INTERSECTING
VORTICES ON THE 4-TORUS

As in the case of space-timeR4 the fermionic zero modes
for intersecting vortices onT4 can be explicitly written
down.

We consider four smeared out center vortex sheets c
sisting of two orthogonal pairs of parallel vortex sheets
tersecting in 4 points as in Sec. III. Introducing compl
variablesu and v, cf. Eq. ~25!, the complexified gauge po
tential Az can be chosen as

Az5]u„f~u,u1!1f~u,u2!…1]v„f~v,v1!1f~v,v2!…,

where the functionf(z,zk) is defined in Eq.~49!. As in the
case of the space-time manifoldR4 there is only one normal
izable zero mode given by

c15c25c3[0,

c45S )
k51

2

„ut
1~u,uk!ut

1~u,uk!

1ut
2~u,uk!ut

2~u,uk!…D 21/4

3S )
k51

2

„ut
1~v,vk!ut

1~v,vk!

1ut
2~v,vk!ut

2~v,vk!…D 21/4

x4~u,v !,

wherex4(u,v) is an analytic function ofu andv given by

FIG. 3. Probability density of the zero mode in the backgrou
of two center vortices onT2 for t51, «50.01, z150.25i and z2

50.75i .
08500
n-
-

x4~u,v !5uS u1
i

2
t2

i

2
I~u11u2!,i t D

3uS v1
i

2
t2

i

2
I~v11v2!,i t D . ~65!

The probability distribution of this zero mode in the plan
Ru5Rv50 for u15u250.25i , u25v250.75i is plotted in
Fig. 4.

VI. CONCLUDING REMARKS

In the present paper we have studied the properties
fermionic zero modes in a center vortex background fie
We have demonstrated that these zero modes are con
trated at the localization of the center vortices. In accord w
this the probability density of these zero modes is shar
peaked at the vortex intersection points which carry~local-
ized! topological charge 1/2. This result is consistent w
the localization of the fermionic zero modes in an instan
background field at the instanton center. In fact lattice cal
lations show a strong correlation between the topolog
charge density distribution and the distribution of the qua
condensatêq̄(x)q(x)&, the order parameter of chiral sym
metry breaking. Given the localization of the quark ze
modes at the localization of topological charge, we exp
the quark zero modes in the vortex background field to p
a crucial role for the spontaneous breaking of chiral symm
try in the vortex picture. This will be the subject of futur
investigations.
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APPENDIX A: CONVENTIONS

We choose the generators of the gauge group to be
Hermitian. Therefore the componentsAm of the gauge poten
tial are anti-Hermitian, e.g., purely imaginary for the gau
groupU(1). Themagnetic fluxF through a closed loopC is
defined by

F5
1

2p i RC
Amdxm ~A1!

and thus real valued.
The complex conjugate of the complex numberz is de-

noted byz̄. Furthermore,R(z) andI(z) denote the real and
imaginary part ofz, respectively.

We consider the Dirac equation in Euclidean space-tim
In D52 we choose the 232 Dirac matrices

g15S 0 1

1 0D , g25S 0 2 i

i 0 D ,

~A2!

g552 ig1g25S 1 0

0 21D .

In D54 we use the chiral representation for the Dirac m
trices:

g45S 0 i 1

2 i 1 0 D , g55S 1 0

0 21D ,

~A3!

g i5S 0 s i

s i 0 D , i 51,2,3,

where1 is the 232 unit matrix ands i are the~Hermitian!
Pauli matrices.

APPENDIX B: DIRAC ZERO MODES ON S2

We consider the Dirac operator on the sphereS2 with
radiusR. We use stereographic coordinatesx1/2 on S2 defined
by

yi5
2R2

R21x2
xi , i 51,2, y35

R22x2

R21x2
R,

~B1!
x25x1

21x2
2 ,

whereyW5(y1 ,y2 ,y3) is the vector inR3 of the correspond-
ing point of the embedded sphereS2 with radius R. The
metric onS2 in stereographic coordinates has the form
08500
.

e
Re

ti-

e.

-

ds25VR
2~dx1

21dx2
2!, ~B2!

where VR52R2/(R21x2). The Dirac operator Dˆ in these
coordinates is given by@26#

D̂5VR
23/2DVR

1/2, ~B3!

where D is the Dirac operator onR2. Therefore the zero
modesĉ of the Dirac operator onS2 are related to the zero
modesc of the Dirac operator onR2 by

ĉ5VR
21/2c. ~B4!

With z5x11 ix2 the zero mode of the Dirac operator in th
presence of two smeared out center vortices at the poinz
5a andz5b reads

c1[0,
~B5!

c25
Azz̄1R2

A4 ~z2a!~ z̄2ā!1«2 A4 ~z2b!~ z̄2b̄!1«2
.

This zero mode is normalizable with respect to the meas
on S2 which is given byVR

2dx1dx2.

APPENDIX C: UNIQUENESS OF x2 FROM PERIODICITY
PROPERTIES

The existence of an analytic function with the periodic
properties~61! is seen by choosing

x2~z!5uS z1
i

2
t2

i

2
I~z11z2!,i t D , ~C1!

cf. Eq.~33!. To show the uniqueness~up to a constant factor!

of x2 we assume that there is another analytic functionx̃2
satisfying Eq.~61!. Now consider the meromorphic functio
f (z)ªx̃2(z)/x2(z). This is an elliptic function with periods
1 andi t. But f (z) has only a single pole in the fundament
domain @0,R(z),1,0,I(z),t# at the zero of u„z
1(1/2)t2(1/2)I(z11z2),i t…. But an elliptic function has
to have at least two poles in the fundamental domain or i
a constant@27#. Hence, we infer thatf (z) is a constant and
x2(z) is ~up to a constant factor! given by Eq.~C1!.

APPENDIX D: MULTIVORTEX SOLUTION ON T2

Let us assume we have a number of thick vortices a
antivortices at the pointszk , k51, . . . ,m1 and zl , l 5m1

11, . . . ,m11m2, respectively, where the total numbe
m11m25m of vortices is even. The corresponding gau
potential reads
4-10
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Az5
1

4
]zS (

k51

m1

f~z,zk!2 (
l 5m111

m11m2

f~z,zl !D , ~D1!

where f(z,zk) is defined by Eq.~49!. The fermionic zero
modesc1/2(z) are given by

c15)
k51

m1

„ut
1~z,zk!ut

1~z,zk!

1ut
2~z,zk!ut

2~z,zk!…
1/4 )

l 5m111

m11m2

„ut
1~z,zl !ut

1~z,zl !

1ut
2~z,zl !ut

2~z,zl !…
21/4x1~z!,
. B

c

n,’

B

08500
c25)
k51

m1

„ut
1~z,zk!ut

1~z,zk!

1ut
2~z,zk!ut

2~z,zk!…
21/4 )

l 5m111

m11m2

„ut
1~z,zl !ut

1~z,zl !

1ut
2~z,zl !ut

2~z,zl !…
1/4x2~z!,

whereu6 is defined by Eq.~50!. The periodicity properties
of c1/2, cf. Eq. ~55!, define the periodicity properties of th
analytic functionsx1/2(z):
ith
x1~z1 i t!5e2„(Dm/2)[pt22p i (z1 i t/2)]2pI((k51
m1

zk2(
l 5m111
m

zl )…x1~z!, ~D2!

x1~z11!5x1~z!, ~D3!

x2~z1 i t!5e„(Dm/2)[pt22p i (z1 i t/2)]2pI((k51
m1

zk2(
l 5m111
m

zl )…x2~z!, ~D4!

x2~z11!5x2~z!, ~D5!

whereDm5m12m2 andm5m11m2. If Dm.0 we find a (Dm/2)-dimensional vector space of left-handed zero modesc2
with analytic functionsx2(z). In the caseDm,0 we find auDm/2u-dimensional vector space of right-handed zero modes w
analytic functionsx1(z). The functionsx1/2 are then given by products of theta functions. In the caseDm.0 we obtain

x2~z!5 )
j 51

Dm/2

u~z1 i t/22 z̃j ,i t!, ~D6!

where the complex numbersz̃j have to satisfy the conditions

RS (
j 51

Dm/2

z̃j D 50, IS (
j 51

Dm/2

z̃j D 5
1

2
IS (

k51

m1

zk2 (
l 5m111

m

zl D . ~D7!

The set of functionsx2 given by Eqs.~D6! and ~D7! forms an (Dm/2)-dimensional vector space.
.
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