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Quark zero modes in intersecting center vortex gauge fields
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The zero modes of the Dirac operator in the background of center vortex gauge field configurafidns in
andR* are examined. If the net flux iB=2 is larger than 1 we obtain normalizable zero modes which are
mainly localized at the vortices. ID =4 quasinormalizable zero modes exist for intersecting flat vortex sheets
with the Pontryagin index equal to 2. These zero modes are mainly localized at the vortex intersection points,
which carry a topological charge d:f%. To circumvent the problem of normalizability the space-time mani-
fold is chosen to be thécompact torus T? and T*, respectively. According to the index theorem there are
normalizable zero modes 6Ff if the net flux is nonzero. These zero modes are localized at the vortices. On
T zero modes exist for a nonvanishing Pontryagin index. A&%ithese zero modes are localized at the vortex
intersection points.
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[. INTRODUCTION modes of the individual instantons spread out in space and
form a continuum of quasizero modes which by the Banks-
There are two fundamental, principally nonperturbativeCasher relation give rise to a nonzero quark conderjate
phenomena of the strong interaction which should be ex!n fact, independent of the instanton picture lattice calcula-
plained by QCD: confinement and chiral symmetry breakinglions show a strong correlation between topological charge
Soon after the advent of QCD chiral symmetry breaking waglensity and the quark condensgt@,13. This correlation is
explained by assuming that the QCD vacuum contains afainly due to the zero modes which exist in topologically
ensemble of instantons and anti-instantfiis Lattice simu- ~ nontrivial gauge fields with nonvanishing Pontryagin index
lations have, however, shown that instantons cannot be rélue to the Atiyah-Singer index theorei4] and which are
sponsible for confinement since they account for only aboutocalized at topological charge.
ten percent of the string tensig@—4]. On the other hand, In center vortex field configurations topological charge is
recent lattice calculations have produced mounting evidencgoncentrated at the intersection points and other singular
that confinement is due to the condensation of center vortice0ints like twisting pointg15]. Near these singular points
in the Yang-Mills vacuuni5,6]. Since on the lattice the con- We expect localization of quark zero modes which could play
finement phase transition is observed to occur at the sanfesimilar role in the explanation of chiral symmetry breaking
temperaturg 7] at which chiral symmetry is restored, one in the vortex picture as they do in the instanton picture. In a
expects that chiral symmetry breaking and confinement arfirst attempt towards an understanding of chiral symmetry
triggered by the same mechanism. breaking in the vortex picture, in the present paper we study
Since instantons cannot explain confinement one wonder§€ quark zero modes in intersecting center vortex back-
whether center vortices are also capable of producing chirdiround fields. A more rigorous understanding of the mecha-
symmetry breaking in addition to confinement. Indeed, it haglism of chiral symmetry breaking in the vortex picture is
been shown that in a Yang-Mills ensemble devoid of centePresently under investigation.
vortices the relevant order parameter, the quark condensate, We examine zero modes of the Dirac operator in vortex
Vanishes[G]_ This doeS, however7 not yet mean that Centerbackground-s in two and.four dimensions for differeI.’It Euclid'
vortices produce chiral symmetry breaking in the QCDe€an space-time topologies. In Secs. Il and Il fermionic zero
vacuum, since the field configurations which produce itmodes in the background of vortices itf and intersecting
could be tied or attached to center vortices and simultaflat vortices inR* are studied and their relation to solutions
neously removed with the latter. It is therefore still an openfound by other authorl6,17) is shortly discussed. In Secs.
question whether center vortices produce chiral symmetryV and V this analysis is repeated for space-time giveriby
breaking and what the underlying mechanism behind this isand T*, respectively.
In order to get an idea how chiral symmetry breaking
cquld pe prodgced by center vortices let us first recall how.it Il. FERMIONIC ZERO MODES IN NONINTERSECTING
arises in the instanton picture of the QCD vacuum. In this CENTER VORTEX EIELDS
picture the zero modes of quarks in the instanton background
play a crucial role. These zero modes occur due to the topo- In D=4 center vortices represent closed two-dimensional
logical charge of the instantons and are localized near thefiux sheets. We are interested here in the quark modes in the
topological charge densify8—10]. background of such vortex sheets. Locally a center vortex
In an instanton—anti-instanton ensemble the localized zersheet represents a two-dimensional plane. For simplicity we
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will consider in the following flat(planajy vortex sheets. In Next we consider the Dirac field in the background of a
this case we have translational invariance parallel to the vorstraight plane center vortex. Its gauge potential reads

tex sheets and the solution of the Dirac equation reduces to

the two-dimensional problem in the plane defined by the 2 f(r?) i f(r?) i

directions perpendicular to the vortex sheet. In this plane the X _yr_z 2 y_Xr_z 2’
vortex appears as intersection point. We will first study the
Dirac equation in this plane, i.e., D=2.

We will consider the zero modes of the Dirac operator in
the background of Abelian gauge potentials representingjere we introduced the profile functidifr2) which satisfies
Dirac strings and center vortices. We can consider thesg(o)zo and f(r2)—1 asr—w=. The complexified gauge
gauge potentials as living in the Cartan subalgebra of dotential is then given by
SU(2) gauge group. Having this in mind we say that a gauge
potential describes a center vortex or Dirac string at a point 1 f(r2) f(r2) —

Z,, if the Wilson loop around, is —1 or +1, respectively. AZ:=§(AX—iAy)= 5 (—iy+x)= 5 (2).
Equivalently, the magnetic flux carried by a center vortex or ar ar
a Dirac string is given by® .pie/=(mM+1/2), meZ or
®pirac=M, Me Z, respectively.

The solution of the Dirac equation in two dimensions can xf(x')
be related to the theory of functions of a complex variable. H(X) ;zf dx’ )
We introduce the complex variabkeby 1 2x’'

(6)

r’=x>+y’=zz

Introducing the function

) — ] 1 _ the gauge potentiah, can simply be written as
z=x+iy, z=x-—ly, 5z:§(‘9x_'5y):

1 _
(1) AZ=§0Z¢(ZZ). 9)

1
(Ezz(’?x_l' [ [7y)
Inserting the gauge potential into the Dirac equation we ob-

and a complex notation for the gauge potential. We défine t@in the differential equations

. 1 —
AZ::%(AX—iAy), AZ::%(AxHAy):—Kz, 2 ‘92+§‘92‘/’(ZZ))‘”2:}“”1’ (10
in . @ 1
A= 21IRs, Ay=2IRA,, Zi(@—z(w(zz))wfwz. (1)

whereJA, is the imaginary part anfRA, is the real part of
A,. The Dirac equatioh We are mainly interested in the zero modes 0. Fur-
thermore, let us first consider an idealized vortex with

. Uz} f(r?)=1 [this function obviously does not have the proper-
1Y uBuh =Ny, w_(,r/,z)’ Du=dutAu ®) ties of a profile function, becaus&0)=1+0]. For f(r?)
o =1 the functiong becomesp(r?) = %log(r?), which is, up to
in spinor components reads a factor, the Green'’s function of the Laplace operator in two
. B dimensions. Fon=0 and ¢(r?) = 3log(r?) the differential
210+ A) P2 =Niy, 4) equationg10),(11) can again be easily solved
Ao+ APy = Moo © =2, 12

The most simple case is the free Dirac equation, Ae., _
=0. Zero modesX=0) of the free Dirac equation are ob- vo=(Vz22) xa(2), (13
viously given by analytic functiong, and antianalytic func-
tions ¢,. A normalizable zero mode has to go to zero atwherey; andy, are analytic functions of and y,(z) is the
infinity. But every (ant)analytic function without singulari- complex conjugate of,(z). Choosing, e.g.x;=1 we get
ties which goes to zero at infinity has to be zero everywherey, = Jr, i.e., a real-valued function of and y. The zero
This means there are ramoothzero modes. In principle the modes(12),(13) of the Dirac operator in the background of a
zero mode may have singularities, in this case poles. But aingle center vortex are not normalizable. This is because
pole in the zero mode is a nonintegrable singularity and th@ormalizable analytic functiong,, have to approach zero at
zero mode would be not normalizable. Hence, there are nimfinity, and therefore, have to be identically zero or have a
normalizable zero modes for the free Dirac equation. pole which yields a nonintegrable singularity as was already
discussed above.
This result is in accord with the index theorem fd(1)
'Our conventions are summarized in Appendix A. gauge fields irD=2. The theorem states that the difference
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between the numbers of right- and left-handed fermionic
zero modes, saw, in the background of & (1) gauge po-
tential onR? is related to the total flu® = (1/27i) [ y2F by
[18]

n=[d], (14
. . . 3 &= =
where[x] is the largest integer smaller thare R (i.e.,[1] L= ; S
) 5552 { V2 LLLHL 75
=0). In the case of a single center vortexldhthe total flux === ] SRR
22275 Z (7 s AT

is equal to 1/2, i.e., the number of left-handed zero modes is ;
equal to the number of right-handed zero modes the
present case there are no normalizable left- or right-hande:
zero modep There exists an extensive literature about the
Dirac operator in the background of Abelian gauge fields in
two dimensions. A few remarks about some papers concern
ing also eigenmodes of such Dirac operators are in ordel
here. In[16] the authors considered zero modes of the Dirac
operator in the background of a flux tube on a disk with finite . : .

radius and APS boundary conditions. In this case the imdex of EAIIS'Clén?é:’tﬁwig:?r'g't_yZOf[;hei zEe r‘; (n;cg);j;r; t&%)l]aigljground
of the Dirac operator receives contributions from the bound—=O 0l a=1 andb=—1 B as. €
ary of the space-time manifofdin [17] self-adjoint exten- o '

sions of the Dirac operator in the background of a singular of. Eqs.(16),(17), change to ¢/15). This means that
magnetic vortex have been examined. Due to the boundar, lr/2,>2. we 'get o total fluxd = 1 anl(/j a normalizable zero
conditions used in these papers the encountered eigenmo %ge with chirality—1:

differ from the ones found here. In our opinion it is not clear '
which boundary conditions are the correct ones in a physical W =A%+ ed)r ¥, =0. (18)
context. Therefore we will consider a smooth gauge potential 2 ’ !

representing a smeared out vortex. This way we get rid of thghe probability density of this zero mode has a maximum at
singularity of the vortex field and avoid the discussion ofy=q i.e., at the location of the vortex.

self-adjoint extensions of the Dirac operator at the position  Sjnce the differential equatiorf40),(11) are of first order

of the vortex. We choose a profile functidiir?)=r?/(z*>  type it is also possible to explicitly write down zero modes

+r?), e R, i.e., we work with the gauge potential for multi-vortex background fields, because the multi-vortex
gauge potential can be written as the sum over the gauge
y i X i potentials of several simple vortices. The solution of the cor-
AX:_—_v A =, (15) . ;- . . . . .
(24 g2 2 YT 2122 responding multi-vortex differential equation is then simply

the product of the solutions to the several one-vortex differ-
ential equations. As an example take two vortices, one at

For this profile functionf we obtain ¢(r?) = 3log(r’+e?). :
'S _profiie unct W In$(r*)=zlog(r"+ ) =a and a second a&=Db. The solutions/,, then read

For A=0 the differential equation$10) and (11) can be
solved also in this case:

pi=Q(z—a)(z—a) +&?

_(4[2 2\ 7 —
Y= (V7 e) xa(2), (16 xVz-b)Eb+eH @, 19
¢2:(4\/r2+82)_1’)~(2(2)- 17 z,/;z:(‘l\/(z—a)(;—g)+82
For x1,=1 these solutions are obviously not normalizable. x4(z=b)(z=b)+£2) L xx(2). (20)
With the same arguments as before we conclude that there
are no normalizable zero modes. There is one quasinormalizaBleero mode: (Q),). This

As discussed already above in connection with the indexero mode is obviously localized at the centers of the vorti-
theorem the asymptotic behavior of the zero mode of thees(atz=a andz=b) and on the line between them, cf. Fig.
Dirac operator changes if we change the magnitude of thé. A similar calculation on the compact sphese yields a
magnetic flux. Multiplying the gauge potentialin Eq. (15  normalizable zero mode, cf. Appendix B. According to the
by a factorp e R* the flux® becomew/2 and the solutions index theorem we obtain normalizable zero modes as soon as

the net flux of the vortices exceeds(ile., two units of the
flux of a center vortex
2We consider in the present paper space-time manifolds with the
topology RN, SN or TN. The latter two have no boundary whereas
on RN the gauge potential vanishes at infinity. Therefore in our case 3Strictly speaking we have to increase the magnetic flux infinitesi-
there are no boundary contributions to the index. mally to get a normalizable zero mode.
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Ill. FERMIONIC ZERO MODES OF THE DIRAC f(r2)=r2/(r2+g?2). (22)
OPERATOR FOR INTERSECTING CENTER VORTEX
FIELDS The field strengttF ,, of the above gauge potential is given

So far we have considered the fermionic modes in theby

background of parallel nonintersecting flat center vortex
sheets. Because of the translational invariance parallel to the i
vortex sheets it was sufficient to study the Dirac operator in Fio= 2
the plane perpendicular to the vortex sheet, where the vorti-
ces appear as intersection points. In the confined phase the
center vortices percolafg9]. The vortices then have arbi- i
trary directions and also intersect. In intersection points all Fau= >
four space directions participate and, consequently to study
the fermionic modes in the background of intersecting vorti-
ces we have to consider the full 4-dimensional Dirac opera
tor.

In the following we consider four vortex sheets consisting F=(and + ,3;3 ), (23
of two orthogonal pairs of parallel vortex sheets. One vortex . pro R
pair is given by two planes parallel to the—x, plane lo- \yhere 72, and ;ay are the t Hooft symbols and=F,
cated ax,=0 andx;=*a. The other vortex pair consists of p_ é‘: Frp FM34, one finds that in the limit—0 the
two planes parallel to the;—x, plane located a,=0 and  fie|q strength is self-duald=0) at the intersection points.
x;==b. The four vortices intersect in four points given by T4 getermine the zero modes of the Dirac operator in the

X3=%;=0, xz=*a, x;=*Db. Each of the intersection packground of the considered intersecting vortices we intro-
points carries topological charge1/2. If we choose the §ce complex variables andv [20]

orientation of the flux of the two vortex sheets to be equal we
find a total Pontryagin index of==*2, otherwise(if the
fluxes are antiparallelly orientg¢dhe Pontryagin index van-
ishes. For definiteness we choose the direction of the flux in
parallel vortex pairs to be the equal. Then the gauge potentigﬂ
can be chosen as

2&° 2&?

+
(s +&%)? (52 +&?)?

2e° 2e2
2 + 2 )
(r++82)2 (t’_+82)2

Splitting the field strength intéanti-)self-dual components

U=X3+iX4, U=X1+iX2 (24)

nd the corresponding complex derivativigsand d,,

1 . 1 .
f(si) f(SZ,) i ﬁuzz((?x?._l(?x4)' (7U=§((9X1—I(9X2) (25)
A1=| =Xz 2 —Xz Z |2
* - We also introduce two complexified gauge potentils
2 2.1, andA, as in Eq(7). These gauge potentials can be written as
f(S+) f(S_) |
Az=| (X +b)—5—+ (X1 =b)——15, 1 1
i St S- Ay=5ub, A=50,0, (26)
f(r2)  f(r?)]i
As=| —Xg———X4— |5, where
: ‘2 2 |2
) )1 $=b(u,u,v,v)
f(re) f(re)|i _
Ay=|(Xzta)——+(X3—a) 2 |2 =log[((u—a)(u—a)+e?)
+ —
X ((u+a)(u+a)+e?)((v—b)(v—b)+e?
where _
X ((v+b)(v+b)+e?)]. (27
r2=(xg*a)’+x2, s2=(x;=h)%+x3, . _
(21) The Dirac operator in the background of the gauge poten-
a,beR™, tial (21) reads
) ) 0 O Dl+|D2 |D4_ D3 lﬂz
7Bu¥=1 ip,4D, D,-iD, 0 0 s |’ 28
D;+iD, —iD,—Dj 0 0 a
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where D,=4d,+A,, is the covariant derivative. For the con-
sidered vortex gauge potentiél) the eigenvalue equation
(3) for the Dirac operator reduces to four coupled differential
equations:

X
R

S

a1
4 i
J
. 'l','/

|
NS
Y
c
|
N |
Y
fe
&
5
i '——:——"——“_’
ey

4
T
I
0.'

0
l'.

/

) 1
U_E vd’

Npg=I FIG. 2. Probability density of the zero mode in the background

of four intersecting vortex sheets is shown in the subspaeex,
which can be easily solved for=0, since in this case the —9 fora=b=1 ande=0.01.

upper and lower components of the Dirac spinor decouple.
The A=0 solutions read 1= o= P4=0,

¢1:(‘{/(ri+82)(r2_+82) )71 ‘//3:({/4(r2++82)(r2—+82) )71

X((s% +e2) (2 +&2)) L.

x3/(s% +&2)(s2 +¢2) x1(u,v),

The probability density of the zero modes is peaked at the
Py =3(r2 +£2)(r2 +?) four vortex intersection points and at the vortex sheets, cf.
Fig. 2.

4 ~ _
X (st +e?)(s2+5%)) Txa(u,0),
IV. CENTER VORTICES AND DIRAC EQUATION ON THE
412 2 -
Ya=(ri+e?)(r? +6?) 2-TORUS
In this chapter we consider zero modes of the Dirac op-

erator in the background of Abelian gauge potentials repre-
senting Dirac strings and center vortices on the tdfés

x(s2 +e2)(s2 +¢2) xa(u,v),

Pa=Qri+ed)(r2+e?)) There is a variety of reasons for studyifig in addition to
g —— R?: first, T? allows to use the Atiyah-Singer index theorem
X (5 +e)(s2 +e%)) txaluv). in a stringent fashion and allows for normalizable spinors in

the background of integer flux. Second, from a physical point
The analytic functiong; have to be chosen constant to avoid of view one would want the mechanism of chiral symmetry
nonintegrable singularities as was discussed for Dhe2 breaking to depend on local quantities rather than on global
case. The only spinor component going to zero at infinity ischaracteristics like boundary conditions imposed from the
4. Therefore, only the spinor with nonvanishing componentmanifold. However, individual solutions of differential equa-
¥, (and all other components zérgields a normalizable tions may depend strongly on the boundary conditions. So if
zero mode(normalizable up to a logarithmic divergence the envisaged mechanism of chiral symmetry breaking con-
from the integratiorr . — ands. —c — but these diver- tains a truncation to a subset of modes of the Dirac operator,
gences become integrable if the vortex gauge potential i is nota priori clear that the mechanism is indeed indepen-
multiplied with p=1+a, «>0). Embedding theU(1) dent of the boundary conditions. Therefore the proposed
gauge group into aBU(2) gauge group results in a second mechanism has to be checked for different topologies of the
zero mode with opposite isospiinorresponding to inverting space-time manifold. Third, the torus simulates a periodic
the sign in front of the vortex gauge potenti{atl)] and the arrangement of vortices. This is much closer to a percolated
same chirality as the above zero mode. This second zenwrtex cluster than a single vortex RP. 1t will turn out that
mode is given b the zero modes are again localized at the position of the

vortex, thus strengthening the point of view that the zero

modes are indeed influenced by local properties of the gauge

4Embedding theéJ (1) gauge group int& U(2) gives the Pontrya-  potential only. Finally, the torus is the space-time manifold

gin index 2 for this configuration. This corresponds to the 2 ob-that is also used in lattice calculations.
served zero modes. At this point it should be mentioned that zero modes of
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the Dirac operator in the background of ideal vortices on the 1 -
torus are also relevant to find instantons oftlaa)) torus by bo(2,20) = 5109(0:(2,20) 6:(2,20)),

the Nahm transformatiof23,24. (35
0.2,2p):==0(z+ 112+ 112 7—z4,i 7),
A. Periodicity properties of the gauge potential on the torus

We first consider flat vortices so that we can restrict our-WhICh (up to a factor of 2r) represents dnonperiodi

selves to a two-torus where the vortices appear as iercinGreen’S function of the Laplacian on the two-toﬁBy Tay-
PP P Br expandingd.(z,z,) around its zero at= z, one finds that

points. Instead of working on the compact torus we can wor he Green’s functions,(z,2,) behaves near, as lodz—z|
. . . o o L _ olZ,Zg _ 0 2
on its covering manifold — ofi*=R*=C. But in this case By means of this Green’s function the gauge potential of a

we have to dema_nd_that physica_ll, i.e., gauge invariant, O_bDirac string on the two-torus can be expressed as
servables are periodic. This implies that the gauge potential

has to be periodic up to gauge transformations. We choose Ay=—1dydg, Ay=idxy. (36)
the two-torus to have circumferences 1 and Then the
gauge potentiaA has to satisfy “quasiperiodicity” condi-

tions A=112A—TAy), A=2iT(A),

A(z+1)=A"9(2), A(z+in)=AYI(2), (29 Ay=2iR(A,), =

Using the same notation as in E®)

where A)=U"'A,U+U"19,U is the gauge transform of e optain
A. The transition functions, ,U, have to satisfy the cocycle
condition[21] 19,60.(2,20)

E 67’(2120) , (38)

1
AZZE( —i ay¢0+ dxho) = d,po=
Ux(2)Uy(z+1)=U(2)U,(z+i7). (30
where we used thal,(z,zy) is an analytic function of and
0.(z,zy) is an antianalytic function, i.e., it does not depend
onz The periodicity properties &, A, andA, can simply
be derived using Eq.33)

We can always choodg,=1 andU, independent of. This
implies periodicity ofA(z) in x direction. FurthermoreyJ,
as function ofx defines a mapping fror8! into U(1). Such
mappings fall into homotopy classes;(U(1))= (S

which are characterized by a winding numbrerA simple A(z+1)=A,2),
calculation shows that this winding number is related to the (39)
magnetic flux® through the torus A z+iT)=—mi+A,2),

®=—n, (3D Ayz+1)=Ay(z+iT)=A(2), (40
reflecting the quantization of the magnetic flux through the Alz+1)=A(2),
torus. (41)

Alz+in)=—2mi+A(2).

B. Dirac string on the torus This means that the gauge potential satisfies (26) with

Before we write down the gauge potential of center vor-U,(x,y) =1 andU,(x,y) = exp(=2mix)l. Furthermore, com-
tices on the torus let us consider the gauge potential of auting explicitly the flux going through the torus, we obtain
single Dirac string. The reason is that a single center vortexusing Stokes theorem
does not exist on a torus while a single Dirac string does.

On the two-torus the gauge potential of a singular point- 1 (1,0) (17
like object can be expressed by means of the theta functions O = omi f Ade+J Aydy
(0,0) (1,0)
. ) i (0,7) (0,0)
I Zirn)= e~ 7 +27T|nZ, R 32
(zin=2, e 32 + L AdxE | Ay

which are analytic irz and obey the periodicity properties

* Ul[A (X,00— A (X )]dx+fT[A(1 )
= - " , —A, T ]
0(z+1i1)=0(z,i1), 27\ Jo oY

. (33
O(z+ir,iT)=e"""2mM2g(z,iT). —Ay(O,y)]dy)
The only zeros of this function are at the poih?] 1 42
z=(m+1/2)+(n+1/2)i7, mnel. (39

For subsequent consideration let us also introduce the real->0On the torus there is no periodic Green’s function of the Laplac-
valued function 23,24 ian.
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which is consistent with Eq:31). The Dirac string is located
at the point where 6(z,29)=0, i.e., at z=zy+m
+inT,mneZ. The field strength of the Dirac string con-
figuration vanishes at points wheée(z,z,) #0, because

Fry= Ay = A= (d5+37) b
= 9‘{(4(9;(?Z¢) = 29%‘?;((9207(2'20)/ 07’(2120))

=0. (43

Here we used again th&{z,zy) is an analytic function, i.e.,
it is independent of. On the other hand, the flux through the
torus is 1, cf. Eq(42), from which we conclude that we have

a Dirac string(which is represented by a point d=2) at
the zero of the functio (z,zp), i.e., atz=zg+m+nir.

PHYSICAL REVIEW D 66, 085004 (2002
The gauge potential of a smeared out Dirac string at the

point z, is given by Eq.(36) with the function ¢(z,z)
replaced by

1 -
¢(Z!ZO) = E |Og(0:_r (Z,Zo) aj(ZvZO)

The Dirac string can also be written as a pure gauge. If we

define theU(1) gauge function

07(2120) .
10(2,20)]

07(2720)

9(2)= eU(1), (44)

GT(Z!ZO)

which is singular at the zeros @f.(z,zy), the gauge poten-
tial

A,=97%9,0 (45)
becomes
1 -
A,= E(Ax_ iAy)
=9 19,9
0.(2,29) 0.(2,29)
= d, (46)
aT(Z’ZO) 07(2120)
1d,0(z,2
_ z T( 0) (47)

_E 07’(2120) ,

which agrees with Eq(38). The periodicity properties af
are as follows:

9(z+1)=9(2),
o (48)
g(Z+iT): _e*ﬂ'i[(Z*ZO)Jr(Z*ZO)]g(Z).

Since the gauge potential of the Dirac string is a pure gauge
we can simply write down the zero modes of the correspond-
ing Dirac operator. The zero mode is nothing but the gauge

transformation of a constant Dirac field.
In the following we will consider only smeared out vorti-

+0,(2,20) 0, (2,20)), (49)
. 1 i _
0:(2,29)=0| z+ >t 5T ZteiT),
(50
eelR,,
i.e., by

A= U2 A—IA) = 3,0(2,2) (51)

1 67(2,209,07 (2,20 + 6, (2,2) 9,0, (2,2)

2 052,200 (220 + 0. (2200 (2.2)
(52)

By Taylor expanding aroung|, we obtain the behavior of the
gauge potential for small distanceffom the center, of the
Dirac string:

_y—(r2+82)’ Ay—x—(r2+82). (53

X

This gauge potential indeed represents a smeared out Dirac
string. In the limite—0 A becomes the gauge potential of an
ideal Dirac string 15] on the torus.

C. Fermionic zero modes of center vortices on the torus

A center vortex living in the Cartan subalgebra can be
represented by half the gauge potential of a Dirac string.
However, for a single center vortex it is not possible to relate
the gauge potential awith the gauge potential at+i 7 by
a transition functionJ, which is periodic inx. Instead we
need an even number of center vortices on the torus, in ac-
cord with the quantization of magnetic flux through the
torus, cf. Eq.(31). We consider the configuration, see Egs.
(49),(50),

1
AZ: E(az¢(zizl) + 0Z¢(Z!ZZ))

i 07(2,20,07 (2,20 + 05 (2,20,0; (2,2)

k=1 07(2,2) 05 (z,2)+ 0, (2,2 0; (2,2))

1
4
(54)

ces on the torus. This way we avoid the discussion of bound- ) )
ary conditions of the spinor field at the position of the sin-Which consists of twasmeared outcenter vortices at the

gularity of an ideal vortex. This discussion would involve the POINtsz; andz, and satisfies the periodicity properti€z)
problem of self-adjoint extension of the naive Dirac opera-With transition functions U,=1 and Uy=exp(-2mix)l
tor; see e.g[16,17,25. =exp(— mi(z+2))L.
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We are interested in the=0 eigenfunctions of the Dirac i i _
operator in the background of these two vortices. In accord X2(2)=0| 2+ 57— Sz 25) 17 ). (62
with the boundary conditions to the gauge fi¢&9) we im-

pose the boundary conditions This is proven in Appendix C. The functiaf,, cf. Eq.(59),

_ -1 _ is obviously normalizable, because it has no singularities.
Wzt D=2 9(2)=y(2), (55) The only zeros ofy,(z) are at the pointg=3+(i/2)J3(z,
o 1 _ iz 2) +2,)+m+nir. On the other hand, the required periodicity
P(ztin=Uy(2) "¥(2)=e ¥(2) properties fory; (60) show that there is ntontrivial) func-
tion x4 which is analytic on the whole torus. The functign
has to have at least one pole. Such a solution is given by the
inverse of a theta function

to the Dirac spinory. The Dirac eigenvalue equation for the
two spinor components reads

1(29,+2A) =N, (56) i i
=1/ —7r—=J ATl. 63
(2074 280 Y= Ny, 57 x1(2) 0| z+ 57 2J(zl+zz) iT (63

where A;=1/2(A+iA,)=—A,. Because of the simple The poles of this function are at the POINES= Zyy =3
form of the two-vortex gauge potentiébd) the zero modes +(1/2)3(z1+2;) +m+nirmneZ  Our considerations

of the Dirac operator can be found explicitly. A short calcu-ShoWw that there is only one normalizable zero moaéh
lation yields 1=0). If the component, of the Dirac spinor is not iden-

tically zero then it would have a pole at z,,,, because the

2 prefactor ofy; in Eq. (58) is nonzero on the whole torus.
pi=| 1 (0] (z.206} (2,2 This pole would yield a logarithmic divergence.
k=1 In Appendix D multi-vortex configurations and the corre-
1/4 sponding zero modes of the Dirac operator are presented.
+ 0;(szk)M) ¥1(2), (59) Ther_e is a_mother interesting point r_ela_ted to the pe_ri_odicity
properties given by Eq$29),(55). Multiplying the transition
functionsU, andU, by constant phases, say'* ande™'#,
2 respectively, the center vortex and Dirac string gauge poten-
go=| 11 (07 (2,2) 07 (2,2 tials, Eqs.(54) and (36), still satisfy the periodicity proper-
- ties with the new transition functiontl,=e '*1 and U,
—u4 =e 2™x~18] But these new periodicity properties change

+0.(2,2,)0,(2,2)) X2(2). (590 the zero modes of the Dirac operator by changing the peri-
odicity properties of the analytic functiong,,(z). The new

. . solution reads
The analytic functionsy1(z) and x,(z) have to be chosen

such thatyy, are normalizable and satisfy the periodicity

properties(55). To renderyy, normalizable the functions ¥ (z)=e-iezg| 7+ '_7._ _aT_ |—3(21+Zz)+ i
X1/ must not have polesinserting Eqs(59) and (58) into 2 27 2 2m
Eq. (55) and using the periodicity properti€33) of the theta (64)

function we arrive at _ _ _ _
The zeros of this function are at the poimts 3+ (i/2)3(z;

xi(z+in)= e~ W+27ri[Z+(i/Z)T—(i/2)3(21+22)1)X1(Z), +2,) +(ial27) 7— B2+ m+niT, i.e., the zeros are shifted
(60) by (ia7— B)/2m compared to the original case, wheldg
x1(z+1)=x1(2), =1andU,=e 2.
The change of the transition functions by multiplying with
Xo(z+i7)=emT 2zt () 7=(112)3(21 722Dy ,(Z), constant phases '* ande™'# is equivalent to introducing a
(61) constant background gauge potentgl=3(B/r+ia) and
X2(z+1)= x2(2). leaving the transition functions unchanged.

The above considerations have shown that for a two-

If we require analyticity ofy, on the whole torus then this vortex gauge potentidsmeared out vorticgsve get exactly

function is fixed(up to a factoy by the periodicity properties one normalizable zero mode which has exactly one zero on

(61) to be the theta function the torus. The position of the zero depends on the imaginary
parts §/ coordinatey of the positions of the vortices and on
the periodicity properties of the gauge potential equiva-

®A pole of x4, would yield a nonintegrabléogarithmically di-  lently on the presence of a constant background Yfietdi of

vergenj singularity in the norm of the spinag, because the pref- the spinor field. Furthermore, the probability density of the

actors ofyy, in Egs.(58),(59) are nonzero on the whole torus, since spinor field is peaked at the positions of the vorticg&ee

we only consider smeared out vortices. Fig. 3)
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A (]
RS

/
o
.

FIG. 3. Probability density of the zero mode in the background FIG. 4. Probability density of the zero mode in the background
of two center vortices ofi® for 7=1, ¢=0.01,2,=0.25 andz, of four intersecting vortex sheets @if shown in the subspace

=O75 . :X3:0 fOI’ U1:U1:0.25 ,U2:U2:O.75 andSZO.Ol.
V. FERMIONIC ZERO MODES FOR INTERSECTING — ol ust i B iN N .
VORTICES ON THE 4-TORUS Xa(U,0)= 0| Ut 5 7= S5(Up+Up),i 7
As in the case of space-tink¥ the fermionic zero modes i i _
for intersecting vortices orfil* can be explicitly written X0\ vt 57— 531t v)iT]. (65)
down.

. We consider four smeare_d out center vortex sheets COlrhe probability distribution of this zero mode in the plane
sisting of two orthogonal pairs of parallel vortex sheets m-i)f{u_g!,‘v_0 for U= U,=0.25, U,=v,=0.75 is plotted in
= = 1= Ux=0.23, Up=v,=U.

tersecting in 4 points as in Sec. lll. Introducing complex

variablesu andv, cf. Eq. (25), the complexified gauge po- Fig. 4.
tential A, can be chosen as
VI. CONCLUDING REMARKS
A,= 3y (h(u,uy) + d(U,Ux))+ 3, (b(v,01)+ d(v,v5)), In the present paper we have studied the properties of

fermionic zero modes in a center vortex background field.
We have demonstrated that these zero modes are concen-
where the function(z,z,) is defined in Eq(49). As in the  trated at the localization of the center vortices. In accord with
case of the space-time manifakd there is only one normal- this the probability density of these zero modes is sharply
izable zero mode given by peaked at the vortex intersection points which catogal-
ized) topological charge 1/2. This result is consistent with
o the localization of the fermionic zero modes in an instanton
1= 2= 1h5=0, background field at the instanton center. In fact lattice calcu-
lations show a strong correlation between the topological
2 charge density distribution and the distribution of the quark
11 (67 (u,uy) 07 (u,uy) condensatéq(x)q(x)), the order parameter of chiral sym-
k=1 metry breaking. Given the localization of the quark zero
—1/4 modes at the localization of topological charge, we expect
+ GT(U,UK)M)) the quark zero modes in the vortex background field to play
a crucial role for the spontaneous breaking of chiral symme-
try in the vortex picture. This will be the subject of future

2
0" (v, 9+— investigations.
k1]1( (0,005 (0,0))
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APPENDIX A: CONVENTIONS where D is the Dirac operator oR?. Therefore the zero

We choose the generators of the gauge group to be antinodesy of the Dirac operator o$? are related to the zero
Hermitian. Therefore the componerts of the gauge poten- modesy of the Dirac operator oft? by
tial are anti-Hermitian, e.g., purely imaginary for the gauge
groupU(1). Themagnetic fluxd through a closed loo@ is

12
defined by Y=Qg ™Y (B4)
b= — b A dx (A1) With z=x,;+ix, the zero mode of the Dirac operator in the
S 2mi Jo HTH presence of two smeared out center vortices at the paints
=a andz=b reads
and thus real valued.
The complex conjugate of the complex numlzeis de- Y, =0
noted byz. Furthermorefi(z) andJ(z) denote the real and (B5)
imaginary part ofz, respectively. —
We consider the Dirac equation in Euclidean space-time. \Vzz+R?
In D=2 we choose the 22 Dirac matrices =7 — . — :
V(z—a)z—a)+s2 Y(z—b)(z—b) + &2
0 1 0 —i
1711 0/’ Y27 0]/’ This zero mode is normalizable with respect to the measure

(A2) on S? which is given byﬂﬁdxldxz.

. 1 0
V5= T 1y1Y2= 0o —1/°
APPENDIX C: UNIQUENESS OF yx, FROM PERIODICITY

In D=4 we use the chiral representation for the Dirac ma- PROPERTIES

trices: The existence of an analytic function with the periodicity
roperties(61) is seen by choosin
g il 1 0 properties(61) y 9
Ya= i1 o) V5= o -1/

0 g; . 12
’}/I_ O_I 0 1 1= 1 ’3'

(A3) x2(2)=06| z+ Izr— Izj(zlJr Zy),i7|, (Cy

cf. Eq.(33). To show the uniquenessp to a constant factpr
wherel is the 2<2 unit matrix ando; are the(Hermitian  of x, we assume that there is another analytic funcgn

Pauli matrices. satisfying Eq.(61). Now consider the meromorphic function
f(2) :=}2(z)/)(2(z). This is an elliptic function with periods
APPENDIX B: DIRAC ZERO MODES ON S? 1 andi . But f(z) has only a single pole in the fundamental

) , o domain [0<R(z2)<1,0<3(z)<7] at the zero of 4(z
We consider the Dirac operator on the sph&ewith 4 15y~ (1/2)3(z,+2,),i7). But an elliptic function has

. B . 2 .
radiusR. We use stereographic coordinaxgs on S° defined ¢4 haye at least two poles in the fundamental domain o it is
by a constanf27]. Hence, we infer thaf(z) is a constant and
x2(2) is (up to a constant factpgiven by Eq.(C1).

2R? _ R2—x?
yi R2 X2Xi ’ |_1121 y3_R2+X2 ’ ,
(B1) APPENDIX D: MULTIVORTEX SOLUTION ON T
X2=X5+X3, Let us assume we have a number of thick vortices and
A antivortices at the pointg,, k=1,... m" andz, I=m*
wherey=(y;,Y»,Y3) is the vector inR® of the correspond- +1,... m"+m~, respectively, where the total number

ing point of the embedded spheB with radiusR. The m*+m~=m of vortices is even. The corresponding gauge
metric onS? in stereographic coordinates has the form potential reads
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1 m* mt+m~ mt
A=70 2 dzz)— 2 ¢zz)|, (D) vo=11 (67 (22007 (.20
k=1 I=m*+1 k=1
where ¢(z,z,) is defined by Eq(49). The fermionic zero ~ N 71/4"‘””‘_ . —
modesi;(z) are given by +6.(2,2)0.(2,2)) H (0;(2,2)0,(z2,7)
l=m"+1

m+

d=11 (67 (2,206 (z,2) +0:(2,2)0;(2,2))"x2(2),
e T ’ T ’

mT+m~
_ T /4 + T
07 (2200, (2.20) |=n1]1+1 (0;(2,2)07(2.2) where 6~ is defined by Eq(50). The periodicity properties
- - of 155, cf. Eq.(55), define the periodicity properties of the
+6,(2,2)6,(2,2)) "x1(2), analytic functionsy,(z):
|
Yi(z+im)= ef((Am/z)[m—zm(zﬂ7/2)]—wj(zkm:lzk—zr':m++lz|))xl(z), (D2)
x1(z+1)=x1(2), (D3)
Ya(z+i T):e((Am/z)[m—zm(z+i7/2)]—wj(zﬂ’:lzk—El"lm++1z|))X2(Z), (D4)
x2(z+1)=x2(2), (DY)

whereAm=m*—m~ andm=m"+m". If Am>0 we find a @ m/2)-dimensional vector space of left-handed zero mafdes
with analytic functionsy,(z). In the caseAm< 0 we find a] Am/2|-dimensional vector space of right-handed zero modes with
analytic functionsy(z). The functionsy,,, are then given by products of theta functions. In the dase>0 we obtain

Am/2
x2(2)= 1"[l 0(z+irl2—7,i7), (D6)
&

where the complex numbe~z§ have to satisfy the conditions

Am/2 Am/2 1 m™ m
m(E zj)zo, 3(2 zj>=§3(2 zZ— > z|). (D7)
=1 =1 k=1 l=m*+1

The set of functions, given by Egs(D6) and (D7) forms an A m/2)-dimensional vector space.
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