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Leading quantum gravitational corrections to scalar QED

N. E. J. Bjerrum-Bohr*
The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

~Received 28 June 2002; published 29 October 2002!

We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude
of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated
as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate
vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are
calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude, which are known
to give the long range, low energy, leading quantum corrections, are used to construct the leading post-
Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two
charged scalars. The result is discussed in relation to experimental verifications.
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I. INTRODUCTION

In this paper we will treat general relativity as an effecti
quantum field theory. The essential topic@1–3# in the con-
cept of effective field theories is that the field couplings
cluded in a certain Lagrangian are perturbatively determi
by the energy scale of the problem, and not by the st
renormalization conditions one normally imposes in a qu
tum field theory. The effective action includes all terms co
sistent with the underlying symmetries of the theory. So
principle the effective action has an infinite number of term
Seen perturbatively the various terms of the action pertai
different energy scales of the theory so only a finite num
of terms need to be taken into account at each loop or
The Lagrangian is in some sense believed to be somew
less fundamental than in normal renormalizable theories
has to be replaced by a more fundamental theory at s
ciently high energies—but at low energies the effective L
grangian presents an interesting path to avoid the traditio
renormalization problems of non-renormalizable theories

As the action of an effective field theory includes a
terms, any occurring field singularity of the theory will a
ready correspond to certain terms of the action, and it w
hence be possible to absorb such singularities into the
pling constants of the effective Lagrangian. Thus treating
coupling constants as experimentally determined quanti
the effective field theory is finite at each loop order.

The old way of thinking of renormalizability of a field
theory is not an issue when considering effective field th
ries. It is well known that quantum field theories of pu
general relativity, as well as quantum theories for gene
relativity, including scalar@4–6#, fermion or photon fields
@7,8#, suffer from severe problems with renormalizability
the traditional meaning of the word.

A solution to this apparent obstacle is thus to treat gen
relativity as an effective field theory. The gravitational acti
then consists not solely of the Einstein curvature term p
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the minimal couplings of the matter terms, but of all term
consistent with general coordinate invariance of the the
As an effective field theory, general relativity thus can
dealt with as any other quantum field theory.

General relativity with additional derivative couplings h
been discussed in the literature@9–12#, and various issues
concerning general relativity as a classical or a quant
theory with higher derivative terms has been dealt wi
However, treating general relativity as an effective fie
theory to find the leading pure 1-loop gravitational corre
tions to the Newtonian potential was first done in@2,3#. Re-
cently, some work has been carried out in@13# using the
same technique to calculate the quantum corrections to
Reissner-Nordstro¨m and Kerr-Newman metrics. We will dis
cuss their result in relation to the potential.

For the non-analytical terms of a certain diagram
1-loop order all vertex rules are given only by the Einste
curvature term plus the minimal coupling matter terms—b
as we move on to higher loop calculations one will have
include the effects of higher loop contributions too. In th
paper we will consider 1-loop effects and the lowest ord
theory is therefore adequate for our purpose.

We will extract the non-analytical parts of the full set
1-loop diagrams needed for the 1-loop scattering matrix
the combined quantum theory of general relativity and sca
QED. As we shall see, the non-analytical contributions c
respond to the long range corrections of the potential.

We will employ the background field method first intro
duced in@14#. Here the gravitational background fields a
not flat and the quantum corrections are added to the gr
tational background field.

When nothing else is stated, we work with unitsc5\
51 and employ the metric convention (1,21,21,21).

The structure of the paper will be as follows. First we w
review general relativity as an effective field theory in mo
detail and see how to combine scalar QED with general r
tivity. Then we will look at the calculations of the diagram
Finally we will construct the potential and discuss the res
in relation to@13,15–18#. The vertex rules are presented
Appendix A.
©2002 The American Physical Society23-1
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II. GENERAL RELATIVITY AND SCALAR QED
AS A COMBINED EFFECTIVE FIELD THEORY

A general covariant version of the scalar QED Lagrang
is

L5A2gF2
1

4
~gamgbnFanFmb!

1~Dmf1 ieAm!* ~gmn!~Dnf1 ieAn!2m2ufu2G
~1!

whereFmn[DmAn2DnAm5]mAn2]nAm , andDm denotes
the covariant derivative with respect to the gravitation
field, gmn . As f is a scalarDmf5]mf.

We expand the effective Lagrangian in orders of mag
tude of the derivative contributions. Derivatives of lig
fields ]̃ will essentially go as powers of momentum, whi
derivatives of massive fields] will generate powers of the
interacting masses. As the interacting masses are often o
of magnitude higher than the momentum terms—the der
tives on the massive fields will often generate the lead
contributions.

Counting the number of derivatives in each term of t
above Lagrangian we see that the term withgamgbnFanFmb

goes as;]̃]̃, while the scalar field terms goes as;]] and
;1, respectively. Thus seen in the light of effective fie
theory, the above Lagrangian represents the minimal der
tive couplings of the gravitational fields to the photon a
complex scalar fields.

Typical 1-loop field singularities for the mixed gravito
and photon fields in the minimal theory are known to ta
the form @7#

A2gTmn
2 , A2gRmnTmn ~2!

where Tmn5FmaFn
a2 1

4 gmnFabFab is the Maxwell stress
tensor, and where Rnab

m []aGnb
m 2]bGna

m 1Gsa
m Gnb

s

2Gsb
m Gna

s is the Einstein curvature tensor. Examples of sim
lar 1-loop divergences for the mixed graviton and sca
fields are

A2gRmn]mf* ]nf, A2gRu]mfu2, A2gRm2ufu2.
~3!

The two photon contributions are seen to go as;]̃]̃]̃ ]̃,
while the scalar contributions goes as;]̃]̃]] and]̃ ]̃ respec-
tively. So clearly the 1-loop singularities correspond
higher derivative couplings of the fields.

Of course there will also be examples of mixed terms w
both photon, graviton and complex scalar fields. We will n
consider any of these terms explicitly.

As we calculate the 1-loop diagrams using the minim
theory, singular terms with higher derivative couplings of t
fields will thus unavoidably appear. We, however, do n
need to worry about these singularities explicitly, because
combined theory is treated as an effective field theory.
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In order to treat the combined theory as an effective fi
theory we will include into the minimal derivative couple
Lagrangian a piece such as

Lphoton5A2g@c1Tmn
2 1c2RmnTmn1 . . . # ~4!

for the photon field and

Lscalar5A2g@d1Rmn]mf* ]nf1d2Ru]mfu2

1d3Rm2ufu21 . . . # ~5!

for the scalar field. The ellipses symbolize other higher
rivative couplings at 1-loop order which are not included
the above equations, e.g. other higher derivative coupli
and mixed contributions with both photon, graviton and s
lar couplings.

The coefficientsc1 , c2 , d1 , d2 andd3 , . . . in the above
equation are in the effective theory seen as energy scale
pendent couplings constants to be measured experimen
Every singular field term from the lowest order Lagrangian
thus absorbed into effective action, leaving us with a fin
theory at 1-loop order, with a number of coupling coef
cients to be determined by experiment.

The effective combined theory of scalar QED and gene
relativity is thus in some sense a traditional renormaliza
theory at 1-loop order. At low energies the theory is det
mined only by the minimal derivative coupled Lagrangia
however, at very high energies, higher derivative terms w
manifest themselves in measurable effects, and the unkn
coefficientsc1 , c2 , . . . , d1 , d2 andd3 , . . . will have to be
determined explicitly by experiment. This process of abso
ing generated singular field terms into the effective act
will of course have to continue at every loop order.

In order to compute the leading long range, low ene
quantum corrections to this theory, it is useful to make
distinction between non-analytical and analytical contrib
tions from the diagrams. The non-analytical contributions
inherently non-local effects which cannot be expanded i
power series in momentum. The non-analytical effects co
from the propagation of massless particle modes such
gravitons and photons. This destinction originates from
impossibility of expanding a massless propagator;1/q2

while we have the well known

1

q22m2
52

1

m2 S 11
q2

m2
1 . . . D ~6!

expansion for the massive propagator. As seen no;1/q2

terms is generated by the above expansion of the mas
propagator. As we will see explicitly, these non-analytic co
tributions will be governed to leading order only by the min
mally coupled Lagrangian.

The analytical contributions in the diagrams are local
fects, which are always expandable in power series soluti
Typical examples of the non-analytical effects are, e.g. te
which in theS-matrix go as; ln(2q2) or ;1/A2q2, while
the general example of an analytical effect is a power se
3-2
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in the momentumq. As we are only interested in non-loca
effects, we will only consider the non-analytical contrib
tions.

The high energy renormalization of the theory is thus
no concern to us—as we are only finding the leading fin
non-analytical momentum contributions for the 1-loop d
grams in the low energy scale of the theory. Hence the
gular analytical momentum parts which have to be absor
into coefficients of the higher derivative couplings, are of
interest to us here and will not be manifested in this ene
regime of the theory.

We can now proceed with our quantization of gene
relativity and scalar QED as an effective field theory. T
quantization procedure will be as follows. We will define t
metric as the sum of a background partḡmn and a quantum
contributionkhmn , wherek2532Gp:

gmn[ḡmn1khmn . ~7!

From this equation we get the expansions for the upper m
ric field gmn ~defined to be the inverse matrix!, and forA2g
@where det(gmn)5g] as

gmn5ḡmn2khmn1 . . .

A2g5A2ḡF11
1

2
kh1 . . . G ~8!

wherehmn[ḡmaḡnbhab andh5ḡmnhmn . We have only ex-
panded to first order inhmn , as we need diagrams to seco
order ink.

Next we expand the above covariant version of the sc
QED Lagrangian in terms of the fields. The result for t
photon parts reads

L52
1

4
kh~]mAa]mAa2]mAa]aAm!1

1

2
khmn~]mAa]nAa

1]aAm]aAn2]aAm]nAa2]aAn]mAa! ~9!

while the complex scalar part can be quoted as

L5
1

2
kh~ u]mfu22m2ufu2!2khmn~]mf* ]nf!

1~ ieAm]mf* f2 ieAmf* ]mf!1e2AmAmufu2

1
1

2
kh]mf* ~ ieAm!f2

1

2
kh~ ieAm!f* ]mf

2khmn]mf* ~ ieAn!f1khmn~ ieAm!f* ]nf. ~10!

From these equations one can find the vertex rules for
lowest order interaction vertices of photons, complex sca
and gravitons for this theory. In Appendix A we will prese
a summary of the vertex rules.
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III. THE RESULTS FOR THE FEYNMAN DIAGRAMS

Before we consider the actual calculations of the diagra
we will take a look on the general form for the scatteri
matrix. The general form for diagrams contributing to t
scattering matrix is

M;S A1Bq21 . . . 1~a1k21a2e2!
1

q2
1b1e2k2ln~2q2!

1b2e2k2
m

A2q2
1 . . . D ~11!

where A,B, . . . correspond to the local analytical intera
tions anda1 , a2 andb1 , b2 , . . . correspond to the leadin
non-analytical, non-local, long range interactions.

The space parts of the non-analytical terms Fourier tra
form as

E d3k

~2p!3

1

uku2
5

1

4pr

E d3k

~2p!3

1

uku
5

1

2p2r 2

E d3k

~2p!3
ln~k2!5

21

2pr 3
, ~12!

so clearly these terms will contribute to the long range c
rections.

The non-analytical contribution, corresponding to the 1q2

part, gives as seen the Newtonian and Coulomb potent
respectively. The other non-analytical contributions gener
the leading quantum and classical corrections to the C
lomb and Newtonian potentials in powers of 1/r . It is nec-
essary to have non-analytic contributions in the matrix e
ment, to ensure that theS-matrix is unitary.

The analytic contributions will not be considered in th
work. As noted previously these corrections correspond
local interactions, and are thus only needed for the high
ergy manifestation of the theory. Many of the analytical c
rections will be divergent, and hence have to be carefu
absorbed into the appropriate terms of the effective action
the theory.

We will not consider the radiative corrections due to s
bremsstrahlung in this approach. In some of the diagram
this theory as well as in QED, there is a need for introduc
soft bremsstrahlung radiative corrections to the sum of
diagrams constituting the vertex corrections. We will n
consider this aspect of the theory in this approach, as we
not computing the full amplitude of theS matrix. Further-
more, certain effects have been included in the recent w
of @13#, where the gravitational vertex corrections are treat
This issue should be dealt with at some stage refining
effective theory of general relativity and scalar QED; ho
ever, for now we will carry on and simply compute the lea
3-3
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ing post-Newtonian and quantum corrections to the sca
ing, and leave this concern for future further investigation

The definition of the potential

The various definitions of the potential have been d
cussed at length in the literature. We will here define
potential directly from the scattering matrix amplitude.

In the quantization of general relativity the definition
the potential is certainly not obvious. One can choose
tween several definitions of the potential depending on,
the physical situation, how to define the energy of the fie
the diagrams included, etc.

Clearly a valid choice of potential should be gauge inva
ant to be physically reasonable, but while other gauge th
ries like QCD allows a gauge invariant Wilson loo
definition—e.g. for a quark–anti-quark potential, this is n
directly possible in general relativity.

There has, however, been some attempts to make a
son loop equivalent potential for quantum gravity. A Wilso
like potential seems to be possible to construct in gen
relativity using the Arnowitt-Deser-Misner formula for th
total energy of the system@19#. This choice has been dis
cussed in@20# in the case of pure gravity coupled to sca
fields.

A recent suggestion@21# is that one should look at the fu
set of diagrams constituting the 1-loop scattering matrix, a
use the total sum of the 1-loop diagrams to decide the n
relativistic potential. As the full 1-loop scattering matrix
involved, this choice of potential gives a gauge invaria
definition. This choice of potential is equivalent to that
@22#, where the scalar source pure gravity potential w
treated. This choice of potential which includes all 1-lo
diagrams seems to be the simplest, gauge invariant ch
one can make for the potential.

We will calculate the non-relativistic potential using th
the full amplitude. Here we simply relate the expectati
value for theiT matrix to the Fourier transform of the po
tential Ṽ(q) in the non-relativistic limit as

^k1 ,k2u iTuk18 ,k28&52 iṼ~q!~2p!d~E2E8! ~13!

where k1 , k2 and k18 , k28 are the incoming and outgoin
momentum, respectively, andE2E8 is the energy difference
between the incoming and outgoing states@23#. Comparing
this to the definition of the invariant matrix elementiM we
get from the diagrams

^k1 ,k2u iTuk18 ,k28&5~2p!4d (4)~k12k181k22k28!~ iM!
~14!

we see that~we have divided the above equation wi
2m12m2 to obtain the non-relativistic limit!

Ṽ~q!52
1

2m1

1

2m2
M ~15!

so that
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V~x!52
1

2m1

1

2m2
E d3k

~2p!3
eik•xM. ~16!

This will be our definition of the non-relativistic potentia
generated by the considered non-analytic parts, whereM is
the non-analytical part of the amplitude of the scattering p
cess to a given loop order. This definition of the potentia
also used in@22#.

A. The diagrams contribution to the non-analytical parts
of the scattering matrix

Of the diagrams contributing to the scattering matrix on
a certain class of diagrams will actually contribute to the s
of non-analytical terms considered here—the logarithm
and square-root parts. In this treatment we will only consi
the diagrams which contribute with non-analytical contrib
tions in detail. Diagrams with many massive propagators w
usually only contribute with analytical terms. Some of t
diagrams have a somewhat complicated algebraic struc
due to the involved vertex rules. To do the diagrams
developed an algebraic program programmed inMAPLE ~Wa-
terloo software!. Our program contracts the various indic
and performs the loop integrations. In the following we w
go through the diagrams and discuss how they are calcul
in detail. We will begin with the tree diagrams.

1. The tree diagrams

The set of tree diagrams contributing to the scatter
matrix are those of Fig. 1. The formal expression for the
diagrams are

iM1(a)5t2
mn~k1 ,k2 ,m1!F iP mnab

q2 Gt2
ab~k3 ,k4 ,m2!

~17!

and

iM1(b)5t1
m~k1 ,k2 ,e1!F2 ihmn

q2 Gt1
n~k3 ,k4 ,e2!. ~18!

These diagrams yield no complications. Contracting all in
ces and preforming the Fourier transforms one ends up w

V1(a)~r !52
Gm1m2

r
~19!

V1(b)~r !5
e1e2

4pr
~20!

FIG. 1. The set of tree diagrams contributing to the potential.
3-4
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LEADING QUANTUM GRAVITATIONAL CORRECTIONS . . . PHYSICAL REVIEW D 66, 084023 ~2002!
wheree1 ,m1 ande2 ,m2 are the two charges and masses
the system, respectively. This is of course the expected
sults for these diagrams. One gets the Newtonian and C
lomb terms for the potential of two charged scalars.

The next class of diagrams we will consider is that of b
diagrams.

2. The box diagrams and crossed box diagrams

There are four distinct diagrams~see Fig. 2!: two crossed
box diagrams and two box diagrams. We will not treat
diagrams separately but rather discuss one of the diagram
detail and then present the total result for the diagrams.
diagram 2~a! is defined in the following way:

iM2(a)5E d4l

~2p!4

i

~ l 1k1!22m1
2

i

~ l 2k3!22m2
2

3t1
g~k1 ,k11 l ,e1!F2 ihgd

l 2 Gt1
d~k3 ,2 l 1k3 ,e2!

3t2
mn~ l 1k1 ,k2 ,m1!F iPmnsr

~ l 1q!2Gt2
sr~k32 l ,k4 ,m2!

~21!

where we have chosen a certain parametrization of the
menta in the diagram, the side with mass (m1) and charge
(e1) hask1 , k2 as incoming and outgoing momentum, r
spectively. Correspondingly the other side with mass (m2)
and charge (e2) hask3 , k4 as incoming and outgoing mo
mentum, respectively.

FIG. 2. The set of box and crossed box diagrams contributin
the non-analytical parts of the potential.
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The algebraic structure of this diagram is rather involv
and complicated, but yields no complications using our al
braic program. The integrals are rather complicated to
but one can make use of various contraction rules for
integrals which holds true on the mass shell.

From the choiceq5k12k25k42k3 one can easily derive

k1•q5k4•q52k2•q52k3•q5
q2

2

k1•k25m1
22

q2

2

k3•k45m2
22

q2

2
~22!

wherek1
25k2

25m1
2 andk3

25k4
25m2

2 on the mass shell.
On the mass shell we have identities such as

l •q5
~ l 1q!22q22 l 2

2

l •k15
~ l 1k1!22m1

22 l 2

2

l •k352
~ l 2k3!22m2

22 l 2

2
. ~23!

Now clearly, e.g.,

E d4l

~2p!4

l •q

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#

5
1

2E d4l

~2p!4

~ l 1q!22q22 l 2

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#
.

~24!

As only the integral withq2 yields the non-analytical term
we let

to
E d4l

~2p!4

l •q

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#
→ 2q2

2

3E d4l

~2p!4

1

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#
. ~25!
3-5
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A perhaps more significant reduction of the integrals is w
the contraction of the sources momenta, e.g.

E d4l

~2p!4

l •k1

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#

5
1

2E d4l

~2p!4

~ l 1k1!22m1
22 l 2

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#

→ 1

2E d4l

~2p!4

1

l 2~ l 1q!2@~ l 2k3!22m2
2#

~26!

or

E d4l

~2p!4

l •k3

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#

5E d4l

~2p!4

2~ l 2k3!21m2
21 l 2

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#

→2
1

2E d4l

~2p!4

1

l 2~ l 1q!2@~ l 1k1!22m1
2#

. ~27!

As we have seen the contraction of a loop momentum fa
with a source momentum factor removes one of the pro
gators leaving a much simpler loop integral.

Such reductions in the box diagram integrals help to
the calculations. The remaining integrals can be done q
easily and the results for these integrals are presented in
pendix B, together with the lowest box integral which has
be done explicitly.

The final sum for these diagrams gives

V2(a)12(b)12(c)12(d)~r !51
10Ge1e2

3p2r 3
. ~28!

3. The triangular diagrams

The following triangular diagrams contribute with no
analytic contributions to the potential. See Fig. 3. As for t

FIG. 3. The set of triangular diagrams contributing to the no
analytical terms of the potential.
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box diagrams we will only consider one of the diagrams
here again the first, namely Fig. 3~a!. The formal expression
for this particular diagram is—we just apply the vertex rule

iM3(a)5E d4l

~2p!4

i

~ l 1k1!22m1
2
t1

g~k1 ,k11 l ,e1!

3F2 ihgd

l 2 Gt2
mn~ l 1k1 ,k2 ,m1!

3F iPmnsr

~ l 1q!2Gt5
(d)sr~k3 ,k4 ,e2!. ~29!

Again all the needed integrals are of the type discussed in
Appendixes. Applying our contraction program and doi
the integrations leaves us with a result, which Fourier tra
formed yields the following contribution to the potential:

V3(a)13(b)13(c)13(d)~r !5
Ge1e2~m11m2!

pr 2
2

4e1e2G

p2r 3
.

~30!

As seen these diagrams yield both a classical;1/r 2 contri-
bution, as well as a quantum correction;1/r 3.

4. The circular diagram

The circular diagram~see Fig. 4! has the following formal
expression:

iM4(a)5E d4l

~2p!4
t5

mn(g)~k1 ,k2 ,e1!F2 ihgd

l 2 G
3F iPmnsr

~ l 1q!2Gt5
sr(d)~k3 ,k4 ,e2!. ~31!

-

FIG. 4. The circular diagram with non-analytic contributions.

FIG. 5. The class of the graviton 1PR vertex corrections wh
yield non-analytical corrections to the potential.
3-6



ing

le
te

ad
ly
-
e

ill

ea
th
o-

the

or-
the
in

w-

of

n

ich

n-
dia-

LEADING QUANTUM GRAVITATIONAL CORRECTIONS . . . PHYSICAL REVIEW D 66, 084023 ~2002!
Doing the contractions and integrations gives the follow
contribution to the potential:

V4(a)~r !5
2Ge1e2

p2r 3
. ~32!

5. 1PR diagrams

The following class of the set of one particle reducib
~1PR! diagrams corresponding to the gravitational ver
correction will contribute to the potential; see Fig. 5.

Again we will not treat all diagrams separately. Inste
we will consider two of the diagrams in details—name
Figs. 5~a! and 5~c!. First we will present the formal expres
sions for the diagrams using the vertex Feynman rules. N
we will briefly consider the calculations and finally we w
present the results.

The formal expression for Fig. 5~a! is

iM5(a)5E d4l

~2p!4

i

~ l 2k3!22m2
2
t2

mn~k1 ,k2 ,m1!

3F iP mnrs

q2 Gt3
rs(gd)~ l ,l 1q!t1

a~k3 ,k32 l ,e2!

3F2 ihag

l 2 GF 2 ihbd

~ l 1q!2Gt1
b~k32 l ,k4 ,e2! ~33!

while the expression for Fig. 5~c! reads

iM5(c)5E d4l

~2p!4
t2

mn~k1 ,k2 ,m1!F iP mnrs

q2 G
3t3

rs(gd)~ l ,l 1q!t4
ab~k3 ,k4 ,e2!F2 ihga

l 2 G
3F 2 ihdb

~ l 1q!2G . ~34!

Again the calculations of these diagrams yield no r
complications using our algebraic program. The result for
diagrams 5~a!2~d! are in terms of the corrections to the p
tential

FIG. 6. The first class of the photon vertex 1PR correctio
which yield non-analytical corrections to the potential.
08402
x

xt

l
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V5(a)15(b)15(c)15(d)~r !5
G~e2

2m11e1
2m2!

8pr 2

2

GS m1

m2
e2

21
m2

m1
e1

2D
3p2r 3

~35!

where we have associated a factor of one-half due to
symmetry of the diagrams 5~c! and ~d!.

We have checked explicitly that the above result for c
rection to the potential is in complete agreement, with
result for the gravitational vertex correction calculated
@13#.

For the photonic vertex correction we consider the follo
ing diagrams. See Figs. 6 and 7.

Again we look upon the formal expression for only two
the diagrams—namely Figs. 6~a! and 7~a!

iM6(a)5E d4l

~2p!4

i

~ l 2k3!22m2
2
t1

g~k1 ,k2 ,e1!

3F2 ihgd

q2 Gt3
sr(da)~q,l 1q!t2

mn~k3 ,k32 l ,m2!

3F iP mnsr

l 2 GF 2 ihba

~ l 1q!2Gt1
b~k32 l ,k4 ,e2! ~36!

iM7(a)5E d4l

~2p!4
t1

g~k1 ,k2 ,e1!F2 ihgd

q2 G
3t3

mn(da)~q,l 1q!F iP mnsr

l 2 G
3F 2 ihab

~ l 1q!2Gt5
sr(b)~k3 ,k4 ,e2!. ~37!

s

FIG. 7. The remaining photonic vertex 1PR diagrams wh
yield non-analytical corrections to the potential.

FIG. 8. The only mixed vacuum polarization diagram to co
tribute to the potential. There is no mixed corresponding ghost
gram associated with this diagram.
3-7
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The result for the diagrams 6~a2d!17~a2b! are in terms
of the corrections to the potential

V6(a)16(b)16(c)16(d)17(a)17(b)~r !52
Ge1e2~m11m2!

4pr 2
.

~38!

6. The vacuum polarization diagram

The vacuum diagram~see Fig. 8! has the following formal
expression:

iM8(a)5E d4l

~2p!4
t1

g~k1 ,k2 ,e1!F2 ihgd

q2 Gt3
sr(da)~q,2 l !

3t3
mn(be)~2 l ,q!F iPmnsr

~ l 1q!2GF2 ihba

l 2 G
3F2 ihef

q2 Gt1
f~k3 ,k4 ,e2! ~39!

It gives the following contribution to the potential:

V8(a)~r !5
Ge1e2

6p2r 3
. ~40!

The exact photon contributions for the 1-loop divergen
of the minimal theory can be found in@7#. Using that the
pole singularity 1/e will always be followed by a ln(2q2)
contribution, one can read off the non-analytic result for
loop diagram using the coefficient of the singular pole ter
We have explicitly checked our result for this diagram w
the result derived in this fashion.

The above diagrams generate all the non-analytical c
tributions to the potential. There are other diagrams cont
uting to the 1-loop scattering matrix, but those diagrams w
only give analytical contributions, so we will not discu
them here in much detail. Examples of these diagrams
shown; see Fig. 9.

The diagram A is a tadpole. Tadpole diagrams will nev
depend on the transverse momentum of the diagrams,
will thus never contribute with a non-analytical term. In fa
massless tadpoles will be zero in dimensional regularizat
The diagram B is interesting—as it is of the same type as
diagrams 6~a!–~d!; however, it has two massive propagato
and one massless instead of two massless and one ma
propagator. One can show that this diagram will not contr
ute with non-analytic terms, because such an integral w
two massive denominators and one massless will only g
analytical contributions. In the case of diagram C, the loop

FIG. 9. Diagrams which will only give contributions to the an
lytical parts of the potential.
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on one of the external legs. Hence the loop integrations
not depend on the interchanged momentum of the diagr
Thus it cannot give any non-analytical contributions to t
potential.

IV. THE RESULT FOR THE POTENTIAL

Adding it all up, the final result for the potential reads

V~r !52
Gm1m2

r
1

ãẽ1ẽ2

r
1

1

2

~m1ẽ2
21m2ẽ1

2!Gã

c2r 2

1
3ẽ1ẽ2~m11m2!Gã

c2r 2
2

4

3
S m1

2ẽ2
21m2

2ẽ1
2

m1m2
D Gã\

pc3r 3

28
ẽ1ẽ2Gã\

pc3r 3
~41!

including the appropriate physical factors of\ andc, and we
rescale everything in terms ofã5\c/137. The chargesẽ1

and ẽ2 are normalized in units of the elementary charge.
We see that there are various different types of terms

this expression. The first two terms are, as noted before,
well-known Newtonian and Coulomb terms. They repres
the lowest order interactions of the two sources. These te
are as expected, and they will dominate the potential at
ficiently low energies.

The next two terms are the classical post-Newtonian c
rections to the potential. These terms are the leading p
Newtonian corrections, which are also present in gene
relativity with the inclusion of charged particles. A result fo
the post-Newtonian corrections derived from classical c
siderations can be found in@15#, and in our notation reads

Vpost-Newtonian5
1

2

~m1ẽ2
21m2ẽ1

2!Gã

c2r 2
1~ap1ag21!

3
ẽ1ẽ2~m11m2!Gã

c2r 2
. ~42!

We see that classical expectations for the post-Newton
correction terms exactly match the ones we have deriv
and that the coefficient of the first term is exactly equal
ours. The result for the second term is equivalent in form
the term we have derived, and the coefficient can be mad
match our result exactly for particular values ofap andag .
The physical significance of the arbitrary parametersag and
ap , however, requires some explanation. The values ofap
and ag are coordinate dependent coefficients for the pot
tial, which can take arbitrary values depending on the co
dinate system chosen to represent the potential. The n
relativistic potential is ambiguous in this sense@15,16#. This
fact has also been discussed in@17,18# in the case of the pure
gravitational potential.

The parameterag is related to the gravitational propaga
tor while the coefficientap is related to the photonic propa
gator. In a forthcoming publication@24#, we will consider the
3-8
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LEADING QUANTUM GRAVITATIONAL CORRECTIONS . . . PHYSICAL REVIEW D 66, 084023 ~2002!
pure gravitational post-Newtonian corrections to the pot
tial of two scalars, and discuss the result in relation to
coefficientag .

An interesting observation is that the first term of t
post-Newtonian correction is invariant under the coordin
transformation. This term originates as noted previou
from the gravitational vertex corrections which generate
corrections to the classical metric, see@13#. This suggests
that it may be better to consider corrections to a class
metric than to a non-relativistic potential. The pos
Newtonian and quantum corrections to the Schwarzsc
and Kerr metrics will be considered in a forthcoming pub
cation @25#.

The last two contributions are the most interesting from
quantum point of view. These two terms represent the le
ing 1-loop quantum corrections to the mixed theory of ge
eral relativity and scalar QED here computed for the fi
time. As seen in SI units\G/c3;10270 m2, so these correc
tions are very small indeed, and hence seemingly imposs
to detect experimentally. This is especially due to the la
terms of the Coulomb and Newtonian terms. We ha
checked explicitly that the coordinate transformations of@15#
which affect the second post-Newtonian term, cannot a
the coefficients of the quantum contributions to the corr
tions of the non-relativistic potential.

When looking at the expression for the potential, one
tices that the post-Newtonian and the quantum correctio
the potential are split up into two types of terms. There is o
term where the two charges are multiplied together and
term where the two charges are squared and separated
have assumed that the particles are not identical. For ide
cal particles the two type of terms must be exactly identi
in form. For identical particles one should include the app
priate diagrams with crossed particle lines.

When one of the particles is either very large or with
very high charge, some of the contributions will domina
over others. The terms with separated charges will co
spond to the dominating terms, if one of the scattered ma
or charges were much larger than other. In this case
gravitational vertex corrections will generate the dominat
leading contribution to the potential. E.g. with a very hig
charge for one of the particles—the probing particle will f
the most the gravitational effect coming from the elect
magnetic field surrounding the heavily charged particle.

For a very large mass (M;1030 kg) but a very low
charged particleẽ1;0 ~the Sun!, and a charged (ẽ2;1) but
very low mass particle (m;10231 kg) ~an electron!, one
could perhaps test this effect experimentally, because
the Newton effect isGmM/r;10210 J m/r , but the quantum
effect G\ã(ẽ2

2M /mc3r 3);10237 J m3/r 3, while the classi-

cal contributionGM(ẽ2
2ã/c2r 2);10225 J m2/r 2. The ratio

between the post-Newtonian effects and the quantum cor
tion is for this experimental setup still very large, but n
quite as impossible as often seen in quantum gravity.

Experimental verifications of general relativity as an
fective field will perhaps be a very difficult task. The pro
lem is caused by the normally very large classical expe
tions of the theory. These expectations imply that nearly
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quantum effect in powers ofG\ will be nearly neglectable
compared toG. Therefore the quantum effects will be ver
hard to extract, using measurements where classical ex
tations are involved. The solution to this obstacle could be
magnify a certain quantum effect. This could be in cas
where the classical effect was independent of the ene
scale, but where the quantum effects were largely effected
the energy scale. Such an effect would only be obser
when very large interaction energies are involved.

Another way to observe a quantum effect could be whe
certain classical expectation is zero, but the quantum ef
would yield a contribution: a quantum gravitation
‘‘anomaly.’’ Such ‘‘null’’ experiments maybe used to test
quantum theory for gravity@26#.

V. DISCUSSION

Normally general relativity is viewed as a non
renormalizable theory, and consequently a quantum the
for general relativity is believed to be an inconsistent theo
However, treated as an effective field theory, the renorm
ization inconsistency of general relativity is not an issue—
the theory can be explicitly renormalized to any given lo
order. This fact was first explored in@2,3#. In the present
work we have discussed the combined theory of general r
tivity and scalar QED, and observed that it is possible to tr
this theory, too, as an effective field theory, and hence av
the traditional renormalization problems. What is even m
important, quantum corrections to the theory can be ca
lated explicitly, and treated perturbatively as in any oth
quantum field theory.

Certainly the effective field theory approach is only va
at sufficiently low energies, i.e. below the Planck sca
;1019 GeV, and at long distances. At higher energies a n
unknown theory will have to govern the quantum gravi
tional effects, perhaps some kind of string theory, compa
fied at low energies. However, the Planck energy scale
much larger than ‘‘traditional’’ high energy scales. Similar
the standard model may only be a good description be
;1000 GeV, so the effective field theory approach is see
ingly good for all energies we are presently dealing with
high energy physics.

However, experimentally it will be very difficult to verify
a quantum gravitational theory—even in the presence
charged scalars.

The non-relativistic potential may not be the best offs
for a verification of quantum gravity. This is because t
potential has coordinate dependent terms. It may be of m
interest to look for definite coordinate system invariant e
pectations in the quest for an experimental verification
quantum gravity.
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APPENDIX A: SUMMARY OF THE VERTEX RULES

1. Scalar propagator

The massive scalar propagator is well known:

5
i

q22m21 i e
.

2. Photon propagator

The photon propagator is also known from the literatu
We have applied the Feynman gauge which gives the l
complicated propagator:

5
2 ihgd

q21 i e
.

3. Graviton propagator

The graviton propagator in harmonic gauge is discus
in the literature@3,4#, but can be derived quite easily an
explicitly @27#. We shall write it in the form:

5
iPabgd

q21 i e

where

P abgd5
1

2
@haghbd1hbghad2habhgd#.

4. 2-scalar–1-photon vertex

The 2-scalar–1-photon vertex is well known in the liter
ture. We will write this vertex as

5t1
g~p,p8,e!

where

t1
g~p,p8,e!52 ie~p1p8!g.

5. 2-scalar–1-graviton vertex

The 2-scalar–1-graviton vertex is also discussed in
literature@3,27#. We will write it in the following way:

5t2
mn~p,p8,m!

where

t2
mn~p,p8,m!52

ik

2
$p8npm1p8mpn2hmn@~p•p8!2m2#%.
08402
.
st

d

-

e

6. 2-photon–1-graviton vertex

For the 2-photon–1-graviton vertex we have derived

5t3
rs(gd)~p,p8!

where

t3
mn(gd)~p,p8!5 ikS P rs(gd)~p•p8!1

1

2
@hrspdp8g

1hgd~prp8s1psp8r!2~p8gpshrd

1p8g prhsd1p8rpdhsg1p8spdhrg!# D .

7. 2-scalar–2-photon vertex

The 2-scalar–2-photon vertex is also well known fro
scalar QED. We will write it as

5t4
gd~p,p8,e!

where

t4
gd~p,p8,e!52ie2hgd.

8. 2-scalar–1-photon–1-graviton vertex

For the 2-scalar–1-photon–1-graviton vertex we have
rived

5t5
rs(g)~p,p8,e!

where

t5
rs(g)~p,p8,e!5 iek@P rsag~p1p8!a#

andP rsag is defined as above.
For all vertices the rules of momentum conservation ha

been applied. For the external scalar lines we associa
factor of 1. At each loop we will integrate over the undete
mined loop momentum.

For a certain diagram we will divide with the appropria
symmetry factor of the Feynman diagram.
3-10
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APPENDIX B: THE NEEDED INTEGRALS FOR THE
CALCULATION OF THE DIAGRAMS

To calculate the diagrams the following integrals a
needed:

J5E d4l

~2p!4

1

l 2~ l 1q!2
5

i

32p2
@22L#1 . . . ~B1!

Jm5E d4l

~2p!4

l m

l 2~ l 1q!2
5

i

32p2
@qmL#1 . . . ~B2!

Jmn5E d4l

~2p!4

l ml n

l 2~ l 1q!2

5
i

32p2 FqmqnS 2
2

3
L D2q2hmnS 2

1

6
L D G1 . . .

~B3!

together with

I 5E d4l

~2p!4

1

l 2~ l 1q!2@~ l 1k!22m2#

5
i

32p2m2
@2L2S#1 . . . ~B4!

I m5E d4l

~2p!4

l m

l 2~ l 1q!2@~ l 1k!22m2#

5
i

32p2m2 H kmF S 212
1

2

q2

m2D L2
1

4

q2

m2
SG

1qmS L1
1

2
SD J 1 . . . ~B5!

I mn5E d4l

~2p!4

l ml n

l 2~ l 1q!2~~ l 1k!22m2!

5
i

32p2m2 H qmqnS 2L2
3

8
SD1kmknS 2

1

2

q2

m2
L

2
1

8

q2

m2
SD 1~qmkn1qnkm!F S 1

2
1

1

2

q2

m2D L

1
3

16

q2

m2
SG1q2hmnS 1

4
L1

1

8
SD J 1 . . . ~B6!
08402
I mna5E d4l

~2p!4

l ml nl a

l 2~ l 1q!2@~ l 1k!22m2#

5
i

32p2m2 H qmqnqaS L1
5

16
SD1kmknkaS 2

1

6

q2

m2D
1~qmknka1qnkmka1qakmkn!S 1

3

q2

m2
L1

1

16

q2

m2
SD

1~qmqnka1qmqakn1qnqakm!

3F S 2
1

3
2

1

2

q2

m2D L2
5

32

q2

m2
SG

1~hmnka1hmakn1hnakm!S 1

12
q2L D1~hmnqa

1hmaqn1hnaqm!S 2
1

6
q2L2

1

16
q2SD J 1 . . .

~B7!

where L5 ln(2q2) and S5p2m/A2q2. In the above inte-
grals only the lowest order non-analytical terms are p
sented. The ellipses denote higher order non-analytical c
tributions as well as the neglected analytical term
Furthermore, the following identities hold true for the o
shell momenta,k•q5q2/2, where k2k85q and k25m2

5k82. In some cases the integrals are needed withk replaced
by 2k8, wherek8•q52q2/2, these results, are obtained b
replacing everywherek with 2k8. This can be verified ex-
plicitly. The above integrals agree with the results of@3#.

The following integrals are needed to do the box d
grams. The ellipses denote higher order contributions of n
analytical terms as well as neglected analytical terms@28#:

K5E d4l

~2p!4

1

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 2k3!22m2

2#

5
i

16p2m1m2q2 F S 12
w

3m1m2
DLG1 . . . ~B8!

K85E d4l

~2p!4

1

l 2~ l 1q!2@~ l 1k1!22m1
2#@~ l 1k4!22m2

2#

5
i

16p2m1m2q2 F S 211
W

3m1m2
DLG1 . . . ~B9!

Here k1•q5q2/2, k2•q52q2/2, k3•q52q2/2 and k4•q
5q2/2, wherek12k25k42k35q andk1

25m1
25k2

2 together
with k3

25m2
25k4

2. Furthermore, we have definedw
5(k1•k3)2m1m2 and W5(k1•k4)2m1m2. The above re-
sults for the integrals agree with@29#.

For the above integrals the following constraints for t
non-analytical terms can be verified directly on the ma
shell:
3-11
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I mnahab5I mnhmn5Jmnhmn50 ~B10!

I mnaqa52
q2

2
I mn , I mnqn52

q2

2
I m ,

I mqm52
q2

2
I Jmnqn52

q2

2
Jm ,

Jmqm52
q2

2
J, ~B11!
-

an

08402
I mnaka5
1

2
Jmn , I mnkn5

1

2
Jm ,

I mkm5
1

2
J. ~B12!

These mass-shell constraints can be used to derive the a
integrals and are directly verified in the same manner that
simplify the K andK8 integrals in the box calculations.
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