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Leading quantum gravitational corrections to scalar QED
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We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude
of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated
as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate
vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are
calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude, which are known
to give the long range, low energy, leading quantum corrections, are used to construct the leading post-
Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two
charged scalars. The result is discussed in relation to experimental verifications.
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[. INTRODUCTION the minimal couplings of the matter terms, but of all terms
consistent with general coordinate invariance of the theory.

In this paper we will treat general relativity as an effective As an effective field theory, general relativity thus can be
quantum field theory. The essential topic—3] in the con-  dealt with as any other quantum field theory.
cept of effective field theories is that the field couplings in-  General relativity with additional derivative couplings has
cluded in a certain Lagrangian are perturbatively determinetbeen discussed in the literatuf®@—12), and various issues
by the energy scale of the problem, and not by the strictoncerning general relativity as a classical or a quantum
renormalization conditions one normally imposes in a quantheory with higher derivative terms has been dealt with.
tum field theory. The effective action includes all terms con-However, treating general relativity as an effective field
sistent with the underlying symmetries of the theory. So intheory to find the leading pure 1-loop gravitational correc-
principle the effective action has an infinite number of termstions to the Newtonian potential was first dong 13]. Re-
Seen perturbatively the various terms of the action pertain taently, some work has been carried out[it8] using the
different energy scales of the theory so only a finite numbesame technique to calculate the quantum corrections to the
of terms need to be taken into account at each loop ordeReissner-Nordstrm and Kerr-Newman metrics. We will dis-
The Lagrangian is in some sense believed to be somewhatiss their result in relation to the potential.
less fundamental than in normal renormalizable theories and For the non-analytical terms of a certain diagram to
has to be replaced by a more fundamental theory at suffit-loop order all vertex rules are given only by the Einstein
ciently high energies—but at low energies the effective La-curvature term plus the minimal coupling matter terms—but
grangian presents an interesting path to avoid the traditionals we move on to higher loop calculations one will have to
renormalization problems of non-renormalizable theories. include the effects of higher loop contributions too. In this

As the action of an effective field theory includes all paper we will consider 1-loop effects and the lowest order
terms, any occurring field singularity of the theory will al- theory is therefore adequate for our purpose.
ready correspond to certain terms of the action, and it will We will extract the non-analytical parts of the full set of
hence be possible to absorb such singularities into the cod-loop diagrams needed for the 1-loop scattering matrix in
pling constants of the effective Lagrangian. Thus treating althe combined quantum theory of general relativity and scalar
coupling constants as experimentally determined quantitieQED. As we shall see, the non-analytical contributions cor-
the effective field theory is finite at each loop order. respond to the long range corrections of the potential.

The old way of thinking of renormalizability of a field We will employ the background field method first intro-
theory is not an issue when considering effective field theoduced in[14]. Here the gravitational background fields are
ries. It is well known that quantum field theories of pure not flat and the quantum corrections are added to the gravi-
general relativity, as well as quantum theories for generatational background field.

relativity, including scalaf4-6], fermion or photon fields When nothing else is stated, we work with ungs-%
[7,8], suffer from severe problems with renormalizability in =1 and employ the metric convention (11,—1,—1).
the traditional meaning of the word. The structure of the paper will be as follows. First we will

A solution to this apparent obstacle is thus to treat generaleview general relativity as an effective field theory in more
relativity as an effective field theory. The gravitational actiondetail and see how to combine scalar QED with general rela-
then consists not solely of the Einstein curvature term plusivity. Then we will look at the calculations of the diagrams.

Finally we will construct the potential and discuss the result
in relation t0[13,15-18. The vertex rules are presented in
*Email address: bjbohr@nbi.dk Appendix A.
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Il. GENERAL RELATIVITY AND SCALAR QED In order to treat the combined theory as an effective field
AS A COMBINED EFFECTIVE FIELD THEORY theory we will include into the minimal derivative coupled

A general covariant version of the scalar QED Lagrangianl'agranglam a piece such as

is
Lohotor= V= 9[C1 T2+ CoR,, TH"+ .. ] (4
1
L=\—9|— Z(Q““gﬁ”FwFﬂg) for the photon field and
Lscala™ N — g[le”Vﬁﬂd’* d,¢+ d2R| (9,u¢|2
+dsRNP| p%+ ... ] (5)

+(D,p+ieA,)*(g*")(D,p+ieA,)—m?| ¢|?

()
for the scalar field. The ellipses symbolize other higher de-
whereF,,=D,A,—D,A,=d,A,—d,A,, andD , denotes rjyative couplings at 1-loop order which are not included in

field, g,,. As ¢ is a scalaD ,¢=d,¢. “and mixed contributions with both photon, graviton and sca-
We expand the effective Lagrangian in orders of magniar couplings.
tude of the derivative contributions. Derivatives of light  The coefficients;, c,, d;, d, andds, ... in the above

fields @ will essentially go as powers of momentum, while equation are in the effective theory seen as energy scale de-
derivatives of massive fieldg will generate powers of the pendent couplings constants to be measured experimentally.
interacting masses. As the interacting masses are often ordefsery singular field term from the lowest order Lagrangian is
of magnitude higher than the momentum terms—the derivathus absorbed into effective action, leaving us with a finite
tives on the massive fields will often generate the leadingheory at 1-loop order, with a number of coupling coeffi-
contributions. cients to be determined by experiment.

Counting the number of derivatives in each term of the The effective combined theory of scalar QED and general
above Lagrangian we see that the term vgﬂﬁ‘gﬁ”FwFMB relativity is thus in some sense a traditional renormalizable

goes asw'é’;’;' while the scalar field terms goes as)d and theory at 1-|00p order. At low energies the theory is deter-
~1, respectively. Thus seen in the light of effective field mined only by the minimal derivative coupled Lagrangian;
theory, the above Lagrangian represents the minimal derivdlowever, at very high energies, higher derivative terms will
tive couplings of the gravitational fields to the photon andManifest themselves in measurable effects, and the unknown
complex scalar fields. coefficientscq, c,, ..., ds, d; andds, ... will have to be
Typical 1-loop field singularities for the mixed graviton determined explicitly by experiment. This process of absorb-

and photon fields in the minimal theory are known to takeing generated singular field terms into the effective action
the form[7] will of course have to continue at every loop order.

In order to compute the leading long range, low energy

[—gT2,, V-gR,, T (2)  quantum corrections to this theory, it is useful to make a

mr a distinction between non-analytical and analytical contribu-

where T,,= FMaFﬁ—%gWFaﬁFaﬁ is the Maxwell stress fuohns fro:n the dllagr?mf?. The nhan—]analytlcaLcontrlbut:jorés.are
tensor, and where RE, ,=9,",— gl +T# 7 inherently non-local effects which cannot be expanded in a

_TA I’ is the Einstein curvature tensor Exf':m |ér§ 0]Eﬁsimi_power series in momentum. The non-analytical effects come
9B va ) P from the propagation of massless particle modes such as

lar 1-loop divergences for the mixed graviton and Scalargravitons and photons. This destinction originates from the

fields are impossibility of expanding a massless propagatet/q?
while we have the well known
V_gRM (9,u,¢)*(911¢1 V_gR|(9,u¢|21 V_ganz|¢|2
() 2
! =—i 1+q—+ (6)
The two photon contributions are seen to go -a8dad, g’>-m?>  m? m?

while the scalar contributions goes asi9dd anddd respec-
tively. So clearly the 1-loop singularities correspond toexpansion for the massive propagator. As seen~riog?
higher derivative couplings of the fields. terms is generated by the above expansion of the massive

Of course there will also be examples of mixed terms withpropagator. As we will see explicitly, these non-analytic con-
both photon, graviton and complex scalar fields. We will nottributions will be governed to leading order only by the mini-
consider any of these terms explicitly. mally coupled Lagrangian.

As we calculate the 1-loop diagrams using the minimal The analytical contributions in the diagrams are local ef-
theory, singular terms with higher derivative couplings of thefects, which are always expandable in power series solutions.
fields will thus unavoidably appear. We, however, do notTypical examples of the non-analytical effects are, e.g. terms
need to worry about these singularities explicitly, because thevhich in the Smatrix go as~In(—g?) or ~1/\/—q2, while
combined theory is treated as an effective field theory. the general example of an analytical effect is a power series
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in the momentung. As we are only interested in non-local  Ill. THE RESULTS FOR THE FEYNMAN DIAGRAMS
effects, we will only consider the non-analytical contribu-

tions. we will take a look on the general form for the scattering
The high energy renormalization of the theory is thus Ofmatrix. The general form for diagrams contributing to the

no concern to us—as we are only finding the leading ﬁnitescatterin matrix is
non-analytical momentum contributions for the 1-loop dia- 9

grams in the low energy scale of the theory. Hence the sin- 1
gular analytical momentum parts which have to be absorbed, , 5 2 2 T 2 290 2
into coefficients of the higher derivative couplings, are of no M| ATBAF .. (gt age )qz +B18°k%In(—q")
interest to us here and will not be manifested in this energy

Before we consider the actual calculations of the diagrams

regime of the theory. m
We can now proceed with our quantization of general +,6’2e2/<2\/ﬁ+ (13)
relativity and scalar QED as an effective field theory. The q
guantization procedure will be as follows. We will define the L
. — where A,B, ... correspond to the local analytical interac-
metric as the sum of a background pajt, and a quantum tions anda; , a, andBy, B,, . .. correspond to the leading

contributionxh ,,,, wherex?=32G7:

wvs non-analytical, non-local, long range interactions.

The space parts of the non-analytical terms Fourier trans-

9uv=0,,+ kh,, . (7)  form as
From this equation we get the expansions for the upper met- d*k 1 1
ric field g~¥ (defined to be the inverse matfyjpand fory—g (2m)3 W_m

[where detg,,)=g] as

J d3k 11
(2m)3 |kl 2722

— 1
\V— 0= - ~ K - 3 —
d 4“2 h } ® J d’k In(k2)= ! (12)

(2m)° 2ar3d’

=g

whereh#’=g#g"#h,, andh=g*’h,,. We have only ex-
panded to first order ih,,, as we need diagrams to second

order in«. rections. . I .
Next we expand the above covariant version of the scalar The non-analytical contribution, corresponding to thg1/

QED Lagrangian in terms of the fields. The result for thepart’ giyes as seen the Nevvtoniap and Cqulomb potentials,
photon parts reads respectively. The other non-analytical contributions generate

the leading quantum and classical corrections to the Cou-

lomb and Newtonian potentials in powers of 1lt is nec-

[=— EKh((? AL J*AY— 9 A, I AR) + Exh‘“’(a A 9 A® essary to have non-analytic _co_ntribL_Jtions in the matrix ele-
4 wia woe 2 pany ment, to ensure that tH®@matrix is unitary.

The analytic contributions will not be considered in this
work. As noted previously these corrections correspond to
local interactions, and are thus only needed for the high en-
while the complex scalar part can be quoted as ergy manifestation of the theory. Many of the analytical cor-
rections will be divergent, and hence have to be carefully

so clearly these terms will contribute to the long range cor-
pv

+ DAL IR, = A3 A= DA, A%) (9)

1 absorbed into the appropriate terms of the effective action of
L= Exh(|<9ﬂ¢|2— m?|¢|?) — kh*"(d,¢* 3, ¢) the theory.
We will not consider the radiative corrections due to soft
+(ieA, 0 p* p—ieA, p* " ¢)+e’A, A p| bremsstrahlung in this approach. In some of the diagrams of

this theory as well as in QED, there is a need for introducing
soft bremsstrahlung radiative corrections to the sum of the
diagrams constituting the vertex corrections. We will not
i i consider this aspect of the theory in this approach, as we are
—«h®’g, ¢* (ieA,) ¢+ kh**(ieA,)¢* d,¢. (100 npot computing the full amplitude of the matrix. Further-
more, certain effects have been included in the recent work
From these equations one can find the vertex rules for thef[13], where the gravitational vertex corrections are treated.
lowest order interaction vertices of photons, complex scalar3his issue should be dealt with at some stage refining this
and gravitons for this theory. In Appendix A we will present effective theory of general relativity and scalar QED; how-
a summary of the vertex rules. ever, for now we will carry on and simply compute the lead-

1 1
+ EKhaﬂ¢*(ieAﬂ)¢>— Exh(ieA")¢* d,¢
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ing post-Newtonian and quantum corrections to the scatter- % Ky Y i
ing, and leave this concern for future further investigations. \ / \ ’
my /W ma e1 Ibr\/\d\eQ
The definition of the potential I/ \\ / \\
The various definitions of the potential have been dis- " @ " w
cussed at length in the literature. We will here define the
potential directly from the scattering matrix amplitude. FIG. 1. The set of tree diagrams contributing to the potential.
In the quantization of general relativity the definition of
the potential is certainly not obvious. One can choose be- 1 1 d3k
tween several definitions of the potential depending on, e.g. V(X)=— J ek M. (16
the physical situation, how to define the energy of the fields, 2my 2my ) (27)3

the diagrams included, etc. o o S )
Clearly a valid choice of potential should be gauge invari-This will be our deﬁmyon of the non—rglanwsuc potenual
ant to be physically reasonable, but while other gauge theddenerated by the considered non-analytic parts, widres
ries like QCD allows a gauge invariant Wilson loop the non-analytical part of the amplitude of the scattering pro-
definition—e.g. for a quark—anti-quark potential, this is notC€ss to a given loop order. This definition of the potential is
directly possible in general relativity. also used irf22].
There has, however, been some attempts to make a Wil-
son loop equivalent potential for quantum gravity. A Wilson-  A. The diagrams contribution to the non-analytical parts
like potential seems to be possible to construct in general of the scattering matrix

relativity using the Arnowitt-Dese_r-Misn_er formula for t_he Of the diagrams contributing to the scattering matrix only
total energy of the systerfil9]. This choice has been dis- , certain class of diagrams will actually contribute to the sum
cussed in20] in the case of pure gravity coupled to scalar o non-analytical terms considered here—the logarithmic
fields. . . and square-root parts. In this treatment we will only consider
Arecent suggesﬂo[_Ql]_ is that one should Io_ok at the_ full he diagrams which contribute with non-analytical contribu-
set of diagrams constituting the 1-_Ioop scattering matrix, anGions in detail. Diagrams with many massive propagators will
use the total sum of the 1-loop diagrams to decide the nornygyally only contribute with analytical terms. Some of the
relativistic potential. As the full 1-loop scattering matrix is giagrams have a somewhat complicated algebraic structure
involved, this choice of potential gives a gauge invariantye to the involved vertex rules. To do the diagrams we
definition. This choice of potential is equivalent to that of developed an algebraic program programmemARLE (Wa-
[22], where the scalar source pure gravity potential waseriqo software Our program contracts the various indices
treated. This choice of potential which includes all 1-100p g performs the loop integrations. In the following we will
diagrams seems to be the simplest, gauge invariant choics, through the diagrams and discuss how they are calculated

one can make for the potential. _ _ in detail. We will begin with the tree diagrams.
We will calculate the non-relativistic potential using the
the full amplitude. Here we simply relate the expectation 1. The tree diagrams

value for theiT matrix to the Fourier transform of the po-

i~ . . The set of tree diagrams contributing to the scatterin
tential V(q) in the non-relativistic limit as g 9 g

matrix are those of Fig. 1. The formal expression for these
_ diagrams are

(kq.koliTlky kp)=—iV(a)(2m)S(E-E') (13

C o o : i My = (kg Ky, my) P ivap 798(kg k4, my)

wherek;, k, and k;, k; are the incoming and outgoing 1@~ "2 1P P21 92 2 \R3a R
momentum, respectively, arie—E’ is the energy difference (17)
between the incoming and outgoing staff28]. Comparing
this to the definition of the invariant matrix elemeéott we  and
get from the diagrams

_|77,uV
2

71(K3,k4,8).  (18)

(Ky Kol TIK] ko) = (27m)4 6 (kg — k] + ko — k3) (M) | My )= 71 (ke K2, €1)
(14
These diagrams yield no complications. Contracting all indi-
we see that(we have divided the above equation with ces and preforming the Fourier transforms one ends up with
2m;2m, to obtain the non-relativistic limjt
Gmym,
r

~ 1 1 Vi@ =— (19
V(q)=— 2m, Z—sz (15
Vi1 = o2 (20

so that 41
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W < N P The algebraic structure of this diagram is rather involved
ky exne k4 R %Y ¢ and_ complicated, butlyields no complications us.ing our alge-
(m1 e1) ! ' (ms e2) ! ! braic program. The integrals are rather complicated to do,
1( » 3 ,W\ but one can make use of various contraction rules for the
N e ®) AN integrals which holds true on the mass shell.
. , . , From the choice=k;—k,=k,—k; one can easily derive
N\ / N\ /
X ,
,/ N ,/ N kl'q:k4'q:_k2'q:_k3‘q:7
O @ N
FIG. 2. The set of box and crossed box diagrams contributing to 5 q2
the non-analytical parts of the potential. ki-ko,=mi— >
wheree; ,m; ande,,m, are the two charges and masses of 5 q°
the system, respectively. This is of course the expected re- K3 kg=m;——- (22)

sults for these diagrams. One gets the Newtonian and Cou-
lomb terms for the potential of two charged scalars.

The next class of diagrams we will consider is that of box
diagrams.

wherekZ=k3=m3 andk3=kj=mj3 on the mass shell.
On the mass shell we have identities such as

2. The box diagrams and crossed box diagrams (I +q)2—q2—I2
There are four distinct diagrantsee Fig. 2 two crossed l-q= 2

box diagrams and two box diagrams. We will not treat all
diagrams separately but rather discuss one of the diagrams in
detail and then present the total result for the diagrams. The

| +kq)2—m2—1?
diagram 2a) is defined in the following way: = ( )M

Ky 5
4 . X
iM2<a>:j - I I (I—kg)?—m3—1?
(2m)* (1+ky)?=mi (I —kg)?—m | -kg=— 5 (23
—i
X 7Ky kg +1,€1) %5 72(ks,— 1 +Kg€0) Now clearly, e.g.,
IP Vo
X 75 (1+ky ky,my) I: ’;] 73" (K3—1,kq,my) f d* -9
(+a) (2m)* 121+ Q)L (1+ ky)?— mE][(1 —kg)*— m3]
(21)
1 d4 (I+9)?—qg?—1?
where we have chosen a certain parametrization of the mo- = Ef 102 5 2 PR
menta in the diagram, the side with mass, ] and charge (2m)" 1701+ Q)L (1+ ko) "= m][ (1 —kg) "= m3]
(e1) hasky, k, as incoming and outgoing momentum, re- (24)

spectively. Correspondingly the other side with mass)(

and charge ,) hasks, k, as incoming and outgoing mo- As only the integral withg? yields the non-analytical terms
mentum, respectively. we let

f d4l l-q —0q?
(2m)* 120+ q)2[(1+ky)?—m2] (1 —kg)P—mZ]

Xf d4l 1 25
2m)* 121+ )2 (1 + k) 2= mZ][ (I —kg)2—m3]
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k

\ 2 k4/ A // ko \ ky #
(m1 e1) ?}imQ es) E?\/ (m1kf1)l@\(7:: e3)

’ X ! \
,(kl ks X 2 \\
(a) (b) FIG. 4. The circular diagram with non-analytic contributions.
\ 7/ \ 7/

Y 4 % ‘ box diagrams we will only consider one of the diagrams—
gfj ﬁ;j here again the first, namely Fig(e3. The formal expression
I,’ L I,’ . for this particular diagram is—we just apply the vertex rules:

N\ \
’ © \ ’ @ \ 44 i

5 71(Ky, ki +1,€q)

'Ma(""):j (2m)* (14 ky)>—m2

FIG. 3. The set of triangular diagrams contributing to the non-
analytical terms of the potential. .
I 7])/5

X 2

Té“/(l +k1,k2,m1)

A perhaps more significant reduction of the integrals is with

the contraction of the sources momenta, e.g. .
P yvep

1t 77 (kg kg, €2). (29

j d4l Ik
2m)4 12(1+ Q) (1 + ky) 2= m2][ (1 —kg)2—m3
(2m)" 0+ (k) "= mi (1 —kg)™=m3] Again all the needed integrals are of the type discussed in the
1 d4l (I+k1)2—m§—lz Appendixes. Applying our contraction program and doing
= —j the integrations leaves us with a result, which Fourier trans-

2] ot 171+ a2 (1 +k)*~mil[(1—ks)*~m3]  formed yields the following contribution to the potential:
1J' d*l 1 Gee,(m+my)  4dee,G

— = 26 \Y ry= -
2] 2y PO+ )2 (I =Ky 2—md] (26) 3(a)+3(b)+3(c)+3(a)(F) 2 2.3

(30
or

As seen these diagrams yield both a classiealr? contri-
f d* kg bution, as well as a quantum correctierlL/r 3,
(

2m)* 12(1+ @) (1 + k) 2= mZ][ (1 — k)2 —m3]

4. The circular diagram

J' d4l —(I—kg)?+m3+1? The circular diagrantsee Fig. 4 has the following formal
et 20k - mE (kg 2-mg]  TPESSON
d4l —i
Lpod ) Ma= | Stk )| 22
——z f —. (27) (2m)* |
2) 2m)* 120+ @) (1 +ky)2—m3]
IP Vo
As we have seen the contraction of a loop momentum factor ”—pz 727 (K3, k4, €5). (39
with a source momentum factor removes one of the propa- (I+q)

gators leaving a much simpler loop integral.

Such reductions in the box diagram integrals help to do b \ lk \ !
the calculations. The remaining integrals can be done quite 4 X o ’ /.
easily and the results for these integrals are presented in Ap- (m e1) w‘a' (m2 e3) ‘:}\‘Q‘\
pendix B, together with the lowest box integral which has to ks \ks / ¥

be done explicitly.
The final sum for these diagrams gives

\ !
k \ !

4 (a) .
10G kQ\ ‘ Y
ee, (1 1) (m2 e2)
Vv (N=+——5 (28) 5 o
2(a)+2(b)+2(c)+2(d) 372r3 k1 ‘ ks i
NG

1

] \
/ \
1 () \
3. The triangular diagrams

The following triangular diagrams contribute with non-  FIG. 5. The class of the graviton 1PR vertex corrections which
analytic contributions to the potential. See Fig. 3. As for theyield non-analytical corrections to the potential.
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\ / \ !

ko \ 4 k4 ) / ko ‘ ‘ k4 \ /

(my e1) bv\@ (ma e2) \’3\‘\ (my 21) k@;ng €s) @‘\A{
k1 ‘ \ks J/ Y o ‘ 3 / \

7 A i \
S R T ow @ ()

\ 4 3 [ FIG. 7. The remaining photonic vertex 1PR diagrams which
k \ ’ 4 yield non-analytical corrections to the potential.
1 , i \\
/ \ ’
/ \ /! \ _G(egml"'eimz)
(© () Vs(@y+5m)+5(0+5@(N=————-—5
8mr
FIG. 6. The first class of the photon vertex 1PR corrections m m
. . . . . 1 2
which yield non-analytical corrections to the potential. G(—e§+ —ef)
my my
Doing the contractions and integrations gives the following N 37213 (39
contribution to the potential:
where we have associated a factor of one-half due to the
2Gese, .
Va@r)= — (32 symmetry of the diagrams(& and (d).
T

We have checked explicitly that the above result for cor-
rection to the potential is in complete agreement, with the
5. 1PR diagrams result for the gravitational vertex correction calculated in
The following class of the set of one particle reducible[13]- ] ) ]
(1PR diagrams corresponding to the gravitational vertex Fo_r the photonic errtex correction we consider the follow-
correction will contribute to the potential; see Fig. 5. ing diagrams. See Figs. 6 and 7. _
Again we will not treat all diagrams separately. Instead Agdain we look upon the formal expression for only two of
we will consider two of the diagrams in details—namely the diagrams—namely Figs(& and 1a)
Figs. 5a) and Jc). First we will present the formal expres-
sions for the diagrams using the vertex Feynman rules. Next d4l i
we will briefly consider the calculations and finally we will ! 6(a):f
present the results.
The formal expression for Fig.(& is

1(ky,ky €
(277)4(I—k3)2—m§7-1( 1.K2,€1)

“ 15| _gp(sa ,
” i X| =7 7570, + ) 75" (kg k=1, my)
I Ms(a)= f 2 > 2 75" (Ky,kz,my)
(2m)* (1 —kz)*—m3 1P vy || =178 | 4
ip X |—2 m Tl(k3—|,k4,62) (36)
X —2”] 570011+ q) (ks ks~ 1,€2)
4l —i7mys
i i M= | —— (k.o 00)| —
Ir]ay Ir]ﬁﬁ 8 | 7(a) f 4 '1\R1,R2,51 2
— PO B (ka1 Ky, e 33 (2m) q
|2 (|+q)2 1( 3 4 2) ( ) 73
I Vo,
while the expression for Fig.(6) reads x 75"%9(q,1+q) Iﬂ—zp]
iMS(c):J' d—LllTéw(klykbml) P g 70| o)
(2m)* q° X (|+_q)2 75" (K3,Kq,€2). (37
po(y9) af i Mya
XTS (|,|+q)7'4 (k3,k4,ez) 2 \ i
| 2 \ Ar,
—i (m1 61) b\@\l‘ (mg 62)
%’32 . (34) ! \
(I+q) koA A
Again the calculations of these diagrams yield no real ! !

complications using our algebraic program. The result for the FIG. 8. The only mixed vacuum polarization diagram to con-
diagrams %a)—(d) are in terms of the corrections to the po- tribute to the potential. There is no mixed corresponding ghost dia-
tential gram associated with this diagram.
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P \ ’ \ ; on one of the external legs. Hence the loop integrations will
%\Ml \ P \ ”~ not depend on the interchanged momentum of the diagram.
- A ,"""\ E ,\-\,\L} Thus iF cannot give any non-analytical contributions to the

! . II N ) \\ potential.
(a) (b) ()

FIG. 9. Diagrams which will only give contributions to the ana- IV. THE RESULT FOR THE POTENTIAL

lytical parts of the potential. Adding it all up, the final result for the potential reads
The result for the diagramg&-d)+7(a—b) are in terms Gmm, ae.e, 1(m 224m EZ)GE

of the corrections to the potential V(r)=— ——2 1?2 -1 2

r r 2 c?r?
Gerey(mg+my) -~ ~ -
Ve(a)+6(b)+6(0)+6(d)+7(a)+ 7(b) (M) =~ T a2 N 3e6(m+my)Ga 4 ( mie5+ mgéi) Gah
(38) c?r? 3\ mumy  gcd
6. The vacuum polarization diagram _ e1e,Gafi (41)

The vacuum diagrartsee Fig. 8 has the following formal mcdr®

expression: . . . :
including the appropriate physical factorsfofindc, and we

rescale everything in terms af=%c/137. The charges;

ande, are normalized in units of the elementary charge.
We see that there are various different types of terms in

—i7ys
2| 75" @, =D

) d4l
I Mga)= f W 71(Ky,K2,€1)

(5o iPovop || —17pa this expression. The first two terms are, as noted before, the
XE"P9(=1,q) Trazl T well-known Newtonian and Coulomb terms. They represent
(I+a) the lowest order interactions of the two sources. These terms

i are as expected, and they will dominate the potential at suf-
s 7P(Ks,Kq,€5) (39 ficiently low energies. _ .
The next two terms are the classical post-Newtonian cor-
) ) o - rections to the potential. These terms are the leading post-
It gives the following contribution to the potential: Newtonian corrections, which are also present in general
relativity with the inclusion of charged particles. A result for
v _Gee 40 the post-Newtonian corrections derived from classical con-
67T siderations can be found [d5], and in our notation reads
The exact photon contributions for the 1-loop divergences 1 (m1~e§+ mzéi)(;'&
of the minimal theory can be found if¥]. Using that the Vpost.Newwnia,?E > +(aptag—1)
pole singularity 1¢ will always be followed by a Intq?) cr
contribution, one can read off the non-analytic result for the ~~ ~
. . . . . elez(m1+ mz)Ga
loop diagram using the coefficient of the singular pole term. X ) (42)
We have explicitly checked our result for this diagram with c’r?

the result derived in this fashion.

The above diagrams generate all the non-analytical cone see that classical expectations for the post-Newtonian
tributions to the potential. There are other diagrams contribcorrection terms exactly match the ones we have derived,
uting to the 1-loop scattering matrix, but those diagrams willand that the coefficient of the first term is exactly equal to
only give analytical contributions, so we will not discuss ours. The result for the second term is equivalent in form to
them here in much detail. Examples of these diagrams aréie term we have derived, and the coefficient can be made to
shown; see Fig. 9. match our result exactly for particular values®f and ag .

The diagram A is a tadpole. Tadpole diagrams will neverThe physical significance of the arbitrary parametegsand
depend on the transverse momentum of the diagrams, anel,, however, requires some explanation. The values pf
will thus never contribute with a non-analytical term. In fact, and a4 are coordinate dependent coefficients for the poten-
massless tadpoles will be zero in dimensional regularizatiortial, which can take arbitrary values depending on the coor-
The diagram B is interesting—as it is of the same type as thdinate system chosen to represent the potential. The non-
diagrams 6a)—(d); however, it has two massive propagatorsrelativistic potential is ambiguous in this seri4®,16. This
and one massless instead of two massless and one massfaet has also been discussed 117,18 in the case of the pure
propagator. One can show that this diagram will not contrib-gravitational potential.
ute with non-analytic terms, because such an integral with The parameteny is related to the gravitational propaga-
two massive denominators and one massless will only givéor while the coefficienty, is related to the photonic propa-
analytical contributions. In the case of diagram C, the loop igator. In a forthcoming publicatior24], we will consider the
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pure gravitational post-Newtonian corrections to the potenguantum effect in powers db#4 will be nearly neglectable
tial of two scalars, and discuss the result in relation to thecompared tdG. Therefore the quantum effects will be very
coefficientay . hard to extract, using measurements where classical expec-
An interesting observation is that the first term of thetations are involved. The solution to this obstacle could be to
post-Newtonian correction is invariant under the coordinatanagnify a certain quantum effect. This could be in cases
transformation. This term originates as noted previouslywhere the classical effect was independent of the energy
from the gravitational vertex corrections which generate thescale, but where the quantum effects were largely effected by
corrections to the classical metric, sgE3]. This suggests the energy scale. Such an effect would only be observed
that it may be better to consider corrections to a classicalvhen very large interaction energies are involved.
metric than to a non-relativistic potential. The post- Another way to observe a quantum effect could be when a
Newtonian and quantum corrections to the Schwarzschildertain classical expectation is zero, but the quantum effect
and Kerr metrics will be considered in a forthcoming publi- would yield a contribution: a quantum gravitational
cation[25]. “anomaly.” Such “null” experiments maybe used to test a
The last two contributions are the most interesting from aquantum theory for gravitj26].
guantum point of view. These two terms represent the lead-
ing 1-loop quantum corrections to the mixed theory of gen-
eral relativity and scalar QED here computed for the first V. DISCUSSION
time. As seen in Sl units G/c®~10 "° m?, so these correc-
tions are very small indeed, and hence seemingly impossible Normally general relativity is viewed as a non-
to detect experimentally. This is especially due to the larggenormalizable theory, and consequently a quantum theory
terms of the Coulomb and Newtonian terms. We havefor general relativity is believed to be an inconsistent theory.
checked explicitly that the coordinate transformationgl&f However, treated as an effective field theory, the renormal-
which affect the second post-Newtonian term, cannot alteization inconsistency of general relativity is not an issue—as
the coefficients of the quantum contributions to the correcthe theory can be explicitly renormalized to any given loop
tions of the non-relativistic potential. order. This fact was first explored if2,3]. In the present
When looking at the expression for the potential, one nowork we have discussed the combined theory of general rela-
tices that the post-Newtonian and the quantum correction tgyity and scalar QED, and observed that it is possible to treat
the potential are split up into two types of terms. There is onghjs theory, too, as an effective field theory, and hence avoid
term where the two charges are multiplied together and onge traditional renormalization problems. What is even more

term where the two charges are squared and separated. W& rtant, quantum corrections to the theory can be calcu-
have assumed that the particles are not identical. For |dentL—

i ) ~ “lated explicitly, and treated perturbatively as in any other
cal particles the two type of terms must be exactly identical uantum field theory,
m_form._For |dent|(_:al particles one_shogld include the appro- Certainly the effective field theory approach is only valid
priate diagrams with crossed particle lines.

: S . at sufficiently low energies, i.e. below the Planck scale
When one of the particles is either very large or with a o . :
part IS ermher very ‘arg W & 109 Gev, and at long distances. At higher energies a new

very high charge, some of the contributions will dominate K " i h h .
over others. The terms with separated charges will corredn<nown theory will have to govern the quantum gravita-

spond to the dominating terms, if one of the scattered massd9na! effects, perhaps some kind of string theory, compacti-
or charges were much larger than other. In this case thi€d at low energies. However, the Planck energy scale is
gravitational vertex corrections will generate the dominating™uch larger than “traditional” high energy scales. Similarly
leading contribution to the potential. E.g. with a very high the standard model may only be a good description below
charge for one of the particles—the probing particle will fell ~1000 GeV, so the effective field theory approach is seem-
the most the gravitational effect coming from the electro-ingly good for all energies we are presently dealing with in
magnetic field surrounding the heavily charged particle.  high energy physics.

For a very large massM~10®* kg) but a very low However, experimentally it will be very difficult to verify
charged particle; ~0 (the Sup, and a chargedep~1) but @ quantum gravitational theory—even in the presence of
very low mass particlei~10 31 kg) (an electrop one charged scalars. _
could perhaps test this effect experimentally, because then The non-refativistic potential may not be the best offset
the Newton effect i§§mM/r ~ 1029 I m/r, but the quantum for a verification of quantum gravity. This is because the

effectGﬁ'&(?-:-gM/mce'r3)~10‘37J m#/r3. while the classi- _potent|al has coordmat_e ldepende.nt terms. It may bg of more
interest to look for definite coordinate system invariant ex-

H H 27T A2, 2 — 25 2 i L . . e .
cal contributionGM(e3a/c?r?)~10"2° Jnf/r?. The ratio  pectations in the quest for an experimental verification of
between the post-Newtonian effects and the quantum corregyantum gravity.

tion is for this experimental setup still very large, but not
quite as impossible as often seen in quantum gravity.
Experimental verifications of general relativity as an ef- ACKNOWLEDGMENTS
fective field will perhaps be a very difficult task. The prob-
lem is caused by the normally very large classical expecta- | would like to thank P.H. Damgaard for many interesting
tions of the theory. These expectations imply that nearly anyliscussions and useful comments.
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APPENDIX A: SUMMARY OF THE VERTEX RULES 6. 2-photon-1-graviton vertex

For the 2-photon—1-graviton vertex we have derived
1. Scalar propagator

The massive scalar propagator is well known:
i y

=
—m°+ile P a !
__,__q>___ q po \Z _Tg (75)(p,p)
3‘p’
2. Photon propagator 5

The photon propagator is also known from the literature.
We have applied the Feynman gauge which gives the leasthere
complicated propagator:
“in” p(y9) (7o) ! 5
R 4 "y —i po(yo .n’ — po ry
Tric "0 (p,p")=ix| PP (p-p')+ 5[ 7P

B e VW Ve WV WY
7 4 75( Pp’ o1 n rp)_( YO PO
3. Graviton propagator 77 (pTp T PP PP 7w

The graviton propagator in harmonic gauge is discussed 1Y AP AT PO TY L TS, DY
in the literature[3,4], but can be derived quite easily and ML A S A S T E
explicitly [27]. We shall write it in the form;

j paByd 7. 2-scalar2-photon vertex
af RAARAARR 70 CQPtie The 2-scalar—2-photon vertex is also well known from
g scalar QED. We will write it as
where
1 ,
paﬂyﬁzi[ Y PO+ pPrprd— palyro]. 5 v
7
P =73°(p.p’.€)
NP
4. 2-scalar-1-photon vertex N N
~
The 2-scalar—1-photon vertex is well known in the litera- s
ture. We will write this vertex as where
o - 1°(p,p’,e)=2ie?y?’.
4
v 7 _ y( ' e) .
'\rvx-.’\ =71(p.p, 8. 2-scalar1-photon-1-graviton vertex
_>
? p‘\ For the 2-scalar—1-photon—1-graviton vertex we have de-
N rived
where
7i(p,p’,e)=—ie(p+p')”. "
7 !
p — p0(7) ’
5. 2-scalar1-graviton vertex ~_p 57 (pp )
The 2-scalar—1-graviton vertex is also discussed in the po ‘\\
literature[3,27]. We will write it in the following way:
where
P’
w o A 270 (p,p’ @) =iex PP (p+p'),]
RAAN =75"(p,p’,m)
g \‘ andPr??” is defined as above.
PN For all vertices the rules of momentum conservation have
been applied. For the external scalar lines we associate a
where factor of 1. At each loop we will integrate over the undeter-

) mined loop momentum.
I« For a certain diagram we will divide with the appropriate
mv ’ Y Y A7) TIAY AV n’)—m2 g pprop
72 (PP m) 2 {p""ptp"p"= 7" (p-p’) —m7}. symmetry factor of the Feynman diagram.
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APPENDIX B: THE NEEDED INTEGRALS FOR THE
CALCULATION OF THE DIAGRAMS

PHYSICAL REVIEW D 66, 084023 (2002

4
| :f d4l HEN
mva

2m)* 12(1+ ) (1 +k)2—m?]

To calculate the diagrams the following integrals are

needed:

d4l 1 i
_f 2m P+q? 322t 2t (B

J—f il b ] [q,L]+ (B2)
2T 2t 21+ qF szt e

d4l I
J = kv
my f(Zw)4|2(|+q)2

2

i L 1
q,uqv _§L —q Nuv —gL

3272

+ ...

(B3)

together with

_f d*l 1
2t 120+ @ (1 +k)2—m?]

:m[—L—S]‘F... (B4)

| _f d*l B
L 2m)t 120+ @ (1 +k)2—m?]

1 ¢g? 1 ¢g?
_1__q_)L_ g
2 m2

|
=———1ik
32772m2[ .

1
L+5S

+0q,, >

]+... (B5)

| _f d4l L,
A 12+ @)A1+ k)2—m?)
i

- 3272m?

[q,uqv -

]+... (B6)

 32m2m?

L+58
16

1 g?
9090 Thukokal =55

1q q°
+(Auk ket A KK+ Ak k)| 3 L+ 75 —5S
+(9,9.K,+0d,9.K,+0,0.K,)

S

_B_ZE

1
+(77,u.1/ka+ 77p.ak1/+ nvakp.)<1_2q2|-) +(77,u.vqa

where L=In(—¢?) and S==°m/\/—g?. In the above inte-
grals only the lowest order non-analytical terms are pre-
sented. The ellipses denote higher order non-analytical con-
tributions as well as the neglected analytical terms.
Furthermore, the following identities hold true for the on-
shell momentak-q=q%2, wherek—k’=q and k?=m?
=k'2 In some cases the integrals are needed Witkplaced
by —k’, wherek’-q=—qg?/2, these results, are obtained by
replacing everywher& with —k’. This can be verified ex-
plicitly. The above integrals agree with the resultd ®f

The following integrals are needed to do the box dia-
grams. The ellipses denote higher order contributions of non-
analytical terms as well as neglected analytical tef&&:

1 2 1 2
+77,uaqv+ nvaq,u,) _gq L_l_6q S

(B7)

K_f d4l 1
) emr 120+ @) (k)2 m2][(1 —kg)2—m2]

i
L

+ ... (B8)

 16m2m,m,q? - 3mym,

'_J d4l 1
a2+ g)4 (1 +ky) 2 mE[(1+kg) 2 m3]

L

+ ... (B9)

i

167%m;m,0> [ i 3m;m;
Here ky-q=0%/2, k,-q=—0%2, k3-q=—0%2 andk,-q
=q?/2, wherek; —k,=k,—ks=q andk?=m3=k3 together
with k3=m3=k3. Furthermore, we have defineav
=(kyq-k3) —mym, and W= (k;-k,;) —m;m,. The above re-
sults for the integrals agree wif29].

For the above integrals the following constraints for the
non-analytical terms can be verified directly on the mass
shell:
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Liva? =1, 77 =3, 7""=0 B10 1 !
pral = L T S e Luvak= 53,0, 1 k=23,
2 2 2 2
l,uvaqa:_?IMV’ IMVqV:_?IM’
1
| ke=2J. (B12)
| gt= qz| J,.q’= q2J M ?
e __? urd __? Mo

These mass-shell constraints can be used to derive the above

T CI_J (B11) ir)tegr'als and are direc;tly verifigd in the same manner that we
m 27 simplify the K andK" integrals in the box calculations.
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