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Relativistic shells: Dynamics, horizons, and shell crossing

Sérgio M. C. V. Gonçalves
Department of Physics, Yale University, New Haven, Connecticut 06511

~Received 10 March 2002; published 29 October 2002!

We consider the dynamics of timelike spherical thin matter shells in vacuum. A general formalism for thin
shells matching two arbitrary spherical spacetimes is derived and subsequently specialized to the vacuum case.
We first examine the relative motion of two dust shells by focusing on the dynamics of the exterior shell,
whereby the problem is reduced to that of a single shell with different active Schwarzschild masses on each
side. We then examine the dynamics of shells with nonvanishing tangential pressurep, and show that there are
no stable—stationary, or otherwise—solutions for configurations with a strictly linear barotropic equation of
state,p5as, wheres is the proper surface energy density andaP(21,1). Forarbitrary equations of state,
we show that, provided the weak energy condition holds, the strong energy condition is necessary and suffi-
cient for stability. We examine in detail the formation of trapped surfaces, and show explicitly that a thin
boundary layer causes the apparent horizon to evolve discontinuously. Finally, we derive an analytical~nec-
essary and sufficient! condition for neighboring shells to cross, and compare the discrete shell model with the
well-known continuous Lemaıˆtre-Tolman-Bondi dust case.
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I. INTRODUCTION

The matching of two arbitrary spacetimes along a giv
hypersurface plays an important role in general relativ
with a rich plethora of applications, such as the dynamics
thin matter shells@1#, construction of cosmological mode
@2#, collapse of bounded bodies@3#, and wormholes@4#. The
standard techniques to achieve such matching are not
cumscribed to four-dimensional manifolds, and can be ea
applied to higher-dimensional cases, such asn-branes in the
so-called brane world cosmology@5#.

Within the context of classical general relativity, the th
shell matching problem was first studied by Sen@6#, Lanczos
@7# and Darmois@8#, and later further developed by Isra
@9#, who produced a coordinate invariant formalism by a
plying the Gauss-Codacci equations to a non-null thr
dimensional hypersurface embedded in a four-dimensio
spacetime. The null case was studied by Barrabe`s and Israel
@10#. On the shell, Einstein’s equations reduce to the Lanc
equation, where the jump of the extrinsic curvature acr
the shell plays the role of the four-dimensional Ricci tens
being thus related to the surface stress-energy tensor. C
prehensive reviews of the matching problem in general r
tivity may be found in Refs.@11,12#.

In this paper, we first consider two shells in vacuum, a
analyze the dynamics from the viewpoint of the exter
shell, thereby reducing the problem to that of a single sh
immersed in two adjacent Schwarzschild spacetimes w
different mass parameters on each side. For shells with p
sure, we show that~i! a strictly linear barotropic equation o
state is incompatible with stable~oscillatory or stationary!
solutions, and~ii ! for matter with a real local sound spee
(Cs[Adp/ds>0) obeying the weak energy condition, th
strong energy condition is necessary and sufficient for sta
ity, regardless of the equation of state. We then study
formation of trapped surfaces in the spacetime, and sh
explicitly that the existence of a thin matter shell introduc
a discontinuity in the apparent horizon curve. The rela
0556-2821/2002/66~8!/084021~11!/$20.00 66 0840
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problem of shell crossings is examined, and an analyt
necessary and sufficient condition for neighboring shells~de-
fined in a precise manner! to cross is derived. We furthe
show that, although shell crossing singularities occur in
multi-dust-shell case just as they do in the continuo
Lemaı̂tre-Tolman-Bondi~LTB! dust case, the former canno
be taken as the discrete analog of the latter, since, e.g.
energy density remains finite at discrete shell crossin
whereas it diverges~together with some curvature compo
nents! in the LTB case. Physically, this is related to the fa
that individual shells move geodesically in the LTB spac
time ~i.e., proper time equals comoving time, for each she!,
but the same fails to hold in the discrete case: dust parti
do move geodesically on each shell, but, from the viewpo
of the four-dimensional spacetime, they are accelerated.

The paper is organized as follows. Section II derives
general formalism for the matching of two arbitrary spheric
spacetimes across a timelike thin shell with arbitrary ma
content. In Sec. III we specialize to the case of two d
shells in vacuum; the general relativistic equation of mot
for the exterior shell is derived, as well as its Newtoni
analog. The well-known case of a single dust shell
vacuum is trivially recovered. In Sec. IV, the dynamics of
dust shell with a LTB interior is discussed, and the bound
layer case of closed Lemaıˆtre-Friedmann-Robertson-Walke
~LFRW! models is readily obtained as special case. Sec
V studies shells with a nonvanishing tangential press
component, and several stability results are produced. In
VI, we derive the condition for formation of apparent hor
zons in an arbitrary spherical spacetime, and then exam
the particular case of a dust shell collapsing in the Schwa
child background. Section VII discusses the occurrence
shell crossing in a spacetime with a finite number of she
derives an explicit condition for shell crossing of neighbo
ing shells, and compares it with the continuous LTB du
case. Section VIII concludes with a summary and discuss
Natural geometrized units, in whichG5c51, are used
throughout.
©2002 The American Physical Society21-1
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II. MATCHING FORMALISM FOR ARBITRARY
SPHERICAL SPACETIMES

The complete four-dimensional spacetime consists of
interior regionM2 connected to an exteriorM1 by a time-
like three-dimensional thin shellS. The M6 regions are
characterized by the spherical metric:

ds6
2 52h6

2 dt6
2 1 f 6

2 dr21r 2dV2, ~2.1!

whereh6 , f 6 are functions oft6 and r, and the coordinate
systems$x6

m % are adopted. OnS there is a natural holonomi
basis$e(a)% given by

e(a)
m u65

]x6
m

]ja
, ~2.2!

where$ja,a50,1,2% are intrinsic coordinates onS. The in-
duced three-metricgab on S is then

gab5gmne(a)
m e(b)

n , ~2.3!

and it is the same on both sides ofS, since the four-metric
must be continuous across it. The surfaceS is parametrically
defined by

F~x6
m !5r 2r S~ t6!50. ~2.4!

Continuity of gmn acrossS requiresr S(t6)5R(t), whence

dsS
2 52dt21R2~t!dV2, ~2.5!

dt6

dt
5h6

21A11 f 6
2 Ṙ2[h6 , ~2.6!

where Ṙ[dR/dt, and t is the proper time measured by
comoving observer with the shell, with four-velocity

u6
m 5h6d t6

m 1Ṙd r
m . ~2.7!

The spacelike~outward pointing! unit normal toS is

n6
m 5g6

mna21]n
6F5h6

21f 6Ṙd t6

m 1 f 6
21h6h6d r

m , ~2.8!

wherea2[n6
m nm

6 , andnm
6u6

m 50. We shall henceforth drop
the 6 subscript for clarity and without detriment, since a
the formulas will apply equally to both sides ofS.

The normal extrinsic curvature,Kab , is @9#

Kabª2nme(b)
n ¹ne(a)

m 52nsS ]2xs

]ja]jb
1Gmn

s
]xm

]ja

]xn

]jbD ,

~2.9!

which is related to the~yet unspecified! surface stress-energ
tensorSab on S via the Lanczos equation@9#

@Kab#2gab@K#528pSab⇔@Kab#528p~Sab2 1
2 Sgab!,

~2.10!

where
08402
n

@Kab#[Kab
1 2Kab

2 , @K#[gab@Kab#, S[gabS
ab.
~2.11!

The four-dimensional stress-energy tensor associated wiS
can be written as a distribution as

TS
un5Sabe(a)

m e(b)
n uaud~F!. ~2.12!

The Lanczos equation~for the shell!, together with the~ex-
terior! Einstein equations, lead to the standard Israel junct
conditions@9#:

Sab$Kab%[
1

2
~Kab

1 1Kab
2 !Sab5@Tmnnmnn#, ~2.13!

(3)¹bSa
b5@e(a)

m Tmnnn#. ~2.14!

These two equations are identities that must be satis
throughout the time development of the shell, and not ge
ine dynamical equations, since they follow from the mome
tum and Hamiltonian constraints imposed onS @9#; the dy-
namics is encoded in the Lanczos equation~2.10!.

With the metric ~2.1!, the nonvanishing components o
Kab are

Ktt52
f

hh
S R̈1Ṙ

ḟ

f
D 2

1

f
D' f 1

h

f S f 8

f hh2
2h8D ,

~2.15!

Kuu5sin22uKff5
Rhh

f
, ~2.16!

whereD'[nm¹m is the normal derivative in thenm direc-
tion, and the prime[] r .

III. TWO COLLAPSING SCHWARZSCHILD SHELLS

We shall examine here the case of two neighboring t
shells of dust in vacuum. Specifically, the model consists
an inner shell with gravitational massm2 and an outer shel
with m1 , in an otherwise empty spacetime. An immedia
consequence of Birkhoff’s theorem is that the two-shell c
can be reduced to that of a single shell with appropri
adjoint spacetime metrics. If one is interested in the dyna
ics of the inner shell, the problem is that of a single sh
with a Minkowski interior~to ensure regularity of the metri
at the center! and a Schwarzschild exterior with massM
5m21m1 . Focusing on the exterior shell, the problem r
duces to that of a single shell with an interior Schwarzsch
metric with massm2 and Schwarzschild exterior with mas
M. We shall henceforth adopt this latter viewpoint. The m
rics in M6 are then

ds6
2 52h6

2 dt21h6
22dr21r 2dV2, ~3.1!

with

h25A12
2m2

r
, h15A12

2M

r
, M[m21m1 .

~3.2!
1-2
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In this case, Eqs.~2.15! and ~2.16! simplify to

Ktt52
R̈1h8h

hh2
, Kuu5Rh2h. ~3.3!

Now, let s be the total rest mass of the shell per unit prop
area. The stress-energy tensorSab on S is then

Sab5suaub5se(a)
m e(b)

n umun5sda
tdb

t , ~3.4!

and the total rest mass of the shell is

mS5E
S
Sabu

aubAdetgdu`df54pR2s. ~3.5!

The conservation equation~2.14! gives

ṡ

s
12

Ṙ

R
[

ṁS

4p
50, ~3.6!

i.e., the proper mass of the shell is conserved during
evolution; microscopically, this simply reflects the fact th
the total number of particles in the shell is conserved, a
thus the flux three-vectorj a5sua is divergence-free.

The dynamical evolution of the shell can be easily o
tained from theuu component of the Lanczos equation@a
straightforward calculation shows that Eq.~2.13! is equiva-
lent to @Kuu#524psR2, and the tt component of the
Lanczos equation does not yield additional information—
first integral is automatically satisfied by Eq.~3.8!#:

@Kuu#524psR2. ~3.7!

From Eqs.~3.2!, ~3.5!, and~3.7! we obtain

Ṙ25S m1

mS
D 2

211
M1m2

R
1

mS
2

4R2
. ~3.8!

This is the full general relativistic equation governing t
motion of the shellS with active gravitational massm1 in
an interior Schwarzschild background with active gravi
tional massm2 . Since both the gravitational and rest mass
of the shell remain constant during the evolution, we c
introduce the dimensionless constantk[m1 /mS , and re-
write the dynamical equation solely in terms of the gravi
tional masses:

Ṙ25k2211
M1m2

R
1

m1
2

4k2R2
. ~3.9!

Based on its Newtonian analog~derived below!, one may
interpret the terms in this equation as follows:k221 is the
total specific~i.e., per unit gravitational massm1) binding
energy of the system, the second term is the potential ene
and the third term is a self-binding energy forS, which is a
relativistic correction to the Newtonian case. We note th
since energy~potential, or otherwise! gravitates, the prope
mass of the shell will only coincide with its active gravit
tional mass if the total binding energy of the system va
08402
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ishes, whenk51. For given initial data$t i ;R(t i) ,Ṙ(t i)%,
collapsing or expanding solutions may be obtained, depe
ing on the value ofkP(0,1`). For kP(0,1), potential
~negative! energy dominates, and there is a maximum rad
at which the shell is momentarily at rest before recollapsi
i.e., the system is gravitationally bound; fork51, the kinetic
energy vanishes exactly at spatial infinity, and the system
said to be marginally bound; ifkP(1,1`), the kinetic en-
ergy is positive-definite at infinity@it ‘‘equals’’ m1(k2

21)/2] and the system is said to be gravitationally unbou

A. Newtonian limit

The Newtonian limit is obtained by the requirement
nonrelativistic velocities,uṘu!1, which implies @13# the
weak-field limit,e[m6 /R!1. To first order ine, Eq. ~3.9!
reads

Ṙ25k2211
M1m2

R
1O~e2!. ~3.10!

To check that this is indeed the correct limit, we prese
below a simple Newtonian derivation of the same equati
Let m7 be the rest masses of the inner and outer she
respectively. We want to follow the motion of them1 shell
in the gravitational potential of them2 shell. By Gauss’s
theorem, this reduces to the problem of finding the dyna
cal equation of a spherical shellS with radius r 5R and
massm1 , subject to the gravitational potential of a poi
massm2 located atr 50. The action for such system is

S5E L~R,Ṙ,t !dt5E @T2~U21US!#dt, ~3.11!

where

T5
1

2
m1Ṙ2, ~3.12!

U252
m2m1

R
, ~3.13!

US5
1

2ES
FS~x!r~x!d3x

52pE
0

R

FS~r !r~r !r 2dr52
m1

2

2R
~3.14!

are the kinetic, potential, and self-binding~of the shell! en-
ergies, respectively. The functionFS(r )[2m1 /r is the
self-gravitational potential of the shell, andr(r )[sd(r
2R) is the energy density, wheres5m1 /(4pR2) is the
shell’s surface energy density. ExtremizingdS50 yields the
Euler-Lagrange equation

R̈1
2m21m1

2R2
50, ~3.15!
1-3
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which integrates to

Ṙ25V1
M1m2

R
, ~3.16!

whereM[m11m2 andV is an integration constant, whic
represents~twice! the total binding energy of the system p
unit shell mass. This agrees thus with Eq.~3.10! upon setting
V5k221.

B. Single dust shell in vacuum

By settingm250, we readily obtain the case of a sing
spherical dust shell in an otherwise vacuum spacetime, o
nally studied by Israel@1#:

Ṙ25211S k1
M

2kRD 2

5k2211
M

R
1

M2

4k2R2
.

~3.17!

From the first equality above it follows that 2kR(12k)
<M . If k>1, this is trivially satisfied, but fork,1 this
imposes an upper bound onR:

R<
M

2k~12k!
[Rmax. ~3.18!

As before, if the system is gravitationally bound (k,1), any
initially expanding shell will reach a maximum radius—
uniquely determined by the gravitational mass of the sh
and its total binding energy—and then collapse back toR
50. Gravitationally unbound shells (k.1) will expand to
R→`. As noted by Israel, the upper bound~3.18! implies
that Rmax>2M, and hence there are no timelike stationa
shells withR,2M ~any stationary shell must necessarily
spacelike!, as expected. Further details, including exact so
tions of Eq.~3.17!, may be found in the original referenc
@1#.

IV. DUST SHELL WITH LEMAI ˆTRE-TOLMAN-BONDI
INTERIOR

Let us now consider the case of a spherical dust s
matched to an interior LTB spacetime@14#, and a Schwarzs
child exterior. The interior metric reads

ds2
2 52dt21F2~ t,r !dr21X2~ t,r !dV2, ~4.1!

where F[X8/A12w(r ), and 4pX2 is the (t dependent!
proper area of a spherical shell with coordinate radiusr. For
simplicity, we shall consider a class of LTB metrics given
a separable area radius function,X(t,r )5a(t)r . Included in
this class are the Lemaıˆtre-Friedmann-Robertson-Walke
~LFRW! cosmological spacetimes, given byw(r )5Ar2,
where the constantA determines the geometry of the spat
section: hyperbolic, flat, or closed~spherical!, for A521, 0,
or 1, respectively. The metric~4.1! is not in the standard
spherical form~2.1!, so the general formulas derived in Se
08402
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II do not apply, but it is straightforward to computeKab

directly from its definition. In terms of the$x2
m % coordinates,

the shell is given by

t5t, r 5xc5const, ~4.2!

and the angular coordinates are, as before, trivially identifi
The outward pointing unit normal toS is

n2
m 5

A12wc

a~t!
d r

m , ~4.3!

wherewc[w(xc)5const, and continuity of the four-metri
acrossS implies R(t)5a(t)xc . As before, we only need
Kuu

6 :

Kuu
2 5RA12wc, Kuu

1 5RA12
2M

R
1Ṙ2, ~4.4!

whereM is the total gravitational mass appearing in the e
terior Schwarzschild metric. The equation@Kuu#5
24psR2 gives

Ṙ25 k̃22112
M2mSk̃

R
1

mS
2

R2
, ~4.5!

where mS[4psR2 and k̃[A12wc. This equation is for-
mally identical to that for the two Schwarzschild shells@cf.
Eq. ~3.9!# provided we make the identificationsk̃[k and
mS[mS/25m1 /(2k). That is, a thin shell of proper mas
mS moving in an interior Schwarzschild background wi
mass parameterm2 is equivalent to a thin shell of prope
massmS/2 moving in a LFRW background with total grav
tational massm2 . The factor of 1/2 may be heuristicall
understood due to the presence of a continuous distribu
of matter adjacent to the shell, instead of vacuum: half of
proper mass of the shell in the former case has already b
accounted for in the inner side of the shell, inm2 .

Finally, we note that the usual boundary surface probl
of matching a closed LFRW universe to a Schwarzsch
exterior@15# is straightforwardly obtained from our constru
tion by setting

mS5m150⇒M5m2 , A51⇒wc5xc
2.

The condition@Kab#50 leads to a single nontrivial equatio
@cf. Eq. ~4.5!#

ȧ252
M

a
21, ~4.6!

which is just the Friedmann equation for a closed unive
(k51) with energy densitym53M /(4pxc

3).

V. SHELLS WITH PRESSURE

We consider here the case of spherical shells with
following surface stress-energy tensor defined on them:

Sab5~s1p!uaub1pgab , ~5.1!
1-4
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wherep is a tangential pressure, by virtue of spherical sy
metry. Physically, this matter configuration can be realiz
by, e.g., ‘‘counter-rotating’’ dust, where the individual du
particles are taken to follow geodesic orbits on the shell, w
half of them orbiting along any given great circle with ang
lar momentum per unit rest massl, and the other half in the
opposite direction with angular momentum per unit rest m
2 l , such that the net angular momentum vanishes, the
preserving spherical symmetry@16#.

The junction conditions yield formally the same equati
of motion as in the pressureless case@cf. Eq. ~3.8!#, but,
unlike in the latter case, the proper mass of the shell is
longer conserved. This is the crucial difference, and imp
that the ratiom1 /mS is now an implicit function ofR. The
conservation equation~2.14! gives

ṡ12
Ṙ

R
~s1p!50. ~5.2!

Note that even the ‘‘generalized’’ mass,m̃S[4p(s
12p)R2 fails to be conserved in general. If the tangent
pressure is constant, thenm̃S is conserved, and the evolutio
equation becomes identical to the one for the pressure
case, upon the substitutionmS→m̃S , i.e., the constant pres
sure case is equivalent to the pressureless one, provided
includes pressure into the generalized mass definition~note,
however, that even in this caseṁSÞ0, since there is always
work done against pressure ‘‘forces’’!.

The conservation equation~5.2! can be rewritten as a
first-order ordinary differential equation fors(R), by using
ṡ5(ds/dR)Ṙ, as

ds

dR
1

2

R
~s1p!50. ~5.3!

Upon introduction of the dimensionless functionc(R)
[2ps(R)R, the equation above can be rewritten as

1

2p

dc

dR
52~s12p!. ~5.4!

Now, one may either~i! specify an equation of state of th
form p5p@s# and solve Eq.~5.3! for s(R), or ~ii ! prescribe
a functional form forc(R), thereby fixings(R), with p@s#
following directly from Eq.~5.4!.

The equation of motion for the shell then reads

Ṙ21V~R!50, ~5.5!

with the effective potential

V~R!512
a

R2c2
2

b

R
2c2, ~5.6!

where

a[S m1

2 D 2

, b[M1m2 . ~5.7!
08402
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The dynamics of the shell will obviously depend onc and
vice versa, i.e., a given form of the potential—whereby t
dynamics is uniquely determined—will constrain the a
lowed choices forc, or equivalently, for the equation of stat
~although it will not uniquely determine them!. The qualita-
tive nature of the evolution is given by the shape of t
effective potential: its zeros~if any!, and first and second
derivatives. From Eqs.~5.4! and ~5.6!, we have then

V852c8S a

R2c3
2c D 1

2a

R3c2
1

b

R2
, ~5.8!

V952c9S a

R2c3
2c D 1

4ac8

R3c3
2

6a

R2c2 S c8

c
1

1

RD 2

22
b

R3
2c82. ~5.9!

Now, in the presence of nonvanishing pressure it is poss
to design the shape ofV, so as to satisfy the necessary a
sufficient conditions for a stationary solution,R* :

V~R* !<0, V8~R* !50, V9~R* !.0. ~5.10!

If the first inequality saturates, the solution is static.

A. Nonexistence of stable solutions with a strictly linear
barotropic equation of state

Proposition. There are no stable configurations with
strictly linear barotropic equation of statep5as.

Proof. Let us assume thatp5as, with aP(21,1),
where the upper and lower limits are imposed by causa
Equation~5.4! integrates toc5A/R112a, whereA.0 is an
integration constant, and we have then

V512
a

A2
R4a2

b

R
2

cA2

R2(112a)
, ~5.11!

V8524a
a

A2
R4a211

b

R2
12~112a!

A2

R314a
,

~5.12!

V9524a~4a21!
a

A2
R4a2222

b

R3

22~112a!~314a!
A2

R4(a11)
. ~5.13!

The conditionV850 leads to a quadratic equation forX
[R114a:

X22
bA2

4aa
X2

~112a!A4

2aa
50, ~5.14!

with solution~s!:
1-5
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SÉRGIO M. C. V. GONÇALVES PHYSICAL REVIEW D 66, 084021 ~2002!
X0
65

bA2

8aa
~16A1132a~112a!a/b2!. ~5.15!

Now, at the local extrema, from Eqs.~5.13! and~5.14!, after
some manipulation we obtain

V0952
4aa~114a!

A2X0
4(11a)/(114a) FX0

21
A4~112a!

2aa G . ~5.16!

The solutionR0[X0
1/(114a) is stable if and only ifV09.0,

i.e., if and only if either of the following holds:

~ i! a~114a!,0 and X0
21

A4~112a!

2aa
.0,

~ ii ! a~114a!.0 and X0
21

A4~112a!

2aa
,0.

If ~i! holds, thenaP(21/4,0), and we must takeX0
2 in Eq.

~5.15! with the further condition that the discriminant
greater than unity; however, this requiresa.0 or a,
21/2, both of which contradict21/4,a,0. Now, let us
examine possibility~ii !: we have eithera.0 or aP(21,
21/4). If a.0, the conditionX0

21A4(112a)/(2aa),0 is
violated. IfaP(21,21/2), the former condition is also vio
lated, so we are left withaP@21/2,21/4). But this implies
~sincea is negative! thatX0

1,0, and thus we must takeX0
2

in Eq. ~5.15! subject to eithera.0 or a,21/2, both of
which are incompatible withaP@21/2,21/4). We con-
clude, therefore, that there are no solutions withV850 and
V9.0. j

It immediately follows that all momentarily stati
solutions—which exist wheneverV50—are unstable, i.e.
there are no stationary solutions for shells with a stric
linear barotropic equation of state.

B. Energy conditions and stability criteria

From Eq. ~5.9!, together with the requirementsV5V8
50, after some algebra, the necessary and sufficient co
tion for a stable solution (V9.0) may be written as

2
c9

c8
S a

R3c2
1

b

2R2D .2
2ac8

R3c3
1

3a

R2c2 S c8

c
1

1

RD 2

1
b

R3
1

c82

2
. ~5.17!

Now, from Eqs.~5.3! and ~5.4!, we have

c952s8S 112
dp

ds D5
2

R
~s1p!~112Cs

2!, ~5.18!

whereCs[Adp/ds is the local sound speed, if one regardsp
as a hydrostatic pressure. The stability condition~5.17! reads
then
08402
di-

~s1p!~112Cs
2!

s12p
.Q1F a

2p2s2R6
P~§!1Q2G ,

~5.19!

where§[p/s, P(§)5112§16§2, and theQ i are strictly
positive terms:

Q15
2p2s2R5

a12p2bs2R3
, ~5.20!

Q25
b

R3
12p2~s12p!2. ~5.21!

The quadraticP(§) has an absolute positive minimum at§
521/6, and therefore the right-hand side of condition~5.19!
is strictly positive.

Now, in terms of the energy density and principal pre
sures, the energy conditions for this system are as follow

Null energy condition~NEC!: s1p.0.
Dominant energy condition~DEC!: s.0, s.upu.
Weak energy condition~WEC!: s.0, s1p.0.
Strong energy condition~SEC!: s1p.0, s12p.0.
The DEC implies the WEC, which in turn implies th

NEC, and the SEC also implies the NEC; the energy con
tions are otherwise independent. Comparison between t
energy conditions and Eqs.~5.4! and ~5.18! shows that the
latter provide a clear relation between the former and
matter content of the shell. Accordingly, one expects the
bility, or lack thereof, of the shell to depend crucially on th
energy conditions.

For a strictly linear barotropic equation of state, conditi
~5.19! implies s1p.0. Clearly, if the WEC is violated,
there are no stable configurations.~In fact, as shown in the
preceding section, even if the WEC is satisfied, there are
stable solutions for such equations of state.!

For arbitrary equations of state, one may distinguish tw
cases, depending on whetherCs

2 is non-negative. Most mac
roscopic forms of matter obeyCs

2>0 @including matter
opaque to sound (Cs

250), such as tenuous plasmas whe
electromagnetic radiation below the plasma cutoff freque
does not propagate#, whereas certain fundamental field
such as massive scalar fields, exhibitCs

2,0. We shall as-
sume throughout thats.0, remarking, however, that matte
with negative energy density has been considered from
purely theoretical standpoint, e.g., in attempts to constr
stable wormhole solutions@17#. We skip trivial algebra and
present the relation between energy conditions and stab
in Table I below.

VI. TRAPPED SURFACES

Let S be any given compact spatial two-surface in t
spacetime, andQ6 be the expansions in the future-pointin
null directions orthogonal toS. The latter is said to be a
trapped surface ifQ1Q2>0 @18#. Trapped surfaces signa
thus the boundary of a region where any initially expand
null congruence begins to converge; clearly, they define
1-6
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gions of ‘‘no escape.’’ The limiting case where expansi
vanishes along future-oriented normal null directions is
ferred to as anouter marginally trapped surface~OMTS!. It
is well known that the existence of trapped surfaces imp
that of OMTS@19#. In spherical symmetry, the apparent h
rizon ~AH!—the outer boundary of a compact trapp
region—is an OMTS.

Let us consider the case of an arbitrary shellS matched to
two arbitrary spherical spacetimes, as described in Sec
Take the vacuum metric to be of the form~2.1!, with grr
51/F6(t,r ), without imposinga priori any sign constraints
on F. Since the four-metricgmn

6 is continuous acrossS and
one needs derivatives of null vector fields orthogonal toS, it
suffices to havegmn

6 to computeQ along ingoing and outgo
ing null directions. Our surfaceS is that of a spherical shel
with proper area radiusr 5R(t) ~which provides a coordi-
nate invariant definition, and, in addition, allows for me
surements by an external observer, who can measure pr
circumferences, but not coordinate radii!. It is convenient to
introduce null coordinates$u,v% defined by

du5hdt2
1

AF
dr, dv5hdt1

1

AF
dr, ~6.1!

from which it follows that

Q65S 1

h

]

]t
7AF

]

]r DR~t!, ~6.2!

where the6 sign denotes evaluation along outgoing a
ingoing null directions, respectively. The condition f
trapped surfaces then reads@where Eq.~2.6! was used#

Q1Q25
Ṙ2

11Ṙ2/F
2F>0. ~6.3!

The AH is given by the limitQ1Q2→0, which requires
F→0. For the case of a boundary surface,@Kab#50, the
time coordinate is globally defined, and thusF25F1 every-
where, thereby uniquely defining a continuous curvetah(r ),
via F650. In the presence of a thin shell, however, t
functional forms ofF2 and F1 are different, and therefore
the AH curve~implicitly defined by twodifferent curves in
M6 , by F650, respectively! may not necessarily be con
tinuous.

To illustrate this, let us consider the case of a single s
with active gravitational massm1 moving in an interior

TABLE I. Stability criteria and energy conditions.

Cs
2 WEC SEC Unstable

>0 Yes No Yes
>0 No No Possibly
>0 Yes Yes Possibly
,0 Yes No 21/2,Cs

2,0
,0 No No 21,Cs

2,21/2
,0 Yes Yes 21,Cs

2,21/2
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-

s

II.

-
per

ll

Schwarzschild background with mass parameterm2 . This
case is of sufficient generality, since, as shown in the pre
ous sections, the vacuum-immersed single-shell case, as
as that of a shell collapsing onto an interior LTB solutio
can be trivially obtained from it. We have then

F2512
2m2

r
50, F15122

m11m2

r
50, ~6.4!

which defines the AH as

r ah52m1H1~r 2R!12m2 , ~6.5!

whereH1(x) is the unit Heaviside step-function (H150 for
x,0, andH151, for x>0). The evolution of the AH is
shown in Fig. 1.

The AH coincides initially with the EH, since the inne
spacetime is just static Schwarzschild, butjumps out discon-
tinuouslyat t5t* , when the thin matter shellS crosses the
initial Schwarzschild radius. The EH is determined by t
entire future development~along null generators! of the
spacetime, and is thereforecontinuous, unlike the AH, which
is defined locally in terms of the gravitational mass inter
to a certain radius, on a given spacelike hypersurface.

VII. SHELL CROSSING

In spherical gravitational collapse, one may distingu
between two different types of singularities, given by t
location and relative motion of neighboring shells. Ashell
focusingsingularity is said to occur at the center of symm
try, when the proper area radius vanishes therein, leadin
the blow-up of all curvature invariants; these singularities
gravitationally strong~any volume form defined along th
Jacobi fields vanishes at the singularity!, and the spacetime is
geodesically incomplete@20#. A shell crossingsingularity is
said to occur when neighboring shells cross each othe
finite ~comoving! radius, thereby leading to two-dimension

FIG. 1. Apparent~AH! and event horizon~EH! evolution for a
thin shell S with active gravitational massm1 imploding in an
interior Schwarzschild background with mass parameterm2 .
1-7
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caustics, where the energy density diverges, and the m
becomes singular@21#. In LTB collapse, shell crossing oc
curs for spatially inhomogeneous density distributio
whenever the proper time for collapse of a given shell i
monotonically decreasing function of the comoving radi
For the charged dust case, shell crossing has been show
be inevitable, both for asymptotically flat@22#, and asymp-
totically de Sitter@23# spacetimes. Physically, shell crossin
signal the intersection of matter flow lines at a given spa
like surface, to the future in which the model therefo
breaks down. Such shell crossing singularities have b
shown to be gravitationally weak@24#, and, in one particular
LTB case, an analytical metric continuation was found in
distributional sense@25#. Recently, Szekeres and Lun@26#
showed that it is always possible to find a coordinate tra
formation that renders the metricC1 ~but notC2) at the LTB
shell crossing singularity. Their result adds considerably
our understanding of shell crossing in LTB collapse, b
there remains to be shown that suchC1 transformation al-
ways exists~and is presumably unique! for a generic spheri-
cal metric.

A. Conditions for shell crossing

One might hope that a detailed analysis of the dynam
of individual thin shells could shed some light on the sh
crossing process in continuous matter models. Thus m
vated, we shall consider the case of two Schwarzsc
shells, as described in Sec. III. Take the shells to have in
radii R0

6 , and dynamics given by

Ṙ61V6~R6!50, ~7.1!

where

V652Ak2211
a6

R6
1S b6

R6D 2

, ~7.2!

a252kAb25m2 ,

a152~kAb11m2!5M1m2 .

For simplicity, and without loss of generality, we shall co
sider the marginally bound case,k51. In this case, the dy
namical equation~7.1! admits an analytical solutionR6(t),
which is explicitly given in the Appendix. The proper tim
for collapse is given by solvingR(tc)50, which yields

tc5
2

3a2 S 2b3/21a3/2A4b3

a3
2

3bR0
2

a
1R0

3D , ~7.3!

where the6 subscripts have been omitted for clarity. F
given gravitational massesm6 ~whereby the correspondin
a6 ,b6 are determined!, the proper time for collapse is
function of the initial radiusR0

6 .
Now, shell crossing occurs if and only if, forR0

1.R0
2 ,

we have

tc~R0
1!,tc~R0

2!. ~7.4!
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For givenm6 , it is straightforward to numerically solve fo
condition ~7.4!, thereby obtaining a region of the two
dimensional parameter space—given by the half-plane$R0

2

P(0,1`)%3$R0
1.R0

2%—in which condition~7.4! is satis-
fied. One can actually obtain an analytical criterion for sh
crossing, by restricting our attention toneighboringshells,
defined by

R0
15R0

2~11j!, ~7.5!

with 0,j!1. For shells thus defined, we can Taylor expa

tc~R0
1!5tc~R0

2!1S dtc

dR0
D

R
0
2

j1O~j2!. ~7.6!

Condition ~7.4! reads then

S dtc

dR0
D

R
0
2

,0. ~7.7!

From Eq.~7.3!, after a little algebra, this gives

R0
2P~0,R* !, ~7.8!

where R* [2b2 /a25m2/2. We note that this~necessary
and sufficient! condition for shell crossing for neighborin
shells requires the inner shell to be inside its Schwarzsc
radius. From the definition of neighboring shells, it follow
that the outer shell is also inside its Schwarschild radi
Take the limiting caseR0

25m2/2, and setR0
15m2/21d,

with d;O(m2
21). Suppose thatR0

1 is outside its Schwarzs
child radius, i.e.,R0

1.RSch
1 52(m11m2). This implies

4m113m2,2d,

which cannot be, sincem1.0 and d;O(m2
21); hence,

R0
1,RSch

1 . Note that the converse is not necessarily true: o
may have R0

1.RSch
1 and R0

2,RSch
2 , provided m1

&O(m2
21). See Fig. 2.

The case of non-neighboring shells@i.e., R0
12R0

2

;O(R0
2)] is qualitatively analogous: shell crossing only o

curs if either ~i! both shells are ‘‘sufficiently’’ inside their
respective Schwarzschild radii, or~ii ! the inner shell is ini-
tially untrapped, and the outer shell ‘‘sufficiently’’ trappe
@31#. Illustrative examples are shown in Figs. 3 and 4.

B. Discrete shell model versus LTB collapse

In a multi-thin-shell model, the metric is at leastC0 at the
shell crossing by construction, since@gmn#50 for all times.
This is in apparentcontradiction with the well-known resul
for LTB collapse, where the comoving metric becomes s
gular (grr →0) at shell crossings@24#. Whilst such a metric
singularity may be removed by aC1 coordinate transforma
tion via the prescription of Szekeres and Lun@26#, one is still
left with the fact that scalar quantities such as the ene
density remain divergent at LTB shell crossings~in fact, tidal
forces are still infinite thereon!, whereas they are finite in th
1-8
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discrete shell case@in particular, s5m/(4pRsc
2 ),`]. Ac-

cordingly, the former cannot be taken as the continuous li
of the latter.

The inequivalence—as far as shell crossings
concerned—between these two models also arises from
following observation: In LTB collapse, individual shells fo
low geodesic motion in the four-dimensional spacetime d
to the lack of any external forces~collapse is pressureles
and uncharged!, but this does not happen in the present ca
within each shell, particle motion is geodesic, but, from t
viewpoint of the four-dimensional spacetime, the shell is
celerated:

am5un¹num5ṘF R̈

h
1

h8

h S 2h2
1

hh2D Gd t
m

1S R̈1
h8

h3D d r
mÞ0, ~7.9!

aa5ub (3)¹bua5dt
b (3)¹bdt

a50. ~7.10!

We remark that the shell crossing processcannotbe deter-
mined from the field equations alone, as a matter of p
ciple. Once two~or more! shells cross, one must specifya
priori the type of interaction that takes place~which depends

FIG. 2. Gravitational collapse for two neighboring shells w
data m15m251, R0

251/7, R0
15R0

2(111021). The condition
R0

2,R0
1,R* ~whereR* 51/2) is obeyed, and hence the two she

cross before collapsing to zero radius. Note thatboth shells are
initially inside the respective Schwarzschild radii.

FIG. 3. Gravitational collapse for two shells with datam1

5m251, R0
2/RSch

2 5R0
1/RSch

1 51.1. Both shells are initiallyout-
side their Schwarzschild radii, and, as such, fail to obey the sh
crossing.
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on the microphysics of the model at hand!, in order to follow
the dynamics into the causal future of the shell cross surfa
Only in special cases, where apurely gravitational interac-
tion ~whence the rest mass of each shell is conserved! be-
tween different shells is assumed, can one determine the
lution of the system beyond the shell cross. For null surfac
we have the well-known DTR~Dray–’t Hooft–Redmount!
relations @27#, which relate the mass and momenta of t
different regions before and after shell crossing. Such re
tions were subsequently generalized to the timelike case~of
massive spherical shells! by Núñez, Oliveira, and Salim@28#.

VIII. CONCLUDING REMARKS

We have analyzed in some detail the dynamics, stabi
trapped surfaces, and shell crossing for spherical thin sh
in vacuum. By focusing on the dynamics of the exterior sh
in a vacuum two-shell model, the problem reduces to tha
a single shell moving freely~albeit not geodesically! in a
Schwarzschild background with different active mass para
eters on each side.

We have shown that there can be no stable solutions w
a strictly linear barotropic equation of state, regardless of
energy conditions satisfied by such matter fields. Wher
this rules out several idealized forms of matter as candid
for stable shell configurations, it still leaves ample room
stability with more general equations of state. For instan
by considering a quasilinear equation of state~which is a
good approximation to any equation of state near equi
rium, if the latter exists!, Brady, Louko, and Poisson@29#
showed that stablestatic shells with an interior Schwarzs
child background can exist, provided certain conditions
satisfied, which turn out to supersede energy conditions n
essary for the existence~but not necessarily stability! of such
shells @30#. For matter configurations withCs

2>0 obeying
the WEC, but otherwise arbitrary, we showed here that
SEC is anecessary and sufficientcondition for the existence
of stable shells around a classical Schwarzschild black h
thereby producing a very simple and useful test for the s
bility of any matter content. For matter withCs

2P(21/2,0)
obeying the WEC, the SEC is also necessary and suffic
for stability. ForCs

2P(21,21/2) the analysis cannot be ca
ried out further without specifying an equation of state,

ll

FIG. 4. Gravitational collapse for two shells with datam1

5m251, R0
2/RSch

2 51.1, andR0
1/RSch

1 50.7. The outer shell is ini-
tially inside its Schwarzschild radius, but not the inner one. In t
case, the shells cross at finite radius.
1-9
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evaluate inequality~5.19!. However, the results of Ref.@29#
for static shells withCs

2,0 suggest that there are no stab
configurations, even dropping the staticity assumption.

The collapse of a thin matter shell onto a Schwarzsch
black hole introduces a step-function-type discontinuity
the apparent horizon curve, which occurs when the s
crosses the initial Schwarzschild radius, whence the ju
equals the~active! gravitational mass of the shell.

Neighboring dust shells were shown to cross whene
the inner shell is sufficiently inside its Schwarzschild radi
specifically,R0

2,RSch
2 /4. Shell crossings occur in a mult

dust-shell case, just as they do in the continuous LTB d
case, but individual shells move geodesically in the lat
whereas they are accelerated in the former. This, toge
with the fact that the energy density remains finite in t
discrete case, but diverges in the LTB one, implies that
multishell case cannot be taken as the discrete analog of
collapse, insofar as shell crossings are concerned.
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APPENDIX: MARGINALLY BOUND COLLAPSE OF TWO
DUST SHELLS

Formally, we need to solve the equation
ls

f
,

08402
d

ll
p

r
,

st
r,
er

e
B

-

.

Ṙ1Aa

R
1

b

R2
50, ~A1!

with the initial conditionR(0)5R0. The positive real solu-
tion is

R~t!5
b

a
22

b2

a
x21/3~t!2

1

2a
x1/3~t!, ~A2!

where

x[8b324a3S2112a7/2St29a4t213a2S t2
2S

3Aa
D

3~216b314a3S2212a7/2St19a4t2!1/2, ~A3!

S[S 4
b3

a3
23

b

a
R0

21R0
3D 1/2

. ~A4!

When b50 ~i.e., m250), corresponding to a single she
m1 in vacuum, the above solution reduces to the well-kno
marginally bound case of LTB collapse:

R~t!5S 3

2D 2/3S 4R0
3

9
2

4

3
AaR0

3/2t1at2D 1/3

. ~A5!
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@11# A. Lichnerowicz, Théories Relativistes de la Gravitation

et de l’Electromagnetisme~Masson, Paris, France, 1955!.
@12# K. Lake and P. Musgrave, Class. Quantum Grav.13, 1885

~1996!.
@13# L. D. Landau and E. M. Lifshitz,The Classical Theory o

Fields, 4th rev. ed.~Butterworth-Heinemann, Oxford, England
1999!.

@14# G. Lemaıˆtre, Ann. Soc. R. Sci. Med. Nat. BruxellesA53, 51
~1933!; R.C. Tolman, Proc. Natl. Acad. Sci. U.S.A.20, 410
~1934!; H. Bondi, Mon. Not. R. Astron. Soc.107, 343 ~1948!.

@15# Misner, Thorne, and Wheeler, Sec. 32.4 of@3#.
@16# This is the so-calledEinstein clustermodel, introduced by
Einstein himself to probe the effects of rotation in spheric
geometries without spoiling the latter symmetry. See
Einstein, Ann. Math.40, 922 ~1939!.

@17# M. Visser, Lorentzian Wormholes: From Einstein to Hawkin
~American Institute of Physics, New York, 1996!.

@18# R. Penrose, inBatelle Rencountres, edited by C. M. DeWitt
and B. S. DeWitt~Gordon and Breach, New York, 1968!.

@19# R. M. Wald, General Relativity~Chicago University Press
Chicago, 1984!.

@20# D. M. Eardley and L. Smarr, Phys. Rev. D19, 2239 ~1979!;
D. Christodoulou, Commun. Math. Phys.93, 171 ~1984!;
R. P. A. C. Newman, Class. Quantum Grav.3, 527 ~1986!.

@21# P. Yodzis, H. J. Seifert, and H. M. zum Hagen, Commu
Math. Phys.34, 135 ~1973!.

@22# A. Ori, Phys. Rev. D44, 2278~1991!.
@23# S. M. C. V. Gonc¸alves, Phys. Rev. D63, 124017~2001!.
@24# Newman@20#.
@25# A. Papapetrou and A. H. Hamoui, Ann. Inst. Henri Poinca

Sect. AVI , 343 ~1967!.
@26# P. Szekeres and A. Lun, J. Aust. Math. Soc. B, Appl. Math.41,

167 ~1999!.
@27# T. Dray and G. ’t Hooft, Commun. Math. Phys.99, 613

~1985!; I. H. Redmount, Prog. Theor. Phys.73, 1401~1985!.
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