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Relativistic shells: Dynamics, horizons, and shell crossing
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We consider the dynamics of timelike spherical thin matter shells in vacuum. A general formalism for thin
shells matching two arbitrary spherical spacetimes is derived and subsequently specialized to the vacuum case.
We first examine the relative motion of two dust shells by focusing on the dynamics of the exterior shell,
whereby the problem is reduced to that of a single shell with different active Schwarzschild masses on each
side. We then examine the dynamics of shells with nonvanishing tangential prpsaunceshow that there are
no stable—stationary, or otherwise—solutions for configurations with a strictly linear barotropic equation of
state,p= e, Whereo is the proper surface energy density and (—1,1). Forarbitrary equations of state,
we show that, provided the weak energy condition holds, the strong energy condition is necessary and suffi-
cient for stability. We examine in detail the formation of trapped surfaces, and show explicitly that a thin
boundary layer causes the apparent horizon to evolve discontinuously. Finally, we derive an ar(algtical
essary and sufficientondition for neighboring shells to cross, and compare the discrete shell model with the
well-known continuous Lemae-Tolman-Bondi dust case.
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[. INTRODUCTION problem of shell crossings is examined, and an analytical
necessary and sufficient condition for neighboring sHelés
The matching of two arbitrary spacetimes along a giverfined in a precise manneto cross is derived. We further
hypersurface plays an important role in general relativity,show that, although shell crossing singularities occur in a
with a rich plethora of applications, such as the dynamics omulti-dust-shell case just as they do in the continuous
thin matter shell§1], construction of cosmological models Lematre-Tolman-Bondi(LTB) dust case, the former cannot
[2], collapse of bounded bodi¢8], and wormhole$4]. The  be taken as the discrete analog of the latter, since, e.g., the
standard techniques to achieve such matching are not cienergy density remains finite at discrete shell crossings,
cumscribed to four-dimensional manifolds, and can be easilwhereas it divergegtogether with some curvature compo-
applied to higher-dimensional cases, sucindsanes in the nents in the LTB case. Physically, this is related to the fact
so-called brane world cosmolog$]. that individual shells move geodesically in the LTB space-
Within the context of classical general relativity, the thin time (i.e., proper time equals comoving time, for each shell
shell matching problem was first studied by $6h Lanczos  but the same fails to hold in the discrete case: dust particles
[7] and Darmois[8], and later further developed by Israel do move geodesically on each shell, but, from the viewpoint
[9], who produced a coordinate invariant formalism by ap-of the four-dimensional spacetime, they are accelerated.
plying the Gauss-Codacci equations to a non-null three- The paper is organized as follows. Section Il derives a
dimensional hypersurface embedded in a four-dimensionaeneral formalism for the matching of two arbitrary spherical
spacetime. The null case was studied by Barsaed Israel  spacetimes across a timelike thin shell with arbitrary matter
[10]. On the shell, Einstein’s equations reduce to the Lanczosontent. In Sec. Il we specialize to the case of two dust
equation, where the jump of the extrinsic curvature acrosshells in vacuum; the general relativistic equation of motion
the shell plays the role of the four-dimensional Ricci tensorfor the exterior shell is derived, as well as its Newtonian
being thus related to the surface stress-energy tensor. Coranalog. The well-known case of a single dust shell in
prehensive reviews of the matching problem in general relavacuum is trivially recovered. In Sec. IV, the dynamics of a
tivity may be found in Refs[11,12]. dust shell with a LTB interior is discussed, and the boundary
In this paper, we first consider two shells in vacuum, andayer case of closed Lentee-Friedmann-Robertson-Walker
analyze the dynamics from the viewpoint of the exterior(LFRW) models is readily obtained as special case. Section
shell, thereby reducing the problem to that of a single shelV studies shells with a nonvanishing tangential pressure
immersed in two adjacent Schwarzschild spacetimes witltomponent, and several stability results are produced. In Sec.
different mass parameters on each side. For shells with pre§4, we derive the condition for formation of apparent hori-
sure, we show tha(i) a strictly linear barotropic equation of zons in an arbitrary spherical spacetime, and then examine
state is incompatible with stabl@scillatory or stationary the particular case of a dust shell collapsing in the Schwarzs-
solutions, andii) for matter with a real local sound speed child background. Section VII discusses the occurrence of
(Cs=+dp/do=0) obeying the weak energy condition, the shell crossing in a spacetime with a finite number of shells,
strong energy condition is necessary and sufficient for stabilderives an explicit condition for shell crossing of neighbor-
ity, regardless of the equation of state. We then study théng shells, and compares it with the continuous LTB dust
formation of trapped surfaces in the spacetime, and showase. Section VIII concludes with a summary and discussion.
explicitly that the existence of a thin matter shell introducesNatural geometrized units, in whickk=c=1, are used
a discontinuity in the apparent horizon curve. The relatedhroughout.
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Il. MATCHING FORMALISM FOR ARBITRARY [Ko]=K' — Ko [K]=y*K,e], S=7y.S.
SPHERICAL SPACETIMES abl™Tab  Thab ab ab 2.1

. The complete four-dimensional spacetime consists of afyg four-dimensional stress-energy tensor associatedSwith
interior region M _ connected to an exteriovl, by atime- ... pe written as a distribution as

like three-dimensional thin shel.. The M. regions are
characterized by the spherical metric: T =Sl eyl a| 8(P). (2.12

ds? = —hZdtd +f2dr2+r2dQ?, (21 The Lanczos equatioffor the shell, together with the(ex-

) ) terior) Einstein equations, lead to the standard Israel junction
whereh. ,f. are functions ot. andr, and the coordinate conditions[9]:

systemgx”} are adopted. OR there is a natural holonomic
basis{e iven b 1 B
&} given by SlK o= 5 (Kiy+ Kap) SP=[T,n0"], (213
b T 2.2
€)== s (2.2) GV, =[efT,,n"]. (2.14

These two equations are identities that must be satisfied
throughout the time development of the shell, and not genu-
ine dynamical equations, since they follow from the momen-
(2.3  tum and Hamiltonian constraints imposed br{9]; the dy-
namics is encoded in the Lanczos equaiiprio.

where{£?,a=0,1,2 are intrinsic coordinates oB. The in-
duced three-metrig/,,, on X is then

Yab™ gp,Ve’ELa)eZ}b) ’

and it is the same on both sides »f since the four-metric With the metric(2.1), the nonvanishing components of
must be continuous across it. The surfaces parametrically Ky, are
defined by .
K,.= f I'Q+Rf 1Df+7] " '

O (xt)=r —ry(t.) =0, (2.9 =y R T ED I

Continuity ofg,,, acrossX requiresry(t.)=R(7), whence (2.19
Rh

dst=—d7?+R*(1)dQ?, (2.5 K gy=Sin 20K ;= f’7, (2.16

dt. -

d—‘=h11\/1+f§RZE 7+, (2.6)  whereD, =n*V, is the normal derivative in the* direc-

T = +

tion, and the prime=g, .

whereR=dR/dr, and 7 is the proper time measured by a

comoving observer with the shell, with four-velocity lll. TWO COLLAPSING SCHWARZSCHILD SHELLS

We shall examine here the case of two neighboring thin

Uk =m7.6f + Ro¥. (2.7 shells of dust in vacuum. Specifically, the model consists of
_ o _ _ an inner shell with gravitational mass_ and an outer shell
The spacelikgoutward pointing unit normal to3, is with m, , in an otherwise empty spacetime. An immediate

. consequence of Birkhoff’'s theorem is that the two-shell case

nt=g4"a 19, ®=h"f. RS +f 'h. 7.8, (28 can be reduced to that of a single shell with appropriate

- adjoint spacetime metrics. If one is interested in the dynam-

Whereazzn’;ni, andnju’i‘zo. We shall henceforth drop ics of the inner shell, the problem is that of a single shell
the + subscript for clarity and without detriment, since all with a Minkowski interior(to ensure regularity of the metric

the formulas will apply equally to both sides &f at the centerand a Schwarzschild exterior with mabt
The normal extrinsic curvaturd,;,, is[9] =m_+m, . Focusing on the exterior shell, the problem re-
duces to that of a single shell with an interior Schwarzschild
X IXH gx” metric with masan_ and Schwarzschild exterior with mass
Kab=—n,1)V,8(5=—N, prey + Zyﬁ_fa a_gb) , M. We shall henceforth adopt this latter viewpoint. The met-

rics in M.. are then

(2.9
— _h2 2 —24,2 2 2
which is related to théyet unspecifiedsurface stress-energy dst = —hidt*+h_*dr?+r?d0?, 3.1
tensorS,;, on 2, via the Lanczos equatidi®] with
[Kab]_')’ab[K]:_Bwsab@[Kab]:_Sﬂ(sab_%s')’ab): / om. / oM
(210) h = 1—7, h+= 1—7, M=m_+m,.
where (3.2
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In this case, Eqd2.19 and(2.16) simplify to ishes, wherk=1. For given initial data{r;R(7),R(7)},
B4h'h collapsing or expanding solutions may be obtained, depend-
= . Ky=Rh7. (3.3y ing on the value ofke (0,+%). For ke (0,1), potential
nh? (negative energy dominates, and there is a maximum radius

at which the shell is momentarily at rest before recollapsing,
Now, let o be the total rest mass of the shell per unit properj g  the system is gravitationally bound:; for= 1, the kinetic
area. The stress-energy tenS§gp, on X is then energy vanishes exactly at spatial infinity, and the system is
said to be marginally bound; Ke (1,+«), the kinetic en-
ergy is positive-definite at infinity[it “equals” m, (k?
—1)/2] and the system is said to be gravitationally unbound.

Sab= 0UaUp= 0€(4)€(p)U,U,= 0556, (3.9
and the total rest mass of the shell is

A. Newtonian limit

my= | S,pudu®ydetydd/\dp=47R%0. 3.
> L ab 7 ¢=amRo (39 The Newtonian limit is obtained by the requirement of

nonrelativistic velocities|R|<1, which implies[13] the
weak-field limit,e=m. /R<1. To first order ine, Eq. (3.9
reads

The conservation equatid.14) gives

o 2R—m2—o 3.6
o R= 2,0 (3.6

. M+
R*=k*—1+

+0(€?). (3.10
i.e., the proper mass of the shell is conserved during the
evolution; microscopically, this simply reflects the fact thatTo check that this is indeed the correct limit, we present
the total number of particles in the shell is conserved, angelow a simple Newtonian derivation of the same equation.
thus the flux three-vectd®=ou® is divergence-free. Let m. be the rest masses of the inner and outer shells,
The dynamical evolution of the shell can be easily ob-respectively. We want to follow the motion of tme, shell
tained from the## component of the Lanczos equatifd  in the gravitational potential of then_ shell. By Gauss's
straightforward calculation shows that B@.13 is equiva-  theorem, this reduces to the problem of finding the dynami-
lent to [Ky,]=—47oR? and therr component of the cal equation of a spherical shall with radiusr =R and
Lanczos equation does not yield additional information—itsmassm, , subject to the gravitational potential of a point
first integral is automatically satisfied by E@.8)]: massm_ located atr =0. The action for such system is

[Kgol=—4moR2. (3.7 _
S=f L(R,R,t)dtzJ[T—(U_+U2)]dt, (3.11
From Egs.(3.2), (3.5, and(3.7) we obtain

5 5 where
o [My M+m_ mg
R—(m—) -1+ R +—. (3.8 1.
n 4R T=5m.R?, (3.12
This is the full general relativistic equation governing the
motion of the shell with active gravitational mass, in m_m,
an interior Schwarzschild background with active gravita- U_=- R ' (3.13
tional massm_ . Since both the gravitational and rest masses
of the shell remain constant during the evolution, we can 1
introduce the dimensionless constastm, /ms, and re- Usy= EJ Dy (x)p(x)d3x
write the dynamical equation solely in terms of the gravita- *
tional masses: 2
R ) m<.
o M+m mi =27-rfo Dy (r)p(r)r drz—ﬁ

are the kinetic, potential, and self-bindirigf the shell en-
ergies, respectively. The functiofs(r)=—m,/r is the
self-gravitational potential of the shell, anpi(rz)zob‘(r
. . —R) is the energy density, where=m_ /(47R?) is the
energy of t.he system, the segoqd term is the pote.ntla'l ENCM9%hell's surface energy density. Extremizid§=0 yields the
and the third term is a self-binding energy r which is a Euler-Lagrange equation

relativistic correction to the Newtonian case. We note that,
since energy(potential, or otherwigegravitates, the proper
mass of the shell will only coincide with its active gravita- R+
tional mass if the total binding energy of the system van- 2R?

Based on its Newtonian analdglerived below, one may
interpret the terms in this equation as follokg—1 is the
total specific(i.e., per unit gravitational mass_) binding

2m_+m,

0, (3.15
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which integrates to Il do not apply, but it is straightforward to compute,,
directly from its definition. In terms of théx”} coordinates,
. M+m_ the shell is given b
R=0+ ~— (3.16 given by
t=7, r=x,=const, (4.2

whereM=m, +m_ and(Q is an integration constant, which and the angular coordinates are, as before, trivially identified.
representsgtwice) the total binding energy of the system per The outward pointing unit normal & is
unit shell mass. This agrees thus with E8;10 upon setting

Q=k>-1. V1-w,

n =

L
a(n) o, 4.3
B. Single dust shell in vacuum

wherew.=w(x,) =const, and continuity of the four-metric

By .settmgm,:O,' we readily pbtaln the case of a smglg across, implies R(7)=a(7)X.. As before, we only need
spherical dust shell in an otherwise vacuum spacetime, origiy = .
00 -

nally studied by Isra€ll]:

2M .
e M )2:k2_1+M M2 Ko=RV1-wg Kj=R\/1-—+R* (4.4
2kR

=+ —.
R 4k?R?

R?=—1+

(3.17  whereM is the total gravitational mass appearing in the ex-
terior Schwarzschild metric. The equatiofK,,]=
From the first equality above it follows thatkR(1—k) —47oR? gives
<M. If k=1, this is trivially satisfied, but fok<1 this

imposes an upper bound & - M—pusk u2
P PP Re=F2— 140 M2 A (4.5
M R R?
Rs ——=R,,. 3.1 -
2k(1—k) ™ (318 where us=4moR? andk=\1—w,. This equation is for-

mally identical to that for the two Schwarzschild shelts.
As before, if the system is gravitationally bourid<{1), any  gq. (3.9)] provided we make the identificatiois=k and
initially expanding shell will reach a maximum radius— s=ms/2=m, /(2k). That is, a thin shell of proper mass
uniquely determined by the gravitational mass of the shelﬁl2 moving in an interior Schwarzschild background with
and its total binding energy—and then collapse baclRto  mass parametem_ is equivalent to a thin shell of proper
=0. Gravitationally unbound shellt-1) will expand 0 massmy/2 moving in a LFRW background with total gravi-
R—c. As noted by Israel, the upper bour8.18 implies  tational massm_. The factor of 1/2 may be heuristically
that Ry,,=2M, and hence there are no timelike stationaryynderstood due to the presence of a continuous distribution
shells withR<2M (any stationary shell must necessarily be of matter adjacent to the shell, instead of vacuum: half of the
spacelike, as expected. Further details, including exact soluproper mass of the shell in the former case has already been
tions of Eq.(3.17), may be found in the original reference zccounted for in the inner side of the shell,rn .

[1]. Finally, we note that the usual boundary surface problem
of matching a closed LFRW universe to a Schwarzschild
IV. DUST SHELL WITH LEMAI TRE-TOLMAN-BONDI exterior[15] is straightforwardly obtained from our construc-
INTERIOR tion by setting
Let us now consider the case of a spherical dust shell my=m,=0=>M=m_, A=I1=w=x2
matched to an interior LTB spacetinig4], and a Schwarzs-
child exterior. The interior metric reads The condition[K,,]=0 leads to a single nontrivial equation
[cf. Eq. (4.5)]
ds? = —dt?+F2(t,r)dr2+ X%(t,ndQ?, (4.0 v
a?=2—-1, (4.6)
where F=X'/\1—w(r), and 4rX? is the ¢ dependent a

proper area of a spherical shell with coordinate radiusor
simplicity, we shall consider a class of LTB metrics given by
a separable area radius functiof{(t,r)=a(t)r. Included in
this class are the Lentee-Friedmann-Robertson-Walker
(LFRW) cosmological spacetimes, given by(r)=Ar2,
where the constark determines the geometry of the spatial \We consider here the case of spherical shells with the

section: hyperbolic, flat, or closddpherica), for A=—1, 0,  following surface stress-energy tensor defined on them:
or 1, respectively. The metri¢d.1) is not in the standard

spherical form(2.1), so the general formulas derived in Sec. Sap=(T+P)UsUp+ PYap, (5.0

which is just the Friedmann equation for a closed universe
(k=1) with energy densitye=3M/(4mx3).

V. SHELLS WITH PRESSURE
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wherep is a tangential pressure, by virtue of spherical sym-The dynamics of the shell will obviously depend ¢gnand
metry. Physically, this matter configuration can be realizedvice versa, i.e., a given form of the potential—whereby the
by, e.g., “counter-rotating” dust, where the individual dust dynamics is uniquely determined—will constrain the al-
particles are taken to follow geodesic orbits on the shell, witHowed choices foi/, or equivalently, for the equation of state
half of them orbiting along any given great circle with angu- (although it will not uniquely determine themrhe qualita-

lar momentum per unit rest magsand the other half in the tive nature of the evolution is given by the shape of the
opposite direction with angular momentum per unit rest masgffective potential: its zerogif any), and first and second
—I, such that the net angular momentum vanishes, therebgerivatives. From Egg5.4) and(5.6), we have then
preserving spherical symmetfg6].

The junction conditions yield formally the same equation ) ) 2a
of motion as in the pressureless cdsé Eq. (3.8)], but, V'=2y R Y|t =3 2+§, (5.9
unlike in the latter case, the proper mass of the shell is no i 4
longer conserved. This is the crucial difference, and implies ) ’ )
that the ratiom, /my is now an implicit function ofR. The V=2 a " +4a¢ _ 6a lﬂ_+ 1
conservation equatio(®2.14) gives R2y° R34 R%2\ ¥ R
: +2.E +p)=0 5.2 b _
ot+2g(o+p)=0. (5.2 —25 v (5.9

Note that even the “generalized” massms=4w(c  Now, in the presence of nonvanishing pressure it is possible
+2p) R2 fails to be conserved in genel’al. If the tangentialto design the Shape of, so as to Satisfy the necessary and
pressure is constant, them; is conserved, and the evolution sufficient conditions for a stationary solutioR, :
equation becomes identical to the one for the pressureless
case, upon the substitutiony—my , i.e., the constant pres- V(R,)=0, V'(R,)=0, V'(R,)>0. (510
sure case is equivalent to the pressureless one, provided one = . _ L .
includes pressure into the generalized mass definitiote, If the first inequality saturates, the solution is static.
however, that even in this case #0, since there is always
work done against pressure “forces”

The conservation equatiofb.2) can be rewritten as a

A. Nonexistence of stable solutions with a strictly linear
barotropic equation of state

first-order ordinary differential equation fer(R), by using Proposition There are no stable configurations with a
o=(do/dR)R, as strictly linear barotropic equation of stape= ao.
Proof. Let us assume thap=ao, with ae(—1,1),
do 2 _ where the upper and lower limits are imposed by causality.
dr T RleTPI=0. (53 Equation(5.4) integrates tay=A/R**2¢ whereA>0 is an

integration constant, and we have then
Upon introduction of the dimensionless functiofn(R)

=27wo(R)R, the equation above can be rewritten as a _, b CA?
V=1- —R¥—o——r (5.1
1 dw- A R R2(1+2a)
%ﬁ:—(U-FZp). (5.4) ,
—ta s 1 2 (12—
Now, one may eithefti) specify an equation of state of the V= 4aA2R +R2 +2( a) R3*+4a’

form p=p[ o] and solve Eq(5.3) for o(R), or (ii) prescribe (5.12
a functional form fory(R), thereby fixingo(R), with p[ o]
following directly from Eq.(5.4).

The equation of motion for the shell then reads \VAES —4a(4a—1)%R4“*2—2£3
A R
R2+V(R)=0, (5.5 A2
with the effective potential —2(1+2a)(3+4a) RAa+1)” (5.13
a b The conditionV’'=0 leads to a drati tion fxr
< 2 quadratic equation
V(R)=1 22 R ¥, (5.6 _pivaa
where ) bA? (1+2a)A4_
5 X 4aax 2aa =0, (5.14
m,
=|—= =M+m_. . . .
a 2 ) , b=M+m- (6.9 with solution(s):
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xi—bA 1+1+32a(1+2a)al/b?
o—ggg(- ( a)alb?).

(5.19

Now, at the local extrema, from Eq&.13 and(5.14), after
some manipulation we obtain

B daa(l+tda)

, AY1+2a)
o~ Azxg(u )/(1+4a) :

0 2aa

"

(5.16

The solutionRy=X1*4) is stable if and only ifV§>0,
i.e., if and only if either of the following holds:

. ) AY(1+2a)

() a(l+4a)<0 and Xg+ —5——>0,
2aa

) , AY1+2a)

(Il) a(l+4a)>0 and XO+ T<0

If (i) holds, thena e (—1/4,0), and we must také, in Eq.

(5.15 with the further condition that the discriminant is

greater than unity; however, this requires>0 or a<
—1/2, both of which contradict- 1/4<«a<0. Now, let us
examine possibility(ii): we have eithera>0 or ae (-1,
—1/4). If >0, the conditiorX3+ A*(1+2a)/(2aa)<0 is

violated. Ifa e (— 1,—1/2), the former condition is also vio-
lated, so we are left witle e[ — 1/2,— 1/4). But this implies

(sincea is negative that Xy <0, and thus we must také,
in Eq. (5.19 subject to eithera>0 or a<—1/2, both of
which are incompatible witha e[ —1/2,—1/4). We con-
clude, therefore, that there are no solutions with=0 and
V">0. |
It immediately follows that all

linear barotropic equation of state.

B. Energy conditions and stability criteria

From Eq. (5.9), together with the requirementg=V'’

momentarily static
solutions—which exist wheneve¥=0—are unstable, i.e.,
there are no stationary solutions for shells with a strictly

PHYSICAL REVIEW D 66, 084021 (2002

(o+p)(1+2C2)
o+2p 1 2

P(Q)"‘@zl,
(5.19

wheres=p/o, P(s)=1+2s+6s? and the®, are strictly
positive terms:

w2 o?R8

272 0°R® (5.20
Y at2a2bo?R3’ '
b
®2:55+2w%a+2m% (5.2

The quadratid®(s) has an absolute positive minimum @t
= —1/6, and therefore the right-hand side of condit{bri9
is strictly positive.

Now, in terms of the energy density and principal pres-
sures, the energy conditions for this system are as follows.

Null energy conditionNEC): o+ p>0.

Dominant energy conditioDEC): 0>0, o>|p|.

Weak energy conditiofWEC): ¢>0, o+ p>0.

Strong energy conditiofSEQ: o+ p>0, o+2p>0.

The DEC implies the WEC, which in turn implies the
NEC, and the SEC also implies the NEC; the energy condi-
tions are otherwise independent. Comparison between these
energy conditions and Eq¢5.4) and (5.18 shows that the
latter provide a clear relation between the former and the
matter content of the shell. Accordingly, one expects the sta-
bility, or lack thereof, of the shell to depend crucially on the
energy conditions.

For a strictly linear barotropic equation of state, condition
(5.19 implies o+ p>0. Clearly, if the WEC is violated,
there are no stable configuratiorig fact, as shown in the
preceding section, even if the WEC is satisfied, there are no
stable solutions for such equations of state.

For arbitrary equations of state, one may distinguish two
cases, depending on Whetr@i is non-negative. Most mac-
roscopic forms of matter obeﬁgzo [including matter
opaque to soundC(ﬁzO), such as tenuous plasmas where

=0, after some algebra, the necessary and sufficient condélectromagnetic radiation below the plasma cutoff frequency

tion for a stable solution\(">0) may be written as

W' a b 2ay’  3a (¢ 1\?
v Ry 2R R RE2\ R
b 1/1,2

Now, from Egs.(5.3) and(5.4), we have

"n__ ’ dp _2 2
W'==0'|1+25 | = (o+p)(1+2C)), (5.18

whereC.=+/dp/do is the local sound speed, if one regapds

as a hydrostatic pressure. The stability conditidri?) reads
then

does not propagale whereas certain fundamental fields,
such as massive scalar fields, exhi6§<0. We shall as-
sume throughout that>0, remarking, however, that matter
with negative energy density has been considered from a
purely theoretical standpoint, e.g., in attempts to construct
stable wormhole solutiongl7]. We skip trivial algebra and
present the relation between energy conditions and stability
in Table | below.

VI. TRAPPED SURFACES

Let 3 be any given compact spatial two-surface in the
spacetime, an® .. be the expansions in the future-pointing
null directions orthogonal t&,. The latter is said to be a
trapped surface i, ® _=0 [18]. Trapped surfaces signal
thus the boundary of a region where any initially expanding
null congruence begins to converge; clearly, they define re-
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TABLE |. Stability criteria and energy conditions.

c? WEC SEC Unstable
=0 Yes No Yes

=0 No No Possibly
=0 Yes Yes Possibly
<0 Yes No —1/2<C%<0
<0 No No -1<C2<-1/2
<0 Yes Yes —1<C2<-1/2

gions of “no escape.” The limiting case where expansion

PHYSICAL REVIEW D 66, 084021 (2002

Schwarzschild background with mass parameter. This
case is of sufficient generality, since, as shown in the previ-
ous sections, the vacuum-immersed single-shell case, as well
as that of a shell collapsing onto an interior LTB solution,
can be trivially obtained from it. We have then

2m_
F’:l_TZO' F,.=

m, +m_
1—27=0, (6.4)
which defines the AH as

ra=2m,H(r—R)+2m_, (6.5

vanishes along future-oriented normal null directions is rewhereH,(x) is the unit Heaviside step-functiotd¢=0 for

ferred to as amuter marginally trapped surfac€®©MTS). It

x<0, andH;=1, for x=0). The evolution of the AH is

is well known that the existence of trapped surfaces implieshown in Fig. 1.

that of OMTS[19]. In spherical symmetry, the apparent ho-
rizon (AH)—the outer boundary of a compact trapped
region—is an OMTS.

Let us consider the case of an arbitrary skethatched to
two arbitrary spherical spacetimes, as described in Sec. |
Take the vacuum metric to be of the for(8.1), with g,,
=1/F . (t,r), without imposinga priori any sign constraints
on F. Since the four-metrigiv is continuous across and
one needs derivatives of null vector fields orthogond, tat
suffices to havcg]i,, to compute® along ingoing and outgo-
ing null directions. Our surfac® is that of a spherical shell
with proper area radius=R(7) (which provides a coordi-

The AH coincides initially with the EH, since the inner
spacetime is just static Schwarzschild, purhps out discon-
tinuouslyatt=t, , when the thin matter shell crosses the
initial Schwarzschild radius. The EH is determined by the
bntire future developmentalong null generatojsof the
spacetime, and is therefocentinuous unlike the AH, which
is defined locally in terms of the gravitational mass interior
to a certain radius, on a given spacelike hypersurface.

VIl. SHELL CROSSING

In spherical gravitational collapse, one may distinguish

nate invariant definition, and, in addition, allows for mea-between two different types of singularities, given by the
surements by an external observer, who can measure propfation and relative motion of neighboring shells shell

circumferences, but not coordinate radit is convenient to
introduce null coordinatefu,v} defined by

1 1
du=hdt— —=dr, dv=hdt+—dr, 6.1
F v N (6.1
from which it follows that
190 J
®i=(ﬁg?+JE5FRum (6.2)

where the* sign denotes evaluation along outgoing and
ingoing null directions, respectively. The condition for
trapped surfaces then reddghere Eq.(2.6) was usedl

RZ

= —F=0.
1+R%F

0,0_ (6.3

The AH is given by the limit® .0 _—0, which requires
F—0. For the case of a boundary surfagi,,,]=0, the
time coordinate is globally defined, and tHas=F . every-
where thereby uniquely defining a continuous cutygr),

via F.=0. In the presence of a thin shell, however, the
functional forms ofF = andF , are different, and therefore
the AH curve(implicitly defined by twodifferent curves in
M., by F.=0, respectively may not necessarily be con-
tinuous.

focusingsingularity is said to occur at the center of symme-
try, when the proper area radius vanishes therein, leading to
the blow-up of all curvature invariants; these singularities are
gravitationally strong(any volume form defined along the
Jacobi fields vanishes at the singulayitgnd the spacetime is
geodesically incompletg20]. A shell crossingsingularity is
said to occur when neighboring shells cross each other at
finite (comoving radius, thereby leading to two-dimensional

FIG. 1. ApparenfAH) and event horizoEH) evolution for a

To illustrate this, let us consider the case of a single shelihin shell 3 with active gravitational mass, imploding in an

with active gravitational massn, moving in an interior

interior Schwarzschild background with mass parameter.
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caustics, where the energy density diverges, and the metrieor givenm.., it is straightforward to numerically solve for
becomes singulai21]. In LTB collapse, shell crossing oc- condition (7.4), thereby obtaining a region of the two-
curs for spatially inhomogeneous density distributions,dimensional parameter space—given by the half-plegRe
whenever the proper time for collapse of a given shell is ac (0,+oo)}><{R8'>R5}_in which condition(7.4) is satis-
monotonically decreasing function of the comoving radius fied. One can actually obtain an analytical criterion for shell

For the charged dust case, shell crossing has been showndgssing, by restricting our attention teighboringshells,
be inevitable, both for asymptotically flg22], and asymp-  defined by

totically de Sitte 23] spacetimes. Physically, shell crossings

signal the intersection of matter flow lines at a given space- Ry =Ry (1+¢), (7.5

like surface, to the future in which the model therefore

breaks down. Such shell crossing singularities have beewith 0<&<1. For shells thus defined, we can Taylor expand
shown to be gravitationally wedR4], and, in one particular

LTB case, an analytical metric continuation was found in a . N dr. 5
distributional sens¢25]. Recently, Szekeres and LU&6] T(Ro)=7(Ro) + dR, _§+O(§ )- (7.6)
showed that it is always possible to find a coordinate trans- Ro

formation that renders the meti@® (but notC?) at the LTB »

shell crossing singularity. Their result adds considerably toCond|t|on(7.4) reads then

our understanding of shell crossing in LTB collapse, but d

there remains to be shown that such transformation al- (i) <0. (7.7
ways existgand is presumably uniquéor a generic spheri- dRo Ry

cal metric.

From Eq.(7.3), after a little algebra, this gives

A. Conditions for shell crossing

One might hope that a detailed analysis of the dynamics Ry €(0R,), (7.9

of individual thin shells could shed some light on the shell . R,=2b_/a_=m_/2. We note that thignecessary
crossing process in continuous matter models. Thus moti:

vated. we shall consider the case of two Schwarzschil nd sufficient condition for shell crossing for neighboring
' X . .~ . Shells requires the inner shell to be inside its Schwarzschild
shells, as described in Sec. lll. Take the shells to have initi

L . ) adius. From the definition of neighboring shells, it follows
radii Ry , and dynamics given by that the outer shell is also inside its Schwarschild radius:
Take the limiting casR, =m_/2, and setRy =m_/2+ 5,
with 6~O(m-1). Suppose thaR; is outside its Schwarzs-
where child radius, i.e.Ry >R&y=2(m, +m_). This implies

VE=— \/k2—1+a—:+ —
R= \R” which cannot be, sincen,>0 and 5~O(m~?); hence,
Ry <R, Note that the converse is not necessarily true: one

a_=2kJb_=m_, may have Rj>R&y, and Ry <Rgy, provided m,
=O(m-%). See Fig. 2.

The case of non-neighboring shells.e., Ry —R,
For simplicity, and without loss of generality, we shall con- ~O(Ry)] is qualitatively analogous: shell crossing only oc-
sider the marginally bound caskes=1. In this case, the dy- curs if either(i) both shells are “sufficiently” inside their

R*+V*(R*)=0, (7.0

2 4m, +3m_<254,

a,=2(kyb,+m_)=M+m_.

namical equatior{7.1) admits an analytical solutioR*(7), respective Schwarzschild radii, Gr) the inner shell is ini-
which is explicitly given in the Appendix. The proper time tially untrapped, and the outer shell “sufficiently” trapped
for collapse is given by solvin®(7.) =0, which yields [31]. lllustrative examples are shown in Figs. 3 and 4.
TC:%( b2 432 \/@_ 3bR3 N Rg) 73 B. Discrete shell model versus LTB collapse
3a a a In a multi-thin-shell model, the metric is at lea3? at the

] ] . shell crossing by construction, sintg,,,]=0 for all times.
where the* subscripts have been omitted for clarity. For Thjs is in apparentcontradiction with the well-known result
given gravitational masses.. (whereby the corresponding for LTB collapse, where the comoving metric becomes sin-
a. ,b. are determined the proper time for collapse is a gylar (g,,—0) at shell crossingf24]. Whilst such a metric

function of the initial radiuRy . L singularity may be removed by @ coordinate transforma-
Now, shell crossing occurs if and only if, f&) >R, ,  tion via the prescription of Szekeres and L[@], one is still
we have left with the fact that scalar quantities such as the energy
N B density remain divergent at LTB shell crossirigsfact, tidal
TRy )<7(Ry). (7.4 forces are still infinite thereopwhereas they are finite in the
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FIG. 4. Gravitational collapse for two shells with data,

FIG. 2. Gravitational collapse for two neighboring shells with =M-=1, Rg/Rg¢=1.1, andR;/Rs.=0.7. The outer shell is ini- -
datam,=m_=1, Ry =1/7, R =Ry (1+10°%). The condition tially inside its Schwarzschild radius, but not the inner one. In this

Ry <R{ <R, (whereR, =1/2) is obeyed, and hence the two shells €@S€; the shells cross at finite radius.
cross before collapsing to zero radius. Note thath shells are
initially inside the respective Schwarzschild radii. on the microphysics of the model at hanith order to follow
the dynamics into the causal future of the shell cross surface.

discrete shell casgin particmar,g:m/(4ﬂRgg<m]_ Ac- Only in special cases, wherepairely gravitational interac-
cordingly, the former cannot be taken as the continuous limition (whence the rest mass of each shell is conserbesd
of the latter. tween different shells is assumed, can one determine the evo-

The inequivalence—as far as shell crossings ardution of the system beyond the shell cross. For null surfaces,
concerned—between these two models also arises from thge have the well-known DTRDray—'t Hooft—Redmount
following observation: In LTB collapse, individual shells fol- relations[27], which relate the mass and momenta of the
low geodesic motion in the four-dimensional spacetime dudlifferent regions before and after shell crossing. Such rela-
to the lack of any external forceigollapse is pressureless tions were subsequently generalized to the timelike ¢ae
and uncharged but this does not happen in the present casefassive spherical shellby Nunez, Oliveira, and Salirfi28].
within each shell, particle motion is geodesic, but, from the
viewpoint of the four-dimensional spacetime, the shell is ac-

celerated: VIIl. CONCLUDING REMARKS

We have analyzed in some detail the dynamics, stability,
S trapped surfaces, and shell crossing for spherical thin shells
t in vacuum. By focusing on the dynamics of the exterior shell
in a vacuum two-shell model, the problem reduces to that of

h/

at= UVVVu/L: R — 4 —
7 h

. h' a single shell moving freelyalbeit not geodesicallyin a
| R+ e o #0, (7.9 schwarzschild background with different active mass param-
eters on each side.
a?=ub @y,ua= 82 By, 52=0. (7.10 We have shown that there can be no stable solutions with

a strictly linear barotropic equation of state, regardless of any
energy conditions satisfied by such matter fields. Whereas

We remark that the shell crossing procesminotbe deter- this rules out several idealized forms of matter as candidates
mined from the field equations alone, as a matter of prin,

ciple. Once two(or more shells cross, one must speciy for stable shell configurations, it still leaves ample room for

S : . : stability with more general equations of state. For instance,
priori the type of interaction that takes pla@ehich depends by considering a quasilinear equation of stawhich is a

R good approximation to any equation of state near equilib-
rium, if the latter exists Brady, Louko, and Poissof29]
showed that stablstatic shells with an interior Schwarzs-
child background can exist, provided certain conditions are
satisfied, which turn out to supersede energy conditions nec-
essary for the existendbut not necessarily stabilityf such
shells[30]. For matter configurations witkc2=0 obeying
the WEC, but otherwise arbitrary, we showed here that the
SEC is anecessary and sufficienbndition for the existence
of stable shells around a classical Schwarzschild black hole,
0.5 1 1.5 2 25 3 3.5 thereby producing a very simple and useful test for the sta-
FIG. 3. Gravitational collapse for two shells with dasa,  bility of any matter content. For matter wit@3 e (—1/2,0)
=m_=1, Ry/Rgy=R{/Réy=1.1. Both shells are initiallyout- obeying the WEC, the SEC is also necessary and sufficient
side their Schwarzschild radii, and, as such, fail to obey the shelffor stability. ForC2e (—1,—1/2) the analysis cannot be car-
crossing. ried out further without specifying an equation of state, to

4
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evaluate inequality5.19. However, the results of Reff29] a b
for static shells withC2<0 suggest that there are no stable R+ \/=+—=0, (A1)
configurations, even dropping the staticity assumption. R R

The collapse of a thin matter shell onto a Schwarzschild
black hole introduces a step-function-type discontinuity inwith the initial conditionR(0)=R,. The positive real solu-
the apparent horizon curve, which occurs when the sheliion is
crosses the initial Schwarzschild radius, whence the jump
equals thgactive gravitational mass of the shell. 2 1

Neighboring dust shells were shown to cross whenever R(m)=——2—x Y ——x¥3(n), (A2)
the inner shell is sufficiently inside its Schwarzschild radius, a a 2a
specifically, Ry <Rgg{4. Shell crossings occur in a multi-
dust-shell case, just as they do in the continuous LTB dusthere
case, but individual shells move geodesically in the latter,
whereas they are accelerated in the former. This, together 23
with the fact that the energy density remains finite in the y=8b%—4a%32+12a"% r—9a*r?+ 3a2( T— —)
discrete case, but diverges in the LTB one, implies that the 3\a
multishell case cannot be taken_ as the discrete analog of LTB X (— 1603+ 4a352— 123725 7+ 9a%72) 12, (A3)
collapse, insofar as shell crossings are concerned.

1/2

b
4— -3 R3+R3
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