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Eternal time machine in (2+1)-dimensional anti-de Sitter space
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(2+1)-dimensional anti—de Sitter space has been the subject of much recent investigation. Studies of the
behavior of point particles in this space have given us a greater understanding of the BTZ black hole solutions
produced by topological identification of AdS isometries. In this paper, we present a new configuration of two
orbiting massive point particles that leads to an “eternal” time machine, where closed timelike curves fill the
entire space. In contrast with previous solutions, this configuration has no event or chronology horizons.
Another interesting feature is that there is no lower bound on the relative velocities of the point masses used
to construct the time machine; as long as the particles exceed a certain mass threshold, an eternal time machine
will be produced.
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[. INTRODUCTION This space is not simply connected and contains closed
timelike curves(i.e., the circlesu?>+v?=w?r3, with x andy
Our time machine is produced by two particles orbiting aconstant anav?>1). These can be “unwrapped” to produce
common center in circular orbits. In Sec. I, we describe athe covering space of anti—de Sitter space which we shall
useful coordinate system in AdS spacetime. In Sec. lll waliscuss in the remainder of this paper, and simply call
discuss the nature of the wedge identifications correspondingnti—de Sitter space. This space has no closed timelike
to the two particles. In Sec. IV, we construct the particlecurves.
orbits and illustrate the resultant spacetime. In Sec. V we There are a number of ways to put coordinates on the
examine the causal structure of the solution, and in the finahyperboloid; we shall be interested in a set that makes the
section we compare with previous solutions. conformal transformation clear. “Barrel coordinates,” dis-
(2+1)-dimensional anti—de Sitter space has been the suteussed in Hawking and Elli], Chap. 5.2 and discussed for
ject of much recent investigation. Holst] argued that two the (2+1)-dimensional case by Holst and Matschl, are
point masses on nearly radial orbits would create a Gott-typene most useful for our situation.
time machine as they passed each other near the center, pro-We definer, a time coordinatey, a “radial” coordinate,
vided that their relative velocities exceeded a certain massand ¢, an angular coordinate as follows:
dependent threshold related to that for the original Gott con-

figuration in Minkowski spac¢2]. Matschull[3] noted that u=rqcosr coshy
two colliding particles would create a BTZ black hdi). )
Holst and Matschull[5] found that two lightlike sources v =rosinTcoshy

coming in from infinity and passing each other at a finite
distance would create a rotating Batvs-Teitelboim-Zanelli
(BTZ) black hole with regions of closed timelike curves hid-
den inside the event horizon, and a “wormhole” connection
to an additional universe. Many of the results of investigaThe metric induced on the surface is then

tions persuing the connection between single point sources

and the BTZ solution are summarized by Birmingham and ds®=r3(dy?+sinxd¢?— costty d72). 3
Sen|[6].

X=rqSinhy cos¢

y=rgSinhy sin¢.

The time coordinater, runs from—« to «, ¢, the an-
II. ANTI —de SITTER SPACE gular coordinate is periodic, going from 0 ter2 andy goes
) ) ) ) ) from 0 toce. We can set taf= sinhy; sincey goes from 0 to
.Ant|—de Sltter space is a homogenous, isotropic space, g goes from 0 tor/2. The new metric is then
with a negative cosmological constant;+2)-dimensional

anti—de Sitter space can be represented as a three dimen- d6?+sinfodp2—d 2
sional hyperboloid: d’=r} 25
co

4

2 2 2 2 2
—U—v X4y =—r1 1 _ , . .
y 0 @ This demonstrates that anti—de Sitter space is conformally

embedded in a flat four dimensional space with the metric related to the product of a hemisphere and a real time axis.
Performing the conformal transformation, and including the
ds?’=—du?—dv?+dx?+dy? (2)  equator as a boundary at infinity, we find the “barrel” coor-
dinates that we will use in this paper:
wherer3=—1/A, whereA is the cosmological constant as
usually defined in the Friedmann equations. ds?=d6?+sirfod % —d 2 (5)
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which is related to the original metric byds?

=r2ds’/cog6. A property of AdS spacetime is that null
lines starting at the center can reach infinity and return in a
finite coordinate timeA r=21r.

We note that it is impossible to bring the timelike infini-
ties. and.” in to a finite distance without collapsing the
spacelike infinities to the origin; since we will only be deal-
ing with processes that elapse over a finite coordinate time,
this subtlety will not be an issue.

Each spacelike slice perpendicular to the time &xés, 7
constank is thus mapped onto a hemisphere. A conformal
stereographic projectiotwith p=tan#/2) of the half sphere
on to the plane

2, 2442
go_ 9P trdd ©6)
(1-p?)?

W'_" project this hemisphere onto a Poincadisk of radius FIG. 1. The first step of our construction: the wedge associated
p=1. with the stationary particle at the origin. In this case, the deficit

) angle « is /2. Here we show one half of a period, where the

1. WEDGE IDENTIFICATIONS ON THE POINCARE coordinate goes from 0 te. For clarity, the wedge identifications
DISK are not shown in this figure. We do show, however, the cylinder that

. . . . is the boundary at infinity. The surface of the cylinder represents
.The ef_fect Of, a point mass: |n(2+"1)—c.i|menS|onaI 0= l2, corresponding to spatial infinity, while the center of the

Minkowski space is to remove a “wedge” with angle pro- cyjinder is atg=0. The vertical coordinate represents

portional to the mass of the particle. The two faces of the

wedge are identified at constant times in the particle’s resgjice of time, there is a missing slice of spacetime of angle

frame. This operation produces a conical singularity at the,. the cross section at timelooks like a pizza with a slice

position of the particle, but leaves the rest of the space flalyissing. The location of this missing slice in azimuth is ar-
There is an analogous operation for introducing pointyitrary. Thus, we may rotate the azimuth of the location of

masses in AdS spacetime; a general formulation is describggle missing pizza slice at each epoch to produce a “rotating”

in Matschull[3]. For our purposes, we need only know how missing wedge whose azimuth is equal to timand makes

to introduce a stationary point mass at the origin; our spacesne rotation in a periog=2. The two edges of the rotat-

times will be constructed by a procedure of pasting togetherng missing wedge may then be described parametrically as
boosted solutions of this nature. follows:

Our barrel metric gives us a notion of slices of constant
time 7 throughout the manifold; as we have seen above, each u=cosy coshn, u’=cosycosh\
slice can be conformally mapped onto a Poinadisk. The
identification procedure is then simple: for a point mass of

- - . . v=sinycoshn, v'=sinycosh\
deficit anglea at the originy=0, one identifies two geode-

sics in the slice of constant timg emerging from the point x=cog y—a/2)sinh\, x’=cogy+ a/2)sinh\
particle, that are separated hy radians of rotation. This
produces a conical singularity at the origin. In the limit as y=sin(y— a/2)sinh\, y’=sin(y+ a/2)sinhx

one approaches the origiry<1), the curvature term from
the cosmological constant is negligible and the geometryhere {U,v,x,y) are the coordinates of an event on the trail-
near the origin approximates a piece of Minkowski spaceng edge, andy’,v’,x’,y’) are the coordinates of the iden-

with a missing wedge of angular sizeradians. tified event on the leading edge, is the time coordinate,
equal to the proper time of the particle,is the deficit angle,
IV. THE CONSTRUCTION OF THE ETERNAL and \, which runs from zero to infinity, parametrizes the
TIME MACHINE distance along the edge, from the particke<0) to infinity

(A=00). Identifications are to be made between points with
Our time machine consists of two point masses orbiting @he same\ and y values. They dependence in the andy
common center in circular orbits. We will construct it by coordinates is what “rotates” the wedgdSee Fig. 1.
finding the spacetime for a single point mass, boosting into we now boost this particle twice, by the same Lorentz
the rest frame of what will be the common center, and putyoost,, but in different directions; the first boost is in the
ting together two such copies in such a way that the wedgeg_ plane, the second in the—v plane. In the new coor-

do not inte'rsec't. o _ __ dinate system, the equations of the two edge$ ére
We begin with a description of the wedge identification

lines emerging from single particle at the origin. At each u=cosvy coshi coshy+ cog y= a/2)sinh\ sinhy
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v =sinvy cosh\ coshy+ sin(y* a/2)sinh\ sinhys

. i ‘ \
X=cog y= a/2)sinh\ coshys+ cosy cosh sinhy &§§\\§%"7illll”l’
y=sin(y=* a/2)sinh\ coshy+ siny cosh\ sinh. \\t\}\‘\v\ %’ég{l’llll’/
9 7

Again, points with the sameg and\ are to be identified.
After the boosts, they parameter remains the proper time.

To get a better intution for the behavior of this spacetime,
consider the line parametrized kywith A =0 (i.e., the path
of the patrticle itself. The combination of these two boosts
puts the particle into a circular orbit about the new origin of
the coordinate system; the particle’s worldline is a helix. We
note that the proper time of the particle,is equal to the
coordinate timer:

¢=arctany/x)=ry

r=arctarfv/u)=vy. FIG. 2. The next step in our construction of the time machine.
The particle with missing wedge is boosted, and a second particle

The angular position of the particle as a functionrofin  with missing wedger radians out of phase, is introduced. As in the
the barrel coordinates, is independent of the boost parametgrevious figure, the deficit angle for each particle,is 7/2. Here
. To build our time machine, we shall introduce a secondwve show one half of a period, where thecoordinate goes from 0
particle, 7r radians out of phase with the first. The two par-to . For clarity, the wedge identifications are not shown in this
ticles will then helix around each other. The two particlesfigure.
orbit each other eternally without loss of energy through
emission of gravity waves because there are no gravitationa¥ithout worrying about the wedges intersecting in a way that
waves in(2+1)-dimensional spacetime. would complicate the simple wedge prescription of the one

Point particles in (2 1)-dimensional space exert no particle case. Our particluar choice of orientations for the
gravitational attraction for each other; the particles are kepwedges means that the “leading” and “trailing” wedge faces
in circular orbit by the overall gravitational attraction of the are positioned symmetrically about the line emerging from
negative cosmological constafi net attraction is produced the origin in the direction of each particle.
because the repulsion produced by the negative mass density
of the cosmological constant is more than compensated by v THE CAUSAL STRUCTURE OF THE ETERNAL
the gravitational attraction produced by its positive pressure TIME MACHINE
in two dimensions, giving an overall attractipn. ) )

[We note in passing that, with this insight, we can write ~We now wish to examine the causal structure of our sys-
down a set of “corotating” coordinates, identical to the sys-tem. Equation(7), along with our definitions of the barrel
tem described above but with the angular coordinAtee- coordmat_es_ and our rule for |Qent|fy|ng points has given us a
placed by’ = ¢— 7. This gives the following metricafter full description of the spacetime. We can get a good handle
performing the same conformal transformations as for th@n exactly what is happening by looking at the behavior of

original “barrel” coordinates: the spacetime at spacelike infinity. In a manner similar to
Matschull[3], we will examine the behavior of null lines that
d6?+sirPo(dé' 2+ 2d ¢’ d7) remain always at infinity, and will then be able to make more
d52=p§ —d7?|. (7 general statements about the rest of the space.
cos'g We can find the identifications at infinity by takingto

) ) ) ) ) infinity in the limit. In this limit, for a mass with deficit angle
With this choice, there is a class of freely falling test , e wedge identifications are given by

particles, orbiting as do our orbiting point masses, that re-

main at the same radial and azimuthal positions for all times. siny+sin(y= al2)tanhy
While this system leads to needless complications for our T=arcta n ~2)@nn 8
purposes, it is interesting to note that such a coordinate cosy+cog y* a/2)tanhy
choice leads one to view the AdS manifold as a stationary, ) )
rotating universe. There are two such coordinate systems, the B siny tanhy+sin( y= a/2)

Y S i ¢=arcta 9
second beingp’ = ¢+ 7, and rotating in the opposite sense. cosytanhy+ cogq y*+ a/2)

In these global coordinate systems, AdS spacetime appears

as a negatively curved, open, rotating—but not expanding—where the point corresponding to a particular valuexpf/,

universe] andvy is to be identified with the point specified by the same
As shown in Fig. 2, the way in which we rotate the  and y, and with thea terms having opposite sign. For

wedges in the particle rest frame means that we can do thisonvenience, we have written these expressions using the
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2m closed timelike curves at infinity result. Thus, to make closed
timelike curves at infinity we require for each wedge

AT+Adp>r. (10
3n/2
The expressions fok 7 and A ¢ would appear from Egs.
(8) and(9) to be rather complicated. Surprisingly, however,

they turn out to be very simple. We can examine the case
S wherey is equal to zerdi.e., at the beginning of a cyoleby
helical symmetry, our expressions fdr¢ and A7 will be
valid for all values ofy.
For this case, we have
/2
Ar=2arct sin( a/2)tanhys
T cartan oy al2)tanhys
0

sin( a/2)
0 /2 ™ 3n/2 27 _
¢ Ap=2 arctaré tanhy+ coq a/2) ) ’

unv';r';;' i‘ | I:em;igfzmgn?%‘la;{ﬂ ‘;Eszirosnp?;st\'ln;reﬁcﬁl 'Szir;'ty' We remind the reader that, as mentioned before, in evalu-

P plane. N g ' ating these expressions we must keep track of which quad-
and ¢ goes along the horizontal axis, with=27 and ¢=0 iden- . . . .
lantwe are iusing the signs of the numerator and denomi-

tified. The shaded regions correspond to the interior of the wedge . h he full 0
which are removed from the spacetime; the edges of these regiorﬁ]sator terms in parenthegem recover the full range (07)

are then closed together by identifying according to the dashe@f A7 andA¢, since the ar_ctangent funCti(_)n has only the
lines. The heavy solid lines correspond to the null geodesics orbitt@Nge ¢ 7/2,7/2). We can find the expression for the sum
ing the origin in the opposite sense to the particles; as is shown, thd 7+A ¢ by judicious use of the tangent sum formula. We

null line closes on itself. find, after much simplification, for each wedge, the result:
arctangent; care must be exercised when dealing with points AT+Ad=q. 11
for which ¢> /2 or p<— /2.

Following Holst and Matschull5], we take the conformal The dependence oir has dropped out. Combining Eq.

boundary, and, cutting it alongg=0, unwrap it to form a (11) with Eq. (10), we thus find that closed lightlike curves
plane. The wedge edges then appear as a parallel lines on thigll be produced at infinity by two idenitical orbiting point
plane. In Fig. 3 we show this construction f¢gr=0.25 and masses when the sum of their deficit angles is equaktol®
a=1r; the arrows indicate the identifications. We note that,the sum exceedss2 then closed timelike curves at infinity
at infinite distance from the origin, the rotating wedge edgesvill result.
move at a phase velocity equal to the speed of light in order Now for point masses in (21) dimensional Minkowski
to keep pace with the particle in the interior. space we expect that if the sum of the deficit angles of the
The heavy solid line in this figure shows the path of atwo point masses exceedsr2more than a hemisphere of
light ray at infinity, rotating around the origin in the opposite curvaturg, the spacetime closes like a “dunce cap” rather
sense to the two point massg®., clockwise from thg/to  than extending to infinity. This induces additional mass
the x axis). We see how, for sufficiently large deficit angles, points(at the “tip” of the dunce capso that the total mass in
the wedge identification@epicted by dashed lingsesult in  the closed space equalsrdas expected from the Gauss-
the null ray closing on itself. For even larger deficit angles,Bonnet theorem in a closed space where the only curvature
when the identifications span a larger portion of®) space, comes from the point masses. A spacelike section through
these closed null lines become lines that propagate baclanti—de Sitter space, however, has uniform negative curva-
wards in time, and one can now draw closed timelike curvesure (it maps onto a Poincargisk) This negative curvature
on the surface at infinity. counteracts the positive curvature in the two point masses
The criteria for closed timelike lines can be found as fol-and allows the spacetime to remain open and extend to in-
lows. We require thaA ¢ andA 7, the amount by which the finity even when the sum of the two point masses exceeds
light ray is identified along its direction of propagationgn 2.
and the amount by which the light ray is identified backward So we are allowed to have the sum of the point mass
in 7, respectively, for each wedge are sufficient to recovedeficit angles that sum to greater tham 2vhile keeping a
the time taken by the light ray to circle at infinity. In other subset of points at infinity, by simply separating the two
words, the light ray can become closed by a combination ofnasses by sufficiently large boosts. In Fig. 4, we show this
being retarded in timeX7) and by being advance@lock-  construction(produced with Mathematigdor o= 3/2 for
wise) around the cylinder £ ¢) across each wedge identifi- each point mass, angi=1. It is clear from this figure that
cation. If the two wedges taken together thus retard the lighthe two wedges do not intersect, and that there are still two
ray by a total of 2r, the ray will close. More than that, and “stripes” of spacetime at infinity.
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+7(N) (12

a
Drrail = ( T 2

which shows the location of the trailing edge of the station-
ary particle at timer(\), where

sin(a/2)
coth\ cothy+cogal2))’

T(\)= arcta76 (13

Meanwhile, the¢ coordinate of the leading line on the
leading wedge plane of the orbiting particle is written

. sin(a/2) 4
Pread=arctaN oy tanhy+coq a/2) )" (14)
Our condition for nonintersection of the wedges then
reads
FIG. 4. A demonstration that the space can support point mass Dair™ Plead (15

deficit angles greater thanm2total without closing. Here each point
mass has an deficit angle ofr®; there are still two small stripes at for all values of\ between 0 aneb. In other words, the line
infinity not removed by the wedge identifications. parametrized by for y=0 on the leading edge of the or-
biting particle should never hit the trailing wedge of the sta-
tionary particle.

We can see immediately that in the limit—, the two

rctangent terms become equal, abgj— Peaq— 7— /2.

n other words, we can fit two particles with deficit angles of
up to just below 2r each into our space, provided we sepa-
rate them by a sufficient boosgt

For the caser= 7, the bounding condition on the deficit
angles to produce a time travel region at infinity, we consider
a small boost. Expanding Eq(12) above to first order ir,
we find

We now derive a condition ot for the two wedges not to
intersect or touch. To derive this condition, it will be conve-
nient to go into a reference frame where one of the particle
(the “stationary particle] is at the origin. Then, the other
particle (the “orbiting particle”) will orbit at a boost param-
eter of 2. The particle at the origin remains stationary, and
its wedge, which we will call the “stationary particle
wedge,” subtends an angte with identifications at constant
T.

Without loss of generality, we consider the cgse0 (all
other values ofy can be obtained by rotating about the ori- b= 2€ tanhi. (16)
gin), and we remind the reader that our coordinate in-
creases going counterclockwise, starting from 0 on the line For small\, ¢eaqgoes to 0 as long as>0, and we see
going out from the origin through the orbiting particle at  that ¢yai— dreaq— 7/2, as expected. For large, coth\ is
-0. near unity, and we can again expand to first ordes fa find

The lines of identification for the orbiting particle at

=0 then start at=0, ¢=0 atA=0, and run to some maxi- Puai= — 2¢€ COthA. (17
MUM Tmax @nd ¢pa @S\ goes toe (we consider, again, Thus, for largex,

without loss of generality because of the reflection symme-

try, the leading wedge line only Drrail— Pread™ 2€(coth\ +tanh\) (19

The condition that the wedges never intersect becomes the
following: the leading wedge identification line of the orbit- and thus a time machine where the masses have deficit
ing particle may not intersect any part of the stationary parangles ofr each requires only an infinitesimally small boost.
ticle's wedge in the range=(0,74y- This compares to the results of an earlier investigation of

The stationary particle’s wedge planes, by constructionglosed timelike curves in AdS spacetime for particles in near
move around the origin with an angular velocity of unity. For radial orbits[3]; there, in a situation similar to that of the
the leading line on the leading edge of the orbiting particleoriginal results for closed timelike curves from cosmic
7(\) is always greater than 0, and increasing monotonicallystrings and point masses in a Minkowski backgro{iaj it
moving out from the orbiting particléi.e., as\ increases  was found that two equal point masses passing each other on
We can thus write the angular position of the trailing station-linear trajectories through the origin of AdS spacetime pro-
ary wedge plane as a function of\), the parameter along duce closed lightlike curve¢CTCs when their velocities
the leading line(if the leading line intersects the stationary relative to the center of mass exceed a certain amount:
particle’s wedges, it will do so first at the trailing wedge

plane. v
We find C>cos( al2) (19
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wherea< . VI. DISCUSSION
So far, we have shown only the existence of closed light-

like curves on the surface at infinity. We now wish to show We have constructed, in anti—de Sitter space, a system of

) . > two particles orbiting about a common center that leads natu-
that this leads to the existence of closed timelike curve§a”y to the existence of closed timelike and null curves. We
throughout the space. o . have derived analytic results on the constraints for the
We note that, without the missing wedges, test particlesnasses and relative separations of the two particles. Closed
double boosted by) orbit the center of the system with timelike curves fill the entire spacetime. Timelike curves
period 2, regardless of their radial distance from the centermay be drawn through any two events within the space; our
Let us denote by (#) the amount, inr and ¢, that a double  “time machine” exists for all times.
boosted particle, rotating at constant distance, is beamed Holst and Matschul[5], who also considered the effect of
back in time due to the missing wedges, whéiis the radial  point particles in (2-1)-dimensional AdS spacetime sug-
coordinate. For deficit angles that sum to greater thaf 2 gested a connection between their solution and the BTZ so-
f(/2) will be greater than 2. Sincef is a continuous func- lution [4]. The CTCs in their solution are hidden inside the
tion of 6, this implies that there are closed timelike curves agvent horizon of the rotating black hole. The CTCs in our
finite distance away from the orig[ine., f(6) > 2 for some  solution, however, are not found in a single region bounded
o< m/2]. When the deficit angles sum to precisely,2here by Cauchy horizons, but penetrate the entire space. In their
exist only closed null lines at infinity. s_olut_lon the point particles _that generate the CTCs _tra_lv_el on
Since our solution is stationafin the rotating coordinate 'ghtlike paths and are “emitted” and *"absorbed” at infinity
system described in Eq7) abovd, we can then draw a at a tlme'A 7= apart. Reglons.befortle and afte_r are con-
closed timelike curve through any event when the deficit’€cteéd with a BTZ wormhole with a time machine hidden
angles sum to more thanm2 We can draw a timelike curve msu_je. In our case, the partu_:les S|mply orbit each other for
between any two events; the timelike curve simply orbits the?ll ime, creating an eternal time machine.
two point masses as many times as needed to “rewind” suf-
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