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Eternal time machine in „2¿1…-dimensional anti–de Sitter space
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Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544
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(211)-dimensional anti–de Sitter space has been the subject of much recent investigation. Studies of the
behavior of point particles in this space have given us a greater understanding of the BTZ black hole solutions
produced by topological identification of AdS isometries. In this paper, we present a new configuration of two
orbiting massive point particles that leads to an ‘‘eternal’’ time machine, where closed timelike curves fill the
entire space. In contrast with previous solutions, this configuration has no event or chronology horizons.
Another interesting feature is that there is no lower bound on the relative velocities of the point masses used
to construct the time machine; as long as the particles exceed a certain mass threshold, an eternal time machine
will be produced.
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I. INTRODUCTION

Our time machine is produced by two particles orbiting
common center in circular orbits. In Sec. II, we describe
useful coordinate system in AdS spacetime. In Sec. III
discuss the nature of the wedge identifications correspon
to the two particles. In Sec. IV, we construct the partic
orbits and illustrate the resultant spacetime. In Sec. V
examine the causal structure of the solution, and in the fi
section we compare with previous solutions.

~211!-dimensional anti–de Sitter space has been the s
ject of much recent investigation. Holst@1# argued that two
point masses on nearly radial orbits would create a Gott-t
time machine as they passed each other near the center
vided that their relative velocities exceeded a certain ma
dependent threshold related to that for the original Gott c
figuration in Minkowski space@2#. Matschull @3# noted that
two colliding particles would create a BTZ black hole@4#.
Holst and Matschull@5# found that two lightlike sources
coming in from infinity and passing each other at a fin
distance would create a rotating Ban˜ados-Teitelboim-Zanelli
~BTZ! black hole with regions of closed timelike curves hi
den inside the event horizon, and a ‘‘wormhole’’ connecti
to an additional universe. Many of the results of investig
tions persuing the connection between single point sou
and the BTZ solution are summarized by Birmingham a
Sen@6#.

II. ANTI –de SITTER SPACE

Anti–de Sitter space is a homogenous, isotropic sp
with a negative cosmological constant; (211)-dimensional
anti–de Sitter space can be represented as a three di
sional hyperboloid:

2u22v21x21y252r 0
2 ~1!

embedded in a flat four dimensional space with the metr

ds252du22dv21dx21dy2 ~2!

wherer 0
2521/L, whereL is the cosmological constant a

usually defined in the Friedmann equations.
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This space is not simply connected and contains clo
timelike curves~i.e., the circlesu21v25w2r 0

2, with x andy
constant andw2.1). These can be ‘‘unwrapped’’ to produc
the covering space of anti–de Sitter space which we s
discuss in the remainder of this paper, and simply c
anti–de Sitter space. This space has no closed time
curves.

There are a number of ways to put coordinates on
hyperboloid; we shall be interested in a set that makes
conformal transformation clear. ‘‘Barrel coordinates,’’ di
cussed in Hawking and Ellis@7#, Chap. 5.2 and discussed fo
the ~211!-dimensional case by Holst and Matschull@5#, are
the most useful for our situation.

We definet, a time coordinate,x, a ‘‘radial’’ coordinate,
andf, an angular coordinate as follows:

u5r 0cost coshx

v5r 0sint coshx

x5r 0sinhx cosf

y5r 0sinhx sinf.

The metric induced on the surface is then

ds25r 0
2~dx21sinh2xdf22cosh2x dt2!. ~3!

The time coordinate,t, runs from2` to `, f, the an-
gular coordinate is periodic, going from 0 to 2p, andx goes
from 0 to`. We can set tanu5sinhx; sincex goes from 0 to
`, u goes from 0 top/2. The new metric is then

ds25r 0
2S du21sin2udf22dt2

cos2u
D . ~4!

This demonstrates that anti–de Sitter space is conform
related to the product of a hemisphere and a real time a
Performing the conformal transformation, and including t
equator as a boundary at infinity, we find the ‘‘barrel’’ coo
dinates that we will use in this paper:

ds̃25du21sin2udf22dt2 ~5!
©2002 The American Physical Society20-1
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which is related to the original metric byds2

5r 0
2 ds̃2/cos2u. A property of AdS spacetime is that nu

lines starting at the center can reach infinity and return i
finite coordinate timeDt52p.

We note that it is impossible to bring the timelike infin
ties i1 and i2 in to a finite distance without collapsing th
spacelike infinities to the origin; since we will only be dea
ing with processes that elapse over a finite coordinate ti
this subtlety will not be an issue.

Each spacelike slice perpendicular to the time axis~i.e., t
constant! is thus mapped onto a hemisphere. A conform
stereographic projection~with r5tanu/2) of the half sphere
on to the plane

ds25
dr21r2df2

~12r2!2
~6!

will project this hemisphere onto a Poincare´ disk of radius
r51.

III. WEDGE IDENTIFICATIONS ON THE POINCARE ´

DISK

The effect of a point mass in~211!-dimensional
Minkowski space is to remove a ‘‘wedge’’ with angle pro
portional to the mass of the particle. The two faces of
wedge are identified at constant times in the particle’s
frame. This operation produces a conical singularity at
position of the particle, but leaves the rest of the space fl

There is an analogous operation for introducing po
masses in AdS spacetime; a general formulation is descr
in Matschull@3#. For our purposes, we need only know ho
to introduce a stationary point mass at the origin; our spa
times will be constructed by a procedure of pasting toget
boosted solutions of this nature.

Our barrel metric gives us a notion of slices of const
time t throughout the manifold; as we have seen above, e
slice can be conformally mapped onto a Poincare´ disk. The
identification procedure is then simple: for a point mass
deficit anglea at the originx50, one identifies two geode
sics in the slice of constant timet, emerging from the point
particle, that are separated bya radians of rotation. This
produces a conical singularity at the origin. In the limit
one approaches the origin~x!1!, the curvature term from
the cosmological constant is negligible and the geome
near the origin approximates a piece of Minkowski spa
with a missing wedge of angular sizea radians.

IV. THE CONSTRUCTION OF THE ETERNAL
TIME MACHINE

Our time machine consists of two point masses orbitin
common center in circular orbits. We will construct it b
finding the spacetime for a single point mass, boosting i
the rest frame of what will be the common center, and p
ting together two such copies in such a way that the wed
do not intersect.

We begin with a description of the wedge identificati
lines emerging from single particle at the origin. At ea
08402
a

e,

l

e
st
e
t.
t
ed

e-
r

t
ch

f

y
e

a

o
t-
es

slice of timet, there is a missing slice of spacetime of ang
a; the cross section at timet looks like a pizza with a slice
missing. The location of this missing slice in azimuth is a
bitrary. Thus, we may rotate the azimuth of the location
the missing pizza slice at each epoch to produce a ‘‘rotati
missing wedge whose azimuth is equal to timeg and makes
one rotation in a periodg52p. The two edges of the rotat
ing missing wedge may then be described parametrically
follows:

u5cosg coshl, u85cosg coshl

v5sing coshl, v85sing coshl

x5cos~g2a/2!sinhl, x85cos~g1a/2!sinhl

y5sin~g2a/2!sinhl, y85sin~g1a/2!sinhl

where (u,v,x,y) are the coordinates of an event on the tra
ing edge, and (u8,v8,x8,y8) are the coordinates of the iden
tified event on the leading edge,g is the time coordinate,
equal to the proper time of the particle,a is the deficit angle,
and l, which runs from zero to infinity, parametrizes th
distance along the edge, from the particle (l50) to infinity
(l5`). Identifications are to be made between points w
the samel andg values. Theg dependence in thex andy
coordinates is what ‘‘rotates’’ the wedges.~See Fig. 1.!

We now boost this particle twice, by the same Loren
boost,c, but in different directions; the first boost is in th
x2u plane, the second in they2v plane. In the new coor-
dinate system, the equations of the two edges (6) are

u5cosg coshl coshc1cos~g6a/2!sinhl sinhc

FIG. 1. The first step of our construction: the wedge associa
with the stationary particle at the origin. In this case, the defi
anglea is p/2. Here we show one half of a period, where thet
coordinate goes from 0 top. For clarity, the wedge identification
are not shown in this figure. We do show, however, the cylinder t
is the boundary at infinity. The surface of the cylinder represe
u5p/2, corresponding to spatial infinity, while the center of t
cylinder is atu50. The vertical coordinate representst.
0-2
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v5sing coshl coshc1sin~g6a/2!sinhl sinhc

x5cos~g6a/2!sinhl coshc1cosg coshl sinhc

y5sin~g6a/2!sinhl coshc1sing coshl sinhc.

Again, points with the sameg andl are to be identified.
After the boosts, theg parameter remains the proper time

To get a better intution for the behavior of this spacetim
consider the line parametrized byg with l50 ~i.e., the path
of the particle itself!. The combination of these two boos
puts the particle into a circular orbit about the new origin
the coordinate system; the particle’s worldline is a helix. W
note that the proper time of the particle,g is equal to the
coordinate timet:

f5arctan~y/x!5g

t5arctan~v/u!5g.

The angular position of the particle as a function oft, in
the barrel coordinates, is independent of the boost param
c. To build our time machine, we shall introduce a seco
particle,p radians out of phase with the first. The two pa
ticles will then helix around each other. The two particl
orbit each other eternally without loss of energy throu
emission of gravity waves because there are no gravitati
waves in~211!-dimensional spacetime.

Point particles in (211)-dimensional space exert n
gravitational attraction for each other; the particles are k
in circular orbit by the overall gravitational attraction of th
negative cosmological constant.~A net attraction is produced
because the repulsion produced by the negative mass de
of the cosmological constant is more than compensated
the gravitational attraction produced by its positive press
in two dimensions, giving an overall attraction.!

@We note in passing that, with this insight, we can wr
down a set of ‘‘corotating’’ coordinates, identical to the sy
tem described above but with the angular coordinatef re-
placed byf85f2t. This gives the following metric~after
performing the same conformal transformations as for
original ‘‘barrel’’ coordinates!:

ds25r0
2S du21sin2u~df8212df8dt!

cos2u
2dt2D . ~7!

With this choice, there is a class of freely falling te
particles, orbiting as do our orbiting point masses, that
main at the same radial and azimuthal positions for all tim
While this system leads to needless complications for
purposes, it is interesting to note that such a coordin
choice leads one to view the AdS manifold as a station
rotating universe. There are two such coordinate systems
second beingf85f1t, and rotating in the opposite sens
In these global coordinate systems, AdS spacetime app
as a negatively curved, open, rotating—but not expandin
universe.#

As shown in Fig. 2, the way in which we rotate th
wedges in the particle rest frame means that we can do
08402
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without worrying about the wedges intersecting in a way t
would complicate the simple wedge prescription of the o
particle case. Our particluar choice of orientations for t
wedges means that the ‘‘leading’’ and ‘‘trailing’’ wedge face
are positioned symmetrically about the line emerging fro
the origin in the direction of each particle.

V. THE CAUSAL STRUCTURE OF THE ETERNAL
TIME MACHINE

We now wish to examine the causal structure of our s
tem. Equation~7!, along with our definitions of the barre
coordinates and our rule for identifying points has given u
full description of the spacetime. We can get a good han
on exactly what is happening by looking at the behavior
the spacetime at spacelike infinity. In a manner similar
Matschull@3#, we will examine the behavior of null lines tha
remain always at infinity, and will then be able to make mo
general statements about the rest of the space.

We can find the identifications at infinity by takingl to
infinity in the limit. In this limit, for a mass with deficit angle
a, the wedge identifications are given by

t5arctanS sing1sin~g6a/2!tanhc

cosg1cos~g6a/2!tanhc D ~8!

f5arctanS sing tanhc1sin~g6a/2!

cosg tanhc1cos~g6a/2! D ~9!

where the point corresponding to a particular value ofa, c,
andg is to be identified with the point specified by the sam
c and g, and with thea terms having opposite sign. Fo
convenience, we have written these expressions using

FIG. 2. The next step in our construction of the time machi
The particle with missing wedge is boosted, and a second par
with missing wedge,p radians out of phase, is introduced. As in th
previous figure, the deficit angle for each particle,a, is p/2. Here
we show one half of a period, where thet coordinate goes from 0
to p. For clarity, the wedge identifications are not shown in th
figure.
0-3
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arctangent; care must be exercised when dealing with po
for which f.p/2 or f,2p/2.

Following Holst and Matschull@5#, we take the conforma
boundary, and, cutting it alongf50, unwrap it to form a
plane. The wedge edges then appear as a parallel lines o
plane. In Fig. 3 we show this construction forc50.25 and
a5p; the arrows indicate the identifications. We note th
at infinite distance from the origin, the rotating wedge edg
move at a phase velocity equal to the speed of light in or
to keep pace with the particle in the interior.

The heavy solid line in this figure shows the path of
light ray at infinity, rotating around the origin in the opposi
sense to the two point masses~i.e., clockwise from they to
the x axis!. We see how, for sufficiently large deficit angle
the wedge identifications~depicted by dashed lines! result in
the null ray closing on itself. For even larger deficit angl
when the identifications span a larger portion of (t,f) space,
these closed null lines become lines that propagate b
wards in time, and one can now draw closed timelike cur
on the surface at infinity.

The criteria for closed timelike lines can be found as f
lows. We require thatDf andDt, the amount by which the
light ray is identified along its direction of propagation inf,
and the amount by which the light ray is identified backwa
in t, respectively, for each wedge are sufficient to reco
the time taken by the light ray to circle at infinity. In othe
words, the light ray can become closed by a combination
being retarded in time (Dt) and by being advanced~clock-
wise! around the cylinder (Df) across each wedge identifi
cation. If the two wedges taken together thus retard the l
ray by a total of 2p, the ray will close. More than that, an

FIG. 3. The conformal boundary of our spacetime at infin
unwrapped to make a plane. The timet rises on the vertical axis
andf goes along the horizontal axis, withf52p andf50 iden-
tified. The shaded regions correspond to the interior of the wed
which are removed from the spacetime; the edges of these reg
are then closed together by identifying according to the das
lines. The heavy solid lines correspond to the null geodesics o
ing the origin in the opposite sense to the particles; as is shown
null line closes on itself.
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closed timelike curves at infinity result. Thus, to make clos
timelike curves at infinity we require for each wedge

Dt1Df.p. ~10!

The expressions forDt andDf would appear from Eqs
~8! and ~9! to be rather complicated. Surprisingly, howeve
they turn out to be very simple. We can examine the c
whereg is equal to zero~i.e., at the beginning of a cycle!; by
helical symmetry, our expressions forDf and Dt will be
valid for all values ofg.

For this case, we have

Dt52arctanS sin~a/2!tanhc

11cos~a/2!tanhc D
Df52arctanS sin~a/2!

tanhc1cos~a/2! D .

We remind the reader that, as mentioned before, in ev
ating these expressions we must keep track of which qu
rant we are in~using the signs of the numerator and denom
nator terms in parentheses! to recover the full range (0,2p)
of Dt and Df, since the arctangent function has only t
range (2p/2,p/2). We can find the expression for the su
Dt1Df by judicious use of the tangent sum formula. W
find, after much simplification, for each wedge, the result

Dt1Df5a. ~11!

The dependence onc has dropped out. Combining Eq
~11! with Eq. ~10!, we thus find that closed lightlike curve
will be produced at infinity by two idenitical orbiting poin
masses when the sum of their deficit angles is equal to 2p. If
the sum exceeds 2p, then closed timelike curves at infinit
will result.

Now for point masses in (211) dimensional Minkowski
space we expect that if the sum of the deficit angles of
two point masses exceeds 2p ~more than a hemisphere o
curvature!, the spacetime closes like a ‘‘dunce cap’’ rath
than extending to infinity. This induces additional ma
points~at the ‘‘tip’’ of the dunce cap! so that the total mass in
the closed space equals 4p as expected from the Gaus
Bonnet theorem in a closed space where the only curva
comes from the point masses. A spacelike section thro
anti–de Sitter space, however, has uniform negative cu
ture ~it maps onto a Poincare´ disk.! This negative curvature
counteracts the positive curvature in the two point mas
and allows the spacetime to remain open and extend to
finity even when the sum of the two point masses exce
2p.

So we are allowed to have the sum of the point ma
deficit angles that sum to greater than 2p while keeping a
subset of points at infinity, by simply separating the tw
masses by sufficiently large boosts. In Fig. 4, we show t
construction~produced with Mathematica! for a53p/2 for
each point mass, andc51. It is clear from this figure that
the two wedges do not intersect, and that there are still
‘‘stripes’’ of spacetime at infinity.
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We now derive a condition onc for the two wedges not to
intersect or touch. To derive this condition, it will be conv
nient to go into a reference frame where one of the partic
~the ‘‘stationary particle’’! is at the origin. Then, the othe
particle~the ‘‘orbiting particle’’! will orbit at a boost param-
eter of 2c. The particle at the origin remains stationary, a
its wedge, which we will call the ‘‘stationary particl
wedge,’’ subtends an anglea with identifications at constan
t.

Without loss of generality, we consider the caseg50 ~all
other values ofg can be obtained by rotating about the o
gin!, and we remind the reader that ourf coordinate in-
creases going counterclockwise, starting from 0 on the
going out from the origin through the orbiting particle atg
50.

The lines of identification for the orbiting particle atg
50 then start att50, f50 atl50, and run to some maxi
mum tmax and fmax as l goes to` ~we consider, again
without loss of generality because of the reflection symm
try, the leading wedge line only!.

The condition that the wedges never intersect becomes
following: the leading wedge identification line of the orb
ing particle may not intersect any part of the stationary p
ticle’s wedge in the ranget5(0,tmax).

The stationary particle’s wedge planes, by constructi
move around the origin with an angular velocity of unity. F
the leading line on the leading edge of the orbiting partic
t(l) is always greater than 0, and increasing monotonic
moving out from the orbiting particle~i.e., asl increases!.
We can thus write the angular position of the trailing statio
ary wedge plane as a function oft(l), the parameter along
the leading line~if the leading line intersects the stationa
particle’s wedges, it will do so first at the trailing wedg
plane!.

We find

FIG. 4. A demonstration that the space can support point m
deficit angles greater than 2p total without closing. Here each poin
mass has an deficit angle of 3p/2; there are still two small stripes a
infinity not removed by the wedge identifications.
08402
s

e

-

he

r-

,

,
ly

-

f trail5S p2
a

2 D1t~l! ~12!

which shows the location of the trailing edge of the statio
ary particle at timet(l), where

t~l!5arctanS sin~a/2!

cothl cothc1cos~a/2! D . ~13!

Meanwhile, thef coordinate of the leading line on th
leading wedge plane of the orbiting particle is written

f lead5arctanS sin~a/2!

cothl tanhc1cos~a/2! D . ~14!

Our condition for nonintersection of the wedges th
reads

f trail.f lead ~15!

for all values ofl between 0 and̀ . In other words, the line
parametrized byl for g50 on the leading edge of the or
biting particle should never hit the trailing wedge of the s
tionary particle.

We can see immediately that in the limitc→`, the two
arctangent terms become equal, andf trail2f lead→p2a/2.
In other words, we can fit two particles with deficit angles
up to just below 2p each into our space, provided we sep
rate them by a sufficient boostc.

For the casea5p, the bounding condition on the defic
angles to produce a time travel region at infinity, we consi
a small booste. Expanding Eq.~12! above to first order ine,
we find

f trail52e tanhl. ~16!

For smalll, f lead goes to 0 as long ase.0, and we see
that f trail2f lead→p/2, as expected. For largel, cothl is
near unity, and we can again expand to first order ine to find

f trail522e cothl. ~17!

Thus, for largel,

f trail2f lead;2e~cothl1tanhl! ~18!

and thus a time machine where the masses have de
angles ofp each requires only an infinitesimally small boos
This compares to the results of an earlier investigation
closed timelike curves in AdS spacetime for particles in n
radial orbits@3#; there, in a situation similar to that of th
original results for closed timelike curves from cosm
strings and point masses in a Minkowski background@2#, it
was found that two equal point masses passing each othe
linear trajectories through the origin of AdS spacetime p
duce closed lightlike curves~CTCs! when their velocities
relative to the center of mass exceed a certain amount:

v
c

.cos~a/2! ~19!

ss
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wherea<p.
So far, we have shown only the existence of closed lig

like curves on the surface at infinity. We now wish to sho
that this leads to the existence of closed timelike cur
throughout the space.

We note that, without the missing wedges, test partic
double boosted byc orbit the center of the system wit
period 2p, regardless of their radial distance from the cen
Let us denote byf (u) the amount, int andf, that a double
boosted particle, rotating at constant distance, is bea
back in time due to the missing wedges, whereu is the radial
coordinate. For deficit angles that sum to greater thanp,
f (p/2) will be greater than 2p. Sincef is a continuous func-
tion of u, this implies that there are closed timelike curve
finite distance away from the origin@i.e., f (u).2p for some
u,p/2]. When the deficit angles sum to precisely 2p, there
exist only closed null lines at infinity.

Since our solution is stationary@in the rotating coordinate
system described in Eq.~7! above#, we can then draw a
closed timelike curve through any event when the defi
angles sum to more than 2p. We can draw a timelike curve
between any two events; the timelike curve simply orbits
two point masses as many times as needed to ‘‘rewind’’ s
ficiently backwards int to reach the event designated.@Re-
call that from any finite distance you can reach the cente
a time Dt,p/2. So to go from any (x,f) to any other
(x8,f8) requires only a finiteDt.#
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VI. DISCUSSION

We have constructed, in anti–de Sitter space, a system
two particles orbiting about a common center that leads n
rally to the existence of closed timelike and null curves. W
have derived analytic results on the constraints for
masses and relative separations of the two particles. Clo
timelike curves fill the entire spacetime. Timelike curv
may be drawn through any two events within the space;
‘‘time machine’’ exists for all times.

Holst and Matschull@5#, who also considered the effect o
point particles in (211)-dimensional AdS spacetime sug
gested a connection between their solution and the BTZ
lution @4#. The CTCs in their solution are hidden inside th
event horizon of the rotating black hole. The CTCs in o
solution, however, are not found in a single region bound
by Cauchy horizons, but penetrate the entire space. In t
solution the point particles that generate the CTCs trave
lightlike paths and are ‘‘emitted’’ and ‘‘absorbed’’ at infinity
at a timeDt5p apart. Regions before and after are co
nected with a BTZ wormhole with a time machine hidd
inside. In our case, the particles simply orbit each other
all time, creating an eternal time machine.
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